Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-stsb` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sts/sts-b](https://adapterhub.ml/explore/sts/sts-b/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-stsb", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:sts/sts-b", "adapter-transformers"]}
AdapterHub/bert-base-uncased-pf-stsb
null
[ "adapter-transformers", "bert", "text-classification", "adapterhub:sts/sts-b", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-swag` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [swag](https://huggingface.co/datasets/swag/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-swag", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapter-transformers"], "datasets": ["swag"]}
AdapterHub/bert-base-uncased-pf-swag
null
[ "adapter-transformers", "bert", "en", "dataset:swag", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-trec` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [trec](https://huggingface.co/datasets/trec/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-trec", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapter-transformers"], "datasets": ["trec"]}
AdapterHub/bert-base-uncased-pf-trec
null
[ "adapter-transformers", "bert", "text-classification", "en", "dataset:trec", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-ud_deprel` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [deprel/ud_ewt](https://adapterhub.ml/explore/deprel/ud_ewt/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_deprel", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:deprel/ud_ewt", "adapter-transformers"], "datasets": ["universal_dependencies"]}
AdapterHub/bert-base-uncased-pf-ud_deprel
null
[ "adapter-transformers", "bert", "token-classification", "adapterhub:deprel/ud_ewt", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-ud_en_ewt` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [dp/ud_ewt](https://adapterhub.ml/explore/dp/ud_ewt/) dataset and includes a prediction head for dependency parsing. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_en_ewt", source="hf", set_active=True) ``` ## Architecture & Training This adapter was trained using adapter-transformer's example script for dependency parsing. See https://github.com/Adapter-Hub/adapter-transformers/tree/master/examples/dependency-parsing. ## Evaluation results Scores achieved by dependency parsing adapters on the test set of UD English EWT after training: | Model | UAS | LAS | | --- | --- | --- | | `bert-base-uncased` | 91.74 | 89.15 | | `roberta-base` | 91.43 | 88.43 | ## Citation <!-- Add some description here -->
{"language": ["en"], "tags": ["bert", "adapterhub:dp/ud_ewt", "adapter-transformers"], "datasets": ["universal_dependencies"]}
AdapterHub/bert-base-uncased-pf-ud_en_ewt
null
[ "adapter-transformers", "bert", "adapterhub:dp/ud_ewt", "en", "dataset:universal_dependencies", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-ud_pos` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pos/ud_ewt](https://adapterhub.ml/explore/pos/ud_ewt/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_pos", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:pos/ud_ewt", "adapter-transformers"], "datasets": ["universal_dependencies"]}
AdapterHub/bert-base-uncased-pf-ud_pos
null
[ "adapter-transformers", "bert", "token-classification", "adapterhub:pos/ud_ewt", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-wic` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [wordsence/wic](https://adapterhub.ml/explore/wordsence/wic/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-wic", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:wordsence/wic", "adapter-transformers"]}
AdapterHub/bert-base-uncased-pf-wic
null
[ "adapter-transformers", "bert", "text-classification", "adapterhub:wordsence/wic", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-wikihop` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [qa/wikihop](https://adapterhub.ml/explore/qa/wikihop/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-wikihop", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapterhub:qa/wikihop", "adapter-transformers"]}
AdapterHub/bert-base-uncased-pf-wikihop
null
[ "adapter-transformers", "bert", "question-answering", "adapterhub:qa/wikihop", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-winogrande` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/winogrande](https://adapterhub.ml/explore/comsense/winogrande/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-winogrande", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapterhub:comsense/winogrande", "adapter-transformers"], "datasets": ["winogrande"]}
AdapterHub/bert-base-uncased-pf-winogrande
null
[ "adapter-transformers", "bert", "adapterhub:comsense/winogrande", "en", "dataset:winogrande", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-wnut_17` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [wnut_17](https://huggingface.co/datasets/wnut_17/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-wnut_17", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapter-transformers"], "datasets": ["wnut_17"]}
AdapterHub/bert-base-uncased-pf-wnut_17
null
[ "adapter-transformers", "bert", "token-classification", "en", "dataset:wnut_17", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-yelp_polarity` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [yelp_polarity](https://huggingface.co/datasets/yelp_polarity/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-yelp_polarity", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapter-transformers"], "datasets": ["yelp_polarity"]}
AdapterHub/bert-base-uncased-pf-yelp_polarity
null
[ "adapter-transformers", "bert", "text-classification", "en", "dataset:yelp_polarity", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/bioASQyesno` for facebook/bart-base An [adapter](https://adapterhub.ml) for the `facebook/bart-base` model that was trained on the [qa/bioasq](https://adapterhub.ml/explore/qa/bioasq/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("facebook/bart-base") adapter_name = model.load_adapter("AdapterHub/bioASQyesno", source="hf", set_active=True) ``` ## Architecture & Training Trained for 15 epochs with early stopping, a learning rate of 1e-4, and a batch size of 4 on the yes-no questions of the bioASQ 8b dataset. ## Evaluation results Achieved 75% accuracy on the test dataset of bioASQ 8b dataset. ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:qa/bioasq", "adapter-transformers", "bart"]}
AdapterHub/bioASQyesno
null
[ "adapter-transformers", "bart", "adapterhub:qa/bioasq", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `hSterz/narrativeqa` for facebook/bart-base An [adapter](https://adapterhub.ml) for the `facebook/bart-base` model that was trained on the [qa/narrativeqa](https://adapterhub.ml/explore/qa/narrativeqa/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("facebook/bart-base") adapter_name = model.load_adapter("hSterz/narrativeqa", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:qa/narrativeqa", "adapter-transformers", "bart"], "datasets": ["narrativeqa"]}
AdapterHub/narrativeqa
null
[ "adapter-transformers", "bart", "adapterhub:qa/narrativeqa", "dataset:narrativeqa", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-anli_r3` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [anli](https://huggingface.co/datasets/anli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-anli_r3", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapter-transformers"], "datasets": ["anli"]}
AdapterHub/roberta-base-pf-anli_r3
null
[ "adapter-transformers", "roberta", "text-classification", "en", "dataset:anli", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-art` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [art](https://huggingface.co/datasets/art/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-art", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapter-transformers"], "datasets": ["art"]}
AdapterHub/roberta-base-pf-art
null
[ "adapter-transformers", "roberta", "en", "dataset:art", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-boolq` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [qa/boolq](https://adapterhub.ml/explore/qa/boolq/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-boolq", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:qa/boolq", "adapter-transformers"], "datasets": ["boolq"]}
AdapterHub/roberta-base-pf-boolq
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:qa/boolq", "en", "dataset:boolq", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-cola` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [lingaccept/cola](https://adapterhub.ml/explore/lingaccept/cola/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-cola", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:lingaccept/cola", "adapter-transformers"]}
AdapterHub/roberta-base-pf-cola
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:lingaccept/cola", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-commonsense_qa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/csqa](https://adapterhub.ml/explore/comsense/csqa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-commonsense_qa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapterhub:comsense/csqa", "adapter-transformers"], "datasets": ["commonsense_qa"]}
AdapterHub/roberta-base-pf-commonsense_qa
null
[ "adapter-transformers", "roberta", "adapterhub:comsense/csqa", "en", "dataset:commonsense_qa", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-comqa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [com_qa](https://huggingface.co/datasets/com_qa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-comqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapter-transformers"], "datasets": ["com_qa"]}
AdapterHub/roberta-base-pf-comqa
null
[ "adapter-transformers", "roberta", "question-answering", "en", "dataset:com_qa", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-conll2000` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [chunk/conll2000](https://adapterhub.ml/explore/chunk/conll2000/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-conll2000", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:chunk/conll2000", "adapter-transformers"], "datasets": ["conll2000"]}
AdapterHub/roberta-base-pf-conll2000
null
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:chunk/conll2000", "en", "dataset:conll2000", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-conll2003` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [ner/conll2003](https://adapterhub.ml/explore/ner/conll2003/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-conll2003", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:ner/conll2003", "adapter-transformers"], "datasets": ["conll2003"]}
AdapterHub/roberta-base-pf-conll2003
null
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:ner/conll2003", "en", "dataset:conll2003", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-conll2003_pos` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [pos/conll2003](https://adapterhub.ml/explore/pos/conll2003/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-conll2003_pos", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:pos/conll2003", "adapter-transformers", "token-classification"], "datasets": ["conll2003"]}
AdapterHub/roberta-base-pf-conll2003_pos
null
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:pos/conll2003", "en", "dataset:conll2003", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-copa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/copa](https://adapterhub.ml/explore/comsense/copa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-copa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapterhub:comsense/copa", "adapter-transformers"]}
AdapterHub/roberta-base-pf-copa
null
[ "adapter-transformers", "roberta", "adapterhub:comsense/copa", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-cosmos_qa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/cosmosqa](https://adapterhub.ml/explore/comsense/cosmosqa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-cosmos_qa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapterhub:comsense/cosmosqa", "adapter-transformers"], "datasets": ["cosmos_qa"]}
AdapterHub/roberta-base-pf-cosmos_qa
null
[ "adapter-transformers", "roberta", "adapterhub:comsense/cosmosqa", "en", "dataset:cosmos_qa", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-cq` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [qa/cq](https://adapterhub.ml/explore/qa/cq/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-cq", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapterhub:qa/cq", "adapter-transformers"]}
AdapterHub/roberta-base-pf-cq
null
[ "adapter-transformers", "roberta", "question-answering", "adapterhub:qa/cq", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-drop` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [drop](https://huggingface.co/datasets/drop/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-drop", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapter-transformers"], "datasets": ["drop"]}
AdapterHub/roberta-base-pf-drop
null
[ "adapter-transformers", "roberta", "question-answering", "en", "dataset:drop", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-duorc_p` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [duorc](https://huggingface.co/datasets/duorc/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-duorc_p", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapter-transformers"], "datasets": ["duorc"]}
AdapterHub/roberta-base-pf-duorc_p
null
[ "adapter-transformers", "roberta", "question-answering", "en", "dataset:duorc", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-duorc_s` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [duorc](https://huggingface.co/datasets/duorc/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-duorc_s", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapter-transformers"], "datasets": ["duorc"]}
AdapterHub/roberta-base-pf-duorc_s
null
[ "adapter-transformers", "roberta", "question-answering", "en", "dataset:duorc", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-emo` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [emo](https://huggingface.co/datasets/emo/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-emo", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapter-transformers"], "datasets": ["emo"]}
AdapterHub/roberta-base-pf-emo
null
[ "adapter-transformers", "roberta", "text-classification", "en", "dataset:emo", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-emotion` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [emotion](https://huggingface.co/datasets/emotion/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-emotion", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapter-transformers"], "datasets": ["emotion"]}
AdapterHub/roberta-base-pf-emotion
null
[ "adapter-transformers", "roberta", "text-classification", "en", "dataset:emotion", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-fce_error_detection` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [ged/fce](https://adapterhub.ml/explore/ged/fce/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-fce_error_detection", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:ged/fce", "adapter-transformers"], "datasets": ["fce_error_detection"]}
AdapterHub/roberta-base-pf-fce_error_detection
null
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:ged/fce", "en", "dataset:fce_error_detection", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-hellaswag` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/hellaswag](https://adapterhub.ml/explore/comsense/hellaswag/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-hellaswag", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapterhub:comsense/hellaswag", "adapter-transformers"], "datasets": ["hellaswag"]}
AdapterHub/roberta-base-pf-hellaswag
null
[ "adapter-transformers", "roberta", "adapterhub:comsense/hellaswag", "en", "dataset:hellaswag", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-hotpotqa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [hotpot_qa](https://huggingface.co/datasets/hotpot_qa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-hotpotqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapter-transformers"], "datasets": ["hotpot_qa"]}
AdapterHub/roberta-base-pf-hotpotqa
null
[ "adapter-transformers", "roberta", "question-answering", "en", "dataset:hotpot_qa", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-imdb` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sentiment/imdb](https://adapterhub.ml/explore/sentiment/imdb/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-imdb", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:sentiment/imdb", "adapter-transformers"], "datasets": ["imdb"]}
AdapterHub/roberta-base-pf-imdb
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:sentiment/imdb", "en", "dataset:imdb", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-mit_movie_trivia` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [ner/mit_movie_trivia](https://adapterhub.ml/explore/ner/mit_movie_trivia/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-mit_movie_trivia", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:ner/mit_movie_trivia", "adapter-transformers"]}
AdapterHub/roberta-base-pf-mit_movie_trivia
null
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:ner/mit_movie_trivia", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-mnli` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [nli/multinli](https://adapterhub.ml/explore/nli/multinli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-mnli", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:nli/multinli", "adapter-transformers"], "datasets": ["multi_nli"]}
AdapterHub/roberta-base-pf-mnli
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:nli/multinli", "en", "dataset:multi_nli", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-mrpc` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sts/mrpc](https://adapterhub.ml/explore/sts/mrpc/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-mrpc", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:sts/mrpc", "adapter-transformers"]}
AdapterHub/roberta-base-pf-mrpc
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:sts/mrpc", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-multirc` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [rc/multirc](https://adapterhub.ml/explore/rc/multirc/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-multirc", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "adapterhub:rc/multirc", "roberta", "adapter-transformers"]}
AdapterHub/roberta-base-pf-multirc
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:rc/multirc", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-newsqa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [newsqa](https://huggingface.co/datasets/newsqa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-newsqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapter-transformers"], "datasets": ["newsqa"]}
AdapterHub/roberta-base-pf-newsqa
null
[ "adapter-transformers", "roberta", "question-answering", "en", "dataset:newsqa", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-pmb_sem_tagging` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [semtag/pmb](https://adapterhub.ml/explore/semtag/pmb/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-pmb_sem_tagging", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:semtag/pmb", "adapter-transformers"]}
AdapterHub/roberta-base-pf-pmb_sem_tagging
null
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:semtag/pmb", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-qnli` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [nli/qnli](https://adapterhub.ml/explore/nli/qnli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-qnli", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:nli/qnli", "adapter-transformers"]}
AdapterHub/roberta-base-pf-qnli
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:nli/qnli", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-qqp` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sts/qqp](https://adapterhub.ml/explore/sts/qqp/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-qqp", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "adapter-transformers", "adapterhub:sts/qqp", "roberta"]}
AdapterHub/roberta-base-pf-qqp
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:sts/qqp", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-quail` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [quail](https://huggingface.co/datasets/quail/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-quail", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapter-transformers"], "datasets": ["quail"]}
AdapterHub/roberta-base-pf-quail
null
[ "adapter-transformers", "roberta", "en", "dataset:quail", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-quartz` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [quartz](https://huggingface.co/datasets/quartz/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-quartz", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapter-transformers"], "datasets": ["quartz"]}
AdapterHub/roberta-base-pf-quartz
null
[ "adapter-transformers", "roberta", "en", "dataset:quartz", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-quoref` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [quoref](https://huggingface.co/datasets/quoref/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-quoref", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapter-transformers"], "datasets": ["quoref"]}
AdapterHub/roberta-base-pf-quoref
null
[ "adapter-transformers", "roberta", "question-answering", "en", "dataset:quoref", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-race` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [rc/race](https://adapterhub.ml/explore/rc/race/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-race", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["adapterhub:rc/race", "roberta", "adapter-transformers"], "datasets": ["race"]}
AdapterHub/roberta-base-pf-race
null
[ "adapter-transformers", "roberta", "adapterhub:rc/race", "en", "dataset:race", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-record` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [rc/record](https://adapterhub.ml/explore/rc/record/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-record", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:rc/record", "adapter-transformers"]}
AdapterHub/roberta-base-pf-record
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:rc/record", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-rotten_tomatoes` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sentiment/rotten_tomatoes](https://adapterhub.ml/explore/sentiment/rotten_tomatoes/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-rotten_tomatoes", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:sentiment/rotten_tomatoes", "adapter-transformers"], "datasets": ["rotten_tomatoes"]}
AdapterHub/roberta-base-pf-rotten_tomatoes
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:sentiment/rotten_tomatoes", "en", "dataset:rotten_tomatoes", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-rte` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [nli/rte](https://adapterhub.ml/explore/nli/rte/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-rte", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:nli/rte", "adapter-transformers"]}
AdapterHub/roberta-base-pf-rte
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:nli/rte", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-scicite` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [scicite](https://huggingface.co/datasets/scicite/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-scicite", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapter-transformers"], "datasets": ["scicite"]}
AdapterHub/roberta-base-pf-scicite
null
[ "adapter-transformers", "roberta", "text-classification", "en", "dataset:scicite", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-scitail` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [nli/scitail](https://adapterhub.ml/explore/nli/scitail/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-scitail", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:nli/scitail", "adapter-transformers"], "datasets": ["scitail"]}
AdapterHub/roberta-base-pf-scitail
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:nli/scitail", "en", "dataset:scitail", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-sick` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [nli/sick](https://adapterhub.ml/explore/nli/sick/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-sick", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapter-transformers", "adapterhub:nli/sick", "text-classification"], "datasets": ["sick"]}
AdapterHub/roberta-base-pf-sick
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:nli/sick", "en", "dataset:sick", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-snli` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [snli](https://huggingface.co/datasets/snli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-snli", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapter-transformers"], "datasets": ["snli"]}
AdapterHub/roberta-base-pf-snli
null
[ "adapter-transformers", "roberta", "text-classification", "en", "dataset:snli", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-social_i_qa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [social_i_qa](https://huggingface.co/datasets/social_i_qa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-social_i_qa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapter-transformers"], "datasets": ["social_i_qa"]}
AdapterHub/roberta-base-pf-social_i_qa
null
[ "adapter-transformers", "roberta", "en", "dataset:social_i_qa", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-squad` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [qa/squad1](https://adapterhub.ml/explore/qa/squad1/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-squad", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapterhub:qa/squad1", "adapter-transformers"], "datasets": ["squad"]}
AdapterHub/roberta-base-pf-squad
null
[ "adapter-transformers", "roberta", "question-answering", "adapterhub:qa/squad1", "en", "dataset:squad", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-squad_v2` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [qa/squad2](https://adapterhub.ml/explore/qa/squad2/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-squad_v2", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapterhub:qa/squad2", "adapter-transformers"], "datasets": ["squad_v2"]}
AdapterHub/roberta-base-pf-squad_v2
null
[ "adapter-transformers", "roberta", "question-answering", "adapterhub:qa/squad2", "en", "dataset:squad_v2", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-sst2` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sentiment/sst-2](https://adapterhub.ml/explore/sentiment/sst-2/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-sst2", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:sentiment/sst-2", "adapter-transformers"]}
AdapterHub/roberta-base-pf-sst2
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:sentiment/sst-2", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-stsb` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sts/sts-b](https://adapterhub.ml/explore/sts/sts-b/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-stsb", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:sts/sts-b", "adapter-transformers"]}
AdapterHub/roberta-base-pf-stsb
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:sts/sts-b", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-swag` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [swag](https://huggingface.co/datasets/swag/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-swag", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapter-transformers"], "datasets": ["swag"]}
AdapterHub/roberta-base-pf-swag
null
[ "adapter-transformers", "roberta", "en", "dataset:swag", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-trec` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [trec](https://huggingface.co/datasets/trec/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-trec", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapter-transformers"], "datasets": ["trec"]}
AdapterHub/roberta-base-pf-trec
null
[ "adapter-transformers", "roberta", "text-classification", "en", "dataset:trec", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-ud_deprel` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [deprel/ud_ewt](https://adapterhub.ml/explore/deprel/ud_ewt/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-ud_deprel", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:deprel/ud_ewt", "adapter-transformers"], "datasets": ["universal_dependencies"]}
AdapterHub/roberta-base-pf-ud_deprel
null
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:deprel/ud_ewt", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-ud_en_ewt` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [dp/ud_ewt](https://adapterhub.ml/explore/dp/ud_ewt/) dataset and includes a prediction head for dependency parsing. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-ud_en_ewt", source="hf", set_active=True) ``` ## Architecture & Training This adapter was trained using adapter-transformer's example script for dependency parsing. See https://github.com/Adapter-Hub/adapter-transformers/tree/master/examples/dependency-parsing. ## Evaluation results Scores achieved by dependency parsing adapters on the test set of UD English EWT after training: | Model | UAS | LAS | | --- | --- | --- | | `bert-base-uncased` | 91.74 | 89.15 | | `roberta-base` | 91.43 | 88.43 | ## Citation <!-- Add some description here -->
{"language": ["en"], "tags": ["roberta", "adapterhub:dp/ud_ewt", "adapter-transformers"], "datasets": ["universal_dependencies"]}
AdapterHub/roberta-base-pf-ud_en_ewt
null
[ "adapter-transformers", "roberta", "adapterhub:dp/ud_ewt", "en", "dataset:universal_dependencies", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-ud_pos` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [pos/ud_ewt](https://adapterhub.ml/explore/pos/ud_ewt/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-ud_pos", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:pos/ud_ewt", "adapter-transformers"], "datasets": ["universal_dependencies"]}
AdapterHub/roberta-base-pf-ud_pos
null
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:pos/ud_ewt", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-wic` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [wordsence/wic](https://adapterhub.ml/explore/wordsence/wic/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-wic", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:wordsence/wic", "adapter-transformers"]}
AdapterHub/roberta-base-pf-wic
null
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:wordsence/wic", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-wikihop` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [qa/wikihop](https://adapterhub.ml/explore/qa/wikihop/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-wikihop", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapterhub:qa/wikihop", "adapter-transformers"]}
AdapterHub/roberta-base-pf-wikihop
null
[ "adapter-transformers", "roberta", "question-answering", "adapterhub:qa/wikihop", "en", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-winogrande` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/winogrande](https://adapterhub.ml/explore/comsense/winogrande/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-winogrande", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapterhub:comsense/winogrande", "adapter-transformers"], "datasets": ["winogrande"]}
AdapterHub/roberta-base-pf-winogrande
null
[ "adapter-transformers", "roberta", "adapterhub:comsense/winogrande", "en", "dataset:winogrande", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-wnut_17` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [wnut_17](https://huggingface.co/datasets/wnut_17/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-wnut_17", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapter-transformers"], "datasets": ["wnut_17"]}
AdapterHub/roberta-base-pf-wnut_17
null
[ "adapter-transformers", "roberta", "token-classification", "en", "dataset:wnut_17", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-yelp_polarity` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [yelp_polarity](https://huggingface.co/datasets/yelp_polarity/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-yelp_polarity", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapter-transformers"], "datasets": ["yelp_polarity"]}
AdapterHub/roberta-base-pf-yelp_polarity
null
[ "adapter-transformers", "roberta", "text-classification", "en", "dataset:yelp_polarity", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Adarsh123/distilbert-base-uncased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Addixz/Sanyx
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Adharsh2608/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
AdharshJolly/HarryPotterBot-Model
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Model - Problem type: Binary Classification - Model ID: 12592372 ## Validation Metrics - Loss: 0.23033875226974487 - Accuracy: 0.9138655462184874 - Precision: 0.9087136929460581 - Recall: 0.9201680672268907 - AUC: 0.9690346726926065 - F1: 0.9144050104384133 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2FAdi2K%2Fautonlp-Priv-Consent-12592372 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Adi2K/autonlp-Priv-Consent-12592372", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Adi2K/autonlp-Priv-Consent-12592372", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "eng", "datasets": ["Adi2K/autonlp-data-Priv-Consent"], "widget": [{"text": "You can control cookies and tracking tools. To learn how to manage how we - and our vendors - use cookies and other tracking tools, please click here."}]}
Adi2K/Priv-Consent
null
[ "transformers", "pytorch", "bert", "text-classification", "eng", "dataset:Adi2K/autonlp-data-Priv-Consent", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AdiShenoy0807/DialoGPT-medium-joshua
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Adielcane/Adiel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Adielcane/Adielcane
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9314 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.686 | 0.16 | 20 | 13.6565 | 1.0 | | 8.0711 | 0.32 | 40 | 12.5379 | 1.0 | | 6.9967 | 0.48 | 60 | 9.7215 | 1.0 | | 5.2368 | 0.64 | 80 | 5.8459 | 1.0 | | 3.4499 | 0.8 | 100 | 3.3413 | 1.0 | | 3.1261 | 0.96 | 120 | 3.2858 | 1.0 | | 3.0654 | 1.12 | 140 | 3.1945 | 1.0 | | 3.0421 | 1.28 | 160 | 3.1296 | 1.0 | | 3.0035 | 1.44 | 180 | 3.1172 | 1.0 | | 3.0067 | 1.6 | 200 | 3.1217 | 1.0 | | 2.9867 | 1.76 | 220 | 3.0715 | 1.0 | | 2.9653 | 1.92 | 240 | 3.0747 | 1.0 | | 2.9629 | 2.08 | 260 | 2.9984 | 1.0 | | 2.9462 | 2.24 | 280 | 2.9991 | 1.0 | | 2.9391 | 2.4 | 300 | 3.0391 | 1.0 | | 2.934 | 2.56 | 320 | 2.9682 | 1.0 | | 2.9193 | 2.72 | 340 | 2.9701 | 1.0 | | 2.8985 | 2.88 | 360 | 2.9314 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
Adil617/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{"license": "artistic-2.0"}
Adinda/Adinda
null
[ "license:artistic-2.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Adityanawal/testmodel_1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Adnan/UrduNewsHeadlines
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT model
{"tags": ["conversational"]}
AdrianGzz/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Adrianaforididk/Jinx
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Advertisement/FischlUWU
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# DialoGPT Trained on the Speech of a Game Character ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("Tsubomi: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
Aero/Tsubomi-Haruno
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Aeroxas/Botroxas-small
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Aeskybunnie/Me
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
#HAL
{"tags": ["conversational"]}
AetherIT/DialoGPT-small-Hal
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
AethiQs-Max/AethiQs_GemBERT_bertje_50k
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_10
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_30-epoch_30
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AethiQs-Max/cross_encoder
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
AethiQs-Max/s3-v1-20_epochs
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
image-classification
transformers
# Tomato_Leaf_Classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Bacterial_spot ![Bacterial_spot](images/Bacterial_spot.JPG) #### Healthy ![Healthy](images/Healthy.JPG)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
Aftabhussain/Tomato_Leaf_Classifier
null
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ahda/M
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
A monolingual T5 model for Persian trained on OSCAR 21.09 (https://oscar-corpus.com/) corpus with self-supervised method. 35 Gig deduplicated version of Persian data was used for pre-training the model. It's similar to the English T5 model but just for Persian. You may need to fine-tune it on your specific task. Example code: ``` from transformers import T5ForConditionalGeneration,AutoTokenizer import torch model_name = "Ahmad/parsT5-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) input_ids = tokenizer.encode('دانش آموزان به <extra_id_0> میروند و <extra_id_1> میخوانند.', return_tensors='pt') with torch.no_grad(): hypotheses = model.generate(input_ids) for h in hypotheses: print(tokenizer.decode(h)) ``` Steps: 725000 Accuracy: 0.66 Training More? ======== To train the model further please refer to its github repository at: https://github.com/puraminy/parsT5
{}
Ahmad/parsT5-base
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
A checkpoint for training Persian T5 model. This repository can be cloned and pre-training can be resumed. This model uses flax and is for training. For more information and getting the training code please refer to: https://github.com/puraminy/parsT5
{}
Ahmad/parsT5
null
[ "transformers", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ahmadatiya97/Alannah
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ahmadvakili/A
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Ahmed59/Demo-Team-5-SIAD
null
[ "transformers", "tf", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This is a fineTued Bert model on Tunisian dialect text (Used dataset: AhmedBou/Tunisian-Dialect-Corpus), ready for sentiment analysis and classification tasks. LABEL_1: Positive LABEL_2: Negative LABEL_0: Neutral This work is an integral component of my Master's degree thesis and represents the culmination of extensive research and labor. If you wish to utilize the Tunisian-Dialect-Corpus or the TuniBert model, kindly refer to the directory provided. [huggingface.co/AhmedBou][github.com/BoulahiaAhmed]
{"language": ["ar"], "license": "apache-2.0", "tags": ["sentiment analysis", "classification", "arabic dialect", "tunisian dialect"]}
AhmedBou/TuniBert
null
[ "transformers", "pytorch", "bert", "text-classification", "sentiment analysis", "classification", "arabic dialect", "tunisian dialect", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00