haixuantao
commited on
Commit
·
1a7150e
1
Parent(s):
23f48d8
replace idefics by a policy
Browse files- operators/idefics2_op.py +0 -61
- operators/idefics2_utils.py +0 -69
- operators/policy.py +11 -3
- operators/utils.py +39 -1
operators/idefics2_op.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
from dora import DoraStatus
|
2 |
-
import pyarrow as pa
|
3 |
-
|
4 |
-
|
5 |
-
import cv2
|
6 |
-
|
7 |
-
from idefics2_utils import ask_vlm
|
8 |
-
import pyttsx3
|
9 |
-
|
10 |
-
|
11 |
-
CAMERA_WIDTH = 960
|
12 |
-
CAMERA_HEIGHT = 540
|
13 |
-
|
14 |
-
|
15 |
-
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
16 |
-
|
17 |
-
|
18 |
-
engine = pyttsx3.init("espeak")
|
19 |
-
voices = engine.getProperty("voices")
|
20 |
-
engine.setProperty("voice", voices[11].id) # English
|
21 |
-
|
22 |
-
|
23 |
-
def speak(text):
|
24 |
-
engine.say(text)
|
25 |
-
engine.runAndWait()
|
26 |
-
|
27 |
-
|
28 |
-
class Operator:
|
29 |
-
def __init__(self):
|
30 |
-
self.instruction = "What is in the image?"
|
31 |
-
self.last_message = ""
|
32 |
-
self.image = None
|
33 |
-
|
34 |
-
def on_event(
|
35 |
-
self,
|
36 |
-
dora_event,
|
37 |
-
send_output,
|
38 |
-
) -> DoraStatus:
|
39 |
-
if dora_event["type"] == "INPUT":
|
40 |
-
if dora_event["id"] == "image":
|
41 |
-
self.image = (
|
42 |
-
dora_event["value"]
|
43 |
-
.to_numpy()
|
44 |
-
.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
|
45 |
-
)
|
46 |
-
elif dora_event["id"] == "instruction":
|
47 |
-
self.instruction = dora_event["value"][0].as_py()
|
48 |
-
print("instructions: ", self.instruction, flush=True)
|
49 |
-
|
50 |
-
if self.image is not None:
|
51 |
-
output = ask_vlm(self.image, self.instruction)
|
52 |
-
speak(output)
|
53 |
-
print("response: ", output, flush=True)
|
54 |
-
send_output(
|
55 |
-
"assistant_message",
|
56 |
-
pa.array([output]),
|
57 |
-
dora_event["metadata"],
|
58 |
-
)
|
59 |
-
|
60 |
-
self.last_message = output
|
61 |
-
return DoraStatus.CONTINUE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
operators/idefics2_utils.py
DELETED
@@ -1,69 +0,0 @@
|
|
1 |
-
import requests
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
-
from io import BytesIO
|
5 |
-
|
6 |
-
from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig
|
7 |
-
|
8 |
-
|
9 |
-
MODE = "quantized"
|
10 |
-
DEVICE = "cuda"
|
11 |
-
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
|
12 |
-
BAD_WORDS_IDS = PROCESSOR.tokenizer(
|
13 |
-
["<image>", "<fake_token_around_image>"], add_special_tokens=False
|
14 |
-
).input_ids
|
15 |
-
EOS_WORDS_IDS = PROCESSOR.tokenizer(
|
16 |
-
"<end_of_utterance>", add_special_tokens=False
|
17 |
-
).input_ids + [PROCESSOR.tokenizer.eos_token_id]
|
18 |
-
|
19 |
-
# Load model
|
20 |
-
if MODE == "regular":
|
21 |
-
model = AutoModelForVision2Seq.from_pretrained(
|
22 |
-
"HuggingFaceM4/idefics2-tfrm-compatible",
|
23 |
-
torch_dtype=torch.float16,
|
24 |
-
trust_remote_code=True,
|
25 |
-
_attn_implementation="flash_attention_2",
|
26 |
-
revision="3dc93be345d64fb6b1c550a233fe87ddb36f183d",
|
27 |
-
).to(DEVICE)
|
28 |
-
elif MODE == "quantized":
|
29 |
-
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
|
30 |
-
model = AutoModelForVision2Seq.from_pretrained(
|
31 |
-
quant_path, trust_remote_code=True
|
32 |
-
).to(DEVICE)
|
33 |
-
elif MODE == "fused_quantized":
|
34 |
-
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
|
35 |
-
quantization_config = AwqConfig(
|
36 |
-
bits=4,
|
37 |
-
fuse_max_seq_len=4096,
|
38 |
-
modules_to_fuse={
|
39 |
-
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
40 |
-
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
41 |
-
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
42 |
-
"use_alibi": False,
|
43 |
-
"num_attention_heads": 32,
|
44 |
-
"num_key_value_heads": 8,
|
45 |
-
"hidden_size": 4096,
|
46 |
-
},
|
47 |
-
)
|
48 |
-
model = AutoModelForVision2Seq.from_pretrained(
|
49 |
-
quant_path, quantization_config=quantization_config, trust_remote_code=True
|
50 |
-
).to(DEVICE)
|
51 |
-
else:
|
52 |
-
raise ValueError("Unknown mode")
|
53 |
-
|
54 |
-
|
55 |
-
def ask_vlm(image, instruction):
|
56 |
-
prompts = [
|
57 |
-
"User:",
|
58 |
-
image,
|
59 |
-
f"{instruction}.<end_of_utterance>\n",
|
60 |
-
"Assistant:",
|
61 |
-
]
|
62 |
-
inputs = PROCESSOR(prompts)
|
63 |
-
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
|
64 |
-
|
65 |
-
generated_ids = model.generate(
|
66 |
-
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10
|
67 |
-
)
|
68 |
-
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
69 |
-
return generated_texts[0].split("\nAssistant: ")[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
operators/policy.py
CHANGED
@@ -10,7 +10,7 @@ HOME = np.array([[0.5, 0.0], [0.0, 0.0]]).ravel()
|
|
10 |
|
11 |
## Policy Operator
|
12 |
class Operator:
|
13 |
-
def speak(text: str):
|
14 |
speak(text)
|
15 |
|
16 |
def ask_model(self, image, text: str) -> bool:
|
@@ -21,9 +21,17 @@ class Operator:
|
|
21 |
if dora_event["type"] == "INPUT":
|
22 |
id = dora_event["id"]
|
23 |
if id == "init":
|
24 |
-
send_output("go_to", pa.array(
|
25 |
elif id == "goal_reached":
|
|
|
26 |
image = dora_event["value"].to_numpy().reshape((540, 960, 3))
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
return DoraStatus.CONTINUE
|
|
|
10 |
|
11 |
## Policy Operator
|
12 |
class Operator:
|
13 |
+
def speak(self, text: str):
|
14 |
speak(text)
|
15 |
|
16 |
def ask_model(self, image, text: str) -> bool:
|
|
|
21 |
if dora_event["type"] == "INPUT":
|
22 |
id = dora_event["id"]
|
23 |
if id == "init":
|
24 |
+
send_output("go_to", pa.array(COUCH))
|
25 |
elif id == "goal_reached":
|
26 |
+
print("goal reached", flush=True)
|
27 |
image = dora_event["value"].to_numpy().reshape((540, 960, 3))
|
28 |
+
if self.ask_model(image, "Is there anyone with a bruise shirt?"):
|
29 |
+
self.speak("I'm gonna go get coffee.")
|
30 |
+
send_output("go_to", pa.array(KITCHEN))
|
31 |
+
self.speak("I'm going to the kitchen.")
|
32 |
+
else:
|
33 |
+
self.speak("There's no one with a bruise shirt.")
|
34 |
+
send_output("go_to", pa.array(COUCH))
|
35 |
+
self.speak("I'm going to the couch.")
|
36 |
|
37 |
return DoraStatus.CONTINUE
|
operators/utils.py
CHANGED
@@ -22,6 +22,8 @@ def speak(text):
|
|
22 |
engine.runAndWait()
|
23 |
|
24 |
|
|
|
|
|
25 |
MODE = "quantized"
|
26 |
DEVICE = "cuda"
|
27 |
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
|
@@ -75,6 +77,7 @@ def ask_vlm(image, instruction):
|
|
75 |
f"{instruction}.<end_of_utterance>\n",
|
76 |
"Assistant:",
|
77 |
]
|
|
|
78 |
inputs = PROCESSOR(prompts)
|
79 |
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
|
80 |
|
@@ -82,4 +85,39 @@ def ask_vlm(image, instruction):
|
|
82 |
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10
|
83 |
)
|
84 |
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
engine.runAndWait()
|
23 |
|
24 |
|
25 |
+
speak("hello")
|
26 |
+
|
27 |
MODE = "quantized"
|
28 |
DEVICE = "cuda"
|
29 |
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
|
|
|
77 |
f"{instruction}.<end_of_utterance>\n",
|
78 |
"Assistant:",
|
79 |
]
|
80 |
+
speak(instruction)
|
81 |
inputs = PROCESSOR(prompts)
|
82 |
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
|
83 |
|
|
|
85 |
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10
|
86 |
)
|
87 |
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
88 |
+
|
89 |
+
text = generated_texts[0].split("\nAssistant: ")[1]
|
90 |
+
speak(text)
|
91 |
+
return text
|
92 |
+
|
93 |
+
|
94 |
+
# import requests
|
95 |
+
# import torch
|
96 |
+
# from PIL import Image
|
97 |
+
# from io import BytesIO
|
98 |
+
|
99 |
+
|
100 |
+
# def download_image(url):
|
101 |
+
# try:
|
102 |
+
# # Send a GET request to the URL to download the image
|
103 |
+
# response = requests.get(url)
|
104 |
+
# # Check if the request was successful (status code 200)
|
105 |
+
# if response.status_code == 200:
|
106 |
+
# # Open the image using PIL
|
107 |
+
# image = Image.open(BytesIO(response.content))
|
108 |
+
# # Return the PIL image object
|
109 |
+
# return image
|
110 |
+
# else:
|
111 |
+
# print(f"Failed to download image. Status code: {response.status_code}")
|
112 |
+
# return None
|
113 |
+
# except Exception as e:
|
114 |
+
# print(f"An error occurred: {e}")
|
115 |
+
# return None
|
116 |
+
|
117 |
+
|
118 |
+
# # Create inputs
|
119 |
+
# image1 = download_image(
|
120 |
+
# "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
121 |
+
# )
|
122 |
+
|
123 |
+
# print(ask_vlm(image1, "What is this?"))
|