|
"""PyTorch CspNet |
|
|
|
A PyTorch implementation of Cross Stage Partial Networks including: |
|
* CSPResNet50 |
|
* CSPResNeXt50 |
|
* CSPDarkNet53 |
|
* and DarkNet53 for good measure |
|
|
|
Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 |
|
|
|
Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from dataclasses import dataclass, asdict, replace |
|
from functools import partial |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import ClassifierHead, ConvNormAct, DropPath, get_attn, create_act_layer, make_divisible |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import named_apply, MATCH_PREV_GROUP |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
__all__ = ['CspNet'] |
|
|
|
|
|
@dataclass |
|
class CspStemCfg: |
|
out_chs: Union[int, Tuple[int, ...]] = 32 |
|
stride: Union[int, Tuple[int, ...]] = 2 |
|
kernel_size: int = 3 |
|
padding: Union[int, str] = '' |
|
pool: Optional[str] = '' |
|
|
|
|
|
def _pad_arg(x, n): |
|
|
|
if not isinstance(x, (tuple, list)): |
|
x = (x,) |
|
curr_n = len(x) |
|
pad_n = n - curr_n |
|
if pad_n <= 0: |
|
return x[:n] |
|
return tuple(x + (x[-1],) * pad_n) |
|
|
|
|
|
@dataclass |
|
class CspStagesCfg: |
|
depth: Tuple[int, ...] = (3, 3, 5, 2) |
|
out_chs: Tuple[int, ...] = (128, 256, 512, 1024) |
|
stride: Union[int, Tuple[int, ...]] = 2 |
|
groups: Union[int, Tuple[int, ...]] = 1 |
|
block_ratio: Union[float, Tuple[float, ...]] = 1.0 |
|
bottle_ratio: Union[float, Tuple[float, ...]] = 1. |
|
avg_down: Union[bool, Tuple[bool, ...]] = False |
|
attn_layer: Optional[Union[str, Tuple[str, ...]]] = None |
|
attn_kwargs: Optional[Union[Dict, Tuple[Dict]]] = None |
|
stage_type: Union[str, Tuple[str]] = 'csp' |
|
block_type: Union[str, Tuple[str]] = 'bottle' |
|
|
|
|
|
expand_ratio: Union[float, Tuple[float, ...]] = 1.0 |
|
cross_linear: Union[bool, Tuple[bool, ...]] = False |
|
down_growth: Union[bool, Tuple[bool, ...]] = False |
|
|
|
def __post_init__(self): |
|
n = len(self.depth) |
|
assert len(self.out_chs) == n |
|
self.stride = _pad_arg(self.stride, n) |
|
self.groups = _pad_arg(self.groups, n) |
|
self.block_ratio = _pad_arg(self.block_ratio, n) |
|
self.bottle_ratio = _pad_arg(self.bottle_ratio, n) |
|
self.avg_down = _pad_arg(self.avg_down, n) |
|
self.attn_layer = _pad_arg(self.attn_layer, n) |
|
self.attn_kwargs = _pad_arg(self.attn_kwargs, n) |
|
self.stage_type = _pad_arg(self.stage_type, n) |
|
self.block_type = _pad_arg(self.block_type, n) |
|
|
|
self.expand_ratio = _pad_arg(self.expand_ratio, n) |
|
self.cross_linear = _pad_arg(self.cross_linear, n) |
|
self.down_growth = _pad_arg(self.down_growth, n) |
|
|
|
|
|
@dataclass |
|
class CspModelCfg: |
|
stem: CspStemCfg |
|
stages: CspStagesCfg |
|
zero_init_last: bool = True |
|
act_layer: str = 'leaky_relu' |
|
norm_layer: str = 'batchnorm' |
|
aa_layer: Optional[str] = None |
|
|
|
|
|
def _cs3_cfg( |
|
width_multiplier=1.0, |
|
depth_multiplier=1.0, |
|
avg_down=False, |
|
act_layer='silu', |
|
focus=False, |
|
attn_layer=None, |
|
attn_kwargs=None, |
|
bottle_ratio=1.0, |
|
block_type='dark', |
|
): |
|
if focus: |
|
stem_cfg = CspStemCfg( |
|
out_chs=make_divisible(64 * width_multiplier), |
|
kernel_size=6, stride=2, padding=2, pool='') |
|
else: |
|
stem_cfg = CspStemCfg( |
|
out_chs=tuple([make_divisible(c * width_multiplier) for c in (32, 64)]), |
|
kernel_size=3, stride=2, pool='') |
|
return CspModelCfg( |
|
stem=stem_cfg, |
|
stages=CspStagesCfg( |
|
out_chs=tuple([make_divisible(c * width_multiplier) for c in (128, 256, 512, 1024)]), |
|
depth=tuple([int(d * depth_multiplier) for d in (3, 6, 9, 3)]), |
|
stride=2, |
|
bottle_ratio=bottle_ratio, |
|
block_ratio=0.5, |
|
avg_down=avg_down, |
|
attn_layer=attn_layer, |
|
attn_kwargs=attn_kwargs, |
|
stage_type='cs3', |
|
block_type=block_type, |
|
), |
|
act_layer=act_layer, |
|
) |
|
|
|
|
|
class BottleneckBlock(nn.Module): |
|
""" ResNe(X)t Bottleneck Block |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
dilation=1, |
|
bottle_ratio=0.25, |
|
groups=1, |
|
act_layer=nn.ReLU, |
|
norm_layer=nn.BatchNorm2d, |
|
attn_last=False, |
|
attn_layer=None, |
|
drop_block=None, |
|
drop_path=0. |
|
): |
|
super(BottleneckBlock, self).__init__() |
|
mid_chs = int(round(out_chs * bottle_ratio)) |
|
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) |
|
attn_last = attn_layer is not None and attn_last |
|
attn_first = attn_layer is not None and not attn_last |
|
|
|
self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) |
|
self.conv2 = ConvNormAct( |
|
mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, |
|
drop_layer=drop_block, **ckwargs) |
|
self.attn2 = attn_layer(mid_chs, act_layer=act_layer) if attn_first else nn.Identity() |
|
self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs) |
|
self.attn3 = attn_layer(out_chs, act_layer=act_layer) if attn_last else nn.Identity() |
|
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() |
|
self.act3 = create_act_layer(act_layer) |
|
|
|
def zero_init_last(self): |
|
nn.init.zeros_(self.conv3.bn.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.attn2(x) |
|
x = self.conv3(x) |
|
x = self.attn3(x) |
|
x = self.drop_path(x) + shortcut |
|
|
|
|
|
x = self.act3(x) |
|
return x |
|
|
|
|
|
class DarkBlock(nn.Module): |
|
""" DarkNet Block |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
dilation=1, |
|
bottle_ratio=0.5, |
|
groups=1, |
|
act_layer=nn.ReLU, |
|
norm_layer=nn.BatchNorm2d, |
|
attn_layer=None, |
|
drop_block=None, |
|
drop_path=0. |
|
): |
|
super(DarkBlock, self).__init__() |
|
mid_chs = int(round(out_chs * bottle_ratio)) |
|
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) |
|
|
|
self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) |
|
self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() |
|
self.conv2 = ConvNormAct( |
|
mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups, |
|
drop_layer=drop_block, **ckwargs) |
|
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() |
|
|
|
def zero_init_last(self): |
|
nn.init.zeros_(self.conv2.bn.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.attn(x) |
|
x = self.conv2(x) |
|
x = self.drop_path(x) + shortcut |
|
return x |
|
|
|
|
|
class EdgeBlock(nn.Module): |
|
""" EdgeResidual / Fused-MBConv / MobileNetV1-like 3x3 + 1x1 block (w/ activated output) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
dilation=1, |
|
bottle_ratio=0.5, |
|
groups=1, |
|
act_layer=nn.ReLU, |
|
norm_layer=nn.BatchNorm2d, |
|
attn_layer=None, |
|
drop_block=None, |
|
drop_path=0. |
|
): |
|
super(EdgeBlock, self).__init__() |
|
mid_chs = int(round(out_chs * bottle_ratio)) |
|
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) |
|
|
|
self.conv1 = ConvNormAct( |
|
in_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, |
|
drop_layer=drop_block, **ckwargs) |
|
self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() |
|
self.conv2 = ConvNormAct(mid_chs, out_chs, kernel_size=1, **ckwargs) |
|
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() |
|
|
|
def zero_init_last(self): |
|
nn.init.zeros_(self.conv2.bn.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.attn(x) |
|
x = self.conv2(x) |
|
x = self.drop_path(x) + shortcut |
|
return x |
|
|
|
|
|
class CrossStage(nn.Module): |
|
"""Cross Stage.""" |
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
stride, |
|
dilation, |
|
depth, |
|
block_ratio=1., |
|
bottle_ratio=1., |
|
expand_ratio=1., |
|
groups=1, |
|
first_dilation=None, |
|
avg_down=False, |
|
down_growth=False, |
|
cross_linear=False, |
|
block_dpr=None, |
|
block_fn=BottleneckBlock, |
|
**block_kwargs, |
|
): |
|
super(CrossStage, self).__init__() |
|
first_dilation = first_dilation or dilation |
|
down_chs = out_chs if down_growth else in_chs |
|
self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) |
|
block_out_chs = int(round(out_chs * block_ratio)) |
|
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) |
|
aa_layer = block_kwargs.pop('aa_layer', None) |
|
|
|
if stride != 1 or first_dilation != dilation: |
|
if avg_down: |
|
self.conv_down = nn.Sequential( |
|
nn.AvgPool2d(2) if stride == 2 else nn.Identity(), |
|
ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) |
|
) |
|
else: |
|
self.conv_down = ConvNormAct( |
|
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, |
|
aa_layer=aa_layer, **conv_kwargs) |
|
prev_chs = down_chs |
|
else: |
|
self.conv_down = nn.Identity() |
|
prev_chs = in_chs |
|
|
|
|
|
|
|
|
|
self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) |
|
prev_chs = exp_chs // 2 |
|
|
|
self.blocks = nn.Sequential() |
|
for i in range(depth): |
|
self.blocks.add_module(str(i), block_fn( |
|
in_chs=prev_chs, |
|
out_chs=block_out_chs, |
|
dilation=dilation, |
|
bottle_ratio=bottle_ratio, |
|
groups=groups, |
|
drop_path=block_dpr[i] if block_dpr is not None else 0., |
|
**block_kwargs, |
|
)) |
|
prev_chs = block_out_chs |
|
|
|
|
|
self.conv_transition_b = ConvNormAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs) |
|
self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) |
|
|
|
def forward(self, x): |
|
x = self.conv_down(x) |
|
x = self.conv_exp(x) |
|
xs, xb = x.split(self.expand_chs // 2, dim=1) |
|
xb = self.blocks(xb) |
|
xb = self.conv_transition_b(xb).contiguous() |
|
out = self.conv_transition(torch.cat([xs, xb], dim=1)) |
|
return out |
|
|
|
|
|
class CrossStage3(nn.Module): |
|
"""Cross Stage 3. |
|
Similar to CrossStage, but with only one transition conv for the output. |
|
""" |
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
stride, |
|
dilation, |
|
depth, |
|
block_ratio=1., |
|
bottle_ratio=1., |
|
expand_ratio=1., |
|
groups=1, |
|
first_dilation=None, |
|
avg_down=False, |
|
down_growth=False, |
|
cross_linear=False, |
|
block_dpr=None, |
|
block_fn=BottleneckBlock, |
|
**block_kwargs, |
|
): |
|
super(CrossStage3, self).__init__() |
|
first_dilation = first_dilation or dilation |
|
down_chs = out_chs if down_growth else in_chs |
|
self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) |
|
block_out_chs = int(round(out_chs * block_ratio)) |
|
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) |
|
aa_layer = block_kwargs.pop('aa_layer', None) |
|
|
|
if stride != 1 or first_dilation != dilation: |
|
if avg_down: |
|
self.conv_down = nn.Sequential( |
|
nn.AvgPool2d(2) if stride == 2 else nn.Identity(), |
|
ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) |
|
) |
|
else: |
|
self.conv_down = ConvNormAct( |
|
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, |
|
aa_layer=aa_layer, **conv_kwargs) |
|
prev_chs = down_chs |
|
else: |
|
self.conv_down = None |
|
prev_chs = in_chs |
|
|
|
|
|
self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) |
|
prev_chs = exp_chs // 2 |
|
|
|
self.blocks = nn.Sequential() |
|
for i in range(depth): |
|
self.blocks.add_module(str(i), block_fn( |
|
in_chs=prev_chs, |
|
out_chs=block_out_chs, |
|
dilation=dilation, |
|
bottle_ratio=bottle_ratio, |
|
groups=groups, |
|
drop_path=block_dpr[i] if block_dpr is not None else 0., |
|
**block_kwargs, |
|
)) |
|
prev_chs = block_out_chs |
|
|
|
|
|
self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) |
|
|
|
def forward(self, x): |
|
x = self.conv_down(x) |
|
x = self.conv_exp(x) |
|
x1, x2 = x.split(self.expand_chs // 2, dim=1) |
|
x1 = self.blocks(x1) |
|
out = self.conv_transition(torch.cat([x1, x2], dim=1)) |
|
return out |
|
|
|
|
|
class DarkStage(nn.Module): |
|
"""DarkNet stage.""" |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
stride, |
|
dilation, |
|
depth, |
|
block_ratio=1., |
|
bottle_ratio=1., |
|
groups=1, |
|
first_dilation=None, |
|
avg_down=False, |
|
block_fn=BottleneckBlock, |
|
block_dpr=None, |
|
**block_kwargs, |
|
): |
|
super(DarkStage, self).__init__() |
|
first_dilation = first_dilation or dilation |
|
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) |
|
aa_layer = block_kwargs.pop('aa_layer', None) |
|
|
|
if avg_down: |
|
self.conv_down = nn.Sequential( |
|
nn.AvgPool2d(2) if stride == 2 else nn.Identity(), |
|
ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) |
|
) |
|
else: |
|
self.conv_down = ConvNormAct( |
|
in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, |
|
aa_layer=aa_layer, **conv_kwargs) |
|
|
|
prev_chs = out_chs |
|
block_out_chs = int(round(out_chs * block_ratio)) |
|
self.blocks = nn.Sequential() |
|
for i in range(depth): |
|
self.blocks.add_module(str(i), block_fn( |
|
in_chs=prev_chs, |
|
out_chs=block_out_chs, |
|
dilation=dilation, |
|
bottle_ratio=bottle_ratio, |
|
groups=groups, |
|
drop_path=block_dpr[i] if block_dpr is not None else 0., |
|
**block_kwargs |
|
)) |
|
prev_chs = block_out_chs |
|
|
|
def forward(self, x): |
|
x = self.conv_down(x) |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
def create_csp_stem( |
|
in_chans=3, |
|
out_chs=32, |
|
kernel_size=3, |
|
stride=2, |
|
pool='', |
|
padding='', |
|
act_layer=nn.ReLU, |
|
norm_layer=nn.BatchNorm2d, |
|
aa_layer=None, |
|
): |
|
stem = nn.Sequential() |
|
feature_info = [] |
|
if not isinstance(out_chs, (tuple, list)): |
|
out_chs = [out_chs] |
|
stem_depth = len(out_chs) |
|
assert stem_depth |
|
assert stride in (1, 2, 4) |
|
prev_feat = None |
|
prev_chs = in_chans |
|
last_idx = stem_depth - 1 |
|
stem_stride = 1 |
|
for i, chs in enumerate(out_chs): |
|
conv_name = f'conv{i + 1}' |
|
conv_stride = 2 if (i == 0 and stride > 1) or (i == last_idx and stride > 2 and not pool) else 1 |
|
if conv_stride > 1 and prev_feat is not None: |
|
feature_info.append(prev_feat) |
|
stem.add_module(conv_name, ConvNormAct( |
|
prev_chs, chs, kernel_size, |
|
stride=conv_stride, |
|
padding=padding if i == 0 else '', |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
)) |
|
stem_stride *= conv_stride |
|
prev_chs = chs |
|
prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', conv_name])) |
|
if pool: |
|
assert stride > 2 |
|
if prev_feat is not None: |
|
feature_info.append(prev_feat) |
|
if aa_layer is not None: |
|
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) |
|
stem.add_module('aa', aa_layer(channels=prev_chs, stride=2)) |
|
pool_name = 'aa' |
|
else: |
|
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) |
|
pool_name = 'pool' |
|
stem_stride *= 2 |
|
prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', pool_name])) |
|
feature_info.append(prev_feat) |
|
return stem, feature_info |
|
|
|
|
|
def _get_stage_fn(stage_args): |
|
stage_type = stage_args.pop('stage_type') |
|
assert stage_type in ('dark', 'csp', 'cs3') |
|
if stage_type == 'dark': |
|
stage_args.pop('expand_ratio', None) |
|
stage_args.pop('cross_linear', None) |
|
stage_args.pop('down_growth', None) |
|
stage_fn = DarkStage |
|
elif stage_type == 'csp': |
|
stage_fn = CrossStage |
|
else: |
|
stage_fn = CrossStage3 |
|
return stage_fn, stage_args |
|
|
|
|
|
def _get_block_fn(stage_args): |
|
block_type = stage_args.pop('block_type') |
|
assert block_type in ('dark', 'edge', 'bottle') |
|
if block_type == 'dark': |
|
return DarkBlock, stage_args |
|
elif block_type == 'edge': |
|
return EdgeBlock, stage_args |
|
else: |
|
return BottleneckBlock, stage_args |
|
|
|
|
|
def _get_attn_fn(stage_args): |
|
attn_layer = stage_args.pop('attn_layer') |
|
attn_kwargs = stage_args.pop('attn_kwargs', None) or {} |
|
if attn_layer is not None: |
|
attn_layer = get_attn(attn_layer) |
|
if attn_kwargs: |
|
attn_layer = partial(attn_layer, **attn_kwargs) |
|
return attn_layer, stage_args |
|
|
|
|
|
def create_csp_stages( |
|
cfg: CspModelCfg, |
|
drop_path_rate: float, |
|
output_stride: int, |
|
stem_feat: Dict[str, Any], |
|
): |
|
cfg_dict = asdict(cfg.stages) |
|
num_stages = len(cfg.stages.depth) |
|
cfg_dict['block_dpr'] = [None] * num_stages if not drop_path_rate else \ |
|
[x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.stages.depth)).split(cfg.stages.depth)] |
|
stage_args = [dict(zip(cfg_dict.keys(), values)) for values in zip(*cfg_dict.values())] |
|
block_kwargs = dict( |
|
act_layer=cfg.act_layer, |
|
norm_layer=cfg.norm_layer, |
|
) |
|
|
|
dilation = 1 |
|
net_stride = stem_feat['reduction'] |
|
prev_chs = stem_feat['num_chs'] |
|
prev_feat = stem_feat |
|
feature_info = [] |
|
stages = [] |
|
for stage_idx, stage_args in enumerate(stage_args): |
|
stage_fn, stage_args = _get_stage_fn(stage_args) |
|
block_fn, stage_args = _get_block_fn(stage_args) |
|
attn_fn, stage_args = _get_attn_fn(stage_args) |
|
stride = stage_args.pop('stride') |
|
if stride != 1 and prev_feat: |
|
feature_info.append(prev_feat) |
|
if net_stride >= output_stride and stride > 1: |
|
dilation *= stride |
|
stride = 1 |
|
net_stride *= stride |
|
first_dilation = 1 if dilation in (1, 2) else 2 |
|
|
|
stages += [stage_fn( |
|
prev_chs, |
|
**stage_args, |
|
stride=stride, |
|
first_dilation=first_dilation, |
|
dilation=dilation, |
|
block_fn=block_fn, |
|
aa_layer=cfg.aa_layer, |
|
attn_layer=attn_fn, |
|
**block_kwargs, |
|
)] |
|
prev_chs = stage_args['out_chs'] |
|
prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}') |
|
|
|
feature_info.append(prev_feat) |
|
return nn.Sequential(*stages), feature_info |
|
|
|
|
|
class CspNet(nn.Module): |
|
"""Cross Stage Partial base model. |
|
|
|
Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 |
|
Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks |
|
|
|
NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the |
|
darknet impl. I did it this way for simplicity and less special cases. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
cfg: CspModelCfg, |
|
in_chans=3, |
|
num_classes=1000, |
|
output_stride=32, |
|
global_pool='avg', |
|
drop_rate=0., |
|
drop_path_rate=0., |
|
zero_init_last=True, |
|
**kwargs, |
|
): |
|
""" |
|
Args: |
|
cfg (CspModelCfg): Model architecture configuration |
|
in_chans (int): Number of input channels (default: 3) |
|
num_classes (int): Number of classifier classes (default: 1000) |
|
output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32) |
|
global_pool (str): Global pooling type (default: 'avg') |
|
drop_rate (float): Dropout rate (default: 0.) |
|
drop_path_rate (float): Stochastic depth drop-path rate (default: 0.) |
|
zero_init_last (bool): Zero-init last weight of residual path |
|
kwargs (dict): Extra kwargs overlayed onto cfg |
|
""" |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
assert output_stride in (8, 16, 32) |
|
|
|
cfg = replace(cfg, **kwargs) |
|
layer_args = dict( |
|
act_layer=cfg.act_layer, |
|
norm_layer=cfg.norm_layer, |
|
aa_layer=cfg.aa_layer |
|
) |
|
self.feature_info = [] |
|
|
|
|
|
self.stem, stem_feat_info = create_csp_stem(in_chans, **asdict(cfg.stem), **layer_args) |
|
self.feature_info.extend(stem_feat_info[:-1]) |
|
|
|
|
|
self.stages, stage_feat_info = create_csp_stages( |
|
cfg, |
|
drop_path_rate=drop_path_rate, |
|
output_stride=output_stride, |
|
stem_feat=stem_feat_info[-1], |
|
) |
|
prev_chs = stage_feat_info[-1]['num_chs'] |
|
self.feature_info.extend(stage_feat_info) |
|
|
|
|
|
self.num_features = self.head_hidden_size = prev_chs |
|
self.head = ClassifierHead( |
|
in_features=prev_chs, |
|
num_classes=num_classes, |
|
pool_type=global_pool, |
|
drop_rate=drop_rate, |
|
) |
|
|
|
named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^stem', |
|
blocks=r'^stages\.(\d+)' if coarse else [ |
|
(r'^stages\.(\d+)\.blocks\.(\d+)', None), |
|
(r'^stages\.(\d+)\..*transition', MATCH_PREV_GROUP), |
|
(r'^stages\.(\d+)', (0,)), |
|
] |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
assert not enable, 'gradient checkpointing not supported' |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, global_pool) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.stages(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _init_weights(module, name, zero_init_last=False): |
|
if isinstance(module, nn.Conv2d): |
|
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Linear): |
|
nn.init.normal_(module.weight, mean=0.0, std=0.01) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif zero_init_last and hasattr(module, 'zero_init_last'): |
|
module.zero_init_last() |
|
|
|
|
|
model_cfgs = dict( |
|
cspresnet50=CspModelCfg( |
|
stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), |
|
stages=CspStagesCfg( |
|
depth=(3, 3, 5, 2), |
|
out_chs=(128, 256, 512, 1024), |
|
stride=(1, 2), |
|
expand_ratio=2., |
|
bottle_ratio=0.5, |
|
cross_linear=True, |
|
), |
|
), |
|
cspresnet50d=CspModelCfg( |
|
stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), |
|
stages=CspStagesCfg( |
|
depth=(3, 3, 5, 2), |
|
out_chs=(128, 256, 512, 1024), |
|
stride=(1,) + (2,), |
|
expand_ratio=2., |
|
bottle_ratio=0.5, |
|
block_ratio=1., |
|
cross_linear=True, |
|
), |
|
), |
|
cspresnet50w=CspModelCfg( |
|
stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), |
|
stages=CspStagesCfg( |
|
depth=(3, 3, 5, 2), |
|
out_chs=(256, 512, 1024, 2048), |
|
stride=(1,) + (2,), |
|
expand_ratio=1., |
|
bottle_ratio=0.25, |
|
block_ratio=0.5, |
|
cross_linear=True, |
|
), |
|
), |
|
cspresnext50=CspModelCfg( |
|
stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), |
|
stages=CspStagesCfg( |
|
depth=(3, 3, 5, 2), |
|
out_chs=(256, 512, 1024, 2048), |
|
stride=(1,) + (2,), |
|
groups=32, |
|
expand_ratio=1., |
|
bottle_ratio=1., |
|
block_ratio=0.5, |
|
cross_linear=True, |
|
), |
|
), |
|
cspdarknet53=CspModelCfg( |
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), |
|
stages=CspStagesCfg( |
|
depth=(1, 2, 8, 8, 4), |
|
out_chs=(64, 128, 256, 512, 1024), |
|
stride=2, |
|
expand_ratio=(2.,) + (1.,), |
|
bottle_ratio=(0.5,) + (1.,), |
|
block_ratio=(1.,) + (0.5,), |
|
down_growth=True, |
|
block_type='dark', |
|
), |
|
), |
|
darknet17=CspModelCfg( |
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), |
|
stages=CspStagesCfg( |
|
depth=(1,) * 5, |
|
out_chs=(64, 128, 256, 512, 1024), |
|
stride=(2,), |
|
bottle_ratio=(0.5,), |
|
block_ratio=(1.,), |
|
stage_type='dark', |
|
block_type='dark', |
|
), |
|
), |
|
darknet21=CspModelCfg( |
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), |
|
stages=CspStagesCfg( |
|
depth=(1, 1, 1, 2, 2), |
|
out_chs=(64, 128, 256, 512, 1024), |
|
stride=(2,), |
|
bottle_ratio=(0.5,), |
|
block_ratio=(1.,), |
|
stage_type='dark', |
|
block_type='dark', |
|
|
|
), |
|
), |
|
sedarknet21=CspModelCfg( |
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), |
|
stages=CspStagesCfg( |
|
depth=(1, 1, 1, 2, 2), |
|
out_chs=(64, 128, 256, 512, 1024), |
|
stride=2, |
|
bottle_ratio=0.5, |
|
block_ratio=1., |
|
attn_layer='se', |
|
stage_type='dark', |
|
block_type='dark', |
|
|
|
), |
|
), |
|
darknet53=CspModelCfg( |
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), |
|
stages=CspStagesCfg( |
|
depth=(1, 2, 8, 8, 4), |
|
out_chs=(64, 128, 256, 512, 1024), |
|
stride=2, |
|
bottle_ratio=0.5, |
|
block_ratio=1., |
|
stage_type='dark', |
|
block_type='dark', |
|
), |
|
), |
|
darknetaa53=CspModelCfg( |
|
stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), |
|
stages=CspStagesCfg( |
|
depth=(1, 2, 8, 8, 4), |
|
out_chs=(64, 128, 256, 512, 1024), |
|
stride=2, |
|
bottle_ratio=0.5, |
|
block_ratio=1., |
|
avg_down=True, |
|
stage_type='dark', |
|
block_type='dark', |
|
), |
|
), |
|
|
|
cs3darknet_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5), |
|
cs3darknet_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67), |
|
cs3darknet_l=_cs3_cfg(), |
|
cs3darknet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33), |
|
|
|
cs3darknet_focus_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5, focus=True), |
|
cs3darknet_focus_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67, focus=True), |
|
cs3darknet_focus_l=_cs3_cfg(focus=True), |
|
cs3darknet_focus_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, focus=True), |
|
|
|
cs3sedarknet_l=_cs3_cfg(attn_layer='se', attn_kwargs=dict(rd_ratio=.25)), |
|
cs3sedarknet_x=_cs3_cfg(attn_layer='se', width_multiplier=1.25, depth_multiplier=1.33), |
|
|
|
cs3sedarknet_xdw=CspModelCfg( |
|
stem=CspStemCfg(out_chs=(32, 64), kernel_size=3, stride=2, pool=''), |
|
stages=CspStagesCfg( |
|
depth=(3, 6, 12, 4), |
|
out_chs=(256, 512, 1024, 2048), |
|
stride=2, |
|
groups=(1, 1, 256, 512), |
|
bottle_ratio=0.5, |
|
block_ratio=0.5, |
|
attn_layer='se', |
|
), |
|
act_layer='silu', |
|
), |
|
|
|
cs3edgenet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge'), |
|
cs3se_edgenet_x=_cs3_cfg( |
|
width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge', |
|
attn_layer='se', attn_kwargs=dict(rd_ratio=.25)), |
|
) |
|
|
|
|
|
def _create_cspnet(variant, pretrained=False, **kwargs): |
|
if variant.startswith('darknet') or variant.startswith('cspdarknet'): |
|
|
|
default_out_indices = (0, 1, 2, 3, 4, 5) |
|
else: |
|
default_out_indices = (0, 1, 2, 3, 4) |
|
out_indices = kwargs.pop('out_indices', default_out_indices) |
|
return build_model_with_cfg( |
|
CspNet, variant, pretrained, |
|
model_cfg=model_cfgs[variant], |
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), |
|
**kwargs) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), |
|
'crop_pct': 0.887, 'interpolation': 'bilinear', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'cspresnet50.ra_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'), |
|
'cspresnet50d.untrained': _cfg(), |
|
'cspresnet50w.untrained': _cfg(), |
|
'cspresnext50.ra_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth', |
|
), |
|
'cspdarknet53.ra_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'), |
|
|
|
'darknet17.untrained': _cfg(), |
|
'darknet21.untrained': _cfg(), |
|
'sedarknet21.untrained': _cfg(), |
|
'darknet53.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknet53_256_c2ns-3aeff817.pth', |
|
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'darknetaa53.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknetaa53_c2ns-5c28ec8a.pth', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
|
|
'cs3darknet_s.untrained': _cfg(interpolation='bicubic'), |
|
'cs3darknet_m.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_m_c2ns-43f06604.pth', |
|
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95, |
|
), |
|
'cs3darknet_l.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_l_c2ns-16220c5d.pth', |
|
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'cs3darknet_x.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_x_c2ns-4e4490aa.pth', |
|
interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
|
|
'cs3darknet_focus_s.ra4_e3600_r256_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
interpolation='bicubic', test_input_size=(3, 320, 320), test_crop_pct=1.0), |
|
'cs3darknet_focus_m.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_m_c2ns-e23bed41.pth', |
|
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'cs3darknet_focus_l.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_l_c2ns-65ef8888.pth', |
|
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'cs3darknet_focus_x.untrained': _cfg(interpolation='bicubic'), |
|
|
|
'cs3sedarknet_l.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_l_c2ns-e8d1dc13.pth', |
|
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'cs3sedarknet_x.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_x_c2ns-b4d0abc0.pth', |
|
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
|
|
'cs3sedarknet_xdw.untrained': _cfg(interpolation='bicubic'), |
|
|
|
'cs3edgenet_x.c2_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3edgenet_x_c2-2e1610a9.pth', |
|
interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'cs3se_edgenet_x.c2ns_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3se_edgenet_x_c2ns-76f8e3ac.pth', |
|
interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), |
|
}) |
|
|
|
|
|
@register_model |
|
def cspresnet50(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspresnet50d(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspresnet50w(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspresnext50(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspdarknet53(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cspdarknet53', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def darknet17(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('darknet17', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def darknet21(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('darknet21', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def sedarknet21(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('sedarknet21', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def darknet53(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('darknet53', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def darknetaa53(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('darknetaa53', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3darknet_s(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3darknet_s', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3darknet_m(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3darknet_m', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3darknet_l(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3darknet_l', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3darknet_x(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3darknet_x', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3darknet_focus_s(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3darknet_focus_s', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3darknet_focus_m(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3darknet_focus_m', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3darknet_focus_l(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3darknet_focus_l', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3darknet_focus_x(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3darknet_focus_x', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3sedarknet_l(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3sedarknet_l', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3sedarknet_x(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3sedarknet_x', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3sedarknet_xdw(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3sedarknet_xdw', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3edgenet_x(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3edgenet_x', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cs3se_edgenet_x(pretrained=False, **kwargs) -> CspNet: |
|
return _create_cspnet('cs3se_edgenet_x', pretrained=pretrained, **kwargs) |