File size: 40,257 Bytes
ad283e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
"""PyTorch CspNet

A PyTorch implementation of Cross Stage Partial Networks including:
* CSPResNet50
* CSPResNeXt50
* CSPDarkNet53
* and DarkNet53 for good measure

Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929

Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks

Hacked together by / Copyright 2020 Ross Wightman
"""
from dataclasses import dataclass, asdict, replace
from functools import partial
from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import ClassifierHead, ConvNormAct, DropPath, get_attn, create_act_layer, make_divisible
from ._builder import build_model_with_cfg
from ._manipulate import named_apply, MATCH_PREV_GROUP
from ._registry import register_model, generate_default_cfgs

__all__ = ['CspNet']  # model_registry will add each entrypoint fn to this


@dataclass
class CspStemCfg:
    out_chs: Union[int, Tuple[int, ...]] = 32
    stride: Union[int, Tuple[int, ...]] = 2
    kernel_size: int = 3
    padding: Union[int, str] = ''
    pool: Optional[str] = ''


def _pad_arg(x, n):
    # pads an argument tuple to specified n by padding with last value
    if not isinstance(x, (tuple, list)):
        x = (x,)
    curr_n = len(x)
    pad_n = n - curr_n
    if pad_n <= 0:
        return x[:n]
    return tuple(x + (x[-1],) * pad_n)


@dataclass
class CspStagesCfg:
    depth: Tuple[int, ...] = (3, 3, 5, 2)  # block depth (number of block repeats in stages)
    out_chs: Tuple[int, ...] = (128, 256, 512, 1024)  # number of output channels for blocks in stage
    stride: Union[int, Tuple[int, ...]] = 2  # stride of stage
    groups: Union[int, Tuple[int, ...]] = 1  # num kxk conv groups
    block_ratio: Union[float, Tuple[float, ...]] = 1.0
    bottle_ratio: Union[float, Tuple[float, ...]] = 1.  # bottleneck-ratio of blocks in stage
    avg_down: Union[bool, Tuple[bool, ...]] = False
    attn_layer: Optional[Union[str, Tuple[str, ...]]] = None
    attn_kwargs: Optional[Union[Dict, Tuple[Dict]]] = None
    stage_type: Union[str, Tuple[str]] = 'csp'  # stage type ('csp', 'cs2', 'dark')
    block_type: Union[str, Tuple[str]] = 'bottle'  # blocks type for stages ('bottle', 'dark')

    # cross-stage only
    expand_ratio: Union[float, Tuple[float, ...]] = 1.0
    cross_linear: Union[bool, Tuple[bool, ...]] = False
    down_growth: Union[bool, Tuple[bool, ...]] = False

    def __post_init__(self):
        n = len(self.depth)
        assert len(self.out_chs) == n
        self.stride = _pad_arg(self.stride, n)
        self.groups = _pad_arg(self.groups, n)
        self.block_ratio = _pad_arg(self.block_ratio, n)
        self.bottle_ratio = _pad_arg(self.bottle_ratio, n)
        self.avg_down = _pad_arg(self.avg_down, n)
        self.attn_layer = _pad_arg(self.attn_layer, n)
        self.attn_kwargs = _pad_arg(self.attn_kwargs, n)
        self.stage_type = _pad_arg(self.stage_type, n)
        self.block_type = _pad_arg(self.block_type, n)

        self.expand_ratio = _pad_arg(self.expand_ratio, n)
        self.cross_linear = _pad_arg(self.cross_linear, n)
        self.down_growth = _pad_arg(self.down_growth, n)


@dataclass
class CspModelCfg:
    stem: CspStemCfg
    stages: CspStagesCfg
    zero_init_last: bool = True  # zero init last weight (usually bn) in residual path
    act_layer: str = 'leaky_relu'
    norm_layer: str = 'batchnorm'
    aa_layer: Optional[str] = None  # FIXME support string factory for this


def _cs3_cfg(
        width_multiplier=1.0,
        depth_multiplier=1.0,
        avg_down=False,
        act_layer='silu',
        focus=False,
        attn_layer=None,
        attn_kwargs=None,
        bottle_ratio=1.0,
        block_type='dark',
):
    if focus:
        stem_cfg = CspStemCfg(
            out_chs=make_divisible(64 * width_multiplier),
            kernel_size=6, stride=2, padding=2, pool='')
    else:
        stem_cfg = CspStemCfg(
            out_chs=tuple([make_divisible(c * width_multiplier) for c in (32, 64)]),
            kernel_size=3, stride=2, pool='')
    return CspModelCfg(
        stem=stem_cfg,
        stages=CspStagesCfg(
            out_chs=tuple([make_divisible(c * width_multiplier) for c in (128, 256, 512, 1024)]),
            depth=tuple([int(d * depth_multiplier) for d in (3, 6, 9, 3)]),
            stride=2,
            bottle_ratio=bottle_ratio,
            block_ratio=0.5,
            avg_down=avg_down,
            attn_layer=attn_layer,
            attn_kwargs=attn_kwargs,
            stage_type='cs3',
            block_type=block_type,
        ),
        act_layer=act_layer,
    )


class BottleneckBlock(nn.Module):
    """ ResNe(X)t Bottleneck Block
    """

    def __init__(
            self,
            in_chs,
            out_chs,
            dilation=1,
            bottle_ratio=0.25,
            groups=1,
            act_layer=nn.ReLU,
            norm_layer=nn.BatchNorm2d,
            attn_last=False,
            attn_layer=None,
            drop_block=None,
            drop_path=0.
    ):
        super(BottleneckBlock, self).__init__()
        mid_chs = int(round(out_chs * bottle_ratio))
        ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
        attn_last = attn_layer is not None and attn_last
        attn_first = attn_layer is not None and not attn_last

        self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
        self.conv2 = ConvNormAct(
            mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups,
            drop_layer=drop_block, **ckwargs)
        self.attn2 = attn_layer(mid_chs, act_layer=act_layer) if attn_first else nn.Identity()
        self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs)
        self.attn3 = attn_layer(out_chs, act_layer=act_layer) if attn_last else nn.Identity()
        self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
        self.act3 = create_act_layer(act_layer)

    def zero_init_last(self):
        nn.init.zeros_(self.conv3.bn.weight)

    def forward(self, x):
        shortcut = x
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.attn2(x)
        x = self.conv3(x)
        x = self.attn3(x)
        x = self.drop_path(x) + shortcut
        # FIXME partial shortcut needed if first block handled as per original, not used for my current impl
        #x[:, :shortcut.size(1)] += shortcut
        x = self.act3(x)
        return x


class DarkBlock(nn.Module):
    """ DarkNet Block
    """

    def __init__(
            self,
            in_chs,
            out_chs,
            dilation=1,
            bottle_ratio=0.5,
            groups=1,
            act_layer=nn.ReLU,
            norm_layer=nn.BatchNorm2d,
            attn_layer=None,
            drop_block=None,
            drop_path=0.
    ):
        super(DarkBlock, self).__init__()
        mid_chs = int(round(out_chs * bottle_ratio))
        ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)

        self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
        self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity()
        self.conv2 = ConvNormAct(
            mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups,
            drop_layer=drop_block, **ckwargs)
        self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()

    def zero_init_last(self):
        nn.init.zeros_(self.conv2.bn.weight)

    def forward(self, x):
        shortcut = x
        x = self.conv1(x)
        x = self.attn(x)
        x = self.conv2(x)
        x = self.drop_path(x) + shortcut
        return x


class EdgeBlock(nn.Module):
    """ EdgeResidual / Fused-MBConv / MobileNetV1-like 3x3 + 1x1 block (w/ activated output)
    """

    def __init__(
            self,
            in_chs,
            out_chs,
            dilation=1,
            bottle_ratio=0.5,
            groups=1,
            act_layer=nn.ReLU,
            norm_layer=nn.BatchNorm2d,
            attn_layer=None,
            drop_block=None,
            drop_path=0.
    ):
        super(EdgeBlock, self).__init__()
        mid_chs = int(round(out_chs * bottle_ratio))
        ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer)

        self.conv1 = ConvNormAct(
            in_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups,
            drop_layer=drop_block, **ckwargs)
        self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity()
        self.conv2 = ConvNormAct(mid_chs, out_chs, kernel_size=1, **ckwargs)
        self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()

    def zero_init_last(self):
        nn.init.zeros_(self.conv2.bn.weight)

    def forward(self, x):
        shortcut = x
        x = self.conv1(x)
        x = self.attn(x)
        x = self.conv2(x)
        x = self.drop_path(x) + shortcut
        return x


class CrossStage(nn.Module):
    """Cross Stage."""
    def __init__(
            self,
            in_chs,
            out_chs,
            stride,
            dilation,
            depth,
            block_ratio=1.,
            bottle_ratio=1.,
            expand_ratio=1.,
            groups=1,
            first_dilation=None,
            avg_down=False,
            down_growth=False,
            cross_linear=False,
            block_dpr=None,
            block_fn=BottleneckBlock,
            **block_kwargs,
    ):
        super(CrossStage, self).__init__()
        first_dilation = first_dilation or dilation
        down_chs = out_chs if down_growth else in_chs  # grow downsample channels to output channels
        self.expand_chs = exp_chs = int(round(out_chs * expand_ratio))
        block_out_chs = int(round(out_chs * block_ratio))
        conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
        aa_layer = block_kwargs.pop('aa_layer', None)

        if stride != 1 or first_dilation != dilation:
            if avg_down:
                self.conv_down = nn.Sequential(
                    nn.AvgPool2d(2) if stride == 2 else nn.Identity(),  # FIXME dilation handling
                    ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
                )
            else:
                self.conv_down = ConvNormAct(
                    in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
                    aa_layer=aa_layer, **conv_kwargs)
            prev_chs = down_chs
        else:
            self.conv_down = nn.Identity()
            prev_chs = in_chs

        # FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also,
        # there is also special case for the first stage for some of the model that results in uneven split
        # across the two paths. I did it this way for simplicity for now.
        self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs)
        prev_chs = exp_chs // 2  # output of conv_exp is always split in two

        self.blocks = nn.Sequential()
        for i in range(depth):
            self.blocks.add_module(str(i), block_fn(
                in_chs=prev_chs,
                out_chs=block_out_chs,
                dilation=dilation,
                bottle_ratio=bottle_ratio,
                groups=groups,
                drop_path=block_dpr[i] if block_dpr is not None else 0.,
                **block_kwargs,
            ))
            prev_chs = block_out_chs

        # transition convs
        self.conv_transition_b = ConvNormAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs)
        self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)

    def forward(self, x):
        x = self.conv_down(x)
        x = self.conv_exp(x)
        xs, xb = x.split(self.expand_chs // 2, dim=1)
        xb = self.blocks(xb)
        xb = self.conv_transition_b(xb).contiguous()
        out = self.conv_transition(torch.cat([xs, xb], dim=1))
        return out


class CrossStage3(nn.Module):
    """Cross Stage 3.
    Similar to CrossStage, but with only one transition conv for the output.
    """
    def __init__(
            self,
            in_chs,
            out_chs,
            stride,
            dilation,
            depth,
            block_ratio=1.,
            bottle_ratio=1.,
            expand_ratio=1.,
            groups=1,
            first_dilation=None,
            avg_down=False,
            down_growth=False,
            cross_linear=False,
            block_dpr=None,
            block_fn=BottleneckBlock,
            **block_kwargs,
    ):
        super(CrossStage3, self).__init__()
        first_dilation = first_dilation or dilation
        down_chs = out_chs if down_growth else in_chs  # grow downsample channels to output channels
        self.expand_chs = exp_chs = int(round(out_chs * expand_ratio))
        block_out_chs = int(round(out_chs * block_ratio))
        conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
        aa_layer = block_kwargs.pop('aa_layer', None)

        if stride != 1 or first_dilation != dilation:
            if avg_down:
                self.conv_down = nn.Sequential(
                    nn.AvgPool2d(2) if stride == 2 else nn.Identity(),  # FIXME dilation handling
                    ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
                )
            else:
                self.conv_down = ConvNormAct(
                    in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
                    aa_layer=aa_layer, **conv_kwargs)
            prev_chs = down_chs
        else:
            self.conv_down = None
            prev_chs = in_chs

        # expansion conv
        self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs)
        prev_chs = exp_chs // 2  # expanded output is split in 2 for blocks and cross stage

        self.blocks = nn.Sequential()
        for i in range(depth):
            self.blocks.add_module(str(i), block_fn(
                in_chs=prev_chs,
                out_chs=block_out_chs,
                dilation=dilation,
                bottle_ratio=bottle_ratio,
                groups=groups,
                drop_path=block_dpr[i] if block_dpr is not None else 0.,
                **block_kwargs,
            ))
            prev_chs = block_out_chs

        # transition convs
        self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)

    def forward(self, x):
        x = self.conv_down(x)
        x = self.conv_exp(x)
        x1, x2 = x.split(self.expand_chs // 2, dim=1)
        x1 = self.blocks(x1)
        out = self.conv_transition(torch.cat([x1, x2], dim=1))
        return out


class DarkStage(nn.Module):
    """DarkNet stage."""

    def __init__(
            self,
            in_chs,
            out_chs,
            stride,
            dilation,
            depth,
            block_ratio=1.,
            bottle_ratio=1.,
            groups=1,
            first_dilation=None,
            avg_down=False,
            block_fn=BottleneckBlock,
            block_dpr=None,
            **block_kwargs,
    ):
        super(DarkStage, self).__init__()
        first_dilation = first_dilation or dilation
        conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
        aa_layer = block_kwargs.pop('aa_layer', None)

        if avg_down:
            self.conv_down = nn.Sequential(
                nn.AvgPool2d(2) if stride == 2 else nn.Identity(),   # FIXME dilation handling
                ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs)
            )
        else:
            self.conv_down = ConvNormAct(
                in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
                aa_layer=aa_layer, **conv_kwargs)

        prev_chs = out_chs
        block_out_chs = int(round(out_chs * block_ratio))
        self.blocks = nn.Sequential()
        for i in range(depth):
            self.blocks.add_module(str(i), block_fn(
                in_chs=prev_chs,
                out_chs=block_out_chs,
                dilation=dilation,
                bottle_ratio=bottle_ratio,
                groups=groups,
                drop_path=block_dpr[i] if block_dpr is not None else 0.,
                **block_kwargs
            ))
            prev_chs = block_out_chs

    def forward(self, x):
        x = self.conv_down(x)
        x = self.blocks(x)
        return x


def create_csp_stem(
        in_chans=3,
        out_chs=32,
        kernel_size=3,
        stride=2,
        pool='',
        padding='',
        act_layer=nn.ReLU,
        norm_layer=nn.BatchNorm2d,
        aa_layer=None,
):
    stem = nn.Sequential()
    feature_info = []
    if not isinstance(out_chs, (tuple, list)):
        out_chs = [out_chs]
    stem_depth = len(out_chs)
    assert stem_depth
    assert stride in (1, 2, 4)
    prev_feat = None
    prev_chs = in_chans
    last_idx = stem_depth - 1
    stem_stride = 1
    for i, chs in enumerate(out_chs):
        conv_name = f'conv{i + 1}'
        conv_stride = 2 if (i == 0 and stride > 1) or (i == last_idx and stride > 2 and not pool) else 1
        if conv_stride > 1 and prev_feat is not None:
            feature_info.append(prev_feat)
        stem.add_module(conv_name, ConvNormAct(
            prev_chs, chs, kernel_size,
            stride=conv_stride,
            padding=padding if i == 0 else '',
            act_layer=act_layer,
            norm_layer=norm_layer,
        ))
        stem_stride *= conv_stride
        prev_chs = chs
        prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', conv_name]))
    if pool:
        assert stride > 2
        if prev_feat is not None:
            feature_info.append(prev_feat)
        if aa_layer is not None:
            stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
            stem.add_module('aa', aa_layer(channels=prev_chs, stride=2))
            pool_name = 'aa'
        else:
            stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
            pool_name = 'pool'
        stem_stride *= 2
        prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', pool_name]))
    feature_info.append(prev_feat)
    return stem, feature_info


def _get_stage_fn(stage_args):
    stage_type = stage_args.pop('stage_type')
    assert stage_type in ('dark', 'csp', 'cs3')
    if stage_type == 'dark':
        stage_args.pop('expand_ratio', None)
        stage_args.pop('cross_linear', None)
        stage_args.pop('down_growth', None)
        stage_fn = DarkStage
    elif stage_type == 'csp':
        stage_fn = CrossStage
    else:
        stage_fn = CrossStage3
    return stage_fn, stage_args


def _get_block_fn(stage_args):
    block_type = stage_args.pop('block_type')
    assert block_type in ('dark', 'edge', 'bottle')
    if block_type == 'dark':
        return DarkBlock, stage_args
    elif block_type == 'edge':
        return EdgeBlock, stage_args
    else:
        return BottleneckBlock, stage_args


def _get_attn_fn(stage_args):
    attn_layer = stage_args.pop('attn_layer')
    attn_kwargs = stage_args.pop('attn_kwargs', None) or {}
    if attn_layer is not None:
        attn_layer = get_attn(attn_layer)
        if attn_kwargs:
            attn_layer = partial(attn_layer, **attn_kwargs)
    return attn_layer, stage_args


def create_csp_stages(
        cfg: CspModelCfg,
        drop_path_rate: float,
        output_stride: int,
        stem_feat: Dict[str, Any],
):
    cfg_dict = asdict(cfg.stages)
    num_stages = len(cfg.stages.depth)
    cfg_dict['block_dpr'] = [None] * num_stages if not drop_path_rate else \
        [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.stages.depth)).split(cfg.stages.depth)]
    stage_args = [dict(zip(cfg_dict.keys(), values)) for values in zip(*cfg_dict.values())]
    block_kwargs = dict(
        act_layer=cfg.act_layer,
        norm_layer=cfg.norm_layer,
    )

    dilation = 1
    net_stride = stem_feat['reduction']
    prev_chs = stem_feat['num_chs']
    prev_feat = stem_feat
    feature_info = []
    stages = []
    for stage_idx, stage_args in enumerate(stage_args):
        stage_fn, stage_args = _get_stage_fn(stage_args)
        block_fn, stage_args = _get_block_fn(stage_args)
        attn_fn, stage_args = _get_attn_fn(stage_args)
        stride = stage_args.pop('stride')
        if stride != 1 and prev_feat:
            feature_info.append(prev_feat)
        if net_stride >= output_stride and stride > 1:
            dilation *= stride
            stride = 1
        net_stride *= stride
        first_dilation = 1 if dilation in (1, 2) else 2

        stages += [stage_fn(
            prev_chs,
            **stage_args,
            stride=stride,
            first_dilation=first_dilation,
            dilation=dilation,
            block_fn=block_fn,
            aa_layer=cfg.aa_layer,
            attn_layer=attn_fn,  # will be passed through stage as block_kwargs
            **block_kwargs,
        )]
        prev_chs = stage_args['out_chs']
        prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}')

    feature_info.append(prev_feat)
    return nn.Sequential(*stages), feature_info


class CspNet(nn.Module):
    """Cross Stage Partial base model.

    Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929
    Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks

    NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the
    darknet impl. I did it this way for simplicity and less special cases.
    """

    def __init__(
            self,
            cfg: CspModelCfg,
            in_chans=3,
            num_classes=1000,
            output_stride=32,
            global_pool='avg',
            drop_rate=0.,
            drop_path_rate=0.,
            zero_init_last=True,
            **kwargs,
    ):
        """
        Args:
            cfg (CspModelCfg): Model architecture configuration
            in_chans (int): Number of input channels (default: 3)
            num_classes (int): Number of classifier classes (default: 1000)
            output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32)
            global_pool (str): Global pooling type (default: 'avg')
            drop_rate (float): Dropout rate (default: 0.)
            drop_path_rate (float): Stochastic depth drop-path rate (default: 0.)
            zero_init_last (bool): Zero-init last weight of residual path
            kwargs (dict): Extra kwargs overlayed onto cfg
        """
        super().__init__()
        self.num_classes = num_classes
        self.drop_rate = drop_rate
        assert output_stride in (8, 16, 32)

        cfg = replace(cfg, **kwargs)  # overlay kwargs onto cfg
        layer_args = dict(
            act_layer=cfg.act_layer,
            norm_layer=cfg.norm_layer,
            aa_layer=cfg.aa_layer
        )
        self.feature_info = []

        # Construct the stem
        self.stem, stem_feat_info = create_csp_stem(in_chans, **asdict(cfg.stem), **layer_args)
        self.feature_info.extend(stem_feat_info[:-1])

        # Construct the stages
        self.stages, stage_feat_info = create_csp_stages(
            cfg,
            drop_path_rate=drop_path_rate,
            output_stride=output_stride,
            stem_feat=stem_feat_info[-1],
        )
        prev_chs = stage_feat_info[-1]['num_chs']
        self.feature_info.extend(stage_feat_info)

        # Construct the head
        self.num_features = self.head_hidden_size = prev_chs
        self.head = ClassifierHead(
            in_features=prev_chs,
            num_classes=num_classes,
            pool_type=global_pool,
            drop_rate=drop_rate,
        )

        named_apply(partial(_init_weights, zero_init_last=zero_init_last), self)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^stem',
            blocks=r'^stages\.(\d+)' if coarse else [
                (r'^stages\.(\d+)\.blocks\.(\d+)', None),
                (r'^stages\.(\d+)\..*transition', MATCH_PREV_GROUP),  # map to last block in stage
                (r'^stages\.(\d+)', (0,)),
            ]
        )
        return matcher

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        assert not enable, 'gradient checkpointing not supported'

    @torch.jit.ignore
    def get_classifier(self) -> nn.Module:
        return self.head.fc

    def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
        self.num_classes = num_classes
        self.head.reset(num_classes, global_pool)

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _init_weights(module, name, zero_init_last=False):
    if isinstance(module, nn.Conv2d):
        nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, mean=0.0, std=0.01)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif zero_init_last and hasattr(module, 'zero_init_last'):
        module.zero_init_last()


model_cfgs = dict(
    cspresnet50=CspModelCfg(
        stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'),
        stages=CspStagesCfg(
            depth=(3, 3, 5, 2),
            out_chs=(128, 256, 512, 1024),
            stride=(1, 2),
            expand_ratio=2.,
            bottle_ratio=0.5,
            cross_linear=True,
        ),
    ),
    cspresnet50d=CspModelCfg(
        stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'),
        stages=CspStagesCfg(
            depth=(3, 3, 5, 2),
            out_chs=(128, 256, 512, 1024),
            stride=(1,) + (2,),
            expand_ratio=2.,
            bottle_ratio=0.5,
            block_ratio=1.,
            cross_linear=True,
        ),
    ),
    cspresnet50w=CspModelCfg(
        stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'),
        stages=CspStagesCfg(
            depth=(3, 3, 5, 2),
            out_chs=(256, 512, 1024, 2048),
            stride=(1,) + (2,),
            expand_ratio=1.,
            bottle_ratio=0.25,
            block_ratio=0.5,
            cross_linear=True,
        ),
    ),
    cspresnext50=CspModelCfg(
        stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'),
        stages=CspStagesCfg(
            depth=(3, 3, 5, 2),
            out_chs=(256, 512, 1024, 2048),
            stride=(1,) + (2,),
            groups=32,
            expand_ratio=1.,
            bottle_ratio=1.,
            block_ratio=0.5,
            cross_linear=True,
        ),
    ),
    cspdarknet53=CspModelCfg(
        stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
        stages=CspStagesCfg(
            depth=(1, 2, 8, 8, 4),
            out_chs=(64, 128, 256, 512, 1024),
            stride=2,
            expand_ratio=(2.,) + (1.,),
            bottle_ratio=(0.5,) + (1.,),
            block_ratio=(1.,) + (0.5,),
            down_growth=True,
            block_type='dark',
        ),
    ),
    darknet17=CspModelCfg(
        stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
        stages=CspStagesCfg(
            depth=(1,) * 5,
            out_chs=(64, 128, 256, 512, 1024),
            stride=(2,),
            bottle_ratio=(0.5,),
            block_ratio=(1.,),
            stage_type='dark',
            block_type='dark',
        ),
    ),
    darknet21=CspModelCfg(
        stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
        stages=CspStagesCfg(
            depth=(1, 1, 1, 2, 2),
            out_chs=(64, 128, 256, 512, 1024),
            stride=(2,),
            bottle_ratio=(0.5,),
            block_ratio=(1.,),
            stage_type='dark',
            block_type='dark',

        ),
    ),
    sedarknet21=CspModelCfg(
        stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
        stages=CspStagesCfg(
            depth=(1, 1, 1, 2, 2),
            out_chs=(64, 128, 256, 512, 1024),
            stride=2,
            bottle_ratio=0.5,
            block_ratio=1.,
            attn_layer='se',
            stage_type='dark',
            block_type='dark',

        ),
    ),
    darknet53=CspModelCfg(
        stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
        stages=CspStagesCfg(
            depth=(1, 2, 8, 8, 4),
            out_chs=(64, 128, 256, 512, 1024),
            stride=2,
            bottle_ratio=0.5,
            block_ratio=1.,
            stage_type='dark',
            block_type='dark',
        ),
    ),
    darknetaa53=CspModelCfg(
        stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''),
        stages=CspStagesCfg(
            depth=(1, 2, 8, 8, 4),
            out_chs=(64, 128, 256, 512, 1024),
            stride=2,
            bottle_ratio=0.5,
            block_ratio=1.,
            avg_down=True,
            stage_type='dark',
            block_type='dark',
        ),
    ),

    cs3darknet_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5),
    cs3darknet_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67),
    cs3darknet_l=_cs3_cfg(),
    cs3darknet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33),

    cs3darknet_focus_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5, focus=True),
    cs3darknet_focus_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67, focus=True),
    cs3darknet_focus_l=_cs3_cfg(focus=True),
    cs3darknet_focus_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, focus=True),

    cs3sedarknet_l=_cs3_cfg(attn_layer='se', attn_kwargs=dict(rd_ratio=.25)),
    cs3sedarknet_x=_cs3_cfg(attn_layer='se', width_multiplier=1.25, depth_multiplier=1.33),

    cs3sedarknet_xdw=CspModelCfg(
        stem=CspStemCfg(out_chs=(32, 64), kernel_size=3, stride=2, pool=''),
        stages=CspStagesCfg(
            depth=(3, 6, 12, 4),
            out_chs=(256, 512, 1024, 2048),
            stride=2,
            groups=(1, 1, 256, 512),
            bottle_ratio=0.5,
            block_ratio=0.5,
            attn_layer='se',
        ),
        act_layer='silu',
    ),

    cs3edgenet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge'),
    cs3se_edgenet_x=_cs3_cfg(
        width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge',
        attn_layer='se', attn_kwargs=dict(rd_ratio=.25)),
)


def _create_cspnet(variant, pretrained=False, **kwargs):
    if variant.startswith('darknet') or variant.startswith('cspdarknet'):
        # NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5]
        default_out_indices = (0, 1, 2, 3, 4, 5)
    else:
        default_out_indices = (0, 1, 2, 3, 4)
    out_indices = kwargs.pop('out_indices', default_out_indices)
    return build_model_with_cfg(
        CspNet, variant, pretrained,
        model_cfg=model_cfgs[variant],
        feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
        **kwargs)


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
        'crop_pct': 0.887, 'interpolation': 'bilinear',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'cspresnet50.ra_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'),
    'cspresnet50d.untrained': _cfg(),
    'cspresnet50w.untrained': _cfg(),
    'cspresnext50.ra_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth',
    ),
    'cspdarknet53.ra_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'),

    'darknet17.untrained': _cfg(),
    'darknet21.untrained': _cfg(),
    'sedarknet21.untrained': _cfg(),
    'darknet53.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknet53_256_c2ns-3aeff817.pth',
        interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'darknetaa53.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknetaa53_c2ns-5c28ec8a.pth',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),

    'cs3darknet_s.untrained': _cfg(interpolation='bicubic'),
    'cs3darknet_m.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_m_c2ns-43f06604.pth',
        interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95,
    ),
    'cs3darknet_l.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_l_c2ns-16220c5d.pth',
        interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'cs3darknet_x.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_x_c2ns-4e4490aa.pth',
        interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),

    'cs3darknet_focus_s.ra4_e3600_r256_in1k': _cfg(
        hf_hub_id='timm/',
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
        interpolation='bicubic', test_input_size=(3, 320, 320), test_crop_pct=1.0),
    'cs3darknet_focus_m.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_m_c2ns-e23bed41.pth',
        interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'cs3darknet_focus_l.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_l_c2ns-65ef8888.pth',
        interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'cs3darknet_focus_x.untrained': _cfg(interpolation='bicubic'),

    'cs3sedarknet_l.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_l_c2ns-e8d1dc13.pth',
        interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'cs3sedarknet_x.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_x_c2ns-b4d0abc0.pth',
        interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0),

    'cs3sedarknet_xdw.untrained': _cfg(interpolation='bicubic'),

    'cs3edgenet_x.c2_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3edgenet_x_c2-2e1610a9.pth',
        interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'cs3se_edgenet_x.c2ns_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3se_edgenet_x_c2ns-76f8e3ac.pth',
        interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0),
})


@register_model
def cspresnet50(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs)


@register_model
def cspresnet50d(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs)


@register_model
def cspresnet50w(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs)


@register_model
def cspresnext50(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs)


@register_model
def cspdarknet53(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cspdarknet53', pretrained=pretrained, **kwargs)


@register_model
def darknet17(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('darknet17', pretrained=pretrained, **kwargs)


@register_model
def darknet21(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('darknet21', pretrained=pretrained, **kwargs)


@register_model
def sedarknet21(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('sedarknet21', pretrained=pretrained, **kwargs)


@register_model
def darknet53(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('darknet53', pretrained=pretrained, **kwargs)


@register_model
def darknetaa53(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('darknetaa53', pretrained=pretrained, **kwargs)


@register_model
def cs3darknet_s(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3darknet_s', pretrained=pretrained, **kwargs)


@register_model
def cs3darknet_m(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3darknet_m', pretrained=pretrained, **kwargs)


@register_model
def cs3darknet_l(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3darknet_l', pretrained=pretrained, **kwargs)


@register_model
def cs3darknet_x(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3darknet_x', pretrained=pretrained, **kwargs)


@register_model
def cs3darknet_focus_s(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3darknet_focus_s', pretrained=pretrained, **kwargs)


@register_model
def cs3darknet_focus_m(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3darknet_focus_m', pretrained=pretrained, **kwargs)


@register_model
def cs3darknet_focus_l(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3darknet_focus_l', pretrained=pretrained, **kwargs)


@register_model
def cs3darknet_focus_x(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3darknet_focus_x', pretrained=pretrained, **kwargs)


@register_model
def cs3sedarknet_l(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3sedarknet_l', pretrained=pretrained, **kwargs)


@register_model
def cs3sedarknet_x(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3sedarknet_x', pretrained=pretrained, **kwargs)


@register_model
def cs3sedarknet_xdw(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3sedarknet_xdw', pretrained=pretrained, **kwargs)


@register_model
def cs3edgenet_x(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3edgenet_x', pretrained=pretrained, **kwargs)


@register_model
def cs3se_edgenet_x(pretrained=False, **kwargs) -> CspNet:
    return _create_cspnet('cs3se_edgenet_x', pretrained=pretrained, **kwargs)