IMDB-BINARY / README.md
clefourrier's picture
clefourrier HF staff
Update README.md
412288d
---
license: unknown
task_categories:
- graph-ml
---
# Dataset Card for IMDB-BINARY (IMDb-B)
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [External Use](#external-use)
- [PyGeometric](#pygeometric)
- [Dataset Structure](#dataset-structure)
- [Data Properties](#data-properties)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **[Homepage](https://dl.acm.org/doi/10.1145/2783258.2783417)**
- **[Repository](https://www.chrsmrrs.com/graphkerneldatasets/IMDB-BINARY.zip):**:
- **Paper:**: Deep Graph Kernels (see citation)
- **Leaderboard:**: [Papers with code leaderboard](https://paperswithcode.com/sota/graph-classification-on-imdb-b)
### Dataset Summary
The `IMDb-B` dataset is "a movie collaboration dataset that consists of the ego-networks of 1,000 actors/actresses who played roles in movies in IMDB. In each graph, nodes represent actors/actress, and there is an edge between them if they appear in the same movie. These graphs are derived from the Action and Romance genres".
### Supported Tasks and Leaderboards
`IMDb-B` should be used for graph classification (aiming to predict whether a movie graph is an action or romance movie), a binary classification task. The score used is accuracy, using a 10-fold cross-validation.
## External Use
### PyGeometric
To load in PyGeometric, do the following:
```python
from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
dataset_hf = load_dataset("graphs-datasets/<mydataset>")
# For the train set (replace by valid or test as needed)
dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
dataset_pg = DataLoader(dataset_pg_list)
```
## Dataset Structure
### Data Properties
| property | value |
|---|---|
| scale | medium |
| #graphs | 1000 |
| average #nodes | 19.79 |
| average #edges | 193.25 |
### Data Fields
Each row of a given file is a graph, with:
- `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
- `y` (list: 1 x #labels): contains the number of labels available to predict (here 1, equal to zero or one)
- `num_nodes` (int): number of nodes of the graph
### Data Splits
This data comes from the PyGeometric version of the dataset.
This information can be found back using
```python
from torch_geometric.datasets import TUDataset
cur_dataset = TUDataset(root="../dataset/loaded/",
name="IMDB-BINARY")
```
## Additional Information
### Licensing Information
The dataset has been released under unknown license, please open an issue if you have this information.
### Citation Information
```
@inproceedings{10.1145/2783258.2783417,
author = {Yanardag, Pinar and Vishwanathan, S.V.N.},
title = {Deep Graph Kernels},
year = {2015},
isbn = {9781450336642},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/2783258.2783417},
doi = {10.1145/2783258.2783417},
abstract = {In this paper, we present Deep Graph Kernels, a unified framework to learn latent representations of sub-structures for graphs, inspired by latest advancements in language modeling and deep learning. Our framework leverages the dependency information between sub-structures by learning their latent representations. We demonstrate instances of our framework on three popular graph kernels, namely Graphlet kernels, Weisfeiler-Lehman subtree kernels, and Shortest-Path graph kernels. Our experiments on several benchmark datasets show that Deep Graph Kernels achieve significant improvements in classification accuracy over state-of-the-art graph kernels.},
booktitle = {Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
pages = {1365–1374},
numpages = {10},
keywords = {collaboration networks, bioinformatics, r-convolution kernels, graph kernels, structured data, deep learning, social networks, string kernels},
location = {Sydney, NSW, Australia},
series = {KDD '15}
}
```
### Contributions
Thanks to [@clefourrier](https://github.com/clefourrier) for adding this dataset.