Datasets:

Modalities:
Text
Formats:
json
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
chunks
list
config
dict
updated_at
string
[ { "chunk_bytes": 252825256, "chunk_size": 44, "dim": null, "filename": "chunk-0-0.bin" }, { "chunk_bytes": 250842064, "chunk_size": 43, "dim": null, "filename": "chunk-0-1.bin" }, { "chunk_bytes": 255212915, "chunk_size": 44, "dim": null, "filename": "chunk-0-2.bin" }, { "chunk_bytes": 255497604, "chunk_size": 44, "dim": null, "filename": "chunk-0-3.bin" }, { "chunk_bytes": 253665820, "chunk_size": 44, "dim": null, "filename": "chunk-0-4.bin" }, { "chunk_bytes": 179290840, "chunk_size": 31, "dim": null, "filename": "chunk-0-5.bin" }, { "chunk_bytes": 255353369, "chunk_size": 44, "dim": null, "filename": "chunk-1-0.bin" }, { "chunk_bytes": 253405969, "chunk_size": 44, "dim": null, "filename": "chunk-1-1.bin" }, { "chunk_bytes": 254111183, "chunk_size": 44, "dim": null, "filename": "chunk-1-2.bin" }, { "chunk_bytes": 252241632, "chunk_size": 44, "dim": null, "filename": "chunk-1-3.bin" }, { "chunk_bytes": 252985947, "chunk_size": 44, "dim": null, "filename": "chunk-1-4.bin" }, { "chunk_bytes": 174481181, "chunk_size": 30, "dim": null, "filename": "chunk-1-5.bin" }, { "chunk_bytes": 253452266, "chunk_size": 44, "dim": null, "filename": "chunk-2-0.bin" }, { "chunk_bytes": 250466306, "chunk_size": 43, "dim": null, "filename": "chunk-2-1.bin" }, { "chunk_bytes": 254736820, "chunk_size": 44, "dim": null, "filename": "chunk-2-2.bin" }, { "chunk_bytes": 254884513, "chunk_size": 44, "dim": null, "filename": "chunk-2-3.bin" }, { "chunk_bytes": 253059436, "chunk_size": 44, "dim": null, "filename": "chunk-2-4.bin" }, { "chunk_bytes": 178841702, "chunk_size": 31, "dim": null, "filename": "chunk-2-5.bin" }, { "chunk_bytes": 253618423, "chunk_size": 44, "dim": null, "filename": "chunk-3-0.bin" }, { "chunk_bytes": 255163763, "chunk_size": 44, "dim": null, "filename": "chunk-3-1.bin" }, { "chunk_bytes": 254591434, "chunk_size": 44, "dim": null, "filename": "chunk-3-2.bin" }, { "chunk_bytes": 254702392, "chunk_size": 44, "dim": null, "filename": "chunk-3-3.bin" }, { "chunk_bytes": 254167418, "chunk_size": 44, "dim": null, "filename": "chunk-3-4.bin" }, { "chunk_bytes": 174472507, "chunk_size": 30, "dim": null, "filename": "chunk-3-5.bin" }, { "chunk_bytes": 255796715, "chunk_size": 44, "dim": null, "filename": "chunk-4-0.bin" }, { "chunk_bytes": 255419094, "chunk_size": 44, "dim": null, "filename": "chunk-4-1.bin" }, { "chunk_bytes": 254385685, "chunk_size": 44, "dim": null, "filename": "chunk-4-2.bin" }, { "chunk_bytes": 255859373, "chunk_size": 44, "dim": null, "filename": "chunk-4-3.bin" }, { "chunk_bytes": 255200871, "chunk_size": 44, "dim": null, "filename": "chunk-4-4.bin" }, { "chunk_bytes": 174123181, "chunk_size": 30, "dim": null, "filename": "chunk-4-5.bin" }, { "chunk_bytes": 255198197, "chunk_size": 44, "dim": null, "filename": "chunk-5-0.bin" }, { "chunk_bytes": 253777376, "chunk_size": 44, "dim": null, "filename": "chunk-5-1.bin" }, { "chunk_bytes": 250099837, "chunk_size": 43, "dim": null, "filename": "chunk-5-2.bin" }, { "chunk_bytes": 255248810, "chunk_size": 44, "dim": null, "filename": "chunk-5-3.bin" }, { "chunk_bytes": 253433288, "chunk_size": 44, "dim": null, "filename": "chunk-5-4.bin" }, { "chunk_bytes": 180253932, "chunk_size": 31, "dim": null, "filename": "chunk-5-5.bin" }, { "chunk_bytes": 253627220, "chunk_size": 44, "dim": null, "filename": "chunk-6-0.bin" }, { "chunk_bytes": 253836930, "chunk_size": 44, "dim": null, "filename": "chunk-6-1.bin" }, { "chunk_bytes": 254537047, "chunk_size": 44, "dim": null, "filename": "chunk-6-2.bin" }, { "chunk_bytes": 252739991, "chunk_size": 44, "dim": null, "filename": "chunk-6-3.bin" }, { "chunk_bytes": 255526844, "chunk_size": 44, "dim": null, "filename": "chunk-6-4.bin" }, { "chunk_bytes": 173839166, "chunk_size": 30, "dim": null, "filename": "chunk-6-5.bin" }, { "chunk_bytes": 255824029, "chunk_size": 44, "dim": null, "filename": "chunk-7-0.bin" }, { "chunk_bytes": 255618009, "chunk_size": 44, "dim": null, "filename": "chunk-7-1.bin" }, { "chunk_bytes": 253020640, "chunk_size": 44, "dim": null, "filename": "chunk-7-2.bin" }, { "chunk_bytes": 254664673, "chunk_size": 44, "dim": null, "filename": "chunk-7-3.bin" }, { "chunk_bytes": 253452655, "chunk_size": 44, "dim": null, "filename": "chunk-7-4.bin" }, { "chunk_bytes": 172627898, "chunk_size": 30, "dim": null, "filename": "chunk-7-5.bin" } ]
{ "chunk_bytes": 256000000, "chunk_size": null, "compression": null, "data_format": [ "bytes", "numpy", "int" ], "data_spec": "[1, {\"type\": \"builtins.dict\", \"context\": \"[\\\"hdf5_data\\\", \\\"segmentation_map\\\", \\\"sample_id\\\"]\", \"children_spec\": [{\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}]}]", "encryption": null, "item_loader": "PyTreeLoader" }
1733352888.8378386

How to use it

Install Dataset4EO

git clone --branch streaming https://github.com/EarthNets/Dataset4EO.git

pip install -e .

Then download the dataset from this Huggingface repo.

import dataset4eo as eodata
import litdata as ld


train_dataset = eodata.StreamingDataset(input_dir="optimized_enmap_cdl_dataset", num_channels=202, channels_to_select=[0,1,2], shuffle=True, drop_last=True)
sample = dataset[101]
print(sample.keys())

dataloader = ld.StreamingDataLoader(train_dataset)
max_label = 0
for sample in tqdm.tqdm(dataloader):
    max_id = (np.unique(sample["segmentation_map"])).max()
    max_label = max_id if max_id > max_label else max_label

print(max_label)

The land cover classes of the dataset:

Code Land Cover
1 Corn
2 Cotton
3 Rice
4 Sorghum
5 Soybeans
6 Sunflower
10 Peanuts
11 Tobacco
12 Sweet Corn
13 Pop or Orn Corn
14 Mint
21 Barley
22 Durum Wheat
23 Spring Wheat
24 Winter Wheat
25 Other Small Grains
26 Dbl Crop WinWht/Soybeans
27 Rye
28 Oats
29 Millet
30 Speltz
31 Canola
32 Flaxseed
33 Safflower
34 Rape Seed
35 Mustard
36 Alfalfa
37 Other Hay/Non Alfalfa
38 Camelina
39 Buckwheat
41 Sugarbeets
42 Dry Beans
43 Potatoes
44 Other Crops
45 Sugarcane
46 Sweet Potatoes
47 Misc Vegs & Fruits
48 Watermelons
49 Onions
50 Cucumbers
51 Chick Peas
52 Lentils
53 Peas
54 Tomatoes
55 Caneberries
56 Hops
57 Herbs
58 Clover/Wildflowers
59 Sod/Grass Seed
60 Switchgrass
61 Fallow/Idle Cropland
62 Pasture/Grass
63 Forest
64 Shrubland
65 Barren
66 Cherries
67 Peaches
68 Apples
69 Grapes
70 Christmas Trees
71 Other Tree Crops
72 Citrus
74 Pecans
75 Almonds
76 Walnuts
77 Pears
81 Clouds/No Data
82 Developed
83 Water
87 Wetlands
88 Nonag/Undefined
92 Aquaculture
111 Open Water
112 Perennial Ice/Snow
121 Developed/Open Space
122 Developed/Low Intensity
123 Developed/Med Intensity
124 Developed/High Intensity
131 Barren
141 Deciduous Forest
142 Evergreen Forest
143 Mixed Forest
152 Shrubland
176 Grassland/Pasture
190 Woody Wetlands
195 Herbaceous Wetlands
204 Pistachios
205 Triticale
206 Carrots
207 Asparagus
208 Garlic
209 Cantaloupes
210 Prunes
211 Olives
212 Oranges
213 Honeydew Melons
214 Broccoli
215 Avocados
216 Peppers
217 Pomegranates
218 Nectarines
219 Greens
220 Plums
221 Strawberries
222 Squash
223 Apricots
224 Vetch
225 Dbl Crop WinWht/Corn
226 Dbl Crop Oats/Corn
227 Lettuce
228 Dbl Crop Triticale/Corn
229 Pumpkins
230 Dbl Crop Lettuce/Durum Wht
231 Dbl Crop Lettuce/Cantaloupe
232 Dbl Crop Lettuce/Cotton
233 Dbl Crop Lettuce/Barley
234 Dbl Crop Durum Wht/Sorghum
235 Dbl Crop Barley/Sorghum
236 Dbl Crop WinWht/Sorghum
237 Dbl Crop Barley/Corn
238 Dbl Crop WinWht/Cotton
239 Dbl Crop Soybeans/Cotton
240 Dbl Crop Soybeans/Oats
241 Dbl Crop Corn/Soybeans
242 Blueberries
243 Cabbage
244 Cauliflower
245 Celery
246 Radishes
247 Turnips
248 Eggplants
249 Gourds
250 Cranberries
254 Dbl Crop Barley/Soybeans

We acknowledge and give full credit to the original authors of SpectralEarth for their effort in creating this dataset. The dataset is re-hosted in compliance with its original license to facilitate further research. Please cite the following paper for the creation of the dataset:

@article{braham2024spectralearth,
  title={SpectralEarth: Training Hyperspectral Foundation Models at Scale},
  author={Braham, Nassim Ait Ali and Albrecht, Conrad M and Mairal, Julien and Chanussot, Jocelyn and Wang, Yi and Zhu, Xiao Xiang},
  journal={arXiv preprint arXiv:2408.08447},
  year={2024}
}
Downloads last month
41