|
|
|
|
|
|
|
|
|
|
|
"""Imagenette dataset.""" |
|
|
|
import os |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_HOMEPAGE = "https://github.com/fastai/imagenette" |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
_CITATION = """\ |
|
@software{Howard_Imagenette_2019, |
|
title={Imagenette: A smaller subset of 10 easily classified classes from Imagenet}, |
|
author={Jeremy Howard}, |
|
year={2019}, |
|
month={March}, |
|
publisher = {GitHub}, |
|
url = {https://github.com/fastai/imagenette} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Imagenette is a subset of 10 easily classified classes from Imagenet |
|
(tench, English springer, cassette player, chain saw, church, French |
|
horn, garbage truck, gas pump, golf ball, parachute). |
|
""" |
|
|
|
_LABEL_MAP = [ |
|
'n01440764', |
|
'n02102040', |
|
'n02979186', |
|
'n03000684', |
|
'n03028079', |
|
'n03394916', |
|
'n03417042', |
|
'n03425413', |
|
'n03445777', |
|
'n03888257', |
|
] |
|
|
|
_REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata" |
|
|
|
|
|
class ImagenetteConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Imagette.""" |
|
|
|
def __init__(self, data_url, metadata_urls, **kwargs): |
|
"""BuilderConfig for Imagette. |
|
Args: |
|
data_url: `string`, url to download the zip file from. |
|
matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ImagenetteConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.data_url = data_url |
|
self.metadata_urls = metadata_urls |
|
|
|
|
|
class Imagenette(datasets.GeneratorBasedBuilder): |
|
"""Imagenette dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ImagenetteConfig( |
|
name="full_size", |
|
description="All images are in their original size.", |
|
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz", |
|
metadata_urls={ |
|
"train": f"{_REPO}/imagenette2/train.txt", |
|
"validation": f"{_REPO}/imagenette2/val.txt", |
|
}, |
|
), |
|
ImagenetteConfig( |
|
name="320px", |
|
description="All images were resized on their shortest side to 320 pixels.", |
|
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", |
|
metadata_urls={ |
|
"train": f"{_REPO}/imagenette2-320/train.txt", |
|
"validation": f"{_REPO}/imagenette2-320/val.txt", |
|
}, |
|
), |
|
ImagenetteConfig( |
|
name="160px", |
|
description="All images were resized on their shortest side to 160 pixels.", |
|
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz", |
|
metadata_urls={ |
|
"train": f"{_REPO}/imagenette2-160/train.txt", |
|
"validation": f"{_REPO}/imagenette2-160/val.txt", |
|
}, |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION + self.config.description, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel( |
|
names=[ |
|
"tench", |
|
"English springer", |
|
"cassette player", |
|
"chain saw", |
|
"church", |
|
"French horn", |
|
"garbage truck", |
|
"gas pump", |
|
"golf ball", |
|
"parachute", |
|
] |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download(self.config.data_url) |
|
metadata_paths = dl_manager.download(self.config.metadata_urls) |
|
archive_iter = dl_manager.iter_archive(archive_path) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": archive_iter, |
|
"metadata_path": metadata_paths["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"images": archive_iter, |
|
"metadata_path": metadata_paths["validation"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, images, metadata_path): |
|
with open(metadata_path, encoding="utf-8") as f: |
|
files_to_keep = set(f.read().split("\n")) |
|
idx = 0 |
|
for file_path, file_obj in images: |
|
if file_path in files_to_keep: |
|
label = _LABEL_MAP.index(file_path.split("/")[-2]) |
|
yield idx, { |
|
"image": {"path": file_path, "bytes": file_obj.read()}, |
|
"label": label, |
|
} |
|
idx += 1 |
|
|