Datasets:
ArXiv:
License:
加载数据
方案1
语种:
语种 | 语种全称 | 样本个数 | 数据来源 |
---|---|---|---|
ar | arabic | 10000 | iwslt2017 |
bg | bulgarian | 10000 | xnli |
bn | bengali | 10000 | open_subtitles |
bs | bosnian | 10000 | open_subtitles |
cs | czech | 10000 | ecb |
da | danish | 10000 | open_subtitles |
de | german | 10000 | ecb |
el | modern greek | 10000 | ecb |
en | english | 10000 | ecb |
eo | esperanto | 10000 | tatoeba |
es | spanish | 10000 | tatoeba |
et | estonian | 10000 | emea |
fi | finnish | 10000 | ecb |
fo | faroese | 10000 | nordic_langid |
fr | french | 10000 | iwslt2017 |
ga | irish | 10000 | multi_para_crawl |
gl | galician | 3096 | tatoeba |
gu | gujarati | - | - |
hi | hindi | 10000 | open_subtitles |
hi_en | hindi | 7180 | cmu_hinglish_dog |
hr | croatian | 10000 | hrenwac_para |
hu | hungarian | 3801 | europa_ecdc_tm; europa_eac_tm |
hy | armenian | 660 | open_subtitles |
id | indonesian | 10000 | id_panl_bppt |
is | icelandic | 2973 | europa_ecdc_tm; europa_eac_tm |
it | italian | 10000 | iwslt2017 |
ja | japanese | 10000 | iwslt2017 |
kk | kazakh | - | - |
ko | korean | 10000 | iwslt2017 |
lt | lithuanian | 10000 | emea |
lv | latvian | 4595 | europa_ecdc_tm; europa_eac_tm |
mr | marathi | 10000 | tatoeba |
mt | maltese | 10000 | multi_para_crawl |
nl | dutch | 10000 | kde4 |
no | norwegian | 10000 | multi_para_crawl |
pl | polish | 10000 | ecb |
pt | portuguese | 10000 | tatoeba |
ro | romanian | 10000 | kde4 |
ru | russian | 10000 | xnli |
sk | slovak | 10000 | multi_para_crawl |
sl | slovenian | 4589 | europa_ecdc_tm; europa_eac_tm |
sw | swahili | 10000 | xnli |
sv | swedish | 10000 | kde4 |
th | thai | 10000 | xnli |
tl | tagalog | 10000 | multi_para_crawl |
tn | serpeti | 10000 | autshumato |
tr | turkish | 10000 | xnli |
ts | dzonga | 10000 | autshumato |
ur | urdu | 10000 | xnli |
vi | vietnamese | 10000 | xnli |
yo | yoruba | 9970 | menyo20k_mt |
zh | chinese | 10000 | xnli |
zu | zulu, south africa | 10000 | autshumato |
备注:
问题1:
训练模型后发现它对短句子的识别能力很差。
当句子长度足够的时候,它能够识别准确,并给出接近1.0 的概率值。
但对于短句子,识别结果让人难以接受。例如把“你好”识别成 de 德语。
解答1:
(1)数据增强,将句子截短。
(2)我认为可考虑加大 dropout,狠狠的 dropout。
方案2
语种:
语种 | 语种全称 | 样本个数 | 数据来源 |
---|---|---|---|
af | afrikaans | 35214 | spc |
ar | arabic | 100000 | iwslt2017 |
bg | bulgarian | 100000 | xnli |
bn | bengali | 36064 | open_subtitles |
bs | bosnian | 10212 | open_subtitles |
cs | czech | 100000 | emea |
da | danish | 100000 | open_subtitles |
de | german | 100000 | iwslt2017 |
el | modern greek | 100000 | emea |
en | english | 200000 | iwslt2017 |
eo | esperanto | 94101 | tatoeba; open_subtitles |
es | spanish | 100000 | xnli |
et | estonian | 100000 | emea |
fi | finnish | 100000 | ecb; kde4 |
fo | faroese | 23807 | nordic_langid |
fr | french | 100000 | iwslt2017 |
ga | irish | 100000 | multi_para_crawl |
gl | galician | 3096 | tatoeba |
gu | gujarati | - | - |
hi | hindi | 100000 | xnli |
hi_en | hindi | 7180 | cmu_hinglish_dog |
hr | croatian | 95844 | hrenwac_para |
hu | hungarian | 3801 | europa_ecdc_tm; europa_eac_tm |
hy | armenian | 660 | open_subtitles |
id | indonesian | 23940 | id_panl_bppt |
is | icelandic | 100000 | multi_para_crawl |
it | italian | 100000 | iwslt2017 |
ja | japanese | 100000 | iwslt2017 |
kk | kazakh | - | - |
ko | korean | 100000 | iwslt2017 |
lt | lithuanian | 100000 | emea |
lv | latvian | 100000 | multi_para_crawl |
mr | marathi | 51807 | tatoeba |
mt | maltese | 100000 | multi_para_crawl |
nl | dutch | 100000 | kde4 |
no | norwegian | 100000 | multi_para_crawl |
pl | polish | 100000 | para_crawl_en_pl |
pt | portuguese | 100000 | para_crawl_en_pt |
ro | romanian | 100000 | iwslt2017 |
ru | russian | 100000 | xnli |
sk | slovak | 100000 | multi_para_crawl |
sl | slovenian | 100000 | para_crawl_en_sl |
sw | swahili | 100000 | xnli |
sv | swedish | 100000 | kde4 |
th | thai | 100000 | xnli |
tl | tagalog | 97241 | multi_para_crawl |
tn | serpeti | 100000 | autshumato |
tr | turkish | 100000 | xnli |
ts | dzonga | 100000 | autshumato |
uk | ukrainian | 88533 | para_pat_en_uk |
ur | urdu | 100000 | xnli |
vi | vietnamese | 100000 | xnli |
yo | yoruba | 9970 | menyo20k_mt |
zh | chinese | 200000 | xnli |
zu | zulu, south africa | 26801 | autshumato |