Datasets:

ArXiv:
License:
language_identification / load_data.md
HoneyTian's picture
update
80f22ba

加载数据

方案1

语种:

语种 语种全称 样本个数 数据来源
ar arabic 10000 iwslt2017
bg bulgarian 10000 xnli
bn bengali 10000 open_subtitles
bs bosnian 10000 open_subtitles
cs czech 10000 ecb
da danish 10000 open_subtitles
de german 10000 ecb
el modern greek 10000 ecb
en english 10000 ecb
eo esperanto 10000 tatoeba
es spanish 10000 tatoeba
et estonian 10000 emea
fi finnish 10000 ecb
fo faroese 10000 nordic_langid
fr french 10000 iwslt2017
ga irish 10000 multi_para_crawl
gl galician 3096 tatoeba
gu gujarati - -
hi hindi 10000 open_subtitles
hi_en hindi 7180 cmu_hinglish_dog
hr croatian 10000 hrenwac_para
hu hungarian 3801 europa_ecdc_tm; europa_eac_tm
hy armenian 660 open_subtitles
id indonesian 10000 id_panl_bppt
is icelandic 2973 europa_ecdc_tm; europa_eac_tm
it italian 10000 iwslt2017
ja japanese 10000 iwslt2017
kk kazakh - -
ko korean 10000 iwslt2017
lt lithuanian 10000 emea
lv latvian 4595 europa_ecdc_tm; europa_eac_tm
mr marathi 10000 tatoeba
mt maltese 10000 multi_para_crawl
nl dutch 10000 kde4
no norwegian 10000 multi_para_crawl
pl polish 10000 ecb
pt portuguese 10000 tatoeba
ro romanian 10000 kde4
ru russian 10000 xnli
sk slovak 10000 multi_para_crawl
sl slovenian 4589 europa_ecdc_tm; europa_eac_tm
sw swahili 10000 xnli
sv swedish 10000 kde4
th thai 10000 xnli
tl tagalog 10000 multi_para_crawl
tn serpeti 10000 autshumato
tr turkish 10000 xnli
ts dzonga 10000 autshumato
ur urdu 10000 xnli
vi vietnamese 10000 xnli
yo yoruba 9970 menyo20k_mt
zh chinese 10000 xnli
zu zulu, south africa 10000 autshumato

备注:

问题1:
训练模型后发现它对短句子的识别能力很差。
当句子长度足够的时候,它能够识别准确,并给出接近1.0 的概率值。
但对于短句子,识别结果让人难以接受。例如把“你好”识别成 de 德语。

解答1:
(1)数据增强,将句子截短。
(2)我认为可考虑加大 dropout,狠狠的 dropout。

方案2

语种:

语种 语种全称 样本个数 数据来源
af afrikaans 35214 spc
ar arabic 100000 iwslt2017
bg bulgarian 100000 xnli
bn bengali 36064 open_subtitles
bs bosnian 10212 open_subtitles
cs czech 100000 emea
da danish 100000 open_subtitles
de german 100000 iwslt2017
el modern greek 100000 emea
en english 200000 iwslt2017
eo esperanto 94101 tatoeba; open_subtitles
es spanish 100000 xnli
et estonian 100000 emea
fi finnish 100000 ecb; kde4
fo faroese 23807 nordic_langid
fr french 100000 iwslt2017
ga irish 100000 multi_para_crawl
gl galician 3096 tatoeba
gu gujarati - -
hi hindi 100000 xnli
hi_en hindi 7180 cmu_hinglish_dog
hr croatian 95844 hrenwac_para
hu hungarian 3801 europa_ecdc_tm; europa_eac_tm
hy armenian 660 open_subtitles
id indonesian 23940 id_panl_bppt
is icelandic 100000 multi_para_crawl
it italian 100000 iwslt2017
ja japanese 100000 iwslt2017
kk kazakh - -
ko korean 100000 iwslt2017
lt lithuanian 100000 emea
lv latvian 100000 multi_para_crawl
mr marathi 51807 tatoeba
mt maltese 100000 multi_para_crawl
nl dutch 100000 kde4
no norwegian 100000 multi_para_crawl
pl polish 100000 para_crawl_en_pl
pt portuguese 100000 para_crawl_en_pt
ro romanian 100000 iwslt2017
ru russian 100000 xnli
sk slovak 100000 multi_para_crawl
sl slovenian 100000 para_crawl_en_sl
sw swahili 100000 xnli
sv swedish 100000 kde4
th thai 100000 xnli
tl tagalog 97241 multi_para_crawl
tn serpeti 100000 autshumato
tr turkish 100000 xnli
ts dzonga 100000 autshumato
uk ukrainian 88533 para_pat_en_uk
ur urdu 100000 xnli
vi vietnamese 100000 xnli
yo yoruba 9970 menyo20k_mt
zh chinese 200000 xnli
zu zulu, south africa 26801 autshumato