haixuantao
commited on
Commit
·
23f48d8
1
Parent(s):
fe79d42
Fix demo testing
Browse files- graphs/dataflow_robot_vlm.yml +2 -2
- operators/llm_op.py +6 -2
- operators/planning_op.py +8 -7
- operators/plot.py +93 -1
- operators/policy.py +10 -25
- operators/utils.py +85 -0
graphs/dataflow_robot_vlm.yml
CHANGED
@@ -50,7 +50,7 @@ nodes:
|
|
50 |
init: llm/init
|
51 |
goal_reached: planning/goal_reached
|
52 |
outputs:
|
53 |
-
-
|
54 |
- reloaded
|
55 |
|
56 |
- id: planning
|
@@ -59,7 +59,7 @@ nodes:
|
|
59 |
inputs:
|
60 |
position: robot/position
|
61 |
control_reply: robot/control_reply
|
62 |
-
set_goal: policy/
|
63 |
image: webcam/image
|
64 |
outputs:
|
65 |
- control
|
|
|
50 |
init: llm/init
|
51 |
goal_reached: planning/goal_reached
|
52 |
outputs:
|
53 |
+
- go_to
|
54 |
- reloaded
|
55 |
|
56 |
- id: planning
|
|
|
59 |
inputs:
|
60 |
position: robot/position
|
61 |
control_reply: robot/control_reply
|
62 |
+
set_goal: policy/go_to
|
63 |
image: webcam/image
|
64 |
outputs:
|
65 |
- control
|
operators/llm_op.py
CHANGED
@@ -30,6 +30,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
30 |
device_map="auto",
|
31 |
trust_remote_code=True,
|
32 |
revision="main",
|
|
|
33 |
).to("cuda:0")
|
34 |
|
35 |
|
@@ -166,9 +167,12 @@ class Operator:
|
|
166 |
print("response: ", output, flush=True)
|
167 |
with open(path, "w") as file:
|
168 |
file.write(source_code)
|
169 |
-
time.sleep(
|
170 |
send_output("init", pa.array([]))
|
171 |
|
|
|
|
|
|
|
172 |
return DoraStatus.CONTINUE
|
173 |
|
174 |
def ask_llm(self, prompt):
|
@@ -218,7 +222,7 @@ if __name__ == "__main__":
|
|
218 |
[
|
219 |
{
|
220 |
"path": path,
|
221 |
-
"user_message": "
|
222 |
},
|
223 |
]
|
224 |
),
|
|
|
30 |
device_map="auto",
|
31 |
trust_remote_code=True,
|
32 |
revision="main",
|
33 |
+
max_length=1024,
|
34 |
).to("cuda:0")
|
35 |
|
36 |
|
|
|
167 |
print("response: ", output, flush=True)
|
168 |
with open(path, "w") as file:
|
169 |
file.write(source_code)
|
170 |
+
time.sleep(8)
|
171 |
send_output("init", pa.array([]))
|
172 |
|
173 |
+
## Stopping to liberate GPU space
|
174 |
+
return DoraStatus.STOP
|
175 |
+
|
176 |
return DoraStatus.CONTINUE
|
177 |
|
178 |
def ask_llm(self, prompt):
|
|
|
222 |
[
|
223 |
{
|
224 |
"path": path,
|
225 |
+
"user_message": "Ask model if there is someone with a red shirt, if there is, say I'm bringing coffee, and go to the kitchen, if no one go home",
|
226 |
},
|
227 |
]
|
228 |
),
|
operators/planning_op.py
CHANGED
@@ -109,7 +109,7 @@ class Operator:
|
|
109 |
self.waypoints = dora_event["value"].to_numpy().reshape((-1, 2))
|
110 |
elif id == "position":
|
111 |
## No bounding box yet
|
112 |
-
if self.waypoints is None
|
113 |
print("no waypoint", flush=True)
|
114 |
return DoraStatus.CONTINUE
|
115 |
if self.completed == False:
|
@@ -126,10 +126,11 @@ class Operator:
|
|
126 |
):
|
127 |
self.waypoints = self.waypoints[1:]
|
128 |
print("removing waypoints", flush=True)
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
133 |
|
134 |
z = np.deg2rad(z)
|
135 |
self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]])
|
@@ -178,8 +179,8 @@ class Operator:
|
|
178 |
# },
|
179 |
{
|
180 |
"value": [
|
181 |
-
|
182 |
-
|
183 |
0.0, # -goal_angle,
|
184 |
0.6,
|
185 |
0.0, # 50,
|
|
|
109 |
self.waypoints = dora_event["value"].to_numpy().reshape((-1, 2))
|
110 |
elif id == "position":
|
111 |
## No bounding box yet
|
112 |
+
if self.waypoints is None:
|
113 |
print("no waypoint", flush=True)
|
114 |
return DoraStatus.CONTINUE
|
115 |
if self.completed == False:
|
|
|
126 |
):
|
127 |
self.waypoints = self.waypoints[1:]
|
128 |
print("removing waypoints", flush=True)
|
129 |
+
if len(self.waypoints) == 0:
|
130 |
+
print("goal reached", flush=True)
|
131 |
+
send_output("goal_reached", pa.array(self.image.ravel()))
|
132 |
+
self.waypoints = None
|
133 |
+
return DoraStatus.CONTINUE
|
134 |
|
135 |
z = np.deg2rad(z)
|
136 |
self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]])
|
|
|
179 |
# },
|
180 |
{
|
181 |
"value": [
|
182 |
+
self.waypoints[0][0],
|
183 |
+
self.waypoints[0][1],
|
184 |
0.0, # -goal_angle,
|
185 |
0.6,
|
186 |
0.0, # 50,
|
operators/plot.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import cv2
|
2 |
-
|
3 |
|
4 |
from dora import DoraStatus
|
5 |
|
@@ -16,6 +16,78 @@ writer = cv2.VideoWriter(
|
|
16 |
(CAMERA_WIDTH, CAMERA_HEIGHT),
|
17 |
)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
class Operator:
|
21 |
"""
|
@@ -27,6 +99,8 @@ class Operator:
|
|
27 |
self.buffer = ""
|
28 |
self.submitted = []
|
29 |
self.lines = []
|
|
|
|
|
30 |
|
31 |
def on_event(
|
32 |
self,
|
@@ -36,6 +110,13 @@ class Operator:
|
|
36 |
if dora_event["type"] == "INPUT":
|
37 |
id = dora_event["id"]
|
38 |
value = dora_event["value"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
if id == "image":
|
40 |
|
41 |
image = (
|
@@ -74,6 +155,12 @@ class Operator:
|
|
74 |
return DoraStatus.STOP
|
75 |
elif id == "keyboard_buffer":
|
76 |
self.buffer = value[0].as_py()
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
elif "message" in id:
|
78 |
self.submitted += [
|
79 |
{
|
@@ -86,3 +173,8 @@ class Operator:
|
|
86 |
]
|
87 |
|
88 |
return DoraStatus.CONTINUE
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
+
import numpy as np
|
3 |
|
4 |
from dora import DoraStatus
|
5 |
|
|
|
16 |
(CAMERA_WIDTH, CAMERA_HEIGHT),
|
17 |
)
|
18 |
|
19 |
+
GOAL_OBJECTIVES = [10, 0]
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
|
24 |
+
def find_largest_gap_midpoint(bboxes, image_width, goal_x):
|
25 |
+
"""
|
26 |
+
Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap.
|
27 |
+
|
28 |
+
Parameters:
|
29 |
+
- bboxes (np.array): A numpy array where each row represents a bounding box with
|
30 |
+
the format [min_x, min_y, max_x, max_y, confidence, label].
|
31 |
+
- image_width (int): The width of the image in pixels.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
- int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap.
|
35 |
+
"""
|
36 |
+
if bboxes.size == 0:
|
37 |
+
# No bounding boxes, return the midpoint of the image as the largest gap
|
38 |
+
return image_width // 2
|
39 |
+
|
40 |
+
events = []
|
41 |
+
for bbox in bboxes:
|
42 |
+
min_x, max_x = bbox[0], bbox[2]
|
43 |
+
events.append((min_x, "enter"))
|
44 |
+
events.append((max_x, "exit"))
|
45 |
+
|
46 |
+
# Include image boundaries as part of the events
|
47 |
+
events.append(
|
48 |
+
(0, "exit")
|
49 |
+
) # Start of the image, considered an 'exit' point for logic simplicity
|
50 |
+
events.append(
|
51 |
+
(image_width, "enter")
|
52 |
+
) # End of the image, considered an 'enter' point
|
53 |
+
|
54 |
+
# Sort events, with exits before enters at the same position to ensure gap calculation correctness
|
55 |
+
events.sort(key=lambda x: (x[0], x[1] == "enter"))
|
56 |
+
|
57 |
+
# Sweep line algorithm to find the largest gap
|
58 |
+
current_boxes = 1
|
59 |
+
last_x = 0
|
60 |
+
largest_gap = 0
|
61 |
+
gap_start_x = None
|
62 |
+
largest_gap_mid = None # Midpoint of the largest gap
|
63 |
+
|
64 |
+
for x, event_type in events:
|
65 |
+
if current_boxes == 0 and gap_start_x is not None:
|
66 |
+
# Calculate gap
|
67 |
+
gap = x - gap_start_x
|
68 |
+
if gap > largest_gap:
|
69 |
+
largest_gap = gap
|
70 |
+
gap_end_x = gap_start_x + x
|
71 |
+
largest_gap_mid = (gap_start_x + x) // 2
|
72 |
+
if goal_x < gap_end_x and goal_x > gap_start_x:
|
73 |
+
return goal_x
|
74 |
+
return largest_gap_mid
|
75 |
+
# elif goal_x > gap_end_x:
|
76 |
+
# return max(gap_end_x - 50, largest_gap_mid)
|
77 |
+
# elif goal_x < gap_start_x:
|
78 |
+
# return min(gap_start_x + 50, largest_gap_mid)
|
79 |
+
|
80 |
+
if event_type == "enter":
|
81 |
+
current_boxes += 1
|
82 |
+
if current_boxes == 1:
|
83 |
+
gap_start_x = None # No longer in a gap
|
84 |
+
elif event_type == "exit":
|
85 |
+
current_boxes -= 1
|
86 |
+
if current_boxes == 0:
|
87 |
+
gap_start_x = x # Start of a potential gap
|
88 |
+
|
89 |
+
return largest_gap_mid
|
90 |
+
|
91 |
|
92 |
class Operator:
|
93 |
"""
|
|
|
99 |
self.buffer = ""
|
100 |
self.submitted = []
|
101 |
self.lines = []
|
102 |
+
self.gap_x = CAMERA_WIDTH // 2
|
103 |
+
self.position = [0, 0, 0]
|
104 |
|
105 |
def on_event(
|
106 |
self,
|
|
|
110 |
if dora_event["type"] == "INPUT":
|
111 |
id = dora_event["id"]
|
112 |
value = dora_event["value"]
|
113 |
+
|
114 |
+
if id == "position":
|
115 |
+
|
116 |
+
value = dora_event["value"].to_numpy()
|
117 |
+
[x, y, z] = value
|
118 |
+
self.position = [x, y, z]
|
119 |
+
|
120 |
if id == "image":
|
121 |
|
122 |
image = (
|
|
|
155 |
return DoraStatus.STOP
|
156 |
elif id == "keyboard_buffer":
|
157 |
self.buffer = value[0].as_py()
|
158 |
+
elif id == "bbox":
|
159 |
+
self.bboxs = value.to_numpy().reshape((-1, 6))
|
160 |
+
|
161 |
+
self.gap_x = find_largest_gap_midpoint(
|
162 |
+
self.bboxs, image_width=CAMERA_WIDTH, goal_x=10
|
163 |
+
)
|
164 |
elif "message" in id:
|
165 |
self.submitted += [
|
166 |
{
|
|
|
173 |
]
|
174 |
|
175 |
return DoraStatus.CONTINUE
|
176 |
+
|
177 |
+
|
178 |
+
## Angle = Arctan Proj Object y / x
|
179 |
+
|
180 |
+
## Relation linearire 0 - 60 ; 0 - CAMERA_WIDTH
|
operators/policy.py
CHANGED
@@ -1,42 +1,27 @@
|
|
1 |
-
from dora import DoraStatus
|
2 |
import numpy as np
|
3 |
import pyarrow as pa
|
4 |
-
from
|
5 |
-
import
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
|
12 |
## Policy Operator
|
13 |
class Operator:
|
14 |
-
def
|
15 |
-
|
16 |
-
voices = engine.getProperty("voices")
|
17 |
-
engine.setProperty("voice", voices[3].id)
|
18 |
-
self.engine = engine
|
19 |
|
20 |
-
def
|
21 |
-
self.engine.say(text)
|
22 |
-
|
23 |
-
# Ask vision model for information
|
24 |
-
def ask_model(self, image: np.ndarray, text: str) -> str:
|
25 |
text = ask_vlm(image, text)
|
26 |
return "Yes, " in text
|
27 |
|
28 |
-
def on_event(
|
29 |
-
self,
|
30 |
-
dora_event: dict,
|
31 |
-
send_output,
|
32 |
-
) -> DoraStatus:
|
33 |
if dora_event["type"] == "INPUT":
|
34 |
id = dora_event["id"]
|
35 |
-
# On initialization
|
36 |
if id == "init":
|
37 |
-
send_output("
|
38 |
-
|
39 |
-
# On destination goal reached
|
40 |
elif id == "goal_reached":
|
41 |
image = dora_event["value"].to_numpy().reshape((540, 960, 3))
|
42 |
pass
|
|
|
|
|
1 |
import numpy as np
|
2 |
import pyarrow as pa
|
3 |
+
from dora import DoraStatus
|
4 |
+
from utils import ask_vlm, speak
|
|
|
5 |
|
6 |
+
COUCH = np.array([[0.5, 0], [0.5, 0.5]]).ravel()
|
7 |
+
KITCHEN = np.array([[0.5, 0.0], [1.0, -1.0]]).ravel()
|
8 |
+
HOME = np.array([[0.5, 0.0], [0.0, 0.0]]).ravel()
|
9 |
|
10 |
|
11 |
## Policy Operator
|
12 |
class Operator:
|
13 |
+
def speak(text: str):
|
14 |
+
speak(text)
|
|
|
|
|
|
|
15 |
|
16 |
+
def ask_model(self, image, text: str) -> bool:
|
|
|
|
|
|
|
|
|
17 |
text = ask_vlm(image, text)
|
18 |
return "Yes, " in text
|
19 |
|
20 |
+
def on_event(self, dora_event: dict, send_output) -> DoraStatus:
|
|
|
|
|
|
|
|
|
21 |
if dora_event["type"] == "INPUT":
|
22 |
id = dora_event["id"]
|
|
|
23 |
if id == "init":
|
24 |
+
send_output("go_to", pa.array([]))
|
|
|
|
|
25 |
elif id == "goal_reached":
|
26 |
image = dora_event["value"].to_numpy().reshape((540, 960, 3))
|
27 |
pass
|
operators/utils.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pyttsx3
|
8 |
+
|
9 |
+
|
10 |
+
START_TO_COUCH = np.array([[0.5, 0], [0.5, 0.5]]).ravel()
|
11 |
+
COUCH_TO_KITCHEN = np.array([[0.5, -0.5], [1.0, -1.0]]).ravel()
|
12 |
+
KITCHEN_TO_START = np.array([[0.5, -0.5], [0, 0]]).ravel()
|
13 |
+
|
14 |
+
engine = pyttsx3.init("espeak")
|
15 |
+
voices = engine.getProperty("voices")
|
16 |
+
engine.setProperty("voice", voices[3].id)
|
17 |
+
|
18 |
+
|
19 |
+
def speak(text):
|
20 |
+
print(f"said {text}", flush=True)
|
21 |
+
engine.say(text)
|
22 |
+
engine.runAndWait()
|
23 |
+
|
24 |
+
|
25 |
+
MODE = "quantized"
|
26 |
+
DEVICE = "cuda"
|
27 |
+
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
|
28 |
+
BAD_WORDS_IDS = PROCESSOR.tokenizer(
|
29 |
+
["<image>", "<fake_token_around_image>"], add_special_tokens=False
|
30 |
+
).input_ids
|
31 |
+
EOS_WORDS_IDS = PROCESSOR.tokenizer(
|
32 |
+
"<end_of_utterance>", add_special_tokens=False
|
33 |
+
).input_ids + [PROCESSOR.tokenizer.eos_token_id]
|
34 |
+
|
35 |
+
# Load model
|
36 |
+
if MODE == "regular":
|
37 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
38 |
+
"HuggingFaceM4/idefics2-tfrm-compatible",
|
39 |
+
torch_dtype=torch.float16,
|
40 |
+
trust_remote_code=True,
|
41 |
+
_attn_implementation="flash_attention_2",
|
42 |
+
revision="3dc93be345d64fb6b1c550a233fe87ddb36f183d",
|
43 |
+
).to(DEVICE)
|
44 |
+
elif MODE == "quantized":
|
45 |
+
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
|
46 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
47 |
+
quant_path, trust_remote_code=True
|
48 |
+
).to(DEVICE)
|
49 |
+
elif MODE == "fused_quantized":
|
50 |
+
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
|
51 |
+
quantization_config = AwqConfig(
|
52 |
+
bits=4,
|
53 |
+
fuse_max_seq_len=4096,
|
54 |
+
modules_to_fuse={
|
55 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
56 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
57 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
58 |
+
"use_alibi": False,
|
59 |
+
"num_attention_heads": 32,
|
60 |
+
"num_key_value_heads": 8,
|
61 |
+
"hidden_size": 4096,
|
62 |
+
},
|
63 |
+
)
|
64 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
65 |
+
quant_path, quantization_config=quantization_config, trust_remote_code=True
|
66 |
+
).to(DEVICE)
|
67 |
+
else:
|
68 |
+
raise ValueError("Unknown mode")
|
69 |
+
|
70 |
+
|
71 |
+
def ask_vlm(image, instruction):
|
72 |
+
prompts = [
|
73 |
+
"User:",
|
74 |
+
image,
|
75 |
+
f"{instruction}.<end_of_utterance>\n",
|
76 |
+
"Assistant:",
|
77 |
+
]
|
78 |
+
inputs = PROCESSOR(prompts)
|
79 |
+
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
|
80 |
+
|
81 |
+
generated_ids = model.generate(
|
82 |
+
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10
|
83 |
+
)
|
84 |
+
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
|
85 |
+
return generated_texts[0].split("\nAssistant: ")[1]
|