|
""" Activations (memory-efficient w/ custom autograd) |
|
|
|
A collection of activations fn and modules with a common interface so that they can |
|
easily be swapped. All have an `inplace` arg even if not used. |
|
|
|
These activations are not compatible with jit scripting or ONNX export of the model, please use |
|
basic versions of the activations. |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
|
|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
def swish_fwd(x): |
|
return x.mul(torch.sigmoid(x)) |
|
|
|
|
|
def swish_bwd(x, grad_output): |
|
x_sigmoid = torch.sigmoid(x) |
|
return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid))) |
|
|
|
|
|
class SwishAutoFn(torch.autograd.Function): |
|
""" optimised Swish w/ memory-efficient checkpoint |
|
Inspired by conversation btw Jeremy Howard & Adam Pazske |
|
https://twitter.com/jeremyphoward/status/1188251041835315200 |
|
""" |
|
@staticmethod |
|
def symbolic(g, x): |
|
return g.op("Mul", x, g.op("Sigmoid", x)) |
|
|
|
@staticmethod |
|
def forward(ctx, x): |
|
ctx.save_for_backward(x) |
|
return swish_fwd(x) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
x = ctx.saved_tensors[0] |
|
return swish_bwd(x, grad_output) |
|
|
|
|
|
def swish_me(x, inplace=False): |
|
return SwishAutoFn.apply(x) |
|
|
|
|
|
class SwishMe(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(SwishMe, self).__init__() |
|
|
|
def forward(self, x): |
|
return SwishAutoFn.apply(x) |
|
|
|
|
|
def mish_fwd(x): |
|
return x.mul(torch.tanh(F.softplus(x))) |
|
|
|
|
|
def mish_bwd(x, grad_output): |
|
x_sigmoid = torch.sigmoid(x) |
|
x_tanh_sp = F.softplus(x).tanh() |
|
return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp)) |
|
|
|
|
|
class MishAutoFn(torch.autograd.Function): |
|
""" Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 |
|
A memory efficient variant of Mish |
|
""" |
|
@staticmethod |
|
def forward(ctx, x): |
|
ctx.save_for_backward(x) |
|
return mish_fwd(x) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
x = ctx.saved_tensors[0] |
|
return mish_bwd(x, grad_output) |
|
|
|
|
|
def mish_me(x, inplace=False): |
|
return MishAutoFn.apply(x) |
|
|
|
|
|
class MishMe(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(MishMe, self).__init__() |
|
|
|
def forward(self, x): |
|
return MishAutoFn.apply(x) |
|
|
|
|
|
def hard_sigmoid_fwd(x, inplace: bool = False): |
|
return (x + 3).clamp(min=0, max=6).div(6.) |
|
|
|
|
|
def hard_sigmoid_bwd(x, grad_output): |
|
m = torch.ones_like(x) * ((x >= -3.) & (x <= 3.)) / 6. |
|
return grad_output * m |
|
|
|
|
|
class HardSigmoidAutoFn(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x): |
|
ctx.save_for_backward(x) |
|
return hard_sigmoid_fwd(x) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
x = ctx.saved_tensors[0] |
|
return hard_sigmoid_bwd(x, grad_output) |
|
|
|
|
|
def hard_sigmoid_me(x, inplace: bool = False): |
|
return HardSigmoidAutoFn.apply(x) |
|
|
|
|
|
class HardSigmoidMe(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(HardSigmoidMe, self).__init__() |
|
|
|
def forward(self, x): |
|
return HardSigmoidAutoFn.apply(x) |
|
|
|
|
|
def hard_swish_fwd(x): |
|
return x * (x + 3).clamp(min=0, max=6).div(6.) |
|
|
|
|
|
def hard_swish_bwd(x, grad_output): |
|
m = torch.ones_like(x) * (x >= 3.) |
|
m = torch.where((x >= -3.) & (x <= 3.), x / 3. + .5, m) |
|
return grad_output * m |
|
|
|
|
|
class HardSwishAutoFn(torch.autograd.Function): |
|
"""A memory efficient HardSwish activation""" |
|
@staticmethod |
|
def forward(ctx, x): |
|
ctx.save_for_backward(x) |
|
return hard_swish_fwd(x) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
x = ctx.saved_tensors[0] |
|
return hard_swish_bwd(x, grad_output) |
|
|
|
@staticmethod |
|
def symbolic(g, self): |
|
input = g.op("Add", self, g.op('Constant', value_t=torch.tensor(3, dtype=torch.float))) |
|
hardtanh_ = g.op("Clip", input, g.op('Constant', value_t=torch.tensor(0, dtype=torch.float)), g.op('Constant', value_t=torch.tensor(6, dtype=torch.float))) |
|
hardtanh_ = g.op("Div", hardtanh_, g.op('Constant', value_t=torch.tensor(6, dtype=torch.float))) |
|
return g.op("Mul", self, hardtanh_) |
|
|
|
|
|
def hard_swish_me(x, inplace=False): |
|
return HardSwishAutoFn.apply(x) |
|
|
|
|
|
class HardSwishMe(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(HardSwishMe, self).__init__() |
|
|
|
def forward(self, x): |
|
return HardSwishAutoFn.apply(x) |
|
|
|
|
|
def hard_mish_fwd(x): |
|
return 0.5 * x * (x + 2).clamp(min=0, max=2) |
|
|
|
|
|
def hard_mish_bwd(x, grad_output): |
|
m = torch.ones_like(x) * (x >= -2.) |
|
m = torch.where((x >= -2.) & (x <= 0.), x + 1., m) |
|
return grad_output * m |
|
|
|
|
|
class HardMishAutoFn(torch.autograd.Function): |
|
""" A memory efficient variant of Hard Mish |
|
Experimental, based on notes by Mish author Diganta Misra at |
|
https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md |
|
""" |
|
@staticmethod |
|
def forward(ctx, x): |
|
ctx.save_for_backward(x) |
|
return hard_mish_fwd(x) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
x = ctx.saved_tensors[0] |
|
return hard_mish_bwd(x, grad_output) |
|
|
|
|
|
def hard_mish_me(x, inplace: bool = False): |
|
return HardMishAutoFn.apply(x) |
|
|
|
|
|
class HardMishMe(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(HardMishMe, self).__init__() |
|
|
|
def forward(self, x): |
|
return HardMishAutoFn.apply(x) |
|
|
|
|
|
|
|
|