Datasets:

Languages:
Indonesian
ArXiv:
License:
File size: 5,578 Bytes
ff6f3f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c60dd3
ff6f3f6
 
 
 
 
48bb741
ff6f3f6
 
 
 
 
 
291edb3
ff6f3f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f8311
ff6f3f6
 
 
 
 
 
 
 
 
 
 
 
 
e6a67af
ff6f3f6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import csv
import datasets

_CITATION = """\
@inproceedings{koto-etal-2023-indommlu,
    title = "Large Language Models Only Pass Primary School Exams in {I}ndonesia: A Comprehensive Test on {I}ndo{MMLU}",
    author = "Fajri Koto and Nurul Aisyah and Haonan Li and Timothy Baldwin",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = December,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
}"""


subject2english = {
    'Sejarah': 'History',
     'Geografi': 'Geography',
     'Bahasa Lampung': 'Lampungic',
     'IPS': 'Social science',
     'Bahasa Bali': 'Balinese',
     'Bahasa Makassar': 'Makassarese',
     'Bahasa Banjar': 'Banjarese',
     'Kimia': 'Chemistry',
     'Biologi': 'Biology',
     'IPA': 'Science',
     'Agama Kristen': 'Christian religion',
     'Kesenian': 'Art',
     'Agama Islam': 'Islam religion',
     'Agama Hindu': 'Hindu religion',
     'Bahasa Madura': 'Madurese',
     'Penjaskes': 'Sport',
     'Bahasa Indonesia': 'Indonesian language',
     'Fisika': 'Physics',
     'Budaya Alam Minangkabau': 'Minangkabau culture',
     'Bahasa Dayak Ngaju': 'Dayak language',
     'Sosiologi': 'Sociology',
     'Ekonomi': 'Economy',
     'Bahasa Sunda': 'Sundanese',
     'Bahasa Jawa': 'Javanese',
     'PPKN': 'Civic education',
}

subject2group = {
     'Sejarah': 'Humanities',
     'Geografi': 'Social science',
     'Bahasa Lampung': 'Local languages and cultures',
     'IPS': 'Social science',
     'Bahasa Bali': 'Local languages and cultures',
     'Bahasa Makassar': 'Local languages and cultures',
     'Bahasa Banjar': 'Local languages and cultures',
     'Kimia': 'STEM',
     'Biologi': 'STEM',
     'IPA': 'STEM',
     'Agama Kristen': 'Humanities',
     'Kesenian': 'Humanities',
     'Agama Islam': 'Humanities',
     'Agama Hindu': 'Humanities',
     'Bahasa Madura': 'Local languages and cultures',
     'Penjaskes': 'Humanities',
     'Bahasa Indonesia': 'Indonesian language',
     'Fisika': 'STEM',
     'Budaya Alam Minangkabau': 'Local languages and cultures',
     'Bahasa Dayak Ngaju': 'Local languages and cultures',
     'Sosiologi': 'Social science',
     'Ekonomi': 'Social science',
     'Bahasa Sunda': 'Local languages and cultures',
     'Bahasa Jawa': 'Local languages and cultures',
     'PPKN': 'Social science',
}

special_case = ['SD-SMP-SMA', 'SD-SMP']
level_mapper = {
     'SMA': 'SMA',
     'Seleksi PTN': 'University entrance test',         
     'SD': 'SD',
     'SMP': 'SMP',
     'Kelas I SD': 'SD',
     'Kelas X SMA': 'SMA',
     'Kelas XI SMA': 'SMA',
     'Kelas XII SMA': 'SMA',
     'V SD': 'SD',
     'VI SD': 'SD',
     'VII SMP': 'SMP',
     'VIII SMP ': 'SMP',
     'IX SMP': 'SMP',
     'Kelas III SD':'SD',
     'Kelas IV SD': 'SD',
     'Kelas II SD': 'SD'
}

def fix_level(level, kelas):
    #Fixing Level
    if level in special_case:
        kelas = float(kelas)
        if kelas >=1 and kelas <= 6:
            level = 'SD'
        elif kelas >=7 and kelas <= 9:
            level = 'SMP'
        elif kelas >=10:
            level = 'SMA'
        else:
            print(level)
    fixed_level = level_mapper[level]

    #Fixing class
    fixed_kelas = -1
    kelas = str(kelas)
    if kelas.strip() in ['PTN', '2023-10-12 00:00:00']:
        fixed_kelas = 13
    elif kelas == '4,5,6':
        fixed_kelas = 6
    else:
        fixed_kelas = int(float(kelas.strip()))
    
    # sanity check over the level and kelas
    return fixed_level, fixed_kelas


_URL = {
    'test': "https://huggingface.co/datasets/indolem/IndoMMLU/resolve/main/IndoMMLU.csv",
}

class IndoMMLUConfig(datasets.BuilderConfig):
    """IndoMMLUConfig for IndoMMLU"""

    def __init__(self, **kwargs):
        """BuilderConfig for IndoStoryCloze.
        **kwargs: keyword arguments forwarded to super.
        """
        # Version history:
        # 1.0.0: Release version
        super().__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.features = ['subject', 'group', 'level', 'class', 'question', 'options', 'answer', 'is_for_fewshot']


class IndoMMLU(datasets.GeneratorBasedBuilder):
    """The IndoMMLU Datasets."""

    BUILDER_CONFIGS = [IndoMMLUConfig()]

    def _info(self):
        features = {feature: datasets.Value("string") for feature in self.config.features}

        return datasets.DatasetInfo(
                        description='IndoMMLU',
                        features=datasets.Features(features),
                        homepage='https://github.com/fajri91/IndoMMLU',
                        citation=_CITATION
        )

    def _split_generators(self, dl_manager):
        downloaded_file = dl_manager.download_and_extract(_URL)

        return [           
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_file": downloaded_file['test']}),
        ]

    def _generate_examples(self, data_file):
        data = csv.DictReader(open(data_file, newline=''))
        for i, row in enumerate(data):
            fixed_level, fixed_kelas = fix_level(row['level'], row['kelas'])
            yield i, {
                "subject": subject2english[row['subject']],
                "group": subject2group[row['subject']],
                "level": fixed_level,
                "class": fixed_kelas,
                "question": row['soal'],
                "options": row['jawaban'].split('\n'),
                "answer": row['kunci'],
                "is_for_fewshot": row['is_for_fewshot']
            }