Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
fsq-os-places / README.md
foursquarelabsadmin's picture
Update README.md
cb6e9a8 verified
metadata
license: apache-2.0
configs:
  - config_name: places
    data_files: release/dt=2025-01-10/places/parquet/*.parquet
    default: true
  - config_name: categories
    data_files: release/dt=2025-01-10/categories/parquet/*.parquet

Access FSQ OS Places

With Foursquare’s Open Source Places, you can access free data to accelerate geospatial innovation and insights. View the Places OS Data Schemas for a full list of available attributes.

Prerequisites

In order to access Foursquare's Open Source Places data, it is recommended to use Spark. Here is how to load the Places data in Spark from Hugging Face.

  • For Spark 3, you can use the read_parquet helper function from the HF Spark documentation. It provides an easy API to load a Spark Dataframe from Hugging Face, without having to download the full dataset locally:
    places = read_parquet("hf://datasets/foursquare/fsq-os-places/release/dt=2025-01-10/places/parquet/*.parquet")
    
  • For Spark 4, there will be an official Hugging Face Spark data source available.

Alternatively you can download the following files to your local disk or cluster:

Hugging Face provides the following download options.

Example Queries

The following are examples on how to query FSQ Open Source Places using Athena and Spark:

Filter by Parent Level Category

SparkSQL

WITH places_exploded_categories AS (
  -- Unnest categories array
  SELECT fsq_place_id, 
         name, 
         explode(fsq_category_ids) as fsq_category_id 
  FROM places
),
 distinct_places AS (
  SELECT 
    DISTINCT(fsq_place_id) -- Get distinct ids to reduce duplicates from explode function
  FROM places_exploded_categories p 
  JOIN categories c -- Join to categories to filter on Level 2 Category
  ON p.fsq_category_id = c.category_id 
  WHERE c.level2_category_id = '4d4b7105d754a06374d81259' -- Restaurants
)
SELECT * FROM places
WHERE fsq_place_id IN (SELECT fsq_place_id FROM distinct_places)

Filter out Non-Commercial Categories

SparkSQL

SELECT * FROM places
WHERE arrays_overlap(fsq_category_ids, array('4bf58dd8d48988d1f0931735',	-- Airport Gate 
'62d587aeda6648532de2b88c',	-- Beer Festival 
'4bf58dd8d48988d12b951735',	-- Bus Line 
'52f2ab2ebcbc57f1066b8b3b',	-- Christmas Market 
'50aa9e094b90af0d42d5de0d',	-- City 
'5267e4d9e4b0ec79466e48c6',	-- Conference 
'5267e4d9e4b0ec79466e48c9',	-- Convention 
'530e33ccbcbc57f1066bbff7',	-- Country 
'5345731ebcbc57f1066c39b2',	-- County 
'63be6904847c3692a84b9bb7',	-- Entertainment Event 
'4d4b7105d754a06373d81259',	-- Event 
'5267e4d9e4b0ec79466e48c7',	-- Festival 
'4bf58dd8d48988d132951735',	-- Hotel Pool 
'52f2ab2ebcbc57f1066b8b4c',	-- Intersection 
'50aaa4314b90af0d42d5de10',	-- Island 
'58daa1558bbb0b01f18ec1fa',	-- Line 
'63be6904847c3692a84b9bb8',	-- Marketplace 
'4f2a23984b9023bd5841ed2c',	-- Moving Target 
'5267e4d9e4b0ec79466e48d1',	-- Music Festival 
'4f2a25ac4b909258e854f55f',	-- Neighborhood 
'5267e4d9e4b0ec79466e48c8',	-- Other Event 
'52741d85e4b0d5d1e3c6a6d9',	-- Parade 
'4bf58dd8d48988d1f7931735',	-- Plane 
'4f4531504b9074f6e4fb0102',	-- Platform 
'4cae28ecbf23941eb1190695',	-- Polling Place 
'4bf58dd8d48988d1f9931735',	-- Road 
'5bae9231bedf3950379f89c5',	-- Sporting Event 
'530e33ccbcbc57f1066bbff8',	-- State 
'530e33ccbcbc57f1066bbfe4',	-- States and Municipalities 
'52f2ab2ebcbc57f1066b8b54',	-- Stoop Sale 
'5267e4d8e4b0ec79466e48c5',	-- Street Fair 
'53e0feef498e5aac066fd8a9',	-- Street Food Gathering 
'4bf58dd8d48988d130951735',	-- Taxi 
'530e33ccbcbc57f1066bbff3',	-- Town 
'5bae9231bedf3950379f89c3',	-- Trade Fair 
'4bf58dd8d48988d12a951735',	-- Train 
'52e81612bcbc57f1066b7a24',	-- Tree 
'530e33ccbcbc57f1066bbff9',	-- Village
)) = false

Find Open and Recently Active POI

SparkSQL

SELECT * FROM places p
WHERE p.date_closed IS NULL
    AND p.date_refreshed >= DATE_SUB(current_date(), 365);

Appendix

Non-Commercial Categories Table

Category Name Category ID
Airport Gate 4bf58dd8d48988d1f0931735
Beer Festival 62d587aeda6648532de2b88c
Bus Line 4bf58dd8d48988d12b951735
Christmas Market 52f2ab2ebcbc57f1066b8b3b
City 50aa9e094b90af0d42d5de0d
Conference 5267e4d9e4b0ec79466e48c6
Convention 5267e4d9e4b0ec79466e48c9
Country 530e33ccbcbc57f1066bbff7
County 5345731ebcbc57f1066c39b2
Entertainment Event 63be6904847c3692a84b9bb7
Event 4d4b7105d754a06373d81259
Festival 5267e4d9e4b0ec79466e48c7
Hotel Pool 4bf58dd8d48988d132951735
Intersection 52f2ab2ebcbc57f1066b8b4c
Island 50aaa4314b90af0d42d5de10
Line 58daa1558bbb0b01f18ec1fa
Marketplace 63be6904847c3692a84b9bb8
Moving Target 4f2a23984b9023bd5841ed2c
Music Festival 5267e4d9e4b0ec79466e48d1
Neighborhood 4f2a25ac4b909258e854f55f
Other Event 5267e4d9e4b0ec79466e48c8
Parade 52741d85e4b0d5d1e3c6a6d9
Plane 4bf58dd8d48988d1f7931735
Platform 4f4531504b9074f6e4fb0102
Polling Place 4cae28ecbf23941eb1190695
Road 4bf58dd8d48988d1f9931735
State 530e33ccbcbc57f1066bbff8
States and Municipalities 530e33ccbcbc57f1066bbfe4
Stopp Sale 52f2ab2ebcbc57f1066b8b54
Street Fair 5267e4d8e4b0ec79466e48c5
Street Food Gathering 53e0feef498e5aac066fd8a9
Taxi 4bf58dd8d48988d130951735
Town 530e33ccbcbc57f1066bbff3
Trade Fair 5bae9231bedf3950379f89c3
Train 4bf58dd8d48988d12a951735
Tree 52e81612bcbc57f1066b7a24
Village 530e33ccbcbc57f1066bbff9