meg's picture
meg HF staff
Add files using upload-large-folder tool
e411e4d verified
raw
history blame
7.7 kB
from functools import partial
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from ._builder import build_model_with_cfg
from ._builder import pretrained_cfg_for_features
from ._efficientnet_blocks import SqueezeExcite
from ._efficientnet_builder import decode_arch_def, resolve_act_layer, resolve_bn_args, round_channels
from ._registry import register_model, generate_default_cfgs
from .mobilenetv3 import MobileNetV3, MobileNetV3Features
__all__ = [] # model_registry will add each entrypoint fn to this
def _gen_hardcorenas(pretrained, variant, arch_def, **kwargs):
"""Creates a hardcorenas model
Ref impl: https://github.com/Alibaba-MIIL/HardCoReNAS
Paper: https://arxiv.org/abs/2102.11646
"""
num_features = 1280
se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels)
model_kwargs = dict(
block_args=decode_arch_def(arch_def),
num_features=num_features,
stem_size=32,
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
act_layer=resolve_act_layer(kwargs, 'hard_swish'),
se_layer=se_layer,
**kwargs,
)
features_only = False
model_cls = MobileNetV3
kwargs_filter = None
if model_kwargs.pop('features_only', False):
features_only = True
kwargs_filter = ('num_classes', 'num_features', 'global_pool', 'head_conv', 'head_bias', 'global_pool')
model_cls = MobileNetV3Features
model = build_model_with_cfg(
model_cls,
variant,
pretrained,
pretrained_strict=not features_only,
kwargs_filter=kwargs_filter,
**model_kwargs,
)
if features_only:
model.default_cfg = pretrained_cfg_for_features(model.default_cfg)
return model
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv_stem', 'classifier': 'classifier',
**kwargs
}
default_cfgs = generate_default_cfgs({
'hardcorenas_a.miil_green_in1k': _cfg(hf_hub_id='timm/'),
'hardcorenas_b.miil_green_in1k': _cfg(hf_hub_id='timm/'),
'hardcorenas_c.miil_green_in1k': _cfg(hf_hub_id='timm/'),
'hardcorenas_d.miil_green_in1k': _cfg(hf_hub_id='timm/'),
'hardcorenas_e.miil_green_in1k': _cfg(hf_hub_id='timm/'),
'hardcorenas_f.miil_green_in1k': _cfg(hf_hub_id='timm/'),
})
@register_model
def hardcorenas_a(pretrained=False, **kwargs) -> MobileNetV3:
""" hardcorenas_A """
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e6_c40_nre_se0.25'],
['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25'],
['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25'],
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_a', arch_def=arch_def, **kwargs)
return model
@register_model
def hardcorenas_b(pretrained=False, **kwargs) -> MobileNetV3:
""" hardcorenas_B """
arch_def = [['ds_r1_k3_s1_e1_c16_nre'],
['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25', 'ir_r1_k3_s1_e3_c24_nre'],
['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre'],
['ir_r1_k5_s2_e3_c80', 'ir_r1_k5_s1_e3_c80', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'],
['ir_r1_k5_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'],
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'],
['cn_r1_k1_s1_c960']]
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_b', arch_def=arch_def, **kwargs)
return model
@register_model
def hardcorenas_c(pretrained=False, **kwargs) -> MobileNetV3:
""" hardcorenas_C """
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre',
'ir_r1_k5_s1_e3_c40_nre'],
['ir_r1_k5_s2_e4_c80', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'],
['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'],
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'],
['cn_r1_k1_s1_c960']]
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_c', arch_def=arch_def, **kwargs)
return model
@register_model
def hardcorenas_d(pretrained=False, **kwargs) -> MobileNetV3:
""" hardcorenas_D """
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
['ir_r1_k5_s2_e3_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k3_s1_e3_c40_nre_se0.25'],
['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25',
'ir_r1_k3_s1_e3_c80_se0.25'],
['ir_r1_k3_s1_e4_c112_se0.25', 'ir_r1_k5_s1_e4_c112_se0.25', 'ir_r1_k3_s1_e3_c112_se0.25',
'ir_r1_k5_s1_e3_c112_se0.25'],
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25',
'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_d', arch_def=arch_def, **kwargs)
return model
@register_model
def hardcorenas_e(pretrained=False, **kwargs) -> MobileNetV3:
""" hardcorenas_E """
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25',
'ir_r1_k3_s1_e3_c40_nre_se0.25'], ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e6_c80_se0.25'],
['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25',
'ir_r1_k5_s1_e3_c112_se0.25'],
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25',
'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_e', arch_def=arch_def, **kwargs)
return model
@register_model
def hardcorenas_f(pretrained=False, **kwargs) -> MobileNetV3:
""" hardcorenas_F """
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e6_c40_nre_se0.25'],
['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25',
'ir_r1_k3_s1_e3_c80_se0.25'],
['ir_r1_k3_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25',
'ir_r1_k3_s1_e3_c112_se0.25'],
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25',
'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_f', arch_def=arch_def, **kwargs)
return model