chunks
list | config
dict | updated_at
string |
---|---|---|
[
{
"chunk_bytes": 252825256,
"chunk_size": 44,
"dim": null,
"filename": "chunk-0-0.bin"
},
{
"chunk_bytes": 250842064,
"chunk_size": 43,
"dim": null,
"filename": "chunk-0-1.bin"
},
{
"chunk_bytes": 255212915,
"chunk_size": 44,
"dim": null,
"filename": "chunk-0-2.bin"
},
{
"chunk_bytes": 255497604,
"chunk_size": 44,
"dim": null,
"filename": "chunk-0-3.bin"
},
{
"chunk_bytes": 253665820,
"chunk_size": 44,
"dim": null,
"filename": "chunk-0-4.bin"
},
{
"chunk_bytes": 179290840,
"chunk_size": 31,
"dim": null,
"filename": "chunk-0-5.bin"
},
{
"chunk_bytes": 255353369,
"chunk_size": 44,
"dim": null,
"filename": "chunk-1-0.bin"
},
{
"chunk_bytes": 253405969,
"chunk_size": 44,
"dim": null,
"filename": "chunk-1-1.bin"
},
{
"chunk_bytes": 254111183,
"chunk_size": 44,
"dim": null,
"filename": "chunk-1-2.bin"
},
{
"chunk_bytes": 252241632,
"chunk_size": 44,
"dim": null,
"filename": "chunk-1-3.bin"
},
{
"chunk_bytes": 252985947,
"chunk_size": 44,
"dim": null,
"filename": "chunk-1-4.bin"
},
{
"chunk_bytes": 174481181,
"chunk_size": 30,
"dim": null,
"filename": "chunk-1-5.bin"
},
{
"chunk_bytes": 253452266,
"chunk_size": 44,
"dim": null,
"filename": "chunk-2-0.bin"
},
{
"chunk_bytes": 250466306,
"chunk_size": 43,
"dim": null,
"filename": "chunk-2-1.bin"
},
{
"chunk_bytes": 254736820,
"chunk_size": 44,
"dim": null,
"filename": "chunk-2-2.bin"
},
{
"chunk_bytes": 254884513,
"chunk_size": 44,
"dim": null,
"filename": "chunk-2-3.bin"
},
{
"chunk_bytes": 253059436,
"chunk_size": 44,
"dim": null,
"filename": "chunk-2-4.bin"
},
{
"chunk_bytes": 178841702,
"chunk_size": 31,
"dim": null,
"filename": "chunk-2-5.bin"
},
{
"chunk_bytes": 253618423,
"chunk_size": 44,
"dim": null,
"filename": "chunk-3-0.bin"
},
{
"chunk_bytes": 255163763,
"chunk_size": 44,
"dim": null,
"filename": "chunk-3-1.bin"
},
{
"chunk_bytes": 254591434,
"chunk_size": 44,
"dim": null,
"filename": "chunk-3-2.bin"
},
{
"chunk_bytes": 254702392,
"chunk_size": 44,
"dim": null,
"filename": "chunk-3-3.bin"
},
{
"chunk_bytes": 254167418,
"chunk_size": 44,
"dim": null,
"filename": "chunk-3-4.bin"
},
{
"chunk_bytes": 174472507,
"chunk_size": 30,
"dim": null,
"filename": "chunk-3-5.bin"
},
{
"chunk_bytes": 255796715,
"chunk_size": 44,
"dim": null,
"filename": "chunk-4-0.bin"
},
{
"chunk_bytes": 255419094,
"chunk_size": 44,
"dim": null,
"filename": "chunk-4-1.bin"
},
{
"chunk_bytes": 254385685,
"chunk_size": 44,
"dim": null,
"filename": "chunk-4-2.bin"
},
{
"chunk_bytes": 255859373,
"chunk_size": 44,
"dim": null,
"filename": "chunk-4-3.bin"
},
{
"chunk_bytes": 255200871,
"chunk_size": 44,
"dim": null,
"filename": "chunk-4-4.bin"
},
{
"chunk_bytes": 174123181,
"chunk_size": 30,
"dim": null,
"filename": "chunk-4-5.bin"
},
{
"chunk_bytes": 255198197,
"chunk_size": 44,
"dim": null,
"filename": "chunk-5-0.bin"
},
{
"chunk_bytes": 253777376,
"chunk_size": 44,
"dim": null,
"filename": "chunk-5-1.bin"
},
{
"chunk_bytes": 250099837,
"chunk_size": 43,
"dim": null,
"filename": "chunk-5-2.bin"
},
{
"chunk_bytes": 255248810,
"chunk_size": 44,
"dim": null,
"filename": "chunk-5-3.bin"
},
{
"chunk_bytes": 253433288,
"chunk_size": 44,
"dim": null,
"filename": "chunk-5-4.bin"
},
{
"chunk_bytes": 180253932,
"chunk_size": 31,
"dim": null,
"filename": "chunk-5-5.bin"
},
{
"chunk_bytes": 253627220,
"chunk_size": 44,
"dim": null,
"filename": "chunk-6-0.bin"
},
{
"chunk_bytes": 253836930,
"chunk_size": 44,
"dim": null,
"filename": "chunk-6-1.bin"
},
{
"chunk_bytes": 254537047,
"chunk_size": 44,
"dim": null,
"filename": "chunk-6-2.bin"
},
{
"chunk_bytes": 252739991,
"chunk_size": 44,
"dim": null,
"filename": "chunk-6-3.bin"
},
{
"chunk_bytes": 255526844,
"chunk_size": 44,
"dim": null,
"filename": "chunk-6-4.bin"
},
{
"chunk_bytes": 173839166,
"chunk_size": 30,
"dim": null,
"filename": "chunk-6-5.bin"
},
{
"chunk_bytes": 255824029,
"chunk_size": 44,
"dim": null,
"filename": "chunk-7-0.bin"
},
{
"chunk_bytes": 255618009,
"chunk_size": 44,
"dim": null,
"filename": "chunk-7-1.bin"
},
{
"chunk_bytes": 253020640,
"chunk_size": 44,
"dim": null,
"filename": "chunk-7-2.bin"
},
{
"chunk_bytes": 254664673,
"chunk_size": 44,
"dim": null,
"filename": "chunk-7-3.bin"
},
{
"chunk_bytes": 253452655,
"chunk_size": 44,
"dim": null,
"filename": "chunk-7-4.bin"
},
{
"chunk_bytes": 172627898,
"chunk_size": 30,
"dim": null,
"filename": "chunk-7-5.bin"
}
] | {
"chunk_bytes": 256000000,
"chunk_size": null,
"compression": null,
"data_format": [
"bytes",
"numpy",
"int"
],
"data_spec": "[1, {\"type\": \"builtins.dict\", \"context\": \"[\\\"hdf5_data\\\", \\\"segmentation_map\\\", \\\"sample_id\\\"]\", \"children_spec\": [{\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}, {\"type\": null, \"context\": null, \"children_spec\": []}]}]",
"encryption": null,
"item_loader": "PyTreeLoader"
} | 1733352888.8378386 |
How to use it
Install Dataset4EO
git clone --branch streaming https://github.com/EarthNets/Dataset4EO.git
pip install -e .
Then download the dataset from this Huggingface repo.
import dataset4eo as eodata
import litdata as ld
train_dataset = eodata.StreamingDataset(input_dir="optimized_enmap_cdl_dataset", num_channels=202, channels_to_select=[0,1,2], shuffle=True, drop_last=True)
sample = dataset[101]
print(sample.keys())
dataloader = ld.StreamingDataLoader(train_dataset)
max_label = 0
for sample in tqdm.tqdm(dataloader):
max_id = (np.unique(sample["segmentation_map"])).max()
max_label = max_id if max_id > max_label else max_label
print(max_label)
The land cover classes of the dataset:
Code | Land Cover |
---|---|
1 | Corn |
2 | Cotton |
3 | Rice |
4 | Sorghum |
5 | Soybeans |
6 | Sunflower |
10 | Peanuts |
11 | Tobacco |
12 | Sweet Corn |
13 | Pop or Orn Corn |
14 | Mint |
21 | Barley |
22 | Durum Wheat |
23 | Spring Wheat |
24 | Winter Wheat |
25 | Other Small Grains |
26 | Dbl Crop WinWht/Soybeans |
27 | Rye |
28 | Oats |
29 | Millet |
30 | Speltz |
31 | Canola |
32 | Flaxseed |
33 | Safflower |
34 | Rape Seed |
35 | Mustard |
36 | Alfalfa |
37 | Other Hay/Non Alfalfa |
38 | Camelina |
39 | Buckwheat |
41 | Sugarbeets |
42 | Dry Beans |
43 | Potatoes |
44 | Other Crops |
45 | Sugarcane |
46 | Sweet Potatoes |
47 | Misc Vegs & Fruits |
48 | Watermelons |
49 | Onions |
50 | Cucumbers |
51 | Chick Peas |
52 | Lentils |
53 | Peas |
54 | Tomatoes |
55 | Caneberries |
56 | Hops |
57 | Herbs |
58 | Clover/Wildflowers |
59 | Sod/Grass Seed |
60 | Switchgrass |
61 | Fallow/Idle Cropland |
62 | Pasture/Grass |
63 | Forest |
64 | Shrubland |
65 | Barren |
66 | Cherries |
67 | Peaches |
68 | Apples |
69 | Grapes |
70 | Christmas Trees |
71 | Other Tree Crops |
72 | Citrus |
74 | Pecans |
75 | Almonds |
76 | Walnuts |
77 | Pears |
81 | Clouds/No Data |
82 | Developed |
83 | Water |
87 | Wetlands |
88 | Nonag/Undefined |
92 | Aquaculture |
111 | Open Water |
112 | Perennial Ice/Snow |
121 | Developed/Open Space |
122 | Developed/Low Intensity |
123 | Developed/Med Intensity |
124 | Developed/High Intensity |
131 | Barren |
141 | Deciduous Forest |
142 | Evergreen Forest |
143 | Mixed Forest |
152 | Shrubland |
176 | Grassland/Pasture |
190 | Woody Wetlands |
195 | Herbaceous Wetlands |
204 | Pistachios |
205 | Triticale |
206 | Carrots |
207 | Asparagus |
208 | Garlic |
209 | Cantaloupes |
210 | Prunes |
211 | Olives |
212 | Oranges |
213 | Honeydew Melons |
214 | Broccoli |
215 | Avocados |
216 | Peppers |
217 | Pomegranates |
218 | Nectarines |
219 | Greens |
220 | Plums |
221 | Strawberries |
222 | Squash |
223 | Apricots |
224 | Vetch |
225 | Dbl Crop WinWht/Corn |
226 | Dbl Crop Oats/Corn |
227 | Lettuce |
228 | Dbl Crop Triticale/Corn |
229 | Pumpkins |
230 | Dbl Crop Lettuce/Durum Wht |
231 | Dbl Crop Lettuce/Cantaloupe |
232 | Dbl Crop Lettuce/Cotton |
233 | Dbl Crop Lettuce/Barley |
234 | Dbl Crop Durum Wht/Sorghum |
235 | Dbl Crop Barley/Sorghum |
236 | Dbl Crop WinWht/Sorghum |
237 | Dbl Crop Barley/Corn |
238 | Dbl Crop WinWht/Cotton |
239 | Dbl Crop Soybeans/Cotton |
240 | Dbl Crop Soybeans/Oats |
241 | Dbl Crop Corn/Soybeans |
242 | Blueberries |
243 | Cabbage |
244 | Cauliflower |
245 | Celery |
246 | Radishes |
247 | Turnips |
248 | Eggplants |
249 | Gourds |
250 | Cranberries |
254 | Dbl Crop Barley/Soybeans |
We acknowledge and give full credit to the original authors of SpectralEarth for their effort in creating this dataset. The dataset is re-hosted in compliance with its original license to facilitate further research. Please cite the following paper for the creation of the dataset:
@article{braham2024spectralearth,
title={SpectralEarth: Training Hyperspectral Foundation Models at Scale},
author={Braham, Nassim Ait Ali and Albrecht, Conrad M and Mairal, Julien and Chanussot, Jocelyn and Wang, Yi and Zhu, Xiao Xiang},
journal={arXiv preprint arXiv:2408.08447},
year={2024}
}
- Downloads last month
- 41