# Copyright (C) 2022, François-Guillaume Fernandez. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. """Imagenette dataset.""" import os import json import datasets _HOMEPAGE = "https://github.com/fastai/imagenette" _LICENSE = "Apache License 2.0" _CITATION = """\ @software{Howard_Imagenette_2019, title={Imagenette: A smaller subset of 10 easily classified classes from Imagenet}, author={Jeremy Howard}, year={2019}, month={March}, publisher = {GitHub}, url = {https://github.com/fastai/imagenette} } """ _DESCRIPTION = """\ Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute). """ _LABEL_MAP = [ 'n01440764', 'n02102040', 'n02979186', 'n03000684', 'n03028079', 'n03394916', 'n03417042', 'n03425413', 'n03445777', 'n03888257', ] _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata" class ImagenetteConfig(datasets.BuilderConfig): """BuilderConfig for Imagette.""" def __init__(self, data_url, metadata_urls, **kwargs): """BuilderConfig for Imagette. Args: data_url: `string`, url to download the zip file from. matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs **kwargs: keyword arguments forwarded to super. """ super(ImagenetteConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) self.data_url = data_url self.metadata_urls = metadata_urls class Imagenette(datasets.GeneratorBasedBuilder): """Imagenette dataset.""" BUILDER_CONFIGS = [ ImagenetteConfig( name="full_size", description="All images are in their original size.", data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz", metadata_urls={ "train": f"{_REPO}/imagenette2/train.txt", "validation": f"{_REPO}/imagenette2/val.txt", }, ), ImagenetteConfig( name="320px", description="All images were resized on their shortest side to 320 pixels.", data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", metadata_urls={ "train": f"{_REPO}/imagenette2-320/train.txt", "validation": f"{_REPO}/imagenette2-320/val.txt", }, ), ImagenetteConfig( name="160px", description="All images were resized on their shortest side to 160 pixels.", data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz", metadata_urls={ "train": f"{_REPO}/imagenette2-160/train.txt", "validation": f"{_REPO}/imagenette2-160/val.txt", }, ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION + self.config.description, features=datasets.Features( { "image": datasets.Image(), "label": datasets.ClassLabel( names=[ "tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute", ] ), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): archive_path = dl_manager.download(self.config.data_url) metadata_paths = dl_manager.download(self.config.metadata_urls) archive_iter = dl_manager.iter_archive(archive_path) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": archive_iter, "metadata_path": metadata_paths["train"], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "images": archive_iter, "metadata_path": metadata_paths["validation"], }, ), ] def _generate_examples(self, images, metadata_path): with open(metadata_path, encoding="utf-8") as f: files_to_keep = set(f.read().split("\n")) idx = 0 for file_path, file_obj in images: if file_path in files_to_keep: label = _LABEL_MAP.index(file_path.split("/")[-2]) yield idx, { "image": {"path": file_path, "bytes": file_obj.read()}, "label": label, } idx += 1