Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:

Convert dataset to Parquet

#2
by albertvillanova HF staff - opened
README.md CHANGED
@@ -1,15 +1,14 @@
1
  ---
2
  annotations_creators:
3
  - expert-generated
4
- language:
5
- - en
6
  language_creators:
7
  - found
 
 
8
  license:
9
  - other
10
  multilinguality:
11
  - monolingual
12
- pretty_name: RACE
13
  size_categories:
14
  - 10K<n<100K
15
  source_datasets:
@@ -19,8 +18,9 @@ task_categories:
19
  task_ids:
20
  - multiple-choice-qa
21
  paperswithcode_id: race
 
22
  dataset_info:
23
- - config_name: high
24
  features:
25
  - name: example_id
26
  dtype: string
@@ -34,17 +34,17 @@ dataset_info:
34
  sequence: string
35
  splits:
36
  - name: test
37
- num_bytes: 6989121
38
- num_examples: 3498
39
  - name: train
40
- num_bytes: 126243396
41
- num_examples: 62445
42
  - name: validation
43
- num_bytes: 6885287
44
- num_examples: 3451
45
- download_size: 25443609
46
- dataset_size: 140117804
47
- - config_name: middle
48
  features:
49
  - name: example_id
50
  dtype: string
@@ -58,17 +58,17 @@ dataset_info:
58
  sequence: string
59
  splits:
60
  - name: test
61
- num_bytes: 1786297
62
- num_examples: 1436
63
  - name: train
64
- num_bytes: 31065322
65
- num_examples: 25421
66
  - name: validation
67
- num_bytes: 1761937
68
- num_examples: 1436
69
- download_size: 25443609
70
- dataset_size: 34613556
71
- - config_name: all
72
  features:
73
  - name: example_id
74
  dtype: string
@@ -82,16 +82,41 @@ dataset_info:
82
  sequence: string
83
  splits:
84
  - name: test
85
- num_bytes: 8775394
86
- num_examples: 4934
87
  - name: train
88
- num_bytes: 157308694
89
- num_examples: 87866
90
  - name: validation
91
- num_bytes: 8647200
92
- num_examples: 4887
93
- download_size: 25443609
94
- dataset_size: 174731288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  ---
96
 
97
  # Dataset Card for "race"
 
1
  ---
2
  annotations_creators:
3
  - expert-generated
 
 
4
  language_creators:
5
  - found
6
+ language:
7
+ - en
8
  license:
9
  - other
10
  multilinguality:
11
  - monolingual
 
12
  size_categories:
13
  - 10K<n<100K
14
  source_datasets:
 
18
  task_ids:
19
  - multiple-choice-qa
20
  paperswithcode_id: race
21
+ pretty_name: RACE
22
  dataset_info:
23
+ - config_name: all
24
  features:
25
  - name: example_id
26
  dtype: string
 
34
  sequence: string
35
  splits:
36
  - name: test
37
+ num_bytes: 8775370
38
+ num_examples: 4934
39
  - name: train
40
+ num_bytes: 157308478
41
+ num_examples: 87866
42
  - name: validation
43
+ num_bytes: 8647176
44
+ num_examples: 4887
45
+ download_size: 41500647
46
+ dataset_size: 174731024
47
+ - config_name: high
48
  features:
49
  - name: example_id
50
  dtype: string
 
58
  sequence: string
59
  splits:
60
  - name: test
61
+ num_bytes: 6989097
62
+ num_examples: 3498
63
  - name: train
64
+ num_bytes: 126243228
65
+ num_examples: 62445
66
  - name: validation
67
+ num_bytes: 6885263
68
+ num_examples: 3451
69
+ download_size: 33750880
70
+ dataset_size: 140117588
71
+ - config_name: middle
72
  features:
73
  - name: example_id
74
  dtype: string
 
82
  sequence: string
83
  splits:
84
  - name: test
85
+ num_bytes: 1786273
86
+ num_examples: 1436
87
  - name: train
88
+ num_bytes: 31065250
89
+ num_examples: 25421
90
  - name: validation
91
+ num_bytes: 1761913
92
+ num_examples: 1436
93
+ download_size: 7781596
94
+ dataset_size: 34613436
95
+ configs:
96
+ - config_name: all
97
+ data_files:
98
+ - split: test
99
+ path: all/test-*
100
+ - split: train
101
+ path: all/train-*
102
+ - split: validation
103
+ path: all/validation-*
104
+ - config_name: high
105
+ data_files:
106
+ - split: test
107
+ path: high/test-*
108
+ - split: train
109
+ path: high/train-*
110
+ - split: validation
111
+ path: high/validation-*
112
+ - config_name: middle
113
+ data_files:
114
+ - split: test
115
+ path: middle/test-*
116
+ - split: train
117
+ path: middle/train-*
118
+ - split: validation
119
+ path: middle/validation-*
120
  ---
121
 
122
  # Dataset Card for "race"
all/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:442e6b5f22f525811544016552b2ee7d8d1b8ef31e989132edc86e7925f94136
3
+ size 2075881
all/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9986432dc7b5ced3d3e9372573eafdcfa599920bb5e65bbbdc245df3abfd09e
3
+ size 37378263
all/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b3668ef8556831d174fab9cf9a7557e565a312034bce715a28e116903fa6a53
3
+ size 2046503
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"high": {"description": "Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The\n dataset is collected from English examinations in China, which are designed for middle school and high school students.\nThe dataset can be served as the training and test sets for machine comprehension.\n\n", "citation": "@article{lai2017large,\n title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},\n author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},\n journal={arXiv preprint arXiv:1704.04683},\n year={2017}\n}\n", "homepage": "http://www.cs.cmu.edu/~glai1/data/race/", "license": "", "features": {"example_id": {"dtype": "string", "id": null, "_type": "Value"}, "article": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "race", "config_name": "high", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 6989121, "num_examples": 3498, "dataset_name": "race"}, "train": {"name": "train", "num_bytes": 126243396, "num_examples": 62445, "dataset_name": "race"}, "validation": {"name": "validation", "num_bytes": 6885287, "num_examples": 3451, "dataset_name": "race"}}, "download_checksums": {"http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz": {"num_bytes": 25443609, "checksum": "b2769cc9fdc5c546a693300eb9a966cec6870bd349fbc44ed5225f8ad33006e5"}}, "download_size": 25443609, "post_processing_size": null, "dataset_size": 140117804, "size_in_bytes": 165561413}, "middle": {"description": "Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The\n dataset is collected from English examinations in China, which are designed for middle school and high school students.\nThe dataset can be served as the training and test sets for machine comprehension.\n\n", "citation": "@article{lai2017large,\n title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},\n author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},\n journal={arXiv preprint arXiv:1704.04683},\n year={2017}\n}\n", "homepage": "http://www.cs.cmu.edu/~glai1/data/race/", "license": "", "features": {"example_id": {"dtype": "string", "id": null, "_type": "Value"}, "article": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "race", "config_name": "middle", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1786297, "num_examples": 1436, "dataset_name": "race"}, "train": {"name": "train", "num_bytes": 31065322, "num_examples": 25421, "dataset_name": "race"}, "validation": {"name": "validation", "num_bytes": 1761937, "num_examples": 1436, "dataset_name": "race"}}, "download_checksums": {"http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz": {"num_bytes": 25443609, "checksum": "b2769cc9fdc5c546a693300eb9a966cec6870bd349fbc44ed5225f8ad33006e5"}}, "download_size": 25443609, "post_processing_size": null, "dataset_size": 34613556, "size_in_bytes": 60057165}, "all": {"description": "Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The\n dataset is collected from English examinations in China, which are designed for middle school and high school students.\nThe dataset can be served as the training and test sets for machine comprehension.\n\n", "citation": "@article{lai2017large,\n title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},\n author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},\n journal={arXiv preprint arXiv:1704.04683},\n year={2017}\n}\n", "homepage": "http://www.cs.cmu.edu/~glai1/data/race/", "license": "", "features": {"example_id": {"dtype": "string", "id": null, "_type": "Value"}, "article": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "race", "config_name": "all", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 8775394, "num_examples": 4934, "dataset_name": "race"}, "train": {"name": "train", "num_bytes": 157308694, "num_examples": 87866, "dataset_name": "race"}, "validation": {"name": "validation", "num_bytes": 8647200, "num_examples": 4887, "dataset_name": "race"}}, "download_checksums": {"http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz": {"num_bytes": 25443609, "checksum": "b2769cc9fdc5c546a693300eb9a966cec6870bd349fbc44ed5225f8ad33006e5"}}, "download_size": 25443609, "post_processing_size": null, "dataset_size": 174731288, "size_in_bytes": 200174897}}
 
 
high/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97ef697f4c81e804eb43e7a667a6ac7bb06c11a99cfa537997ae5e2f6c5db2b7
3
+ size 1683666
high/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea4766ae684939d67e115c0abe7cbe803c198eef77ecfa8557b0d0f32cdbe58d
3
+ size 30411742
high/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fc6a837dfa7839614bbfb78b54d98463d891d97509bdcd5ff9062bd9d446542
3
+ size 1655472
middle/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ea3fb86ab6bbf8746dd0eb0ac1961a1fdbd1214d6d5a901c37b0cad5b5c5971
3
+ size 404725
middle/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33a9d28467c326b13684bddd651a3bdc057aea61b35f93258c95efd76a435f63
3
+ size 6969931
middle/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8ede76683827fc6f5219643626d171c2556ee6b47193b192f399c2f7c4e60a0
3
+ size 406940
race.py DELETED
@@ -1,111 +0,0 @@
1
- """TODO(race): Add a description here."""
2
-
3
-
4
- import json
5
-
6
- import datasets
7
-
8
-
9
- _CITATION = """\
10
- @article{lai2017large,
11
- title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
12
- author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},
13
- journal={arXiv preprint arXiv:1704.04683},
14
- year={2017}
15
- }
16
- """
17
-
18
- _DESCRIPTION = """\
19
- Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The
20
- dataset is collected from English examinations in China, which are designed for middle school and high school students.
21
- The dataset can be served as the training and test sets for machine comprehension.
22
-
23
- """
24
-
25
- _URL = "http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz"
26
-
27
-
28
- class Race(datasets.GeneratorBasedBuilder):
29
- """ReAding Comprehension Dataset From Examination dataset from CMU"""
30
-
31
- VERSION = datasets.Version("0.1.0")
32
-
33
- BUILDER_CONFIGS = [
34
- datasets.BuilderConfig(name="high", description="Exams designed for high school students", version=VERSION),
35
- datasets.BuilderConfig(
36
- name="middle", description="Exams designed for middle school students", version=VERSION
37
- ),
38
- datasets.BuilderConfig(
39
- name="all", description="Exams designed for both high school and middle school students", version=VERSION
40
- ),
41
- ]
42
-
43
- def _info(self):
44
- return datasets.DatasetInfo(
45
- # This is the description that will appear on the datasets page.
46
- description=_DESCRIPTION,
47
- # datasets.features.FeatureConnectors
48
- features=datasets.Features(
49
- {
50
- "example_id": datasets.Value("string"),
51
- "article": datasets.Value("string"),
52
- "answer": datasets.Value("string"),
53
- "question": datasets.Value("string"),
54
- "options": datasets.features.Sequence(datasets.Value("string"))
55
- # These are the features of your dataset like images, labels ...
56
- }
57
- ),
58
- # If there's a common (input, target) tuple from the features,
59
- # specify them here. They'll be used if as_supervised=True in
60
- # builder.as_dataset.
61
- supervised_keys=None,
62
- # Homepage of the dataset for documentation
63
- homepage="http://www.cs.cmu.edu/~glai1/data/race/",
64
- citation=_CITATION,
65
- )
66
-
67
- def _split_generators(self, dl_manager):
68
- """Returns SplitGenerators."""
69
- # Downloads the data and defines the splits
70
- # dl_manager is a datasets.download.DownloadManager that can be used to
71
- archive = dl_manager.download(_URL)
72
- case = str(self.config.name)
73
- if case == "all":
74
- case = ""
75
- return [
76
- datasets.SplitGenerator(
77
- name=datasets.Split.TEST,
78
- # These kwargs will be passed to _generate_examples
79
- gen_kwargs={"train_test_or_eval": f"RACE/test/{case}", "files": dl_manager.iter_archive(archive)},
80
- ),
81
- datasets.SplitGenerator(
82
- name=datasets.Split.TRAIN,
83
- # These kwargs will be passed to _generate_examples
84
- gen_kwargs={"train_test_or_eval": f"RACE/train/{case}", "files": dl_manager.iter_archive(archive)},
85
- ),
86
- datasets.SplitGenerator(
87
- name=datasets.Split.VALIDATION,
88
- # These kwargs will be passed to _generate_examples
89
- gen_kwargs={"train_test_or_eval": f"RACE/dev/{case}", "files": dl_manager.iter_archive(archive)},
90
- ),
91
- ]
92
-
93
- def _generate_examples(self, train_test_or_eval, files):
94
- """Yields examples."""
95
- for file_idx, (path, f) in enumerate(files):
96
- if path.startswith(train_test_or_eval) and path.endswith(".txt"):
97
- data = json.loads(f.read().decode("utf-8"))
98
- questions = data["questions"]
99
- answers = data["answers"]
100
- options = data["options"]
101
- for i in range(len(questions)):
102
- question = questions[i]
103
- answer = answers[i]
104
- option = options[i]
105
- yield f"{file_idx}_{i}", {
106
- "example_id": data["id"],
107
- "article": data["article"],
108
- "question": question,
109
- "answer": answer,
110
- "options": option,
111
- }