image
imagewidth (px)
565
1k
width
int64
565
1k
height
int64
546
1k
category
stringclasses
2 values
label
int64
0
1
bboxes
sequencelengths
1
14
1,000
729
historical
0
[ [ 350, 142, 806, 661 ] ]
1,000
729
historical
0
[ [ 26, 109, 488, 633 ], [ 525, 128, 984, 644 ] ]
1,000
729
historical
0
[ [ 30, 106, 493, 634 ], [ 499, 97, 948, 634 ] ]
1,000
729
historical
0
[ [ 60, 48, 501, 613 ], [ 498, 98, 943, 627 ] ]
1,000
729
historical
0
[ [ 34, 76, 463, 615 ], [ 500, 42, 780, 516 ] ]
1,000
729
historical
0
[ [ 186, 101, 914, 663 ] ]
1,000
729
historical
0
[ [ 157, 75, 877, 652 ] ]
1,000
729
historical
0
[ [ 152, 95, 893, 646 ] ]
1,000
729
historical
0
[ [ 149, 100, 878, 651 ] ]
1,000
729
historical
0
[ [ 147, 88, 885, 620 ] ]
1,000
729
historical
0
[ [ 503, 76, 988, 688 ] ]
1,000
784
historical
0
[ [ 19, 11, 992, 777 ] ]
1,000
761
historical
0
[ [ 32, 18, 976, 740 ] ]
1,000
742
historical
0
[ [ 22, 41, 966, 708 ] ]
1,000
794
historical
0
[ [ 5, 34, 966, 764 ] ]
641
1,000
historical
0
[ [ 0, 102, 634, 899 ] ]
1,000
781
historical
0
[ [ 58, 36, 962, 743 ] ]
1,000
747
historical
0
[ [ 42, 45, 956, 714 ] ]
1,000
774
historical
0
[ [ 36, 35, 977, 748 ] ]
1,000
771
historical
0
[ [ 24, 17, 991, 765 ] ]
1,000
779
historical
0
[ [ 33, 36, 980, 731 ] ]
1,000
745
historical
0
[ [ 27, 42, 974, 716 ] ]
1,000
759
historical
0
[ [ 30, 26, 969, 741 ] ]
1,000
780
historical
0
[ [ 11, 29, 985, 774 ] ]
1,000
732
historical
0
[ [ 42, 51, 971, 722 ] ]
1,000
798
historical
0
[ [ 44, 84, 961, 770 ] ]
709
1,000
historical
0
[ [ 100, 68, 660, 931 ] ]
640
1,000
historical
0
[ [ 34, 59, 554, 963 ] ]
666
1,000
historical
0
[ [ 40, 62, 326, 936 ], [ 329, 67, 621, 584 ] ]
604
1,000
historical
0
[ [ 52, 51, 590, 930 ] ]
680
1,000
historical
0
[ [ 17, 36, 206, 998 ], [ 194, 39, 363, 999 ], [ 363, 41, 554, 1001 ], [ 531, 41, 678, 725 ] ]
614
1,000
historical
0
[ [ 15, 53, 423, 991 ] ]
639
1,000
historical
0
[ [ 44, 65, 625, 260 ] ]
771
1,000
historical
0
[ [ 80, 78, 703, 942 ] ]
633
1,000
historical
0
[ [ 63, 20, 470, 983 ] ]
1,000
808
historical
0
[ [ 22, 46, 987, 766 ] ]
1,000
822
historical
0
[ [ 58, 62, 947, 808 ] ]
1,000
796
historical
0
[ [ 49, 52, 944, 702 ] ]
1,000
859
historical
0
[ [ 30, 36, 959, 844 ] ]
1,000
819
historical
0
[ [ 10, 27, 989, 797 ] ]
1,000
745
historical
0
[ [ 34, 50, 957, 710 ] ]
1,000
824
historical
0
[ [ 14, 53, 815, 818 ] ]
1,000
818
historical
0
[ [ 35, 36, 957, 788 ] ]
1,000
777
historical
0
[ [ 59, 85, 940, 728 ] ]
1,000
788
historical
0
[ [ 11, 24, 974, 757 ] ]
1,000
777
historical
0
[ [ 72, 86, 935, 729 ] ]
1,000
651
historical
0
[ [ 36, 45, 987, 628 ] ]
1,000
822
historical
0
[ [ 39, 50, 954, 791 ] ]
1,000
795
historical
0
[ [ 82, 74, 932, 744 ] ]
1,000
792
historical
0
[ [ 90, 76, 919, 725 ] ]
653
1,000
historical
0
[ [ 51, 25, 619, 949 ] ]
1,000
764
historical
0
[ [ 48, 51, 945, 727 ] ]
1,000
756
historical
0
[ [ 34, 28, 963, 735 ] ]
652
1,000
historical
0
[ [ 19, 13, 635, 987 ] ]
1,000
820
historical
0
[ [ 55, 44, 963, 804 ] ]
1,000
810
historical
0
[ [ 31, 49, 981, 756 ] ]
1,000
783
historical
0
[ [ 53, 38, 966, 757 ] ]
1,000
844
historical
0
[ [ 28, 15, 985, 829 ] ]
1,000
724
historical
0
[ [ 70, 82, 905, 700 ] ]
1,000
790
historical
0
[ [ 25, 41, 974, 724 ] ]
1,000
785
historical
0
[ [ 7, 30, 989, 777 ] ]
1,000
781
historical
0
[ [ 11, 24, 993, 781 ] ]
1,000
785
historical
0
[ [ 40, 40, 946, 764 ] ]
1,000
827
historical
0
[ [ 17, 59, 982, 809 ] ]
1,000
772
historical
0
[ [ 39, 35, 958, 723 ] ]
1,000
772
historical
0
[ [ 38, 28, 959, 717 ] ]
1,000
772
historical
0
[ [ 35, 31, 956, 732 ] ]
1,000
780
historical
0
[ [ 35, 38, 954, 736 ] ]
1,000
780
historical
0
[ [ 39, 37, 956, 729 ] ]
1,000
780
historical
0
[ [ 39, 39, 950, 740 ] ]
1,000
780
historical
0
[ [ 39, 41, 951, 732 ] ]
1,000
780
historical
0
[ [ 35, 43, 953, 734 ] ]
1,000
780
historical
0
[ [ 38, 42, 957, 736 ] ]
1,000
780
historical
0
[ [ 40, 45, 963, 769 ] ]
1,000
780
historical
0
[ [ 40, 38, 961, 728 ] ]
706
1,000
historical
0
[ [ 51, 402, 508, 938 ] ]
706
1,000
historical
0
[ [ 0, 71, 593, 989 ] ]
706
1,000
historical
0
[ [ 65, 532, 351, 954 ], [ 354, 530, 644, 953 ] ]
706
1,000
historical
0
[ [ 161, 130, 635, 931 ] ]
706
1,000
historical
0
[ [ 80, 167, 520, 949 ] ]
706
1,000
historical
0
[ [ 164, 156, 604, 898 ] ]
706
1,000
historical
0
[ [ 60, 166, 275, 929 ], [ 275, 160, 504, 734 ] ]
1,000
658
historical
0
[ [ 39, 40, 953, 635 ] ]
1,000
665
historical
0
[ [ 44, 50, 945, 625 ] ]
1,000
663
historical
0
[ [ 47, 41, 957, 636 ] ]
1,000
662
historical
0
[ [ 55, 44, 945, 622 ] ]
1,000
653
historical
0
[ [ 45, 43, 951, 622 ] ]
1,000
656
historical
0
[ [ 46, 44, 948, 620 ] ]
1,000
662
historical
0
[ [ 49, 44, 937, 621 ] ]
1,000
663
historical
0
[ [ 50, 42, 944, 624 ] ]
1,000
660
historical
0
[ [ 55, 45, 931, 617 ] ]
1,000
662
historical
0
[ [ 51, 46, 946, 622 ] ]
1,000
662
historical
0
[ [ 49, 38, 945, 618 ] ]
1,000
666
historical
0
[ [ 44, 42, 944, 623 ] ]
1,000
666
historical
0
[ [ 53, 49, 951, 619 ] ]
1,000
660
historical
0
[ [ 48, 44, 944, 619 ] ]
1,000
665
historical
0
[ [ 47, 46, 945, 629 ] ]
1,000
662
historical
0
[ [ 49, 45, 948, 623 ] ]
1,000
658
historical
0
[ [ 45, 42, 948, 617 ] ]
1,000
661
historical
0
[ [ 44, 39, 948, 617 ] ]

Dataset Card for ICDAR2019-cTDaR-TRACKA

This dataset is a resized version of the original cndplab-founder/ICDAR2019_cTDaR.

You can easily and quickly load it:

dataset = load_dataset("dvgodoy/ICDAR2019_cTDaR_TRACKA_resized")
DatasetDict({
    train: Dataset({
        features: ['image', 'width', 'height', 'category', 'label', 'bboxes'],
        num_rows: 1200
    })
    test: Dataset({
        features: ['image', 'width', 'height', 'category', 'label', 'bboxes'],
        num_rows: 439
    })
})

Dataset Summary

From the original ICDAR2019 cTDaR dataset page:

The dataset consists of modern documents and archival ones with various formats, including document images and born-digital formats such as PDF. The annotated contents contain the table entities and cell entities in a document, while we do not deal with nested tables.

This "resized" version contains all the images from "Track A" (table detection) resized so that the largest dimension (either width or height) is 1000px. The annotations were converted from XML to JSON and boxes are represented in Pascal VOC format (xmin, ymin, xmax, ymax).

Dataset Structure

Data Instances

A sample from the training set is provided below :

{
    'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=1000x729>,
    'width': 1000,
    'height': 729,
    'category': 'historical',
    'label': 0,
    'bboxes': [[...]]
}

Data Fields

  • image: A PIL.Image.Image object containing a document.
  • width: image's width.
  • height: image's height.
  • category: class label.
  • label: an int classification label.
  • bboxes: list of box coordinates in (xmin, ymin, xmax, ymax) format (Pascal VOC).
Class Label Mappings
{
  "0": "historical",
  "1": "modern"
}

Data Splits

train test
# of examples 1200 439

Additional Information

Licensing Information

This dataset is a resized and reorganized version of ICDAR2019 cTDaR from the ICDAR 2019 Competition on Table Detection and Recognition.

Downloads last month
23