benchmark_name
stringclasses
3 values
index
stringlengths
1
3
method_filepath
stringlengths
21
58
method_without_assertion_filename
stringlengths
17
78
method_name
stringlengths
6
66
method_content
stringlengths
183
6.2k
method_without_assertion_content
stringlengths
133
6.16k
cedar
809
./cedar-dafny/validation/thm/soundness.dfy
SoundInSetMemberFalse_fix_809.dfy
SoundInSetMemberFalse
lemma SoundInSetMemberFalse(e1: Expr, ei2s: seq<Expr>, i: nat, effs: Effects) decreases BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)) , 0 , Expr.Set(ei2s) , 0 requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires WellTyped(BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)),effs) requires getType(BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)),effs) == Type.Bool(False) requires !reqty.isUnspecifiedVar(e1) requires 0 <= i < |ei2s| ensures IsFalse(r,s,BinaryApp(BinaryOp.In,e1,ei2s[i])) { // Reestablishing things we had at the call site in `SoundIn`. var e2 := Expr.Set(ei2s); assert TC.inferIn(BinaryApp(BinaryOp.In,e1,e2),e1,e2,effs) == types.Ok(Type.Bool(False)); assert TC.ensureEntityType(e1,effs).Ok?; var t1 := getType(e1,effs); var euids2 :- assert TC.tryGetEUIDs(e2); var ets2 := set u <- euids2 :: u.ty; // New proof. var u2 :- assert TC.tryGetEUID(ei2s[i]); assert u2 in euids2; match e1 { case Var(v1) => var et1 :- assert TC.getPrincipalOrResource(v1); assert t1 == Type.Entity(EntityLUB({et1})); assert IsSafe(r,s,Var(v1),t1) by { Sound(e1,t1,effs); } assert !ets.possibleDescendantOf(et1,u2.ty); reveal WellFormedRequestAndStore(); InSingleFalseEntityTypeAndLiteral(r,s,e1,et1,u2); case PrimitiveLit(EntityUID(u1)) => if isAction(u1.ty) { assert !acts.descendantOfSet(u1,euids2); assert !acts.descendantOf(u1,u2); } else { assert !ets.possibleDescendantOfSet(u1.ty,ets2); assert !ets.possibleDescendantOf(u1.ty,u2.ty); } reveal WellFormedRequestAndStore(); InSingleFalseLiterals(r,s,u1,u2); } }
lemma SoundInSetMemberFalse(e1: Expr, ei2s: seq<Expr>, i: nat, effs: Effects) decreases BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)) , 0 , Expr.Set(ei2s) , 0 requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires WellTyped(BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)),effs) requires getType(BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)),effs) == Type.Bool(False) requires !reqty.isUnspecifiedVar(e1) requires 0 <= i < |ei2s| ensures IsFalse(r,s,BinaryApp(BinaryOp.In,e1,ei2s[i])) { // Reestablishing things we had at the call site in `SoundIn`. var e2 := Expr.Set(ei2s); assert TC.ensureEntityType(e1,effs).Ok?; var t1 := getType(e1,effs); var euids2 :- assert TC.tryGetEUIDs(e2); var ets2 := set u <- euids2 :: u.ty; // New proof. var u2 :- assert TC.tryGetEUID(ei2s[i]); assert u2 in euids2; match e1 { case Var(v1) => var et1 :- assert TC.getPrincipalOrResource(v1); assert t1 == Type.Entity(EntityLUB({et1})); assert IsSafe(r,s,Var(v1),t1) by { Sound(e1,t1,effs); } assert !ets.possibleDescendantOf(et1,u2.ty); reveal WellFormedRequestAndStore(); InSingleFalseEntityTypeAndLiteral(r,s,e1,et1,u2); case PrimitiveLit(EntityUID(u1)) => if isAction(u1.ty) { assert !acts.descendantOfSet(u1,euids2); assert !acts.descendantOf(u1,u2); } else { assert !ets.possibleDescendantOfSet(u1.ty,ets2); assert !ets.possibleDescendantOf(u1.ty,u2.ty); } reveal WellFormedRequestAndStore(); InSingleFalseLiterals(r,s,u1,u2); } }
cedar
102
./cedar-dafny/validation/thm/model.dfy
OrRShortSafe_fix_102.dfy
OrRShortSafe
lemma OrRShortSafe(r: Request, s: EntityStore, e: Expr, e': Expr) requires IsSafe(r,s,e,Type.Bool(AnyBool)) requires IsTrue(r,s,e') ensures IsTrue(r,s,Or(e,e')) { reveal IsSafe(); if Evaluate(e,r,s).Ok? && Evaluate(e',r,s).Ok? { assert Evaluate(e',r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == base.Ok(Value.Primitive(Primitive.Bool(true))); assert Evaluate(Or(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); } else { if Evaluate(e,r,s).Err? { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == Evaluate(e,r,s); assert Evaluate(Or(e,e'),r,s) == Evaluate(e,r,s); } else { assert Evaluate(e',r,s).Err?; var b :| Evaluate(e,r,s) == base.Ok(Value.Primitive(Primitive.Bool(b))); if b { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == base.Ok(Value.Primitive(Primitive.Bool(true))); assert Evaluate(Or(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); } else { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == Evaluate(e',r,s); assert Evaluate(Or(e,e'),r,s) == Evaluate(e',r,s); } } } }
lemma OrRShortSafe(r: Request, s: EntityStore, e: Expr, e': Expr) requires IsSafe(r,s,e,Type.Bool(AnyBool)) requires IsTrue(r,s,e') ensures IsTrue(r,s,Or(e,e')) { reveal IsSafe(); if Evaluate(e,r,s).Ok? && Evaluate(e',r,s).Ok? { assert Evaluate(e',r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); assert Evaluate(Or(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); } else { if Evaluate(e,r,s).Err? { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == Evaluate(e,r,s); assert Evaluate(Or(e,e'),r,s) == Evaluate(e,r,s); } else { assert Evaluate(e',r,s).Err?; var b :| Evaluate(e,r,s) == base.Ok(Value.Primitive(Primitive.Bool(b))); if b { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == base.Ok(Value.Primitive(Primitive.Bool(true))); assert Evaluate(Or(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); } else { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == Evaluate(e',r,s); assert Evaluate(Or(e,e'),r,s) == Evaluate(e',r,s); } } } }
cedar
54
./cedar-dafny/validation/thm/model.dfy
OrSafe_fix_54.dfy
OrSafe
lemma OrSafe(r: Request, s: EntityStore, e: Expr, e': Expr) requires IsSafe(r,s,e,Type.Bool(AnyBool)) requires IsSafe(r,s,e',Type.Bool(AnyBool)) ensures IsSafe(r,s,Or(e,e'),Type.Bool(AnyBool)) { reveal IsSafe(); if Evaluate(e,r,s).Ok? && Evaluate(e',r,s).Ok? { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true).Ok?; assert Evaluate(Or(e,e'),r,s).Ok?; } else { if Evaluate(e,r,s).Err? { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == Evaluate(e,r,s); assert Evaluate(Or(e,e'),r,s) == Evaluate(e,r,s); } else { assert Evaluate(e',r,s).Err?; var b :| Evaluate(e,r,s) == base.Ok(Value.Primitive(Primitive.Bool(b))); if b { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == base.Ok(Value.Primitive(Primitive.Bool(true))); assert Evaluate(Or(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); } else { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == Evaluate(e',r,s); assert Evaluate(Or(e,e'),r,s) == Evaluate(e',r,s); } } } }
lemma OrSafe(r: Request, s: EntityStore, e: Expr, e': Expr) requires IsSafe(r,s,e,Type.Bool(AnyBool)) requires IsSafe(r,s,e',Type.Bool(AnyBool)) ensures IsSafe(r,s,Or(e,e'),Type.Bool(AnyBool)) { reveal IsSafe(); if Evaluate(e,r,s).Ok? && Evaluate(e',r,s).Ok? { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true).Ok?; assert Evaluate(Or(e,e'),r,s).Ok?; } else { if Evaluate(e,r,s).Err? { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == Evaluate(e,r,s); assert Evaluate(Or(e,e'),r,s) == Evaluate(e,r,s); } else { assert Evaluate(e',r,s).Err?; var b :| Evaluate(e,r,s) == base.Ok(Value.Primitive(Primitive.Bool(b))); if b { assert Evaluator(r,s).interpretShortcircuit(Or(e,e'),e,e',true) == base.Ok(Value.Primitive(Primitive.Bool(true))); assert Evaluate(Or(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); } else { assert Evaluate(Or(e,e'),r,s) == Evaluate(e',r,s); } } } }
cedar
33
./cedar-dafny/validation/thm/model.dfy
AndLShortSafe_fix_33.dfy
AndLShortSafe
lemma AndLShortSafe(r: Request, s: EntityStore, e: Expr, e': Expr) requires IsFalse(r,s,e) ensures IsFalse(r,s,And(e,e')) { reveal IsSafe(); if Evaluate(e,r,s).Ok? { assert Evaluate(e,r,s) == base.Ok(Value.Primitive(Primitive.Bool(false))); assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == base.Ok(Value.Primitive(Primitive.Bool(false))); assert Evaluate(And(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(false))); } else { assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == Evaluate(e,r,s); assert Evaluate(And(e,e'),r,s) == Evaluate(e,r,s); } }
lemma AndLShortSafe(r: Request, s: EntityStore, e: Expr, e': Expr) requires IsFalse(r,s,e) ensures IsFalse(r,s,And(e,e')) { reveal IsSafe(); if Evaluate(e,r,s).Ok? { assert Evaluate(e,r,s) == base.Ok(Value.Primitive(Primitive.Bool(false))); assert Evaluate(And(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(false))); } else { assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == Evaluate(e,r,s); assert Evaluate(And(e,e'),r,s) == Evaluate(e,r,s); } }
cedar
789
./cedar-dafny/validation/thm/soundness.dfy
SoundArith_fix_789.dfy
SoundArith
lemma SoundArith(op: BinaryOp, e1: Expr, e2: Expr, t: Type, effs: Effects) decreases BinaryApp(op,e1,e2) , 0 requires op == Add || op == Sub requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires Typesafe(BinaryApp(op,e1,e2),effs,t) ensures IsSafe(r,s,BinaryApp(op,e1,e2),t) ensures getEffects(BinaryApp(op,e1,e2),effs) == Effects.empty() { var t' :| getType(BinaryApp(op,e1,e2),effs) == t' && subty(t',t,ValidationMode.Permissive); assert TC.inferArith2(op,e1,e2,effs) == types.Ok(Type.Int); assert TC.ensureIntType(e1,effs).Ok?; assert Typesafe(e1,effs,Type.Int); assert TC.ensureIntType(e2,effs).Ok?; assert Typesafe(e2,effs,Type.Int); assert IsSafe(r,s,e1,Type.Int) by { Sound(e1,Type.Int,effs); } assert IsSafe(r,s,e2,Type.Int) by { Sound(e2,Type.Int,effs); } assert IsSafe(r,s,BinaryApp(op,e1,e2),t') by { ArithSafe(r,s,op,e1,e2); } assert IsSafe(r,s,BinaryApp(op,e1,e2),t) by { SubtyCompat(t',t); SemSubtyTransport(r,s,BinaryApp(op,e1,e2),t',t); } }
lemma SoundArith(op: BinaryOp, e1: Expr, e2: Expr, t: Type, effs: Effects) decreases BinaryApp(op,e1,e2) , 0 requires op == Add || op == Sub requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires Typesafe(BinaryApp(op,e1,e2),effs,t) ensures IsSafe(r,s,BinaryApp(op,e1,e2),t) ensures getEffects(BinaryApp(op,e1,e2),effs) == Effects.empty() { var t' :| getType(BinaryApp(op,e1,e2),effs) == t' && subty(t',t,ValidationMode.Permissive); assert TC.inferArith2(op,e1,e2,effs) == types.Ok(Type.Int); assert Typesafe(e1,effs,Type.Int); assert TC.ensureIntType(e2,effs).Ok?; assert Typesafe(e2,effs,Type.Int); assert IsSafe(r,s,e1,Type.Int) by { Sound(e1,Type.Int,effs); } assert IsSafe(r,s,e2,Type.Int) by { Sound(e2,Type.Int,effs); } assert IsSafe(r,s,BinaryApp(op,e1,e2),t') by { ArithSafe(r,s,op,e1,e2); } assert IsSafe(r,s,BinaryApp(op,e1,e2),t) by { SubtyCompat(t',t); SemSubtyTransport(r,s,BinaryApp(op,e1,e2),t',t); } }
cedar
19
./cedar-dafny/validation/subtyping.dfy
StrictLubIsStrict_fix_19.dfy
StrictLubIsStrict
lemma StrictLubIsStrict(t1: Type, t2: Type) requires LubDefined(t1, t2, ValidationMode.Strict) ensures lubOpt(t1, t2, ValidationMode.Permissive) == lubOpt(t1, t2, ValidationMode.Strict) { match (t1,t2) { case (Never,_) => case (_,Never) => case (Int,Int) => case (String,String) => case (Bool(b1),Bool(b2)) => case (Entity(e1),Entity(e2)) => case (Set(t1'),Set(t2')) => case (Record(rt1),Record(rt2)) => { assert lubRecordType(rt1, rt2, ValidationMode.Strict).Ok?; assert lubRecordType(rt1, rt2, ValidationMode.Permissive).Ok?; var strict_attrs := map k | k in rt1.attrs.Keys && k in rt2.attrs.Keys && lubOpt(rt1.attrs[k].ty, rt2.attrs[k].ty, ValidationMode.Strict).Ok? :: lubAttrType(rt1.attrs[k], rt2.attrs[k], ValidationMode.Strict); assert strict_attrs == lubRecordType(rt1, rt2, ValidationMode.Strict).value.attrs; var permissive_attrs := map k | k in rt1.attrs.Keys && k in rt2.attrs.Keys && lubOpt(rt1.attrs[k].ty, rt2.attrs[k].ty, ValidationMode.Permissive).Ok? :: lubAttrType(rt1.attrs[k], rt2.attrs[k], ValidationMode.Permissive); assert permissive_attrs == lubRecordType(rt1, rt2, ValidationMode.Permissive).value.attrs; assert permissive_attrs == strict_attrs; } case (Extension(n1),Extension(n2)) => } }
lemma StrictLubIsStrict(t1: Type, t2: Type) requires LubDefined(t1, t2, ValidationMode.Strict) ensures lubOpt(t1, t2, ValidationMode.Permissive) == lubOpt(t1, t2, ValidationMode.Strict) { match (t1,t2) { case (Never,_) => case (_,Never) => case (Int,Int) => case (String,String) => case (Bool(b1),Bool(b2)) => case (Entity(e1),Entity(e2)) => case (Set(t1'),Set(t2')) => case (Record(rt1),Record(rt2)) => { assert lubRecordType(rt1, rt2, ValidationMode.Strict).Ok?; assert lubRecordType(rt1, rt2, ValidationMode.Permissive).Ok?; var strict_attrs := map k | k in rt1.attrs.Keys && k in rt2.attrs.Keys && lubOpt(rt1.attrs[k].ty, rt2.attrs[k].ty, ValidationMode.Strict).Ok? :: lubAttrType(rt1.attrs[k], rt2.attrs[k], ValidationMode.Strict); assert strict_attrs == lubRecordType(rt1, rt2, ValidationMode.Strict).value.attrs; var permissive_attrs := map k | k in rt1.attrs.Keys && k in rt2.attrs.Keys && lubOpt(rt1.attrs[k].ty, rt2.attrs[k].ty, ValidationMode.Permissive).Ok? :: lubAttrType(rt1.attrs[k], rt2.attrs[k], ValidationMode.Permissive); assert permissive_attrs == lubRecordType(rt1, rt2, ValidationMode.Permissive).value.attrs; } case (Extension(n1),Extension(n2)) => } }
cedar
771
./cedar-dafny/validation/thm/soundness.dfy
SoundContains_fix_771.dfy
SoundContains
lemma SoundContainsAnyAll(op: BinaryOp, e1: Expr, e2: Expr, t: Type, effs: Effects) decreases BinaryApp(op,e1,e2) , 0 requires op == ContainsAny || op == ContainsAll requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires Typesafe(BinaryApp(op,e1,e2),effs,t) ensures IsSafe(r,s,BinaryApp(op,e1,e2),t) ensures getEffects(BinaryApp(op,e1,e2),effs) == Effects.empty() { var t' :| getType(BinaryApp(op,e1,e2),effs) == t' && subty(t',t,ValidationMode.Permissive); assert TC.inferContainsAnyAll(op,e1,e2,effs) == types.Ok(t'); var t1 := TC.inferSetType(e1,effs).value; var t2 := TC.inferSetType(e2,effs).value; assert Typesafe(e1,effs,Type.Set(t1)) by { SubtyRefl(Type.Set(t1)); } assert Typesafe(e2,effs,Type.Set(t2)) by { SubtyRefl(Type.Set(t2)); } assert IsSafe(r,s,e1,Type.Set(t1)) by { Sound(e1,Type.Set(t1),effs); } assert IsSafe(r,s,e2,Type.Set(t2)) by { Sound(e2,Type.Set(t2),effs); } assert IsSafe(r,s,BinaryApp(op,e1,e2),t') by { ContainsAnyAllSafe(r,s,op,e1,e2,t1,t2); } assert IsSafe(r,s,BinaryApp(op,e1,e2),t) by { SubtyCompat(t',t); SemSubtyTransport(r,s,BinaryApp(op,e1,e2),t',t); } }
lemma SoundContainsAnyAll(op: BinaryOp, e1: Expr, e2: Expr, t: Type, effs: Effects) decreases BinaryApp(op,e1,e2) , 0 requires op == ContainsAny || op == ContainsAll requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires Typesafe(BinaryApp(op,e1,e2),effs,t) ensures IsSafe(r,s,BinaryApp(op,e1,e2),t) ensures getEffects(BinaryApp(op,e1,e2),effs) == Effects.empty() { var t' :| getType(BinaryApp(op,e1,e2),effs) == t' && subty(t',t,ValidationMode.Permissive); var t1 := TC.inferSetType(e1,effs).value; var t2 := TC.inferSetType(e2,effs).value; assert Typesafe(e1,effs,Type.Set(t1)) by { SubtyRefl(Type.Set(t1)); } assert Typesafe(e2,effs,Type.Set(t2)) by { SubtyRefl(Type.Set(t2)); } assert IsSafe(r,s,e1,Type.Set(t1)) by { Sound(e1,Type.Set(t1),effs); } assert IsSafe(r,s,e2,Type.Set(t2)) by { Sound(e2,Type.Set(t2),effs); } assert IsSafe(r,s,BinaryApp(op,e1,e2),t') by { ContainsAnyAllSafe(r,s,op,e1,e2,t1,t2); } assert IsSafe(r,s,BinaryApp(op,e1,e2),t) by { SubtyCompat(t',t); SemSubtyTransport(r,s,BinaryApp(op,e1,e2),t',t); } }
cedar
838
./cedar-dafny/validation/thm/soundness.dfy
SoundHasAttr_fix_838.dfy
SoundHasAttr
lemma SoundHasAttr(e: Expr, k: Attr, t: Type, effs: Effects) decreases HasAttr(e,k) , 0 requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires Typesafe(HasAttr(e,k),effs,t) ensures IsSafe(r,s,HasAttr(e,k),t) ensures GuardedEffectsInvariant(HasAttr(e,k),getEffects(HasAttr(e,k),effs)) { var t' :| getType(HasAttr(e,k),effs) == t' && subty(t',t,ValidationMode.Permissive); assert TC.inferHasAttr(e,k,effs).Ok?; var ret := TC.inferRecordEntityType(e,effs).value; assert GuardedEffectsInvariant(HasAttr(e,k),Effects.empty()) by { EmptyEffectsInvariant(); } match ret { case Record(rt) => { assert Typesafe(e,effs,Type.Record(rt)) by { SubtyRefl(Type.Record(rt)); } assert IsSafe(r,s,e,Type.Record(rt)) by { Sound(e,Type.Record(rt),effs); } if k in rt.attrs { if rt.attrs[k].isRequired { assert IsSafe(r,s,e,Type.Record(RecordType(map[k := rt.attrs[k]], OpenAttributes))) by { SubtyRefl(rt.attrs[k].ty); assert subtyRecordType(rt,RecordType(map[k := rt.attrs[k]], OpenAttributes),ValidationMode.Permissive); assert subty(Type.Record(rt),Type.Record(RecordType(map[k := rt.attrs[k]], OpenAttributes)),ValidationMode.Permissive); SubtyCompat(Type.Record(rt),Type.Record(RecordType(map[k := rt.attrs[k]], OpenAttributes))); SemSubtyTransport(r,s,e,Type.Record(rt),Type.Record(RecordType(map[k := rt.attrs[k]], OpenAttributes))); } assert IsSafe(r,s,HasAttr(e,k),t') by { RecordHasRequiredTrueSafe(r,s,e,k,rt.attrs[k]); } } else if effs.contains(e,k) { assert IsSafe(r,s,HasAttr(e,k),t') by { reveal EffectsInvariant(); } } else { assert IsSafe(r,s,e,Type.Record(RecordType(map[], OpenAttributes))) by { assert subty(Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes)),ValidationMode.Permissive); SubtyCompat(Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes))); SemSubtyTransport(r,s,e,Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes))); } assert IsSafe(r,s,HasAttr(e,k),t') by { RecordHasOpenRecSafe(r,s,e,k); } assert GuardedEffectsInvariant(HasAttr(e,k),Effects.singleton(e,k)) by { if IsTrueStrong(r,s,HasAttr(e,k)) { IsTrueStrongImpliesIsTrue(r,s,HasAttr(e,k)); reveal EffectsInvariant(); } } } } else if rt.isOpen() { assert IsSafe(r,s,e,Type.Record(RecordType(map[], OpenAttributes))) by { assert subty(Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes)),ValidationMode.Permissive); SubtyCompat(Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes))); SemSubtyTransport(r,s,e,Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes))); } assert IsSafe(r,s,HasAttr(e,k),t') by { RecordHasOpenRecSafe(r,s,e,k); } } else { assert IsSafe(r,s,HasAttr(e,k),t') by { RecordHasClosedRecFalseSafe(r,s,e,k, rt); } } } case Entity(et) => { assert Typesafe(e,effs,Type.Entity(et)) by { SubtyRefl(Type.Entity(et)); } assert IsSafe(r,s,e,Type.Entity(et)) by { Sound(e,Type.Entity(et),effs); } if !ets.isAttrPossible(et,k) { reveal WellFormedRequestAndStore(); EntityHasImpossibleFalseSafe(r,s,e,k,et); } else { var m := ets.getLubRecordType(et,ValidationMode.Permissive).value; if k in m.attrs { if effs.contains(e,k) { assert IsSafe(r,s,HasAttr(e,k),t') by { reveal EffectsInvariant(); } } else { assert IsSafe(r,s,e,Type.Entity(AnyEntity)) by { SubtyCompat(Type.Entity(et),Type.Entity(AnyEntity)); SemSubtyTransport(r,s,e,Type.Entity(et),Type.Entity(AnyEntity)); } assert IsSafe(r,s,HasAttr(e,k),t') by { EntityHasOpenSafe(r,s,e,k); } assert GuardedEffectsInvariant(HasAttr(e,k),Effects.singleton(e,k)) by { if IsTrueStrong(r,s,HasAttr(e,k)) { IsTrueStrongImpliesIsTrue(r,s,HasAttr(e,k)); reveal EffectsInvariant(); } } } } else { PossibleAttrNotInLubAttrImpliesOpen(et, k, m); assert IsSafe(r,s,e,Type.Entity(AnyEntity)) by { SubtyCompat(Type.Entity(et),Type.Entity(AnyEntity)); SemSubtyTransport(r,s,e,Type.Entity(et),Type.Entity(AnyEntity)); } assert IsSafe(r,s,HasAttr(e,k),t') by { EntityHasOpenSafe(r,s,e,k); } } } } } assert IsSafe(r,s,HasAttr(e,k),t) by { SubtyCompat(t',t); SemSubtyTransport(r,s,HasAttr(e,k),t',t); } }
lemma SoundHasAttr(e: Expr, k: Attr, t: Type, effs: Effects) decreases HasAttr(e,k) , 0 requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires Typesafe(HasAttr(e,k),effs,t) ensures IsSafe(r,s,HasAttr(e,k),t) ensures GuardedEffectsInvariant(HasAttr(e,k),getEffects(HasAttr(e,k),effs)) { var t' :| getType(HasAttr(e,k),effs) == t' && subty(t',t,ValidationMode.Permissive); var ret := TC.inferRecordEntityType(e,effs).value; assert GuardedEffectsInvariant(HasAttr(e,k),Effects.empty()) by { EmptyEffectsInvariant(); } match ret { case Record(rt) => { assert Typesafe(e,effs,Type.Record(rt)) by { SubtyRefl(Type.Record(rt)); } assert IsSafe(r,s,e,Type.Record(rt)) by { Sound(e,Type.Record(rt),effs); } if k in rt.attrs { if rt.attrs[k].isRequired { assert IsSafe(r,s,e,Type.Record(RecordType(map[k := rt.attrs[k]], OpenAttributes))) by { SubtyRefl(rt.attrs[k].ty); assert subtyRecordType(rt,RecordType(map[k := rt.attrs[k]], OpenAttributes),ValidationMode.Permissive); assert subty(Type.Record(rt),Type.Record(RecordType(map[k := rt.attrs[k]], OpenAttributes)),ValidationMode.Permissive); SubtyCompat(Type.Record(rt),Type.Record(RecordType(map[k := rt.attrs[k]], OpenAttributes))); SemSubtyTransport(r,s,e,Type.Record(rt),Type.Record(RecordType(map[k := rt.attrs[k]], OpenAttributes))); } assert IsSafe(r,s,HasAttr(e,k),t') by { RecordHasRequiredTrueSafe(r,s,e,k,rt.attrs[k]); } } else if effs.contains(e,k) { assert IsSafe(r,s,HasAttr(e,k),t') by { reveal EffectsInvariant(); } } else { assert IsSafe(r,s,e,Type.Record(RecordType(map[], OpenAttributes))) by { assert subty(Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes)),ValidationMode.Permissive); SubtyCompat(Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes))); SemSubtyTransport(r,s,e,Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes))); } assert IsSafe(r,s,HasAttr(e,k),t') by { RecordHasOpenRecSafe(r,s,e,k); } assert GuardedEffectsInvariant(HasAttr(e,k),Effects.singleton(e,k)) by { if IsTrueStrong(r,s,HasAttr(e,k)) { IsTrueStrongImpliesIsTrue(r,s,HasAttr(e,k)); reveal EffectsInvariant(); } } } } else if rt.isOpen() { assert IsSafe(r,s,e,Type.Record(RecordType(map[], OpenAttributes))) by { assert subty(Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes)),ValidationMode.Permissive); SubtyCompat(Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes))); SemSubtyTransport(r,s,e,Type.Record(rt),Type.Record(RecordType(map[], OpenAttributes))); } assert IsSafe(r,s,HasAttr(e,k),t') by { RecordHasOpenRecSafe(r,s,e,k); } } else { assert IsSafe(r,s,HasAttr(e,k),t') by { RecordHasClosedRecFalseSafe(r,s,e,k, rt); } } } case Entity(et) => { assert Typesafe(e,effs,Type.Entity(et)) by { SubtyRefl(Type.Entity(et)); } assert IsSafe(r,s,e,Type.Entity(et)) by { Sound(e,Type.Entity(et),effs); } if !ets.isAttrPossible(et,k) { reveal WellFormedRequestAndStore(); EntityHasImpossibleFalseSafe(r,s,e,k,et); } else { var m := ets.getLubRecordType(et,ValidationMode.Permissive).value; if k in m.attrs { if effs.contains(e,k) { assert IsSafe(r,s,HasAttr(e,k),t') by { reveal EffectsInvariant(); } } else { assert IsSafe(r,s,e,Type.Entity(AnyEntity)) by { SubtyCompat(Type.Entity(et),Type.Entity(AnyEntity)); SemSubtyTransport(r,s,e,Type.Entity(et),Type.Entity(AnyEntity)); } assert IsSafe(r,s,HasAttr(e,k),t') by { EntityHasOpenSafe(r,s,e,k); } assert GuardedEffectsInvariant(HasAttr(e,k),Effects.singleton(e,k)) by { if IsTrueStrong(r,s,HasAttr(e,k)) { IsTrueStrongImpliesIsTrue(r,s,HasAttr(e,k)); reveal EffectsInvariant(); } } } } else { PossibleAttrNotInLubAttrImpliesOpen(et, k, m); assert IsSafe(r,s,e,Type.Entity(AnyEntity)) by { SubtyCompat(Type.Entity(et),Type.Entity(AnyEntity)); SemSubtyTransport(r,s,e,Type.Entity(et),Type.Entity(AnyEntity)); } assert IsSafe(r,s,HasAttr(e,k),t') by { EntityHasOpenSafe(r,s,e,k); } } } } } assert IsSafe(r,s,HasAttr(e,k),t) by { SubtyCompat(t',t); SemSubtyTransport(r,s,HasAttr(e,k),t',t); } }
cedar
72
./cedar-dafny/validation/thm/model.dfy
AndLRetSafe_fix_72.dfy
AndLRetSafe
lemma AndLRetSafe(r: Request, s: EntityStore, e: Expr, e': Expr, t: Type) requires IsSafe(r,s,e,t) requires IsTrue(r,s,e') requires SemanticSubty(t,Type.Bool(AnyBool)) ensures IsSafe(r,s,And(e,e'),t) { reveal IsSafe(); if Evaluate(e,r,s).Ok? && Evaluate(e',r,s).Ok? { assert Evaluate(e',r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); var v :| Evaluate(e,r,s) == base.Ok(v) && InstanceOfType(v,t); assert InstanceOfType(v,Type.Bool(AnyBool)) by { SemSubtyTransportVal(t,Type.Bool(AnyBool),v); } var b :| v == Value.Primitive(Primitive.Bool(b)); assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == base.Ok(Value.Primitive(Primitive.Bool(b))); assert Evaluate(And(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(b))); } else { if Evaluate(e,r,s).Err? { assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == Evaluate(e,r,s); assert Evaluate(And(e,e'),r,s) == Evaluate(e,r,s); } else { assert Evaluate(e',r,s).Err?; var b :| Evaluate(e,r,s) == base.Ok(Value.Primitive(Primitive.Bool(b))); if b { assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == Evaluate(e',r,s); assert Evaluate(And(e,e'),r,s) == Evaluate(e',r,s); } else { assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == base.Ok(Value.Primitive(Primitive.Bool(false))); assert Evaluate(And(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(false))); } } } }
lemma AndLRetSafe(r: Request, s: EntityStore, e: Expr, e': Expr, t: Type) requires IsSafe(r,s,e,t) requires IsTrue(r,s,e') requires SemanticSubty(t,Type.Bool(AnyBool)) ensures IsSafe(r,s,And(e,e'),t) { reveal IsSafe(); if Evaluate(e,r,s).Ok? && Evaluate(e',r,s).Ok? { assert Evaluate(e',r,s) == base.Ok(Value.Primitive(Primitive.Bool(true))); var v :| Evaluate(e,r,s) == base.Ok(v) && InstanceOfType(v,t); assert InstanceOfType(v,Type.Bool(AnyBool)) by { SemSubtyTransportVal(t,Type.Bool(AnyBool),v); } var b :| v == Value.Primitive(Primitive.Bool(b)); assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == base.Ok(Value.Primitive(Primitive.Bool(b))); assert Evaluate(And(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(b))); } else { if Evaluate(e,r,s).Err? { assert Evaluate(And(e,e'),r,s) == Evaluate(e,r,s); } else { assert Evaluate(e',r,s).Err?; var b :| Evaluate(e,r,s) == base.Ok(Value.Primitive(Primitive.Bool(b))); if b { assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == Evaluate(e',r,s); assert Evaluate(And(e,e'),r,s) == Evaluate(e',r,s); } else { assert Evaluator(r,s).interpretShortcircuit(And(e,e'),e,e',false) == base.Ok(Value.Primitive(Primitive.Bool(false))); assert Evaluate(And(e,e'),r,s) == base.Ok(Value.Primitive(Primitive.Bool(false))); } } } }
cedar
731
./cedar-dafny/validation/thm/soundness.dfy
TypesafeCallSemantics_fix_731.dfy
TypesafeCallSemantics
lemma TypesafeCallSemantics(name: base.Name, es: seq<Expr>, effs: Effects, t: Type) requires Typesafe(Call(name,es),effs,t) ensures name in extFunTypes ensures |extFunTypes[name].args| == |es| ensures forall i | 0 <= i < |es| :: Typesafe(es[i],effs,extFunTypes[name].args[i]) ensures extFunTypes[name].ret == t { assert TC.inferCall(Call(name,es),name,es,effs).Ok?; InferCallArgsSound(Call(name,es),name,es,extFunTypes[name].args,effs); assert extFunTypes[name].check.Some? ==> extFunTypes[name].check.value(es).Ok?; assert forall i | 0 <= i < |es| :: Typesafe(es[i],effs,extFunTypes[name].args[i]); assert extFunTypes[name].ret == t; }
lemma TypesafeCallSemantics(name: base.Name, es: seq<Expr>, effs: Effects, t: Type) requires Typesafe(Call(name,es),effs,t) ensures name in extFunTypes ensures |extFunTypes[name].args| == |es| ensures forall i | 0 <= i < |es| :: Typesafe(es[i],effs,extFunTypes[name].args[i]) ensures extFunTypes[name].ret == t { InferCallArgsSound(Call(name,es),name,es,extFunTypes[name].args,effs); assert extFunTypes[name].check.Some? ==> extFunTypes[name].check.value(es).Ok?; assert forall i | 0 <= i < |es| :: Typesafe(es[i],effs,extFunTypes[name].args[i]); assert extFunTypes[name].ret == t; }
cedar
810
./cedar-dafny/validation/thm/soundness.dfy
SoundInSetMemberFalse_fix_810.dfy
SoundInSetMemberFalse
lemma SoundInSetMemberFalse(e1: Expr, ei2s: seq<Expr>, i: nat, effs: Effects) decreases BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)) , 0 , Expr.Set(ei2s) , 0 requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires WellTyped(BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)),effs) requires getType(BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)),effs) == Type.Bool(False) requires !reqty.isUnspecifiedVar(e1) requires 0 <= i < |ei2s| ensures IsFalse(r,s,BinaryApp(BinaryOp.In,e1,ei2s[i])) { // Reestablishing things we had at the call site in `SoundIn`. var e2 := Expr.Set(ei2s); assert TC.inferIn(BinaryApp(BinaryOp.In,e1,e2),e1,e2,effs) == types.Ok(Type.Bool(False)); assert TC.ensureEntityType(e1,effs).Ok?; var t1 := getType(e1,effs); var euids2 :- assert TC.tryGetEUIDs(e2); var ets2 := set u <- euids2 :: u.ty; // New proof. var u2 :- assert TC.tryGetEUID(ei2s[i]); assert u2 in euids2; match e1 { case Var(v1) => var et1 :- assert TC.getPrincipalOrResource(v1); assert t1 == Type.Entity(EntityLUB({et1})); assert IsSafe(r,s,Var(v1),t1) by { Sound(e1,t1,effs); } assert !ets.possibleDescendantOf(et1,u2.ty); reveal WellFormedRequestAndStore(); InSingleFalseEntityTypeAndLiteral(r,s,e1,et1,u2); case PrimitiveLit(EntityUID(u1)) => if isAction(u1.ty) { assert !acts.descendantOfSet(u1,euids2); assert !acts.descendantOf(u1,u2); } else { assert !ets.possibleDescendantOfSet(u1.ty,ets2); assert !ets.possibleDescendantOf(u1.ty,u2.ty); } reveal WellFormedRequestAndStore(); InSingleFalseLiterals(r,s,u1,u2); } }
lemma SoundInSetMemberFalse(e1: Expr, ei2s: seq<Expr>, i: nat, effs: Effects) decreases BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)) , 0 , Expr.Set(ei2s) , 0 requires WellFormedRequestAndStore() requires EffectsInvariant(effs) requires WellTyped(BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)),effs) requires getType(BinaryApp(BinaryOp.In,e1,Expr.Set(ei2s)),effs) == Type.Bool(False) requires !reqty.isUnspecifiedVar(e1) requires 0 <= i < |ei2s| ensures IsFalse(r,s,BinaryApp(BinaryOp.In,e1,ei2s[i])) { // Reestablishing things we had at the call site in `SoundIn`. var e2 := Expr.Set(ei2s); assert TC.inferIn(BinaryApp(BinaryOp.In,e1,e2),e1,e2,effs) == types.Ok(Type.Bool(False)); var t1 := getType(e1,effs); var euids2 :- assert TC.tryGetEUIDs(e2); var ets2 := set u <- euids2 :: u.ty; // New proof. var u2 :- assert TC.tryGetEUID(ei2s[i]); assert u2 in euids2; match e1 { case Var(v1) => var et1 :- assert TC.getPrincipalOrResource(v1); assert t1 == Type.Entity(EntityLUB({et1})); assert IsSafe(r,s,Var(v1),t1) by { Sound(e1,t1,effs); } assert !ets.possibleDescendantOf(et1,u2.ty); reveal WellFormedRequestAndStore(); InSingleFalseEntityTypeAndLiteral(r,s,e1,et1,u2); case PrimitiveLit(EntityUID(u1)) => if isAction(u1.ty) { assert !acts.descendantOfSet(u1,euids2); assert !acts.descendantOf(u1,u2); } else { assert !ets.possibleDescendantOfSet(u1.ty,ets2); assert !ets.possibleDescendantOf(u1.ty,u2.ty); } reveal WellFormedRequestAndStore(); InSingleFalseLiterals(r,s,u1,u2); } }
cedar
7
./cedar-dafny/validation/subtyping.dfy
LubIsUB_fix_7.dfy
LubIsUB
lemma LubIsUB(t1: Type, t2: Type, t: Type, m: ValidationMode) requires lubOpt(t1,t2,m) == Ok(t) ensures subty(t1,t,m) ensures subty(t2,t,m) { match (t1,t2,t) { case (Never,_,_) => assert t2 == t; SubtyRefl(t); case (_,Never,_) => assert t1 == t; SubtyRefl(t); case (Int,Int,Int) => case (String,String,String) => case(Bool(b1),Bool(b2),Bool(bt)) => case (Entity(e1),Entity(e2),Entity(e)) => case (Set(t1'),Set(t2'),Set(t')) => LubIsUB(t1',t2',t',m); case(Record(rt1'),Record(rt2'),Record(rt')) => assert rt'.attrs.Keys <= rt1'.attrs.Keys; assert rt'.attrs.Keys <= rt2'.attrs.Keys; assert subty(Type.Record(rt1'),Type.Record(rt'),m) by { forall k | k in rt'.attrs.Keys ensures subtyAttrType(rt1'.attrs[k],rt'.attrs[k],m) { assert rt'.attrs[k] == lubAttrType(rt1'.attrs[k],rt2'.attrs[k],m); assert lubOpt(rt1'.attrs[k].ty,rt2'.attrs[k].ty,m) == Ok(rt'.attrs[k].ty); LubIsUB(rt1'.attrs[k].ty,rt2'.attrs[k].ty,rt'.attrs[k].ty,m); } } assert subty(Type.Record(rt2'),Type.Record(rt'),m) by { forall k | k in rt'.attrs.Keys ensures subtyAttrType(rt2'.attrs[k],rt'.attrs[k],m) { assert rt'.attrs[k] == lubAttrType(rt1'.attrs[k],rt2'.attrs[k],m); assert lubOpt(rt1'.attrs[k].ty,rt2'.attrs[k].ty,m) == Ok(rt'.attrs[k].ty); LubIsUB(rt1'.attrs[k].ty,rt2'.attrs[k].ty,rt'.attrs[k].ty,m); } } case (Extension(n1),Extension(n2),Extension(n)) => } }
lemma LubIsUB(t1: Type, t2: Type, t: Type, m: ValidationMode) requires lubOpt(t1,t2,m) == Ok(t) ensures subty(t1,t,m) ensures subty(t2,t,m) { match (t1,t2,t) { case (Never,_,_) => case (_,Never,_) => assert t1 == t; SubtyRefl(t); case (Int,Int,Int) => case (String,String,String) => case(Bool(b1),Bool(b2),Bool(bt)) => case (Entity(e1),Entity(e2),Entity(e)) => case (Set(t1'),Set(t2'),Set(t')) => LubIsUB(t1',t2',t',m); case(Record(rt1'),Record(rt2'),Record(rt')) => assert rt'.attrs.Keys <= rt1'.attrs.Keys; assert rt'.attrs.Keys <= rt2'.attrs.Keys; assert subty(Type.Record(rt1'),Type.Record(rt'),m) by { forall k | k in rt'.attrs.Keys ensures subtyAttrType(rt1'.attrs[k],rt'.attrs[k],m) { assert rt'.attrs[k] == lubAttrType(rt1'.attrs[k],rt2'.attrs[k],m); assert lubOpt(rt1'.attrs[k].ty,rt2'.attrs[k].ty,m) == Ok(rt'.attrs[k].ty); LubIsUB(rt1'.attrs[k].ty,rt2'.attrs[k].ty,rt'.attrs[k].ty,m); } } assert subty(Type.Record(rt2'),Type.Record(rt'),m) by { forall k | k in rt'.attrs.Keys ensures subtyAttrType(rt2'.attrs[k],rt'.attrs[k],m) { assert rt'.attrs[k] == lubAttrType(rt1'.attrs[k],rt2'.attrs[k],m); assert lubOpt(rt1'.attrs[k].ty,rt2'.attrs[k].ty,m) == Ok(rt'.attrs[k].ty); LubIsUB(rt1'.attrs[k].ty,rt2'.attrs[k].ty,rt'.attrs[k].ty,m); } } case (Extension(n1),Extension(n2),Extension(n)) => } }
vmc
1
./src/Math/Helper.dfy
DivModAddDenominator_fix_1.dfy
DivModAddDenominator
lemma DivModAddDenominator(n: nat, m: nat) requires m > 0 ensures (n + m) / m == n / m + 1 ensures (n + m) % m == n % m { var zp := (n + m) / m - n / m - 1; assert 0 == m * zp + ((n + m) % m) - (n % m); }
lemma DivModAddDenominator(n: nat, m: nat) requires m > 0 ensures (n + m) / m == n / m + 1 ensures (n + m) % m == n % m { var zp := (n + m) / m - n / m - 1; }
vmc
4
./src/Math/Rationals.dfy
FloorIsCorrect_fix_4.dfy
FloorIsCorrect
lemma FloorIsCorrect(r: Rational) ensures Floor(r) == ToReal(r).Floor { var floor := r.numer / r.denom; var multiple := floor * r.denom; assert r.numer == multiple + r.numer % r.denom; var nextMultiple := multiple + r.denom; assert Floor(r) as real <= ToReal(r); assert ToReal(r) < Floor(r) as real + 1.0 by { assert r.numer < nextMultiple; calc { ToReal(r); == r.numer as real / r.denom as real; < { DivStrictlyMonotonic(r.denom as real, r.numer as real, nextMultiple as real); } nextMultiple as real / r.denom as real; == (floor + 1) as real; == Floor(r) as real + 1.0; } } }
lemma FloorIsCorrect(r: Rational) ensures Floor(r) == ToReal(r).Floor { var floor := r.numer / r.denom; var multiple := floor * r.denom; assert r.numer == multiple + r.numer % r.denom; var nextMultiple := multiple + r.denom; assert ToReal(r) < Floor(r) as real + 1.0 by { assert r.numer < nextMultiple; calc { ToReal(r); == r.numer as real / r.denom as real; < { DivStrictlyMonotonic(r.denom as real, r.numer as real, nextMultiple as real); } nextMultiple as real / r.denom as real; == (floor + 1) as real; == Floor(r) as real + 1.0; } } }
vmc
5
./src/Math/Rationals.dfy
FloorIsCorrect_fix_5.dfy
FloorIsCorrect
lemma FloorIsCorrect(r: Rational) ensures Floor(r) == ToReal(r).Floor { var floor := r.numer / r.denom; var multiple := floor * r.denom; assert r.numer == multiple + r.numer % r.denom; var nextMultiple := multiple + r.denom; assert Floor(r) as real <= ToReal(r); assert ToReal(r) < Floor(r) as real + 1.0 by { assert r.numer < nextMultiple; calc { ToReal(r); == r.numer as real / r.denom as real; < { DivStrictlyMonotonic(r.denom as real, r.numer as real, nextMultiple as real); } nextMultiple as real / r.denom as real; == (floor + 1) as real; == Floor(r) as real + 1.0; } } }
lemma FloorIsCorrect(r: Rational) ensures Floor(r) == ToReal(r).Floor { var floor := r.numer / r.denom; var multiple := floor * r.denom; assert r.numer == multiple + r.numer % r.denom; var nextMultiple := multiple + r.denom; assert Floor(r) as real <= ToReal(r); assert ToReal(r) < Floor(r) as real + 1.0 by { calc { ToReal(r); == r.numer as real / r.denom as real; < { DivStrictlyMonotonic(r.denom as real, r.numer as real, nextMultiple as real); } nextMultiple as real / r.denom as real; == (floor + 1) as real; == Floor(r) as real + 1.0; } } }
vmc
6
./src/Math/Measures.dfy
PosCountAddImpliesAdd_fix_6.dfy
PosCountAddImpliesAdd
lemma PosCountAddImpliesAdd<T(!new)>(eventSpace: iset<iset<T>>, Prob: iset<T> -> real) requires IsSigmaAlgebra(eventSpace) requires IsPositive(eventSpace, Prob) requires IsCountablyAdditive(eventSpace, Prob) ensures IsAdditive(eventSpace, Prob) { forall e1, e2 | e1 in eventSpace && e2 in eventSpace && e1 * e2 == iset{} ensures Prob(e1) + Prob(e2) == Prob(e1 + e2) { var f : nat -> iset<T> := (n: nat) => if n == 0 then e1 else if n == 1 then e2 else iset{}; assert CountableUnion(f) == e1 + e2; assert CountableSum((n: nat) => Prob(f(n))) == Prob(e1) + Prob(e2) by { assert CountableSum((n: nat) => Prob(f(n)), 2) == 0.0 by { CountableSumOfZeroesIsZero((n: nat) => Prob(f(n)), 2); } calc { CountableSum((n: nat) => Prob(f(n))) == Prob(f(0)) + CountableSum((n: nat) => Prob(f(n)), 1) == Prob(f(0)) + Prob(f(1)) + CountableSum((n: nat) => Prob(f(n)), 2) == Prob(e1) + Prob(e2) + CountableSum((n: nat) => Prob(f(n)), 2) == Prob(e1) + Prob(e2); } } assert Prob(CountableUnion(f)) == CountableSum((n: nat) => Prob(f(n))) by { assert IsCountablyAdditive(eventSpace, Prob); } assert Prob(e1 + e2) == Prob(e1) + Prob(e2); } }
lemma PosCountAddImpliesAdd<T(!new)>(eventSpace: iset<iset<T>>, Prob: iset<T> -> real) requires IsSigmaAlgebra(eventSpace) requires IsPositive(eventSpace, Prob) requires IsCountablyAdditive(eventSpace, Prob) ensures IsAdditive(eventSpace, Prob) { forall e1, e2 | e1 in eventSpace && e2 in eventSpace && e1 * e2 == iset{} ensures Prob(e1) + Prob(e2) == Prob(e1 + e2) { var f : nat -> iset<T> := (n: nat) => if n == 0 then e1 else if n == 1 then e2 else iset{}; assert CountableSum((n: nat) => Prob(f(n))) == Prob(e1) + Prob(e2) by { assert CountableSum((n: nat) => Prob(f(n)), 2) == 0.0 by { CountableSumOfZeroesIsZero((n: nat) => Prob(f(n)), 2); } calc { CountableSum((n: nat) => Prob(f(n))) == Prob(f(0)) + CountableSum((n: nat) => Prob(f(n)), 1) == Prob(f(0)) + Prob(f(1)) + CountableSum((n: nat) => Prob(f(n)), 2) == Prob(e1) + Prob(e2) + CountableSum((n: nat) => Prob(f(n)), 2) == Prob(e1) + Prob(e2); } } assert Prob(CountableUnion(f)) == CountableSum((n: nat) => Prob(f(n))) by { assert IsCountablyAdditive(eventSpace, Prob); } assert Prob(e1 + e2) == Prob(e1) + Prob(e2); } }
vmc
11
./src/Math/Analysis/Limits.dfy
LimitIsMultiplicative_fix_11.dfy
LimitIsMultiplicative
lemma LimitIsMultiplicative(sequence1: nat -> real, limit1: real, sequence2: nat -> real, limit2: real) requires ConvergesTo(sequence1, limit1) requires ConvergesTo(sequence2, limit2) ensures ConvergesTo(Sequences.Mul(sequence1, sequence2), limit1 * limit2) { var bound1 := BoundOfConvergentSequence(sequence1, limit1); var bound2 := BoundOfConvergentSequence(sequence2, limit2); var productSequence := Sequences.Mul(sequence1, sequence2); var productLimit := limit1 * limit2; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(productSequence, productLimit, epsilon) { var epsilon1 := epsilon / 2.0 / RealArith.Max(RealArith.Abs(limit2), 1.0); var epsilon2 := epsilon / 2.0 / RealArith.Max(bound1, 1.0); assert ExistsCloseSuffix(sequence1, limit1, epsilon1); var N1: nat :| SuffixIsClose(sequence1, limit1, epsilon1, N1); assert ExistsCloseSuffix(sequence2, limit2, epsilon2); var N2: nat :| SuffixIsClose(sequence2, limit2, epsilon2, N2); var N: nat :| N >= N1 && N >= N2; assert SuffixIsClose(productSequence, productLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(productSequence(n), productLimit) < epsilon { var s1 := sequence1(n); var s2 := sequence2(n); calc { RealArith.Dist(productSequence(n), productLimit); == { assert productSequence(n) == sequence1(n) * sequence2(n) == s1 * s2; } RealArith.Dist(s1 * s2, limit1 * limit2); < { LimitIsMultiplicativeSuffixHelper(s1, limit1, s2, limit2, bound1, epsilon); } epsilon; } } } } }
lemma LimitIsMultiplicative(sequence1: nat -> real, limit1: real, sequence2: nat -> real, limit2: real) requires ConvergesTo(sequence1, limit1) requires ConvergesTo(sequence2, limit2) ensures ConvergesTo(Sequences.Mul(sequence1, sequence2), limit1 * limit2) { var bound1 := BoundOfConvergentSequence(sequence1, limit1); var bound2 := BoundOfConvergentSequence(sequence2, limit2); var productSequence := Sequences.Mul(sequence1, sequence2); var productLimit := limit1 * limit2; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(productSequence, productLimit, epsilon) { var epsilon1 := epsilon / 2.0 / RealArith.Max(RealArith.Abs(limit2), 1.0); var epsilon2 := epsilon / 2.0 / RealArith.Max(bound1, 1.0); var N1: nat :| SuffixIsClose(sequence1, limit1, epsilon1, N1); assert ExistsCloseSuffix(sequence2, limit2, epsilon2); var N2: nat :| SuffixIsClose(sequence2, limit2, epsilon2, N2); var N: nat :| N >= N1 && N >= N2; assert SuffixIsClose(productSequence, productLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(productSequence(n), productLimit) < epsilon { var s1 := sequence1(n); var s2 := sequence2(n); calc { RealArith.Dist(productSequence(n), productLimit); == { assert productSequence(n) == sequence1(n) * sequence2(n) == s1 * s2; } RealArith.Dist(s1 * s2, limit1 * limit2); < { LimitIsMultiplicativeSuffixHelper(s1, limit1, s2, limit2, bound1, epsilon); } epsilon; } } } } }
vmc
12
./src/Math/Analysis/Limits.dfy
LimitIsMultiplicative_fix_12.dfy
LimitIsMultiplicative
lemma LimitIsMultiplicative(sequence1: nat -> real, limit1: real, sequence2: nat -> real, limit2: real) requires ConvergesTo(sequence1, limit1) requires ConvergesTo(sequence2, limit2) ensures ConvergesTo(Sequences.Mul(sequence1, sequence2), limit1 * limit2) { var bound1 := BoundOfConvergentSequence(sequence1, limit1); var bound2 := BoundOfConvergentSequence(sequence2, limit2); var productSequence := Sequences.Mul(sequence1, sequence2); var productLimit := limit1 * limit2; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(productSequence, productLimit, epsilon) { var epsilon1 := epsilon / 2.0 / RealArith.Max(RealArith.Abs(limit2), 1.0); var epsilon2 := epsilon / 2.0 / RealArith.Max(bound1, 1.0); assert ExistsCloseSuffix(sequence1, limit1, epsilon1); var N1: nat :| SuffixIsClose(sequence1, limit1, epsilon1, N1); assert ExistsCloseSuffix(sequence2, limit2, epsilon2); var N2: nat :| SuffixIsClose(sequence2, limit2, epsilon2, N2); var N: nat :| N >= N1 && N >= N2; assert SuffixIsClose(productSequence, productLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(productSequence(n), productLimit) < epsilon { var s1 := sequence1(n); var s2 := sequence2(n); calc { RealArith.Dist(productSequence(n), productLimit); == { assert productSequence(n) == sequence1(n) * sequence2(n) == s1 * s2; } RealArith.Dist(s1 * s2, limit1 * limit2); < { LimitIsMultiplicativeSuffixHelper(s1, limit1, s2, limit2, bound1, epsilon); } epsilon; } } } } }
lemma LimitIsMultiplicative(sequence1: nat -> real, limit1: real, sequence2: nat -> real, limit2: real) requires ConvergesTo(sequence1, limit1) requires ConvergesTo(sequence2, limit2) ensures ConvergesTo(Sequences.Mul(sequence1, sequence2), limit1 * limit2) { var bound1 := BoundOfConvergentSequence(sequence1, limit1); var bound2 := BoundOfConvergentSequence(sequence2, limit2); var productSequence := Sequences.Mul(sequence1, sequence2); var productLimit := limit1 * limit2; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(productSequence, productLimit, epsilon) { var epsilon1 := epsilon / 2.0 / RealArith.Max(RealArith.Abs(limit2), 1.0); var epsilon2 := epsilon / 2.0 / RealArith.Max(bound1, 1.0); assert ExistsCloseSuffix(sequence1, limit1, epsilon1); var N1: nat :| SuffixIsClose(sequence1, limit1, epsilon1, N1); var N2: nat :| SuffixIsClose(sequence2, limit2, epsilon2, N2); var N: nat :| N >= N1 && N >= N2; assert SuffixIsClose(productSequence, productLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(productSequence(n), productLimit) < epsilon { var s1 := sequence1(n); var s2 := sequence2(n); calc { RealArith.Dist(productSequence(n), productLimit); == { assert productSequence(n) == sequence1(n) * sequence2(n) == s1 * s2; } RealArith.Dist(s1 * s2, limit1 * limit2); < { LimitIsMultiplicativeSuffixHelper(s1, limit1, s2, limit2, bound1, epsilon); } epsilon; } } } } }
vmc
14
./src/Math/Analysis/Limits.dfy
LimitOfInverse_fix_14.dfy
LimitOfInverse
lemma LimitOfInverse(sequence: nat -> real, limit: real) requires forall n: nat :: sequence(n) != 0.0 requires limit != 0.0 requires ConvergesTo(sequence, limit) ensures ConvergesTo(Sequences.Inverse(sequence), 1.0 / limit) { var invSeq := Sequences.Inverse(sequence); var invLimit := 1.0 / limit; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(invSeq, invLimit, epsilon) { var limitSquared := limit * limit; var epsilon' := RealArith.Min(RealArith.Abs(limit) / 2.0, (epsilon * limitSquared) / 2.0); assert ExistsCloseSuffix(sequence, limit, epsilon'); var N: nat :| SuffixIsClose(sequence, limit, epsilon', N); assert SuffixIsClose(invSeq, invLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(invSeq(n), invLimit) < epsilon { var s := sequence(n); calc { RealArith.Dist(invSeq(n), invLimit); == { assert invSeq(n) == 1.0 / s; } RealArith.Dist(1.0 / s, 1.0 / limit); == { LimitOfInverseHelper1(s, limit); } RealArith.Dist(s, limit) / RealArith.Abs(limit) / RealArith.Abs(s); <= { LimitOfInverseHelper2(s, limit); } 2.0 * RealArith.Dist(s, limit) / limitSquared; < { RealArith.DivisionIsMonotonicStrict(2.0 * RealArith.Dist(s, limit), 2.0 * epsilon', limitSquared); } 2.0 * epsilon' / limitSquared; <= { RealArith.DivisionIsMonotonic(2.0 * epsilon', 2.0 * (epsilon * limitSquared) / 2.0, limitSquared); } 2.0 * (epsilon * limitSquared) / 2.0 / limitSquared; == { assert 2.0 * (epsilon * limitSquared) / 2.0 == epsilon * limitSquared; } (epsilon * limitSquared) / limitSquared; == epsilon; } } } } }
lemma LimitOfInverse(sequence: nat -> real, limit: real) requires forall n: nat :: sequence(n) != 0.0 requires limit != 0.0 requires ConvergesTo(sequence, limit) ensures ConvergesTo(Sequences.Inverse(sequence), 1.0 / limit) { var invSeq := Sequences.Inverse(sequence); var invLimit := 1.0 / limit; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(invSeq, invLimit, epsilon) { var limitSquared := limit * limit; var epsilon' := RealArith.Min(RealArith.Abs(limit) / 2.0, (epsilon * limitSquared) / 2.0); var N: nat :| SuffixIsClose(sequence, limit, epsilon', N); assert SuffixIsClose(invSeq, invLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(invSeq(n), invLimit) < epsilon { var s := sequence(n); calc { RealArith.Dist(invSeq(n), invLimit); == { assert invSeq(n) == 1.0 / s; } RealArith.Dist(1.0 / s, 1.0 / limit); == { LimitOfInverseHelper1(s, limit); } RealArith.Dist(s, limit) / RealArith.Abs(limit) / RealArith.Abs(s); <= { LimitOfInverseHelper2(s, limit); } 2.0 * RealArith.Dist(s, limit) / limitSquared; < { RealArith.DivisionIsMonotonicStrict(2.0 * RealArith.Dist(s, limit), 2.0 * epsilon', limitSquared); } 2.0 * epsilon' / limitSquared; <= { RealArith.DivisionIsMonotonic(2.0 * epsilon', 2.0 * (epsilon * limitSquared) / 2.0, limitSquared); } 2.0 * (epsilon * limitSquared) / 2.0 / limitSquared; == { assert 2.0 * (epsilon * limitSquared) / 2.0 == epsilon * limitSquared; } (epsilon * limitSquared) / limitSquared; == epsilon; } } } } }
vmc
15
./src/Math/Analysis/Limits.dfy
ConstantSequenceConverges_fix_15.dfy
ConstantSequenceConverges
lemma ConstantSequenceConverges(constant: real) ensures ConvergesTo(Sequences.Constant(constant), constant) { forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(Sequences.Constant(constant), constant, epsilon) { assert SuffixIsClose(Sequences.Constant(constant), constant, epsilon, 0); } }
lemma ConstantSequenceConverges(constant: real) ensures ConvergesTo(Sequences.Constant(constant), constant) { forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(Sequences.Constant(constant), constant, epsilon) { } }
vmc
16
./src/Math/Analysis/Limits.dfy
LimitIsUnique_fix_16.dfy
LimitIsUnique
lemma LimitIsUnique(sequence: nat -> real, limit1: real, limit2: real) requires ConvergesTo(sequence, limit1) requires ConvergesTo(sequence, limit2) ensures limit1 == limit2 { if ConvergesTo(sequence, limit1) && ConvergesTo(sequence, limit2) && limit1 != limit2 { var epsilon := RealArith.Dist(limit1, limit2) / 2.0; assert ExistsCloseSuffix(sequence, limit1, epsilon); var N1 : nat :| SuffixIsClose(sequence, limit1, epsilon, N1); assert ExistsCloseSuffix(sequence, limit2, epsilon); var N2 : nat :| SuffixIsClose(sequence, limit2, epsilon, N2); var N : nat :| N >= N1 && N >= N2; calc { RealArith.Dist(limit1, limit2); <= { RealArith.TriangleInequality(limit1, sequence(N), limit2); } RealArith.Dist(limit1, sequence(N)) + RealArith.Dist(sequence(N), limit2); < epsilon + epsilon; == epsilon * 2.0; == RealArith.Dist(limit1, limit2); } } }
lemma LimitIsUnique(sequence: nat -> real, limit1: real, limit2: real) requires ConvergesTo(sequence, limit1) requires ConvergesTo(sequence, limit2) ensures limit1 == limit2 { if ConvergesTo(sequence, limit1) && ConvergesTo(sequence, limit2) && limit1 != limit2 { var epsilon := RealArith.Dist(limit1, limit2) / 2.0; var N1 : nat :| SuffixIsClose(sequence, limit1, epsilon, N1); assert ExistsCloseSuffix(sequence, limit2, epsilon); var N2 : nat :| SuffixIsClose(sequence, limit2, epsilon, N2); var N : nat :| N >= N1 && N >= N2; calc { RealArith.Dist(limit1, limit2); <= { RealArith.TriangleInequality(limit1, sequence(N), limit2); } RealArith.Dist(limit1, sequence(N)) + RealArith.Dist(sequence(N), limit2); < epsilon + epsilon; == epsilon * 2.0; == RealArith.Dist(limit1, limit2); } } }
vmc
17
./src/Math/Analysis/Limits.dfy
LimitIsUnique_fix_17.dfy
LimitIsUnique
lemma LimitIsUnique(sequence: nat -> real, limit1: real, limit2: real) requires ConvergesTo(sequence, limit1) requires ConvergesTo(sequence, limit2) ensures limit1 == limit2 { if ConvergesTo(sequence, limit1) && ConvergesTo(sequence, limit2) && limit1 != limit2 { var epsilon := RealArith.Dist(limit1, limit2) / 2.0; assert ExistsCloseSuffix(sequence, limit1, epsilon); var N1 : nat :| SuffixIsClose(sequence, limit1, epsilon, N1); assert ExistsCloseSuffix(sequence, limit2, epsilon); var N2 : nat :| SuffixIsClose(sequence, limit2, epsilon, N2); var N : nat :| N >= N1 && N >= N2; calc { RealArith.Dist(limit1, limit2); <= { RealArith.TriangleInequality(limit1, sequence(N), limit2); } RealArith.Dist(limit1, sequence(N)) + RealArith.Dist(sequence(N), limit2); < epsilon + epsilon; == epsilon * 2.0; == RealArith.Dist(limit1, limit2); } } }
lemma LimitIsUnique(sequence: nat -> real, limit1: real, limit2: real) requires ConvergesTo(sequence, limit1) requires ConvergesTo(sequence, limit2) ensures limit1 == limit2 { if ConvergesTo(sequence, limit1) && ConvergesTo(sequence, limit2) && limit1 != limit2 { var epsilon := RealArith.Dist(limit1, limit2) / 2.0; assert ExistsCloseSuffix(sequence, limit1, epsilon); var N1 : nat :| SuffixIsClose(sequence, limit1, epsilon, N1); var N2 : nat :| SuffixIsClose(sequence, limit2, epsilon, N2); var N : nat :| N >= N1 && N >= N2; calc { RealArith.Dist(limit1, limit2); <= { RealArith.TriangleInequality(limit1, sequence(N), limit2); } RealArith.Dist(limit1, sequence(N)) + RealArith.Dist(sequence(N), limit2); < epsilon + epsilon; == epsilon * 2.0; == RealArith.Dist(limit1, limit2); } } }
vmc
18
./src/Math/Analysis/Limits.dfy
BoundOfConvergentSequence_fix_18.dfy
BoundOfConvergentSequence
lemma BoundOfConvergentSequence(sequence: nat -> real, limit: real) returns (bound: real) requires ConvergesTo(sequence, limit) ensures Sequences.IsBounded(sequence, bound) ensures bound > 0.0 { assert ExistsCloseSuffix(sequence, limit, 1.0); var N: nat :| SuffixIsClose(sequence, limit, 1.0, N); bound := RealArith.Abs(limit) + 1.0; for n := 0 to N invariant bound >= RealArith.Abs(limit) + 1.0 invariant forall i: nat | i < n :: RealArith.Abs(sequence(i)) < bound { if RealArith.Abs(sequence(n)) >= bound { bound := RealArith.Abs(sequence(n)) + 1.0; } } assert forall n: nat | n < N :: RealArith.Abs(sequence(n)) < bound; forall n: nat ensures RealArith.Abs(sequence(n)) < bound { if n < N { assert RealArith.Abs(sequence(n)) < bound; } else { assert RealArith.Abs(sequence(n)) < RealArith.Abs(limit) + 1.0 <= bound; } } }
lemma BoundOfConvergentSequence(sequence: nat -> real, limit: real) returns (bound: real) requires ConvergesTo(sequence, limit) ensures Sequences.IsBounded(sequence, bound) ensures bound > 0.0 { var N: nat :| SuffixIsClose(sequence, limit, 1.0, N); bound := RealArith.Abs(limit) + 1.0; for n := 0 to N invariant bound >= RealArith.Abs(limit) + 1.0 invariant forall i: nat | i < n :: RealArith.Abs(sequence(i)) < bound { if RealArith.Abs(sequence(n)) >= bound { bound := RealArith.Abs(sequence(n)) + 1.0; } } assert forall n: nat | n < N :: RealArith.Abs(sequence(n)) < bound; forall n: nat ensures RealArith.Abs(sequence(n)) < bound { if n < N { assert RealArith.Abs(sequence(n)) < bound; } else { assert RealArith.Abs(sequence(n)) < RealArith.Abs(limit) + 1.0 <= bound; } } }
vmc
22
./src/Math/Analysis/Limits.dfy
LimitIsAdditive_fix_22.dfy
LimitIsAdditive
lemma LimitIsAdditive(sequence1: nat -> real, limit1: real, sequence2: nat -> real, limit2: real) requires ConvergesTo(sequence1, limit1) requires ConvergesTo(sequence2, limit2) ensures ConvergesTo(Sequences.Add(sequence1, sequence2), limit1 + limit2) { var sumSequence := Sequences.Add(sequence1, sequence2); var sumLimit := limit1 + limit2; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(sumSequence, sumLimit, epsilon) { assert ExistsCloseSuffix(sequence1, limit1, epsilon / 2.0); var N1: nat :| SuffixIsClose(sequence1, limit1, epsilon / 2.0, N1); assert ExistsCloseSuffix(sequence2, limit2, epsilon / 2.0); var N2: nat :| SuffixIsClose(sequence2, limit2, epsilon / 2.0, N2); var N: nat :| N >= N1 && N >= N2; assert SuffixIsClose(sumSequence, sumLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(sumSequence(n), sumLimit) < epsilon { calc { RealArith.Dist(sumSequence(n), sumLimit); == RealArith.Dist(sequence1(n) + sequence2(n), limit1 + limit2); <= RealArith.Dist(sequence1(n), limit1) + RealArith.Dist(sequence2(n), limit2); < epsilon / 2.0 + epsilon / 2.0; == epsilon; } } } } }
lemma LimitIsAdditive(sequence1: nat -> real, limit1: real, sequence2: nat -> real, limit2: real) requires ConvergesTo(sequence1, limit1) requires ConvergesTo(sequence2, limit2) ensures ConvergesTo(Sequences.Add(sequence1, sequence2), limit1 + limit2) { var sumSequence := Sequences.Add(sequence1, sequence2); var sumLimit := limit1 + limit2; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(sumSequence, sumLimit, epsilon) { var N1: nat :| SuffixIsClose(sequence1, limit1, epsilon / 2.0, N1); assert ExistsCloseSuffix(sequence2, limit2, epsilon / 2.0); var N2: nat :| SuffixIsClose(sequence2, limit2, epsilon / 2.0, N2); var N: nat :| N >= N1 && N >= N2; assert SuffixIsClose(sumSequence, sumLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(sumSequence(n), sumLimit) < epsilon { calc { RealArith.Dist(sumSequence(n), sumLimit); == RealArith.Dist(sequence1(n) + sequence2(n), limit1 + limit2); <= RealArith.Dist(sequence1(n), limit1) + RealArith.Dist(sequence2(n), limit2); < epsilon / 2.0 + epsilon / 2.0; == epsilon; } } } } }
vmc
23
./src/Math/Analysis/Limits.dfy
LimitIsAdditive_fix_23.dfy
LimitIsAdditive
lemma LimitIsAdditive(sequence1: nat -> real, limit1: real, sequence2: nat -> real, limit2: real) requires ConvergesTo(sequence1, limit1) requires ConvergesTo(sequence2, limit2) ensures ConvergesTo(Sequences.Add(sequence1, sequence2), limit1 + limit2) { var sumSequence := Sequences.Add(sequence1, sequence2); var sumLimit := limit1 + limit2; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(sumSequence, sumLimit, epsilon) { assert ExistsCloseSuffix(sequence1, limit1, epsilon / 2.0); var N1: nat :| SuffixIsClose(sequence1, limit1, epsilon / 2.0, N1); assert ExistsCloseSuffix(sequence2, limit2, epsilon / 2.0); var N2: nat :| SuffixIsClose(sequence2, limit2, epsilon / 2.0, N2); var N: nat :| N >= N1 && N >= N2; assert SuffixIsClose(sumSequence, sumLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(sumSequence(n), sumLimit) < epsilon { calc { RealArith.Dist(sumSequence(n), sumLimit); == RealArith.Dist(sequence1(n) + sequence2(n), limit1 + limit2); <= RealArith.Dist(sequence1(n), limit1) + RealArith.Dist(sequence2(n), limit2); < epsilon / 2.0 + epsilon / 2.0; == epsilon; } } } } }
lemma LimitIsAdditive(sequence1: nat -> real, limit1: real, sequence2: nat -> real, limit2: real) requires ConvergesTo(sequence1, limit1) requires ConvergesTo(sequence2, limit2) ensures ConvergesTo(Sequences.Add(sequence1, sequence2), limit1 + limit2) { var sumSequence := Sequences.Add(sequence1, sequence2); var sumLimit := limit1 + limit2; forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(sumSequence, sumLimit, epsilon) { assert ExistsCloseSuffix(sequence1, limit1, epsilon / 2.0); var N1: nat :| SuffixIsClose(sequence1, limit1, epsilon / 2.0, N1); var N2: nat :| SuffixIsClose(sequence2, limit2, epsilon / 2.0, N2); var N: nat :| N >= N1 && N >= N2; assert SuffixIsClose(sumSequence, sumLimit, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(sumSequence(n), sumLimit) < epsilon { calc { RealArith.Dist(sumSequence(n), sumLimit); == RealArith.Dist(sequence1(n) + sequence2(n), limit1 + limit2); <= RealArith.Dist(sequence1(n), limit1) + RealArith.Dist(sequence2(n), limit2); < epsilon / 2.0 + epsilon / 2.0; == epsilon; } } } } }
vmc
24
./src/Math/Analysis/Limits.dfy
LimitOfMultiplicationWithZeroSequence_fix_24.dfy
LimitOfMultiplicationWithZeroSequence
lemma LimitOfMultiplicationWithZeroSequence(sequence: nat -> real, bound: real, zeroSeq: nat -> real) requires Sequences.IsBounded(sequence, bound) requires ConvergesTo(zeroSeq, 0.0) ensures ConvergesTo(Sequences.Mul(sequence, zeroSeq), 0.0) { var productSequence := Sequences.Mul(sequence, zeroSeq); forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(productSequence, 0.0, epsilon) { var epsilon' := epsilon / RealArith.Max(bound, 1.0); assert ExistsCloseSuffix(zeroSeq, 0.0, epsilon'); var N :| SuffixIsClose(zeroSeq, 0.0, epsilon', N); assert SuffixIsClose(productSequence, 0.0, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(productSequence(n), 0.0) < epsilon { var s := sequence(n); var z := zeroSeq(n); calc { RealArith.Dist(productSequence(n), 0.0); == RealArith.Abs(s * z); == { RealArith.AbsMul(s, z); } RealArith.Abs(s) * RealArith.Abs(z); <= { RealArith.MulMonotonic(RealArith.Abs(s), RealArith.Abs(z), epsilon'); } RealArith.Abs(s) * epsilon'; < { RealArith.MulMonotonicStrict(epsilon', RealArith.Abs(s), bound); } bound * epsilon'; <= { RealArith.MulMonotonic(epsilon', bound, RealArith.Max(bound, 1.0)); } RealArith.Max(bound, 1.0) * epsilon'; == epsilon; } } } } }
lemma LimitOfMultiplicationWithZeroSequence(sequence: nat -> real, bound: real, zeroSeq: nat -> real) requires Sequences.IsBounded(sequence, bound) requires ConvergesTo(zeroSeq, 0.0) ensures ConvergesTo(Sequences.Mul(sequence, zeroSeq), 0.0) { var productSequence := Sequences.Mul(sequence, zeroSeq); forall epsilon: real | epsilon > 0.0 ensures ExistsCloseSuffix(productSequence, 0.0, epsilon) { var epsilon' := epsilon / RealArith.Max(bound, 1.0); var N :| SuffixIsClose(zeroSeq, 0.0, epsilon', N); assert SuffixIsClose(productSequence, 0.0, epsilon, N) by { forall n: nat | n >= N ensures RealArith.Dist(productSequence(n), 0.0) < epsilon { var s := sequence(n); var z := zeroSeq(n); calc { RealArith.Dist(productSequence(n), 0.0); == RealArith.Abs(s * z); == { RealArith.AbsMul(s, z); } RealArith.Abs(s) * RealArith.Abs(z); <= { RealArith.MulMonotonic(RealArith.Abs(s), RealArith.Abs(z), epsilon'); } RealArith.Abs(s) * epsilon'; < { RealArith.MulMonotonicStrict(epsilon', RealArith.Abs(s), bound); } bound * epsilon'; <= { RealArith.MulMonotonic(epsilon', bound, RealArith.Max(bound, 1.0)); } RealArith.Max(bound, 1.0) * epsilon'; == epsilon; } } } } }
vmc
26
./src/Math/Analysis/Sequences.dfy
OneOverNPlus1IsAntimonotonic_fix_26.dfy
OneOverNPlus1IsAntimonotonic
lemma OneOverNPlus1IsAntimonotonic(m: nat, n: nat) requires m <= n ensures OneOverNPlus1(m) >= OneOverNPlus1(n) { var mp1 := (m + 1) as real; var np1 := (n + 1) as real; assert mp1 > 0.0; assert np1 > 0.0; calc { mp1 <= np1; == mp1 / np1 <= 1.0; == (1.0 / np1) * mp1 <= (1.0 / mp1) * mp1; == { RealArith.MultiplicationCancelMonotonic(mp1, 1.0 / np1, 1.0 / mp1); } 1.0 / np1 <= 1.0 / mp1; == OneOverNPlus1(m) >= OneOverNPlus1(n); } }
lemma OneOverNPlus1IsAntimonotonic(m: nat, n: nat) requires m <= n ensures OneOverNPlus1(m) >= OneOverNPlus1(n) { var mp1 := (m + 1) as real; var np1 := (n + 1) as real; assert mp1 > 0.0; calc { mp1 <= np1; == mp1 / np1 <= 1.0; == (1.0 / np1) * mp1 <= (1.0 / mp1) * mp1; == { RealArith.MultiplicationCancelMonotonic(mp1, 1.0 / np1, 1.0 / mp1); } 1.0 / np1 <= 1.0 / mp1; == OneOverNPlus1(m) >= OneOverNPlus1(n); } }
vmc
27
./src/Math/Analysis/Reals.dfy
Sqrt2Exists_fix_27.dfy
Sqrt2Exists
lemma Sqrt2Exists() returns (sqrt2: real) ensures sqrt2 * sqrt2 == 2.0 { var lower := iset x: real | x >= 0.0 && Square(x) < 2.0; var upper := iset x: real | x >= 0.0 && Square(x) > 2.0; forall x <- lower, y <- upper ensures x < y { if x >= y { calc { 2.0; < Square(y); <= { RealArith.MulMonotonic(y, y, x); RealArith.MulMonotonic(x, y, x); } Square(x); < 2.0; } } } assert 1.0 in lower; assert 2.0 in upper; sqrt2 := Reals.DedekindCompleteness(lower, upper); assert 1.0 <= sqrt2 <= 2.0; assert Square(sqrt2) == 2.0 by { if sqrt2 * sqrt2 > 2.0 { var eps := (sqrt2 * sqrt2 - 2.0) / (2.0 * sqrt2); assert 0.0 < eps < 1.0; var y := sqrt2 - eps; assert y * y > 2.0 by { calc { y * y; sqrt2 * sqrt2 - 2.0 * sqrt2 * eps + eps * eps; sqrt2 * sqrt2 - (sqrt2 * sqrt2 - 2.0) + eps * eps; 2.0 + eps * eps; > 2.0; } } assert y in upper by { assert y >= 0.0; assert y * y > 2.0; } assert false; } if sqrt2 * sqrt2 < 2.0 { var eps := (2.0 - sqrt2 * sqrt2) / (2.0 * sqrt2 + 1.0); assert 0.0 < eps < 1.0; var y := sqrt2 + eps; assert y * y < 2.0 by { calc { y * y; sqrt2 * sqrt2 + 2.0 * sqrt2 * eps + eps * eps; sqrt2 * sqrt2 + (2.0 * sqrt2 + eps) * eps; < { RealArith.MulMonotonicStrict(eps, 2.0 * sqrt2 + eps, 2.0 * sqrt2 + 1.0); } sqrt2 * sqrt2 + (2.0 * sqrt2 + 1.0) * eps; sqrt2 * sqrt2 + (2.0 - sqrt2 * sqrt2); 2.0; } } assert y in lower by { assert y >= 0.0; assert y * y < 2.0; } assert false; } } }
lemma Sqrt2Exists() returns (sqrt2: real) ensures sqrt2 * sqrt2 == 2.0 { var lower := iset x: real | x >= 0.0 && Square(x) < 2.0; var upper := iset x: real | x >= 0.0 && Square(x) > 2.0; forall x <- lower, y <- upper ensures x < y { if x >= y { calc { 2.0; < Square(y); <= { RealArith.MulMonotonic(y, y, x); RealArith.MulMonotonic(x, y, x); } Square(x); < 2.0; } } } assert 2.0 in upper; sqrt2 := Reals.DedekindCompleteness(lower, upper); assert 1.0 <= sqrt2 <= 2.0; assert Square(sqrt2) == 2.0 by { if sqrt2 * sqrt2 > 2.0 { var eps := (sqrt2 * sqrt2 - 2.0) / (2.0 * sqrt2); assert 0.0 < eps < 1.0; var y := sqrt2 - eps; assert y * y > 2.0 by { calc { y * y; sqrt2 * sqrt2 - 2.0 * sqrt2 * eps + eps * eps; sqrt2 * sqrt2 - (sqrt2 * sqrt2 - 2.0) + eps * eps; 2.0 + eps * eps; > 2.0; } } assert y in upper by { assert y >= 0.0; assert y * y > 2.0; } assert false; } if sqrt2 * sqrt2 < 2.0 { var eps := (2.0 - sqrt2 * sqrt2) / (2.0 * sqrt2 + 1.0); assert 0.0 < eps < 1.0; var y := sqrt2 + eps; assert y * y < 2.0 by { calc { y * y; sqrt2 * sqrt2 + 2.0 * sqrt2 * eps + eps * eps; sqrt2 * sqrt2 + (2.0 * sqrt2 + eps) * eps; < { RealArith.MulMonotonicStrict(eps, 2.0 * sqrt2 + eps, 2.0 * sqrt2 + 1.0); } sqrt2 * sqrt2 + (2.0 * sqrt2 + 1.0) * eps; sqrt2 * sqrt2 + (2.0 - sqrt2 * sqrt2); 2.0; } } assert y in lower by { assert y >= 0.0; assert y * y < 2.0; } assert false; } } }
vmc
28
./src/Math/Analysis/Reals.dfy
Sqrt2Exists_fix_28.dfy
Sqrt2Exists
lemma Sqrt2Exists() returns (sqrt2: real) ensures sqrt2 * sqrt2 == 2.0 { var lower := iset x: real | x >= 0.0 && Square(x) < 2.0; var upper := iset x: real | x >= 0.0 && Square(x) > 2.0; forall x <- lower, y <- upper ensures x < y { if x >= y { calc { 2.0; < Square(y); <= { RealArith.MulMonotonic(y, y, x); RealArith.MulMonotonic(x, y, x); } Square(x); < 2.0; } } } assert 1.0 in lower; assert 2.0 in upper; sqrt2 := Reals.DedekindCompleteness(lower, upper); assert 1.0 <= sqrt2 <= 2.0; assert Square(sqrt2) == 2.0 by { if sqrt2 * sqrt2 > 2.0 { var eps := (sqrt2 * sqrt2 - 2.0) / (2.0 * sqrt2); assert 0.0 < eps < 1.0; var y := sqrt2 - eps; assert y * y > 2.0 by { calc { y * y; sqrt2 * sqrt2 - 2.0 * sqrt2 * eps + eps * eps; sqrt2 * sqrt2 - (sqrt2 * sqrt2 - 2.0) + eps * eps; 2.0 + eps * eps; > 2.0; } } assert y in upper by { assert y >= 0.0; assert y * y > 2.0; } assert false; } if sqrt2 * sqrt2 < 2.0 { var eps := (2.0 - sqrt2 * sqrt2) / (2.0 * sqrt2 + 1.0); assert 0.0 < eps < 1.0; var y := sqrt2 + eps; assert y * y < 2.0 by { calc { y * y; sqrt2 * sqrt2 + 2.0 * sqrt2 * eps + eps * eps; sqrt2 * sqrt2 + (2.0 * sqrt2 + eps) * eps; < { RealArith.MulMonotonicStrict(eps, 2.0 * sqrt2 + eps, 2.0 * sqrt2 + 1.0); } sqrt2 * sqrt2 + (2.0 * sqrt2 + 1.0) * eps; sqrt2 * sqrt2 + (2.0 - sqrt2 * sqrt2); 2.0; } } assert y in lower by { assert y >= 0.0; assert y * y < 2.0; } assert false; } } }
lemma Sqrt2Exists() returns (sqrt2: real) ensures sqrt2 * sqrt2 == 2.0 { var lower := iset x: real | x >= 0.0 && Square(x) < 2.0; var upper := iset x: real | x >= 0.0 && Square(x) > 2.0; forall x <- lower, y <- upper ensures x < y { if x >= y { calc { 2.0; < Square(y); <= { RealArith.MulMonotonic(y, y, x); RealArith.MulMonotonic(x, y, x); } Square(x); < 2.0; } } } assert 1.0 in lower; sqrt2 := Reals.DedekindCompleteness(lower, upper); assert 1.0 <= sqrt2 <= 2.0; assert Square(sqrt2) == 2.0 by { if sqrt2 * sqrt2 > 2.0 { var eps := (sqrt2 * sqrt2 - 2.0) / (2.0 * sqrt2); assert 0.0 < eps < 1.0; var y := sqrt2 - eps; assert y * y > 2.0 by { calc { y * y; sqrt2 * sqrt2 - 2.0 * sqrt2 * eps + eps * eps; sqrt2 * sqrt2 - (sqrt2 * sqrt2 - 2.0) + eps * eps; 2.0 + eps * eps; > 2.0; } } assert y in upper by { assert y >= 0.0; assert y * y > 2.0; } assert false; } if sqrt2 * sqrt2 < 2.0 { var eps := (2.0 - sqrt2 * sqrt2) / (2.0 * sqrt2 + 1.0); assert 0.0 < eps < 1.0; var y := sqrt2 + eps; assert y * y < 2.0 by { calc { y * y; sqrt2 * sqrt2 + 2.0 * sqrt2 * eps + eps * eps; sqrt2 * sqrt2 + (2.0 * sqrt2 + eps) * eps; < { RealArith.MulMonotonicStrict(eps, 2.0 * sqrt2 + eps, 2.0 * sqrt2 + 1.0); } sqrt2 * sqrt2 + (2.0 * sqrt2 + 1.0) * eps; sqrt2 * sqrt2 + (2.0 - sqrt2 * sqrt2); 2.0; } } assert y in lower by { assert y >= 0.0; assert y * y < 2.0; } assert false; } } }
vmc
56
./src/Distributions/UniformPowerOfTwo/Correctness.dfy
UnifCorrectness2Inequality_fix_56.dfy
UnifCorrectness2Inequality
lemma UnifCorrectness2Inequality(n: nat, m: nat) requires n >= 1 requires m <= Helper.Power(2, Helper.Log2Floor(n)) ensures var e := iset s | Model.Sample(n)(s).value < m; && e in Rand.eventSpace && Rand.prob(e) == (m as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real) { var e := iset s | Model.Sample(n)(s).value < m; if m == 0 { assert e == iset{}; Rand.ProbIsProbabilityMeasure(); } else { var e1 := iset s | Model.Sample(n)(s).value < m-1; var e2 := iset s | Model.Sample(n)(s).value == m-1; assert e1 in Rand.eventSpace by { UnifCorrectness2Inequality(n, m-1); } assert e2 in Rand.eventSpace by { UnifCorrectness2(n, m-1); } assert e in Rand.eventSpace by { assert e == e1 + e2; Rand.ProbIsProbabilityMeasure(); Measures.BinaryUnion(Rand.eventSpace, e1, e2); } calc { Rand.prob(e); { assert e == e1 + e2; } Rand.prob(e1 + e2); { assert e1 * e2 == iset{}; Rand.ProbIsProbabilityMeasure(); Measures.PosCountAddImpliesAdd(Rand.eventSpace, Rand.prob); assert Measures.IsAdditive(Rand.eventSpace, Rand.prob); } Rand.prob(e1) + Rand.prob(e2); { UnifCorrectness2(n, m-1); UnifCorrectness2Inequality(n, m-1); } (1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real)) + (((m-1) as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real)); { Helper.AdditionOfFractions(1.0, (m-1) as real, Helper.Power(2, Helper.Log2Floor(n)) as real); } (1.0 + (m-1) as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real); { assert 1.0 + (m-1) as real == (m as real); } (m as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real); } } }
lemma UnifCorrectness2Inequality(n: nat, m: nat) requires n >= 1 requires m <= Helper.Power(2, Helper.Log2Floor(n)) ensures var e := iset s | Model.Sample(n)(s).value < m; && e in Rand.eventSpace && Rand.prob(e) == (m as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real) { var e := iset s | Model.Sample(n)(s).value < m; if m == 0 { Rand.ProbIsProbabilityMeasure(); } else { var e1 := iset s | Model.Sample(n)(s).value < m-1; var e2 := iset s | Model.Sample(n)(s).value == m-1; assert e1 in Rand.eventSpace by { UnifCorrectness2Inequality(n, m-1); } assert e2 in Rand.eventSpace by { UnifCorrectness2(n, m-1); } assert e in Rand.eventSpace by { assert e == e1 + e2; Rand.ProbIsProbabilityMeasure(); Measures.BinaryUnion(Rand.eventSpace, e1, e2); } calc { Rand.prob(e); { assert e == e1 + e2; } Rand.prob(e1 + e2); { assert e1 * e2 == iset{}; Rand.ProbIsProbabilityMeasure(); Measures.PosCountAddImpliesAdd(Rand.eventSpace, Rand.prob); assert Measures.IsAdditive(Rand.eventSpace, Rand.prob); } Rand.prob(e1) + Rand.prob(e2); { UnifCorrectness2(n, m-1); UnifCorrectness2Inequality(n, m-1); } (1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real)) + (((m-1) as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real)); { Helper.AdditionOfFractions(1.0, (m-1) as real, Helper.Power(2, Helper.Log2Floor(n)) as real); } (1.0 + (m-1) as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real); { assert 1.0 + (m-1) as real == (m as real); } (m as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real); } } }
vmc
57
./src/Distributions/UniformPowerOfTwo/Correctness.dfy
UnifCorrectness2Inequality_fix_57.dfy
UnifCorrectness2Inequality
lemma UnifCorrectness2Inequality(n: nat, m: nat) requires n >= 1 requires m <= Helper.Power(2, Helper.Log2Floor(n)) ensures var e := iset s | Model.Sample(n)(s).value < m; && e in Rand.eventSpace && Rand.prob(e) == (m as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real) { var e := iset s | Model.Sample(n)(s).value < m; if m == 0 { assert e == iset{}; Rand.ProbIsProbabilityMeasure(); } else { var e1 := iset s | Model.Sample(n)(s).value < m-1; var e2 := iset s | Model.Sample(n)(s).value == m-1; assert e1 in Rand.eventSpace by { UnifCorrectness2Inequality(n, m-1); } assert e2 in Rand.eventSpace by { UnifCorrectness2(n, m-1); } assert e in Rand.eventSpace by { assert e == e1 + e2; Rand.ProbIsProbabilityMeasure(); Measures.BinaryUnion(Rand.eventSpace, e1, e2); } calc { Rand.prob(e); { assert e == e1 + e2; } Rand.prob(e1 + e2); { assert e1 * e2 == iset{}; Rand.ProbIsProbabilityMeasure(); Measures.PosCountAddImpliesAdd(Rand.eventSpace, Rand.prob); assert Measures.IsAdditive(Rand.eventSpace, Rand.prob); } Rand.prob(e1) + Rand.prob(e2); { UnifCorrectness2(n, m-1); UnifCorrectness2Inequality(n, m-1); } (1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real)) + (((m-1) as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real)); { Helper.AdditionOfFractions(1.0, (m-1) as real, Helper.Power(2, Helper.Log2Floor(n)) as real); } (1.0 + (m-1) as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real); { assert 1.0 + (m-1) as real == (m as real); } (m as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real); } } }
lemma UnifCorrectness2Inequality(n: nat, m: nat) requires n >= 1 requires m <= Helper.Power(2, Helper.Log2Floor(n)) ensures var e := iset s | Model.Sample(n)(s).value < m; && e in Rand.eventSpace && Rand.prob(e) == (m as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real) { var e := iset s | Model.Sample(n)(s).value < m; if m == 0 { assert e == iset{}; Rand.ProbIsProbabilityMeasure(); } else { var e1 := iset s | Model.Sample(n)(s).value < m-1; var e2 := iset s | Model.Sample(n)(s).value == m-1; assert e1 in Rand.eventSpace by { UnifCorrectness2Inequality(n, m-1); } assert e2 in Rand.eventSpace by { UnifCorrectness2(n, m-1); } assert e in Rand.eventSpace by { Rand.ProbIsProbabilityMeasure(); Measures.BinaryUnion(Rand.eventSpace, e1, e2); } calc { Rand.prob(e); { assert e == e1 + e2; } Rand.prob(e1 + e2); { assert e1 * e2 == iset{}; Rand.ProbIsProbabilityMeasure(); Measures.PosCountAddImpliesAdd(Rand.eventSpace, Rand.prob); assert Measures.IsAdditive(Rand.eventSpace, Rand.prob); } Rand.prob(e1) + Rand.prob(e2); { UnifCorrectness2(n, m-1); UnifCorrectness2Inequality(n, m-1); } (1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real)) + (((m-1) as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real)); { Helper.AdditionOfFractions(1.0, (m-1) as real, Helper.Power(2, Helper.Log2Floor(n)) as real); } (1.0 + (m-1) as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real); { assert 1.0 + (m-1) as real == (m as real); } (m as real) / (Helper.Power(2, Helper.Log2Floor(n)) as real); } } }
vmc
58
./src/Distributions/UniformPowerOfTwo/Correctness.dfy
UnifCorrectness_fix_58.dfy
UnifCorrectness
lemma UnifCorrectness2(n: nat, m: nat) requires n >= 1 ensures var e := iset s | Model.Sample(n)(s).value == m; && e in Rand.eventSpace && Rand.prob(e) == if m < Helper.Power(2, Helper.Log2Floor(n)) then 1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real) else 0.0 { var e := iset s | Model.Sample(n)(s).value == m; var k := Helper.Log2Floor(n); assert e in Rand.eventSpace by { var resultsWithValueM := Monad.ResultsWithValueIn(iset{m}); assert resultsWithValueM in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(iset{m}, Measures.natEventSpace); } var preimage := Measures.PreImage(Model.Sample(n), resultsWithValueM); assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, Model.Sample(n)) by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } assert e == preimage; } Helper.Power2OfLog2Floor(n); UnifCorrectness(n, k); assert UnifIsCorrect(n, k, m); }
lemma UnifCorrectness2(n: nat, m: nat) requires n >= 1 ensures var e := iset s | Model.Sample(n)(s).value == m; && e in Rand.eventSpace && Rand.prob(e) == if m < Helper.Power(2, Helper.Log2Floor(n)) then 1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real) else 0.0 { var e := iset s | Model.Sample(n)(s).value == m; var k := Helper.Log2Floor(n); assert e in Rand.eventSpace by { var resultsWithValueM := Monad.ResultsWithValueIn(iset{m}); assert resultsWithValueM in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(iset{m}, Measures.natEventSpace); } var preimage := Measures.PreImage(Model.Sample(n), resultsWithValueM); assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, Model.Sample(n)) by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } } Helper.Power2OfLog2Floor(n); UnifCorrectness(n, k); assert UnifIsCorrect(n, k, m); }
vmc
60
./src/Distributions/UniformPowerOfTwo/Correctness.dfy
UnifCorrectness2_fix_60.dfy
UnifCorrectness2
lemma UnifCorrectness2(n: nat, m: nat) requires n >= 1 ensures var e := iset s | Model.Sample(n)(s).value == m; && e in Rand.eventSpace && Rand.prob(e) == if m < Helper.Power(2, Helper.Log2Floor(n)) then 1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real) else 0.0 { var e := iset s | Model.Sample(n)(s).value == m; var k := Helper.Log2Floor(n); assert e in Rand.eventSpace by { var resultsWithValueM := Monad.ResultsWithValueIn(iset{m}); assert resultsWithValueM in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(iset{m}, Measures.natEventSpace); } var preimage := Measures.PreImage(Model.Sample(n), resultsWithValueM); assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, Model.Sample(n)) by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } assert e == preimage; } Helper.Power2OfLog2Floor(n); UnifCorrectness(n, k); assert UnifIsCorrect(n, k, m); }
lemma UnifCorrectness2(n: nat, m: nat) requires n >= 1 ensures var e := iset s | Model.Sample(n)(s).value == m; && e in Rand.eventSpace && Rand.prob(e) == if m < Helper.Power(2, Helper.Log2Floor(n)) then 1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real) else 0.0 { var e := iset s | Model.Sample(n)(s).value == m; var k := Helper.Log2Floor(n); assert e in Rand.eventSpace by { var resultsWithValueM := Monad.ResultsWithValueIn(iset{m}); assert resultsWithValueM in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(iset{m}, Measures.natEventSpace); } var preimage := Measures.PreImage(Model.Sample(n), resultsWithValueM); assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, Model.Sample(n)) by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } } Helper.Power2OfLog2Floor(n); UnifCorrectness(n, k); assert UnifIsCorrect(n, k, m); }
vmc
61
./src/Distributions/UniformPowerOfTwo/Correctness.dfy
UnifCorrectness2_fix_61.dfy
UnifCorrectness2
lemma UnifCorrectness2(n: nat, m: nat) requires n >= 1 ensures var e := iset s | Model.Sample(n)(s).value == m; && e in Rand.eventSpace && Rand.prob(e) == if m < Helper.Power(2, Helper.Log2Floor(n)) then 1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real) else 0.0 { var e := iset s | Model.Sample(n)(s).value == m; var k := Helper.Log2Floor(n); assert e in Rand.eventSpace by { var resultsWithValueM := Monad.ResultsWithValueIn(iset{m}); assert resultsWithValueM in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(iset{m}, Measures.natEventSpace); } var preimage := Measures.PreImage(Model.Sample(n), resultsWithValueM); assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, Model.Sample(n)) by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } assert e == preimage; } Helper.Power2OfLog2Floor(n); UnifCorrectness(n, k); assert UnifIsCorrect(n, k, m); }
lemma UnifCorrectness2(n: nat, m: nat) requires n >= 1 ensures var e := iset s | Model.Sample(n)(s).value == m; && e in Rand.eventSpace && Rand.prob(e) == if m < Helper.Power(2, Helper.Log2Floor(n)) then 1.0 / (Helper.Power(2, Helper.Log2Floor(n)) as real) else 0.0 { var e := iset s | Model.Sample(n)(s).value == m; var k := Helper.Log2Floor(n); assert e in Rand.eventSpace by { var resultsWithValueM := Monad.ResultsWithValueIn(iset{m}); assert resultsWithValueM in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(iset{m}, Measures.natEventSpace); } var preimage := Measures.PreImage(Model.Sample(n), resultsWithValueM); assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, Model.Sample(n)) by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } assert e == preimage; } Helper.Power2OfLog2Floor(n); UnifCorrectness(n, k); }
vmc
62
./src/Distributions/UniformPowerOfTwo/Correctness.dfy
SampleIsMeasurePreserving_fix_62.dfy
SampleIsMeasurePreserving
lemma SampleIsMeasurePreserving(n: nat) requires n >= 1 ensures Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, SampleRest(n)) { var f := SampleRest(n); assert Measures.IsMeasurable(Rand.eventSpace, Rand.eventSpace, f) by { forall e | e in Rand.eventSpace ensures Measures.PreImage(f, e) in Rand.eventSpace { var resultsWithRestInE := Monad.ResultsWithRestIn(e); assert resultsWithRestInE in Monad.natResultEventSpace by { Monad.LiftRestInEventSpaceToResultEventSpace(e, Measures.natEventSpace); } var preimage' := Measures.PreImage(Model.Sample(n), resultsWithRestInE); assert preimage' in Rand.eventSpace by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } assert Measures.PreImage(f, e) == preimage'; } } if n == 1 { forall e | e in Rand.eventSpace ensures Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) { forall s: Rand.Bitstream ensures f(s) == s { reveal Model.Sample(); assert f(s) == s; } Measures.PreImageIdentity(f, e); } assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, f); } else { var g := SampleRest(n / 2); forall e | e in Rand.eventSpace ensures Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) { var e' := (iset s | Rand.Tail(s) in e); assert e' in Rand.eventSpace by { assert e' == Measures.PreImage(Rand.Tail, e); Rand.TailIsMeasurePreserving(); assert Measures.IsMeasurable(Rand.eventSpace, Rand.eventSpace, Rand.Tail); } assert Measures.PreImage(f, e) == Measures.PreImage(g, e') by { assert forall s :: f(s) in e <==> g(s) in e' by { forall s ensures f(s) in e <==> g(s) in e' { calc { f(s) in e; <==> { assert f(s) == Model.Sample(n)(s).rest; } Model.Sample(n)(s).rest in e; <==> { SampleTailDecompose(n, s); } Rand.Tail(Model.Sample(n / 2)(s).rest) in e; <==> Model.Sample(n / 2)(s).rest in e'; <==> { assert Model.Sample(n / 2)(s).rest == g(s); } g(s) in e'; } } } Measures.PreImagesEqual(f, e, g, e'); } assert Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) by { calc { Rand.prob(Measures.PreImage(f, e)); == Rand.prob(Measures.PreImage(g, e')); == { SampleIsMeasurePreserving(n / 2); assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, g); assert e' in Rand.eventSpace; } Rand.prob(e'); == { assert e' == Measures.PreImage(Rand.Tail, e); } Rand.prob(Measures.PreImage(Rand.Tail, e)); == { Rand.TailIsMeasurePreserving(); } Rand.prob(e); } } } assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, f); } }
lemma SampleIsMeasurePreserving(n: nat) requires n >= 1 ensures Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, SampleRest(n)) { var f := SampleRest(n); assert Measures.IsMeasurable(Rand.eventSpace, Rand.eventSpace, f) by { forall e | e in Rand.eventSpace ensures Measures.PreImage(f, e) in Rand.eventSpace { var resultsWithRestInE := Monad.ResultsWithRestIn(e); assert resultsWithRestInE in Monad.natResultEventSpace by { Monad.LiftRestInEventSpaceToResultEventSpace(e, Measures.natEventSpace); } var preimage' := Measures.PreImage(Model.Sample(n), resultsWithRestInE); assert preimage' in Rand.eventSpace by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } } } if n == 1 { forall e | e in Rand.eventSpace ensures Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) { forall s: Rand.Bitstream ensures f(s) == s { reveal Model.Sample(); assert f(s) == s; } Measures.PreImageIdentity(f, e); } assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, f); } else { var g := SampleRest(n / 2); forall e | e in Rand.eventSpace ensures Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) { var e' := (iset s | Rand.Tail(s) in e); assert e' in Rand.eventSpace by { assert e' == Measures.PreImage(Rand.Tail, e); Rand.TailIsMeasurePreserving(); assert Measures.IsMeasurable(Rand.eventSpace, Rand.eventSpace, Rand.Tail); } assert Measures.PreImage(f, e) == Measures.PreImage(g, e') by { assert forall s :: f(s) in e <==> g(s) in e' by { forall s ensures f(s) in e <==> g(s) in e' { calc { f(s) in e; <==> { assert f(s) == Model.Sample(n)(s).rest; } Model.Sample(n)(s).rest in e; <==> { SampleTailDecompose(n, s); } Rand.Tail(Model.Sample(n / 2)(s).rest) in e; <==> Model.Sample(n / 2)(s).rest in e'; <==> { assert Model.Sample(n / 2)(s).rest == g(s); } g(s) in e'; } } } Measures.PreImagesEqual(f, e, g, e'); } assert Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) by { calc { Rand.prob(Measures.PreImage(f, e)); == Rand.prob(Measures.PreImage(g, e')); == { SampleIsMeasurePreserving(n / 2); assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, g); assert e' in Rand.eventSpace; } Rand.prob(e'); == { assert e' == Measures.PreImage(Rand.Tail, e); } Rand.prob(Measures.PreImage(Rand.Tail, e)); == { Rand.TailIsMeasurePreserving(); } Rand.prob(e); } } } assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, f); } }
vmc
65
./src/Distributions/UniformPowerOfTwo/Correctness.dfy
SampleIsMeasurePreserving_fix_65.dfy
SampleIsMeasurePreserving
lemma SampleIsMeasurePreserving(n: nat) requires n >= 1 ensures Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, SampleRest(n)) { var f := SampleRest(n); assert Measures.IsMeasurable(Rand.eventSpace, Rand.eventSpace, f) by { forall e | e in Rand.eventSpace ensures Measures.PreImage(f, e) in Rand.eventSpace { var resultsWithRestInE := Monad.ResultsWithRestIn(e); assert resultsWithRestInE in Monad.natResultEventSpace by { Monad.LiftRestInEventSpaceToResultEventSpace(e, Measures.natEventSpace); } var preimage' := Measures.PreImage(Model.Sample(n), resultsWithRestInE); assert preimage' in Rand.eventSpace by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } assert Measures.PreImage(f, e) == preimage'; } } if n == 1 { forall e | e in Rand.eventSpace ensures Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) { forall s: Rand.Bitstream ensures f(s) == s { reveal Model.Sample(); assert f(s) == s; } Measures.PreImageIdentity(f, e); } assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, f); } else { var g := SampleRest(n / 2); forall e | e in Rand.eventSpace ensures Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) { var e' := (iset s | Rand.Tail(s) in e); assert e' in Rand.eventSpace by { assert e' == Measures.PreImage(Rand.Tail, e); Rand.TailIsMeasurePreserving(); assert Measures.IsMeasurable(Rand.eventSpace, Rand.eventSpace, Rand.Tail); } assert Measures.PreImage(f, e) == Measures.PreImage(g, e') by { assert forall s :: f(s) in e <==> g(s) in e' by { forall s ensures f(s) in e <==> g(s) in e' { calc { f(s) in e; <==> { assert f(s) == Model.Sample(n)(s).rest; } Model.Sample(n)(s).rest in e; <==> { SampleTailDecompose(n, s); } Rand.Tail(Model.Sample(n / 2)(s).rest) in e; <==> Model.Sample(n / 2)(s).rest in e'; <==> { assert Model.Sample(n / 2)(s).rest == g(s); } g(s) in e'; } } } Measures.PreImagesEqual(f, e, g, e'); } assert Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) by { calc { Rand.prob(Measures.PreImage(f, e)); == Rand.prob(Measures.PreImage(g, e')); == { SampleIsMeasurePreserving(n / 2); assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, g); assert e' in Rand.eventSpace; } Rand.prob(e'); == { assert e' == Measures.PreImage(Rand.Tail, e); } Rand.prob(Measures.PreImage(Rand.Tail, e)); == { Rand.TailIsMeasurePreserving(); } Rand.prob(e); } } } assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, f); } }
lemma SampleIsMeasurePreserving(n: nat) requires n >= 1 ensures Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, SampleRest(n)) { var f := SampleRest(n); assert Measures.IsMeasurable(Rand.eventSpace, Rand.eventSpace, f) by { forall e | e in Rand.eventSpace ensures Measures.PreImage(f, e) in Rand.eventSpace { var resultsWithRestInE := Monad.ResultsWithRestIn(e); assert resultsWithRestInE in Monad.natResultEventSpace by { Monad.LiftRestInEventSpaceToResultEventSpace(e, Measures.natEventSpace); } var preimage' := Measures.PreImage(Model.Sample(n), resultsWithRestInE); assert preimage' in Rand.eventSpace by { SampleIsIndep(n); Independence.IsIndepImpliesMeasurableNat(Model.Sample(n)); } assert Measures.PreImage(f, e) == preimage'; } } if n == 1 { forall e | e in Rand.eventSpace ensures Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) { forall s: Rand.Bitstream ensures f(s) == s { reveal Model.Sample(); assert f(s) == s; } Measures.PreImageIdentity(f, e); } assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, f); } else { var g := SampleRest(n / 2); forall e | e in Rand.eventSpace ensures Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) { var e' := (iset s | Rand.Tail(s) in e); assert e' in Rand.eventSpace by { Rand.TailIsMeasurePreserving(); assert Measures.IsMeasurable(Rand.eventSpace, Rand.eventSpace, Rand.Tail); } assert Measures.PreImage(f, e) == Measures.PreImage(g, e') by { assert forall s :: f(s) in e <==> g(s) in e' by { forall s ensures f(s) in e <==> g(s) in e' { calc { f(s) in e; <==> { assert f(s) == Model.Sample(n)(s).rest; } Model.Sample(n)(s).rest in e; <==> { SampleTailDecompose(n, s); } Rand.Tail(Model.Sample(n / 2)(s).rest) in e; <==> Model.Sample(n / 2)(s).rest in e'; <==> { assert Model.Sample(n / 2)(s).rest == g(s); } g(s) in e'; } } } Measures.PreImagesEqual(f, e, g, e'); } assert Rand.prob(Measures.PreImage(f, e)) == Rand.prob(e) by { calc { Rand.prob(Measures.PreImage(f, e)); == Rand.prob(Measures.PreImage(g, e')); == { SampleIsMeasurePreserving(n / 2); assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, g); assert e' in Rand.eventSpace; } Rand.prob(e'); == { assert e' == Measures.PreImage(Rand.Tail, e); } Rand.prob(Measures.PreImage(Rand.Tail, e)); == { Rand.TailIsMeasurePreserving(); } Rand.prob(e); } } } assert Measures.IsMeasurePreserving(Rand.eventSpace, Rand.prob, Rand.eventSpace, Rand.prob, f); } }
vmc
70
./src/Distributions/UniformPowerOfTwo/Correctness.dfy
SampleRecursiveHalf_fix_70.dfy
SampleRecursiveHalf
lemma SampleRecursiveHalf(n: nat, m: nat) requires n >= 2 ensures Rand.prob(iset s | Model.Sample(n)(s).value == m) == Rand.prob(iset s | Model.Sample(n / 2)(s).value == m / 2) / 2.0 { var aOf: Rand.Bitstream -> nat := (s: Rand.Bitstream) => Model.Sample(n / 2)(s).value; var bOf: Rand.Bitstream -> bool := (s: Rand.Bitstream) => Monad.Coin(Model.Sample(n / 2)(s).rest).value; var A: iset<nat> := (iset x: nat | x == m / 2); var E: iset<Rand.Bitstream> := (iset s | m % 2 as nat == Helper.boolToNat(Monad.Coin(s).value)); var f := (s: Rand.Bitstream) => Model.Sample(n / 2)(s).rest; var e1 := (iset s | Model.Sample(n / 2)(s).RestIn(E)); var e2 := (iset s | Model.Sample(n / 2)(s).In(A)); var e3 := (iset s | 2*aOf(s) + Helper.boolToNat(bOf(s)) == m); assert SplitEvent: e3 == e1 * e2 by { forall s ensures s in e3 <==> s in e1 && s in e2 { var a: nat := aOf(s); var b: nat := Helper.boolToNat(bOf(s)); assert b < 2; calc { s in e3; 2 * a + b == m; m == a * 2 + b; (a == m / 2) && (b == m % 2); s in e1 && s in e2; } } } assert Eq2: (iset s | aOf(s) == m / 2) == e2 by { forall s ensures aOf(s) == m / 2 <==> Model.Sample(n / 2)(s).value in A { } } assert Eq3: (iset s | aOf(s) == m / 2) == (iset s | Model.Sample(n / 2)(s).value == m / 2) by { forall s ensures aOf(s) == m / 2 <==> Model.Sample(n / 2)(s).value == m / 2 { assert aOf(s) == Model.Sample(n / 2)(s).value; } } assert Eq4: e1 == Measures.PreImage(f, E) by { forall s ensures Model.Sample(n / 2)(s).rest in E <==> f(s) in E { } } assert E in Rand.eventSpace && Rand.prob(E) == 0.5 by { assert E == (iset s | Rand.Head(s) == (m % 2 == 1)); Rand.CoinHasProbOneHalf(m % 2 == 1); } assert Indep: Rand.prob(e1 * e2) == Rand.prob(e1) * Rand.prob(e2) by { assert Measures.AreIndepEvents(Rand.eventSpace, Rand.prob, e1, e2) by { assert Independence.IsIndepFunction(Model.Sample(n / 2)) by { assert Independence.IsIndep(Model.Sample(n / 2)) by { SampleIsIndep(n / 2); } Independence.IsIndepImpliesIsIndepFunction(Model.Sample(n / 2)); } assert E in Rand.eventSpace; assert Independence.IsIndepFunctionCondition(Model.Sample(n / 2), A, E); } Independence.AreIndepEventsConjunctElimination(e1, e2); } assert ProbE1: Rand.prob(e1) == 0.5 by { calc { 0.5; == Rand.prob(E); == { SampleIsMeasurePreserving(n / 2); } Rand.prob(Measures.PreImage(f, E)); == { reveal Eq4; } Rand.prob(e1); } } calc { Rand.prob(iset s | Model.Sample(n)(s).value == m); == { SampleSetEquality(n, m); } Rand.prob(e3); == { reveal SplitEvent; } Rand.prob(e1 * e2); == { reveal Indep; } Rand.prob(e1) * Rand.prob(e2); == { reveal ProbE1; Helper.Congruence(Rand.prob(e1), 0.5, x => x * Rand.prob(e2)); } 0.5 * Rand.prob(e2); == Rand.prob(e2) / 2.0; == { reveal Eq2; } Rand.prob(iset s | aOf(s) == m / 2) / 2.0; == { reveal Eq3; } Rand.prob(iset s | Model.Sample(n / 2)(s).value == m / 2) / 2.0; } }
lemma SampleRecursiveHalf(n: nat, m: nat) requires n >= 2 ensures Rand.prob(iset s | Model.Sample(n)(s).value == m) == Rand.prob(iset s | Model.Sample(n / 2)(s).value == m / 2) / 2.0 { var aOf: Rand.Bitstream -> nat := (s: Rand.Bitstream) => Model.Sample(n / 2)(s).value; var bOf: Rand.Bitstream -> bool := (s: Rand.Bitstream) => Monad.Coin(Model.Sample(n / 2)(s).rest).value; var A: iset<nat> := (iset x: nat | x == m / 2); var E: iset<Rand.Bitstream> := (iset s | m % 2 as nat == Helper.boolToNat(Monad.Coin(s).value)); var f := (s: Rand.Bitstream) => Model.Sample(n / 2)(s).rest; var e1 := (iset s | Model.Sample(n / 2)(s).RestIn(E)); var e2 := (iset s | Model.Sample(n / 2)(s).In(A)); var e3 := (iset s | 2*aOf(s) + Helper.boolToNat(bOf(s)) == m); assert SplitEvent: e3 == e1 * e2 by { forall s ensures s in e3 <==> s in e1 && s in e2 { var a: nat := aOf(s); var b: nat := Helper.boolToNat(bOf(s)); assert b < 2; calc { s in e3; 2 * a + b == m; m == a * 2 + b; (a == m / 2) && (b == m % 2); s in e1 && s in e2; } } } assert Eq2: (iset s | aOf(s) == m / 2) == e2 by { forall s ensures aOf(s) == m / 2 <==> Model.Sample(n / 2)(s).value in A { } } assert Eq3: (iset s | aOf(s) == m / 2) == (iset s | Model.Sample(n / 2)(s).value == m / 2) by { forall s ensures aOf(s) == m / 2 <==> Model.Sample(n / 2)(s).value == m / 2 { assert aOf(s) == Model.Sample(n / 2)(s).value; } } assert Eq4: e1 == Measures.PreImage(f, E) by { forall s ensures Model.Sample(n / 2)(s).rest in E <==> f(s) in E { } } assert E in Rand.eventSpace && Rand.prob(E) == 0.5 by { Rand.CoinHasProbOneHalf(m % 2 == 1); } assert Indep: Rand.prob(e1 * e2) == Rand.prob(e1) * Rand.prob(e2) by { assert Measures.AreIndepEvents(Rand.eventSpace, Rand.prob, e1, e2) by { assert Independence.IsIndepFunction(Model.Sample(n / 2)) by { assert Independence.IsIndep(Model.Sample(n / 2)) by { SampleIsIndep(n / 2); } Independence.IsIndepImpliesIsIndepFunction(Model.Sample(n / 2)); } assert E in Rand.eventSpace; assert Independence.IsIndepFunctionCondition(Model.Sample(n / 2), A, E); } Independence.AreIndepEventsConjunctElimination(e1, e2); } assert ProbE1: Rand.prob(e1) == 0.5 by { calc { 0.5; == Rand.prob(E); == { SampleIsMeasurePreserving(n / 2); } Rand.prob(Measures.PreImage(f, E)); == { reveal Eq4; } Rand.prob(e1); } } calc { Rand.prob(iset s | Model.Sample(n)(s).value == m); == { SampleSetEquality(n, m); } Rand.prob(e3); == { reveal SplitEvent; } Rand.prob(e1 * e2); == { reveal Indep; } Rand.prob(e1) * Rand.prob(e2); == { reveal ProbE1; Helper.Congruence(Rand.prob(e1), 0.5, x => x * Rand.prob(e2)); } 0.5 * Rand.prob(e2); == Rand.prob(e2) / 2.0; == { reveal Eq2; } Rand.prob(iset s | aOf(s) == m / 2) / 2.0; == { reveal Eq3; } Rand.prob(iset s | Model.Sample(n / 2)(s).value == m / 2) / 2.0; } }
vmc
72
./src/Distributions/UniformPowerOfTwo/Correctness.dfy
SampleRecursiveHalf_fix_72.dfy
SampleRecursiveHalf
lemma SampleRecursiveHalf(n: nat, m: nat) requires n >= 2 ensures Rand.prob(iset s | Model.Sample(n)(s).value == m) == Rand.prob(iset s | Model.Sample(n / 2)(s).value == m / 2) / 2.0 { var aOf: Rand.Bitstream -> nat := (s: Rand.Bitstream) => Model.Sample(n / 2)(s).value; var bOf: Rand.Bitstream -> bool := (s: Rand.Bitstream) => Monad.Coin(Model.Sample(n / 2)(s).rest).value; var A: iset<nat> := (iset x: nat | x == m / 2); var E: iset<Rand.Bitstream> := (iset s | m % 2 as nat == Helper.boolToNat(Monad.Coin(s).value)); var f := (s: Rand.Bitstream) => Model.Sample(n / 2)(s).rest; var e1 := (iset s | Model.Sample(n / 2)(s).RestIn(E)); var e2 := (iset s | Model.Sample(n / 2)(s).In(A)); var e3 := (iset s | 2*aOf(s) + Helper.boolToNat(bOf(s)) == m); assert SplitEvent: e3 == e1 * e2 by { forall s ensures s in e3 <==> s in e1 && s in e2 { var a: nat := aOf(s); var b: nat := Helper.boolToNat(bOf(s)); assert b < 2; calc { s in e3; 2 * a + b == m; m == a * 2 + b; (a == m / 2) && (b == m % 2); s in e1 && s in e2; } } } assert Eq2: (iset s | aOf(s) == m / 2) == e2 by { forall s ensures aOf(s) == m / 2 <==> Model.Sample(n / 2)(s).value in A { } } assert Eq3: (iset s | aOf(s) == m / 2) == (iset s | Model.Sample(n / 2)(s).value == m / 2) by { forall s ensures aOf(s) == m / 2 <==> Model.Sample(n / 2)(s).value == m / 2 { assert aOf(s) == Model.Sample(n / 2)(s).value; } } assert Eq4: e1 == Measures.PreImage(f, E) by { forall s ensures Model.Sample(n / 2)(s).rest in E <==> f(s) in E { } } assert E in Rand.eventSpace && Rand.prob(E) == 0.5 by { assert E == (iset s | Rand.Head(s) == (m % 2 == 1)); Rand.CoinHasProbOneHalf(m % 2 == 1); } assert Indep: Rand.prob(e1 * e2) == Rand.prob(e1) * Rand.prob(e2) by { assert Measures.AreIndepEvents(Rand.eventSpace, Rand.prob, e1, e2) by { assert Independence.IsIndepFunction(Model.Sample(n / 2)) by { assert Independence.IsIndep(Model.Sample(n / 2)) by { SampleIsIndep(n / 2); } Independence.IsIndepImpliesIsIndepFunction(Model.Sample(n / 2)); } assert E in Rand.eventSpace; assert Independence.IsIndepFunctionCondition(Model.Sample(n / 2), A, E); } Independence.AreIndepEventsConjunctElimination(e1, e2); } assert ProbE1: Rand.prob(e1) == 0.5 by { calc { 0.5; == Rand.prob(E); == { SampleIsMeasurePreserving(n / 2); } Rand.prob(Measures.PreImage(f, E)); == { reveal Eq4; } Rand.prob(e1); } } calc { Rand.prob(iset s | Model.Sample(n)(s).value == m); == { SampleSetEquality(n, m); } Rand.prob(e3); == { reveal SplitEvent; } Rand.prob(e1 * e2); == { reveal Indep; } Rand.prob(e1) * Rand.prob(e2); == { reveal ProbE1; Helper.Congruence(Rand.prob(e1), 0.5, x => x * Rand.prob(e2)); } 0.5 * Rand.prob(e2); == Rand.prob(e2) / 2.0; == { reveal Eq2; } Rand.prob(iset s | aOf(s) == m / 2) / 2.0; == { reveal Eq3; } Rand.prob(iset s | Model.Sample(n / 2)(s).value == m / 2) / 2.0; } }
lemma SampleRecursiveHalf(n: nat, m: nat) requires n >= 2 ensures Rand.prob(iset s | Model.Sample(n)(s).value == m) == Rand.prob(iset s | Model.Sample(n / 2)(s).value == m / 2) / 2.0 { var aOf: Rand.Bitstream -> nat := (s: Rand.Bitstream) => Model.Sample(n / 2)(s).value; var bOf: Rand.Bitstream -> bool := (s: Rand.Bitstream) => Monad.Coin(Model.Sample(n / 2)(s).rest).value; var A: iset<nat> := (iset x: nat | x == m / 2); var E: iset<Rand.Bitstream> := (iset s | m % 2 as nat == Helper.boolToNat(Monad.Coin(s).value)); var f := (s: Rand.Bitstream) => Model.Sample(n / 2)(s).rest; var e1 := (iset s | Model.Sample(n / 2)(s).RestIn(E)); var e2 := (iset s | Model.Sample(n / 2)(s).In(A)); var e3 := (iset s | 2*aOf(s) + Helper.boolToNat(bOf(s)) == m); assert SplitEvent: e3 == e1 * e2 by { forall s ensures s in e3 <==> s in e1 && s in e2 { var a: nat := aOf(s); var b: nat := Helper.boolToNat(bOf(s)); assert b < 2; calc { s in e3; 2 * a + b == m; m == a * 2 + b; (a == m / 2) && (b == m % 2); s in e1 && s in e2; } } } assert Eq2: (iset s | aOf(s) == m / 2) == e2 by { forall s ensures aOf(s) == m / 2 <==> Model.Sample(n / 2)(s).value in A { } } assert Eq3: (iset s | aOf(s) == m / 2) == (iset s | Model.Sample(n / 2)(s).value == m / 2) by { forall s ensures aOf(s) == m / 2 <==> Model.Sample(n / 2)(s).value == m / 2 { assert aOf(s) == Model.Sample(n / 2)(s).value; } } assert Eq4: e1 == Measures.PreImage(f, E) by { forall s ensures Model.Sample(n / 2)(s).rest in E <==> f(s) in E { } } assert E in Rand.eventSpace && Rand.prob(E) == 0.5 by { assert E == (iset s | Rand.Head(s) == (m % 2 == 1)); Rand.CoinHasProbOneHalf(m % 2 == 1); } assert Indep: Rand.prob(e1 * e2) == Rand.prob(e1) * Rand.prob(e2) by { assert Measures.AreIndepEvents(Rand.eventSpace, Rand.prob, e1, e2) by { assert Independence.IsIndepFunction(Model.Sample(n / 2)) by { assert Independence.IsIndep(Model.Sample(n / 2)) by { SampleIsIndep(n / 2); } Independence.IsIndepImpliesIsIndepFunction(Model.Sample(n / 2)); } assert E in Rand.eventSpace; } Independence.AreIndepEventsConjunctElimination(e1, e2); } assert ProbE1: Rand.prob(e1) == 0.5 by { calc { 0.5; == Rand.prob(E); == { SampleIsMeasurePreserving(n / 2); } Rand.prob(Measures.PreImage(f, E)); == { reveal Eq4; } Rand.prob(e1); } } calc { Rand.prob(iset s | Model.Sample(n)(s).value == m); == { SampleSetEquality(n, m); } Rand.prob(e3); == { reveal SplitEvent; } Rand.prob(e1 * e2); == { reveal Indep; } Rand.prob(e1) * Rand.prob(e2); == { reveal ProbE1; Helper.Congruence(Rand.prob(e1), 0.5, x => x * Rand.prob(e2)); } 0.5 * Rand.prob(e2); == Rand.prob(e2) / 2.0; == { reveal Eq2; } Rand.prob(iset s | aOf(s) == m / 2) / 2.0; == { reveal Eq3; } Rand.prob(iset s | Model.Sample(n / 2)(s).value == m / 2) / 2.0; } }
vmc
77
./src/Distributions/Uniform/Model.dfy
SampleTerminates_fix_77.dfy
SampleTerminates
lemma SampleTerminates(n: nat) requires n > 0 ensures && Independence.IsIndep(Proposal(n)) && Quantifier.WithPosProb(Loops.ProposalIsAccepted(Proposal(n), Accept(n))) && Loops.UntilTerminatesAlmostSurely(Proposal(n), Accept(n)) { assert Independence.IsIndep(Proposal(n)) by { UniformPowerOfTwo.Correctness.SampleIsIndep(2 * n); } var e := iset s | Loops.ProposalIsAccepted(Proposal(n), Accept(n))(s); assert e in Rand.eventSpace by { var ltN := iset m: nat | m < n; var resultsLtN := Monad.ResultsWithValueIn(ltN); assert e == Measures.PreImage(UniformPowerOfTwo.Model.Sample(2 * n), resultsLtN); assert Measures.PreImage(UniformPowerOfTwo.Model.Sample(2 * n), resultsLtN) in Rand.eventSpace by { assert Independence.IsIndep(UniformPowerOfTwo.Model.Sample(2 * n)) by { UniformPowerOfTwo.Correctness.SampleIsIndep(2 * n); } assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, UniformPowerOfTwo.Model.Sample(2 * n)) by { Independence.IsIndepImpliesMeasurableNat(UniformPowerOfTwo.Model.Sample(2 * n)); } assert resultsLtN in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(ltN, Measures.natEventSpace); } } } assert Quantifier.WithPosProb(Loops.ProposalIsAccepted(Proposal(n), Accept(n))) by { assert Rand.prob(e) > 0.0 by { assert e == (iset s | UniformPowerOfTwo.Model.Sample(2 * n)(s).value < n); assert n <= Helper.Power(2, Helper.Log2Floor(2 * n)) by { Helper.NLtPower2Log2FloorOf2N(n); } calc { Rand.prob(e); == { UniformPowerOfTwo.Correctness.UnifCorrectness2Inequality(2 * n, n); } n as real / (Helper.Power(2, Helper.Log2Floor(2 * n)) as real); > 0.0; } } } assert Loops.UntilTerminatesAlmostSurely(Proposal(n), Accept(n)) by { Loops.EnsureUntilTerminates(Proposal(n), Accept(n)); } }
lemma SampleTerminates(n: nat) requires n > 0 ensures && Independence.IsIndep(Proposal(n)) && Quantifier.WithPosProb(Loops.ProposalIsAccepted(Proposal(n), Accept(n))) && Loops.UntilTerminatesAlmostSurely(Proposal(n), Accept(n)) { assert Independence.IsIndep(Proposal(n)) by { UniformPowerOfTwo.Correctness.SampleIsIndep(2 * n); } var e := iset s | Loops.ProposalIsAccepted(Proposal(n), Accept(n))(s); assert e in Rand.eventSpace by { var ltN := iset m: nat | m < n; var resultsLtN := Monad.ResultsWithValueIn(ltN); assert Measures.PreImage(UniformPowerOfTwo.Model.Sample(2 * n), resultsLtN) in Rand.eventSpace by { assert Independence.IsIndep(UniformPowerOfTwo.Model.Sample(2 * n)) by { UniformPowerOfTwo.Correctness.SampleIsIndep(2 * n); } assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, UniformPowerOfTwo.Model.Sample(2 * n)) by { Independence.IsIndepImpliesMeasurableNat(UniformPowerOfTwo.Model.Sample(2 * n)); } assert resultsLtN in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(ltN, Measures.natEventSpace); } } } assert Quantifier.WithPosProb(Loops.ProposalIsAccepted(Proposal(n), Accept(n))) by { assert Rand.prob(e) > 0.0 by { assert e == (iset s | UniformPowerOfTwo.Model.Sample(2 * n)(s).value < n); assert n <= Helper.Power(2, Helper.Log2Floor(2 * n)) by { Helper.NLtPower2Log2FloorOf2N(n); } calc { Rand.prob(e); == { UniformPowerOfTwo.Correctness.UnifCorrectness2Inequality(2 * n, n); } n as real / (Helper.Power(2, Helper.Log2Floor(2 * n)) as real); > 0.0; } } } assert Loops.UntilTerminatesAlmostSurely(Proposal(n), Accept(n)) by { Loops.EnsureUntilTerminates(Proposal(n), Accept(n)); } }
vmc
78
./src/Distributions/Uniform/Model.dfy
SampleTerminates_fix_78.dfy
SampleTerminates
lemma SampleTerminates(n: nat) requires n > 0 ensures && Independence.IsIndep(Proposal(n)) && Quantifier.WithPosProb(Loops.ProposalIsAccepted(Proposal(n), Accept(n))) && Loops.UntilTerminatesAlmostSurely(Proposal(n), Accept(n)) { assert Independence.IsIndep(Proposal(n)) by { UniformPowerOfTwo.Correctness.SampleIsIndep(2 * n); } var e := iset s | Loops.ProposalIsAccepted(Proposal(n), Accept(n))(s); assert e in Rand.eventSpace by { var ltN := iset m: nat | m < n; var resultsLtN := Monad.ResultsWithValueIn(ltN); assert e == Measures.PreImage(UniformPowerOfTwo.Model.Sample(2 * n), resultsLtN); assert Measures.PreImage(UniformPowerOfTwo.Model.Sample(2 * n), resultsLtN) in Rand.eventSpace by { assert Independence.IsIndep(UniformPowerOfTwo.Model.Sample(2 * n)) by { UniformPowerOfTwo.Correctness.SampleIsIndep(2 * n); } assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, UniformPowerOfTwo.Model.Sample(2 * n)) by { Independence.IsIndepImpliesMeasurableNat(UniformPowerOfTwo.Model.Sample(2 * n)); } assert resultsLtN in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(ltN, Measures.natEventSpace); } } } assert Quantifier.WithPosProb(Loops.ProposalIsAccepted(Proposal(n), Accept(n))) by { assert Rand.prob(e) > 0.0 by { assert e == (iset s | UniformPowerOfTwo.Model.Sample(2 * n)(s).value < n); assert n <= Helper.Power(2, Helper.Log2Floor(2 * n)) by { Helper.NLtPower2Log2FloorOf2N(n); } calc { Rand.prob(e); == { UniformPowerOfTwo.Correctness.UnifCorrectness2Inequality(2 * n, n); } n as real / (Helper.Power(2, Helper.Log2Floor(2 * n)) as real); > 0.0; } } } assert Loops.UntilTerminatesAlmostSurely(Proposal(n), Accept(n)) by { Loops.EnsureUntilTerminates(Proposal(n), Accept(n)); } }
lemma SampleTerminates(n: nat) requires n > 0 ensures && Independence.IsIndep(Proposal(n)) && Quantifier.WithPosProb(Loops.ProposalIsAccepted(Proposal(n), Accept(n))) && Loops.UntilTerminatesAlmostSurely(Proposal(n), Accept(n)) { assert Independence.IsIndep(Proposal(n)) by { UniformPowerOfTwo.Correctness.SampleIsIndep(2 * n); } var e := iset s | Loops.ProposalIsAccepted(Proposal(n), Accept(n))(s); assert e in Rand.eventSpace by { var ltN := iset m: nat | m < n; var resultsLtN := Monad.ResultsWithValueIn(ltN); assert e == Measures.PreImage(UniformPowerOfTwo.Model.Sample(2 * n), resultsLtN); assert Measures.PreImage(UniformPowerOfTwo.Model.Sample(2 * n), resultsLtN) in Rand.eventSpace by { assert Independence.IsIndep(UniformPowerOfTwo.Model.Sample(2 * n)) by { UniformPowerOfTwo.Correctness.SampleIsIndep(2 * n); } assert Measures.IsMeasurable(Rand.eventSpace, Monad.natResultEventSpace, UniformPowerOfTwo.Model.Sample(2 * n)) by { Independence.IsIndepImpliesMeasurableNat(UniformPowerOfTwo.Model.Sample(2 * n)); } assert resultsLtN in Monad.natResultEventSpace by { Monad.LiftInEventSpaceToResultEventSpace(ltN, Measures.natEventSpace); } } } assert Quantifier.WithPosProb(Loops.ProposalIsAccepted(Proposal(n), Accept(n))) by { assert Rand.prob(e) > 0.0 by { assert n <= Helper.Power(2, Helper.Log2Floor(2 * n)) by { Helper.NLtPower2Log2FloorOf2N(n); } calc { Rand.prob(e); == { UniformPowerOfTwo.Correctness.UnifCorrectness2Inequality(2 * n, n); } n as real / (Helper.Power(2, Helper.Log2Floor(2 * n)) as real); > 0.0; } } } assert Loops.UntilTerminatesAlmostSurely(Proposal(n), Accept(n)) by { Loops.EnsureUntilTerminates(Proposal(n), Accept(n)); } }
vmc
86
./src/ProbabilisticProgramming/Monad.dfy
LiftInEventSpaceToResultEventSpace_fix_86.dfy
LiftInEventSpaceToResultEventSpace
lemma LiftInEventSpaceToResultEventSpace<A(!new)>(event: iset<A>, eventSpace: iset<iset<A>>) requires event in eventSpace ensures ResultsWithValueIn(event) in ResultEventSpace(eventSpace) { var results := ResultsWithValueIn(event); assert Measures.IsSigmaAlgebra(Rand.eventSpace) by { Rand.ProbIsProbabilityMeasure(); } assert Values(results) == event by { forall v: A ensures v in event <==> v in Values(results) { var s: Rand.Bitstream :| true; assert v in event <==> Result(v, s) in results; } } assert Rests(results) in Rand.eventSpace by { if v :| v in event { assert Rests(results) == Measures.SampleSpace() by { forall s: Rand.Bitstream ensures s in Rests(results) <==> s in Measures.SampleSpace() { calc { s in Rests(results); Result(v, s) in results; true; } } } } else { assert Rests(results) == iset{}; } } }
lemma LiftInEventSpaceToResultEventSpace<A(!new)>(event: iset<A>, eventSpace: iset<iset<A>>) requires event in eventSpace ensures ResultsWithValueIn(event) in ResultEventSpace(eventSpace) { var results := ResultsWithValueIn(event); assert Measures.IsSigmaAlgebra(Rand.eventSpace) by { Rand.ProbIsProbabilityMeasure(); } assert Values(results) == event by { forall v: A ensures v in event <==> v in Values(results) { var s: Rand.Bitstream :| true; } } assert Rests(results) in Rand.eventSpace by { if v :| v in event { assert Rests(results) == Measures.SampleSpace() by { forall s: Rand.Bitstream ensures s in Rests(results) <==> s in Measures.SampleSpace() { calc { s in Rests(results); Result(v, s) in results; true; } } } } else { assert Rests(results) == iset{}; } } }
vmc
87
./src/ProbabilisticProgramming/Monad.dfy
LiftInEventSpaceToResultEventSpace_fix_87.dfy
LiftInEventSpaceToResultEventSpace
lemma LiftInEventSpaceToResultEventSpace<A(!new)>(event: iset<A>, eventSpace: iset<iset<A>>) requires event in eventSpace ensures ResultsWithValueIn(event) in ResultEventSpace(eventSpace) { var results := ResultsWithValueIn(event); assert Measures.IsSigmaAlgebra(Rand.eventSpace) by { Rand.ProbIsProbabilityMeasure(); } assert Values(results) == event by { forall v: A ensures v in event <==> v in Values(results) { var s: Rand.Bitstream :| true; assert v in event <==> Result(v, s) in results; } } assert Rests(results) in Rand.eventSpace by { if v :| v in event { assert Rests(results) == Measures.SampleSpace() by { forall s: Rand.Bitstream ensures s in Rests(results) <==> s in Measures.SampleSpace() { calc { s in Rests(results); Result(v, s) in results; true; } } } } else { assert Rests(results) == iset{}; } } }
lemma LiftInEventSpaceToResultEventSpace<A(!new)>(event: iset<A>, eventSpace: iset<iset<A>>) requires event in eventSpace ensures ResultsWithValueIn(event) in ResultEventSpace(eventSpace) { var results := ResultsWithValueIn(event); assert Measures.IsSigmaAlgebra(Rand.eventSpace) by { Rand.ProbIsProbabilityMeasure(); } assert Values(results) == event by { forall v: A ensures v in event <==> v in Values(results) { var s: Rand.Bitstream :| true; assert v in event <==> Result(v, s) in results; } } assert Rests(results) in Rand.eventSpace by { if v :| v in event { assert Rests(results) == Measures.SampleSpace() by { forall s: Rand.Bitstream ensures s in Rests(results) <==> s in Measures.SampleSpace() { calc { s in Rests(results); Result(v, s) in results; true; } } } } else { } } }
vmc
89
./src/ProbabilisticProgramming/Loops.dfy
WhileUnroll_fix_89.dfy
WhileUnroll
lemma WhileUnrollIfConditionSatisfied<A>(condition: A -> bool, body: A -> Monad.Hurd<A>, init: A, s: Rand.Bitstream, init': A, s': Rand.Bitstream, loop: Monad.Result<A>, unrolled: Monad.Result<A>) requires WhileCutTerminates(condition, body, init, s) requires condition(init) requires body(init)(s) == Monad.Result(init', s') requires loop == While(condition, body)(init)(s) requires unrolled == While(condition, body)(init')(s') ensures loop == unrolled { var fuel: nat := LeastFuel(condition, body, init, s); assert fuel >= 1; var fuel': nat := fuel - 1; assert WhileCutTerminatesWithFuel(condition, body, init', s')(fuel'); assert WhileCutTerminates(condition, body, init', s'); var minFuel: nat := LeastFuel(condition, body, init', s'); assert minFuel == fuel' by { LeastFuelUnroll(condition, body, init, s, init', s', minFuel); } assert loop == unrolled by { calc { loop; { reveal While(); } WhileCut(condition, body, init, fuel)(s); { WhileCutUnroll(condition, body, init, s, init', s', fuel'); } WhileCut(condition, body, init', fuel')(s'); { reveal While(); } unrolled; } } }
lemma WhileUnrollIfConditionSatisfied<A>(condition: A -> bool, body: A -> Monad.Hurd<A>, init: A, s: Rand.Bitstream, init': A, s': Rand.Bitstream, loop: Monad.Result<A>, unrolled: Monad.Result<A>) requires WhileCutTerminates(condition, body, init, s) requires condition(init) requires body(init)(s) == Monad.Result(init', s') requires loop == While(condition, body)(init)(s) requires unrolled == While(condition, body)(init')(s') ensures loop == unrolled { var fuel: nat := LeastFuel(condition, body, init, s); assert fuel >= 1; var fuel': nat := fuel - 1; assert WhileCutTerminates(condition, body, init', s'); var minFuel: nat := LeastFuel(condition, body, init', s'); assert minFuel == fuel' by { LeastFuelUnroll(condition, body, init, s, init', s', minFuel); } assert loop == unrolled by { calc { loop; { reveal While(); } WhileCut(condition, body, init, fuel)(s); { WhileCutUnroll(condition, body, init, s, init', s', fuel'); } WhileCut(condition, body, init', fuel')(s'); { reveal While(); } unrolled; } } }
vmc
94
./src/ProbabilisticProgramming/Loops.dfy
WhileUnrollIfConditionSatisfied_fix_94.dfy
WhileUnrollIfConditionSatisfied
lemma WhileUnrollIfConditionSatisfied<A>(condition: A -> bool, body: A -> Monad.Hurd<A>, init: A, s: Rand.Bitstream, init': A, s': Rand.Bitstream, loop: Monad.Result<A>, unrolled: Monad.Result<A>) requires WhileCutTerminates(condition, body, init, s) requires condition(init) requires body(init)(s) == Monad.Result(init', s') requires loop == While(condition, body)(init)(s) requires unrolled == While(condition, body)(init')(s') ensures loop == unrolled { var fuel: nat := LeastFuel(condition, body, init, s); assert fuel >= 1; var fuel': nat := fuel - 1; assert WhileCutTerminatesWithFuel(condition, body, init', s')(fuel'); assert WhileCutTerminates(condition, body, init', s'); var minFuel: nat := LeastFuel(condition, body, init', s'); assert minFuel == fuel' by { LeastFuelUnroll(condition, body, init, s, init', s', minFuel); } assert loop == unrolled by { calc { loop; { reveal While(); } WhileCut(condition, body, init, fuel)(s); { WhileCutUnroll(condition, body, init, s, init', s', fuel'); } WhileCut(condition, body, init', fuel')(s'); { reveal While(); } unrolled; } } }
lemma WhileUnrollIfConditionSatisfied<A>(condition: A -> bool, body: A -> Monad.Hurd<A>, init: A, s: Rand.Bitstream, init': A, s': Rand.Bitstream, loop: Monad.Result<A>, unrolled: Monad.Result<A>) requires WhileCutTerminates(condition, body, init, s) requires condition(init) requires body(init)(s) == Monad.Result(init', s') requires loop == While(condition, body)(init)(s) requires unrolled == While(condition, body)(init')(s') ensures loop == unrolled { var fuel: nat := LeastFuel(condition, body, init, s); assert fuel >= 1; var fuel': nat := fuel - 1; assert WhileCutTerminates(condition, body, init', s'); var minFuel: nat := LeastFuel(condition, body, init', s'); assert minFuel == fuel' by { LeastFuelUnroll(condition, body, init, s, init', s', minFuel); } assert loop == unrolled by { calc { loop; { reveal While(); } WhileCut(condition, body, init, fuel)(s); { WhileCutUnroll(condition, body, init, s, init', s', fuel'); } WhileCut(condition, body, init', fuel')(s'); { reveal While(); } unrolled; } } }
vmc
98
./src/ProbabilisticProgramming/Loops.dfy
EnsureUntilTerminates_fix_98.dfy
EnsureUntilTerminates
lemma EnsureUntilTerminates<A(!new)>(proposal: Monad.Hurd<A>, accept: A -> bool) requires Independence.IsIndep(proposal) requires Quantifier.WithPosProb((s: Rand.Bitstream) => proposal(s).Satisfies(accept)) ensures UntilTerminatesAlmostSurely(proposal, accept) { var reject := (a: A) => !accept(a); var body := (a: A) => proposal; var proposalIsAccepted := (s: Rand.Bitstream) => proposal(s).Satisfies(accept); assert UntilTerminatesAlmostSurely(proposal, accept) by { forall a: A ensures Independence.IsIndep(body(a)) { assert body(a) == proposal; } forall a: A ensures Quantifier.WithPosProb(WhileLoopExitsAfterOneIteration(body, reject, a)) { assert Quantifier.WithPosProb(proposalIsAccepted); assert (iset s | proposalIsAccepted(s)) == (iset s | WhileLoopExitsAfterOneIteration(body, reject, a)(s)); } assert WhileTerminatesAlmostSurely(reject, body) by { EnsureWhileTerminates(reject, body); } } }
lemma EnsureUntilTerminates<A(!new)>(proposal: Monad.Hurd<A>, accept: A -> bool) requires Independence.IsIndep(proposal) requires Quantifier.WithPosProb((s: Rand.Bitstream) => proposal(s).Satisfies(accept)) ensures UntilTerminatesAlmostSurely(proposal, accept) { var reject := (a: A) => !accept(a); var body := (a: A) => proposal; var proposalIsAccepted := (s: Rand.Bitstream) => proposal(s).Satisfies(accept); assert UntilTerminatesAlmostSurely(proposal, accept) by { forall a: A ensures Independence.IsIndep(body(a)) { assert body(a) == proposal; } forall a: A ensures Quantifier.WithPosProb(WhileLoopExitsAfterOneIteration(body, reject, a)) { assert Quantifier.WithPosProb(proposalIsAccepted); } assert WhileTerminatesAlmostSurely(reject, body) by { EnsureWhileTerminates(reject, body); } } }