Datasets:

Languages:
Indonesian
ArXiv:
License:
IndoMMLU / IndoMMLU.py
indolem's picture
Update IndoMMLU.py
7c60dd3
import csv
import datasets
_CITATION = """\
@inproceedings{koto-etal-2023-indommlu,
title = "Large Language Models Only Pass Primary School Exams in {I}ndonesia: A Comprehensive Test on {I}ndo{MMLU}",
author = "Fajri Koto and Nurul Aisyah and Haonan Li and Timothy Baldwin",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = December,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
}"""
subject2english = {
'Sejarah': 'History',
'Geografi': 'Geography',
'Bahasa Lampung': 'Lampungic',
'IPS': 'Social science',
'Bahasa Bali': 'Balinese',
'Bahasa Makassar': 'Makassarese',
'Bahasa Banjar': 'Banjarese',
'Kimia': 'Chemistry',
'Biologi': 'Biology',
'IPA': 'Science',
'Agama Kristen': 'Christian religion',
'Kesenian': 'Art',
'Agama Islam': 'Islam religion',
'Agama Hindu': 'Hindu religion',
'Bahasa Madura': 'Madurese',
'Penjaskes': 'Sport',
'Bahasa Indonesia': 'Indonesian language',
'Fisika': 'Physics',
'Budaya Alam Minangkabau': 'Minangkabau culture',
'Bahasa Dayak Ngaju': 'Dayak language',
'Sosiologi': 'Sociology',
'Ekonomi': 'Economy',
'Bahasa Sunda': 'Sundanese',
'Bahasa Jawa': 'Javanese',
'PPKN': 'Civic education',
}
subject2group = {
'Sejarah': 'Humanities',
'Geografi': 'Social science',
'Bahasa Lampung': 'Local languages and cultures',
'IPS': 'Social science',
'Bahasa Bali': 'Local languages and cultures',
'Bahasa Makassar': 'Local languages and cultures',
'Bahasa Banjar': 'Local languages and cultures',
'Kimia': 'STEM',
'Biologi': 'STEM',
'IPA': 'STEM',
'Agama Kristen': 'Humanities',
'Kesenian': 'Humanities',
'Agama Islam': 'Humanities',
'Agama Hindu': 'Humanities',
'Bahasa Madura': 'Local languages and cultures',
'Penjaskes': 'Humanities',
'Bahasa Indonesia': 'Indonesian language',
'Fisika': 'STEM',
'Budaya Alam Minangkabau': 'Local languages and cultures',
'Bahasa Dayak Ngaju': 'Local languages and cultures',
'Sosiologi': 'Social science',
'Ekonomi': 'Social science',
'Bahasa Sunda': 'Local languages and cultures',
'Bahasa Jawa': 'Local languages and cultures',
'PPKN': 'Social science',
}
special_case = ['SD-SMP-SMA', 'SD-SMP']
level_mapper = {
'SMA': 'SMA',
'Seleksi PTN': 'University entrance test',
'SD': 'SD',
'SMP': 'SMP',
'Kelas I SD': 'SD',
'Kelas X SMA': 'SMA',
'Kelas XI SMA': 'SMA',
'Kelas XII SMA': 'SMA',
'V SD': 'SD',
'VI SD': 'SD',
'VII SMP': 'SMP',
'VIII SMP ': 'SMP',
'IX SMP': 'SMP',
'Kelas III SD':'SD',
'Kelas IV SD': 'SD',
'Kelas II SD': 'SD'
}
def fix_level(level, kelas):
#Fixing Level
if level in special_case:
kelas = float(kelas)
if kelas >=1 and kelas <= 6:
level = 'SD'
elif kelas >=7 and kelas <= 9:
level = 'SMP'
elif kelas >=10:
level = 'SMA'
else:
print(level)
fixed_level = level_mapper[level]
#Fixing class
fixed_kelas = -1
kelas = str(kelas)
if kelas.strip() in ['PTN', '2023-10-12 00:00:00']:
fixed_kelas = 13
elif kelas == '4,5,6':
fixed_kelas = 6
else:
fixed_kelas = int(float(kelas.strip()))
# sanity check over the level and kelas
return fixed_level, fixed_kelas
_URL = {
'test': "https://huggingface.co/datasets/indolem/IndoMMLU/resolve/main/IndoMMLU.csv",
}
class IndoMMLUConfig(datasets.BuilderConfig):
"""IndoMMLUConfig for IndoMMLU"""
def __init__(self, **kwargs):
"""BuilderConfig for IndoStoryCloze.
**kwargs: keyword arguments forwarded to super.
"""
# Version history:
# 1.0.0: Release version
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = ['subject', 'group', 'level', 'class', 'question', 'options', 'answer', 'is_for_fewshot']
class IndoMMLU(datasets.GeneratorBasedBuilder):
"""The IndoMMLU Datasets."""
BUILDER_CONFIGS = [IndoMMLUConfig()]
def _info(self):
features = {feature: datasets.Value("string") for feature in self.config.features}
return datasets.DatasetInfo(
description='IndoMMLU',
features=datasets.Features(features),
homepage='https://github.com/fajri91/IndoMMLU',
citation=_CITATION
)
def _split_generators(self, dl_manager):
downloaded_file = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_file": downloaded_file['test']}),
]
def _generate_examples(self, data_file):
data = csv.DictReader(open(data_file, newline=''))
for i, row in enumerate(data):
fixed_level, fixed_kelas = fix_level(row['level'], row['kelas'])
yield i, {
"subject": subject2english[row['subject']],
"group": subject2group[row['subject']],
"level": fixed_level,
"class": fixed_kelas,
"question": row['soal'],
"options": row['jawaban'].split('\n'),
"answer": row['kunci'],
"is_for_fewshot": row['is_for_fewshot']
}