meg HF staff commited on
Commit
81d747c
·
verified ·
1 Parent(s): abee7a4

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. pytorch-image-models/hfdocs/source/models/tf-efficientnet-condconv.mdx +256 -0
  2. pytorch-image-models/hfdocs/source/models/tf-inception-v3.mdx +154 -0
  3. pytorch-image-models/hfdocs/source/models/wide-resnet.mdx +169 -0
  4. pytorch-image-models/hfdocs/source/reference/models.mdx +5 -0
  5. pytorch-image-models/results/README.md +67 -0
  6. pytorch-image-models/results/results-imagenet-r.csv +0 -0
  7. pytorch-image-models/results/results-imagenet-real.csv +0 -0
  8. pytorch-image-models/results/results-imagenet.csv +0 -0
  9. pytorch-image-models/results/results-imagenetv2-matched-frequency.csv +0 -0
  10. pytorch-image-models/results/results-sketch.csv +0 -0
  11. pytorch-image-models/tests/test_layers.py +121 -0
  12. pytorch-image-models/tests/test_models.py +710 -0
  13. pytorch-image-models/timm/__init__.py +4 -0
  14. pytorch-image-models/timm/data/__init__.py +15 -0
  15. pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc +0 -0
  16. pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc +0 -0
  17. pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc +0 -0
  18. pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc +0 -0
  19. pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc +0 -0
  20. pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc +0 -0
  21. pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc +0 -0
  22. pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc +0 -0
  23. pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc +0 -0
  24. pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc +0 -0
  25. pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc +0 -0
  26. pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc +0 -0
  27. pytorch-image-models/timm/data/_info/imagenet12k_synsets.txt +0 -0
  28. pytorch-image-models/timm/data/_info/imagenet21k_goog_synsets.txt +0 -0
  29. pytorch-image-models/timm/data/_info/imagenet22k_ms_synsets.txt +0 -0
  30. pytorch-image-models/timm/data/_info/imagenet22k_ms_to_12k_indices.txt +11821 -0
  31. pytorch-image-models/timm/data/_info/imagenet22k_ms_to_22k_indices.txt +0 -0
  32. pytorch-image-models/timm/data/_info/imagenet22k_synsets.txt +0 -0
  33. pytorch-image-models/timm/data/_info/imagenet_a_synsets.txt +200 -0
  34. pytorch-image-models/timm/data/_info/imagenet_r_indices.txt +200 -0
  35. pytorch-image-models/timm/data/_info/imagenet_r_synsets.txt +200 -0
  36. pytorch-image-models/timm/data/_info/imagenet_real_labels.json +0 -0
  37. pytorch-image-models/timm/data/_info/imagenet_synset_to_definition.txt +0 -0
  38. pytorch-image-models/timm/data/_info/imagenet_synset_to_lemma.txt +0 -0
  39. pytorch-image-models/timm/data/_info/imagenet_synsets.txt +1000 -0
  40. pytorch-image-models/timm/data/_info/mini_imagenet_indices.txt +100 -0
  41. pytorch-image-models/timm/data/_info/mini_imagenet_synsets.txt +100 -0
  42. pytorch-image-models/timm/data/auto_augment.py +1000 -0
  43. pytorch-image-models/timm/data/config.py +129 -0
  44. pytorch-image-models/timm/data/constants.py +10 -0
  45. pytorch-image-models/timm/data/dataset.py +204 -0
  46. pytorch-image-models/timm/data/dataset_factory.py +229 -0
  47. pytorch-image-models/timm/data/dataset_info.py +73 -0
  48. pytorch-image-models/timm/data/distributed_sampler.py +135 -0
  49. pytorch-image-models/timm/data/imagenet_info.py +95 -0
  50. pytorch-image-models/timm/data/loader.py +409 -0
pytorch-image-models/hfdocs/source/models/tf-efficientnet-condconv.mdx ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # (Tensorflow) EfficientNet CondConv
2
+
3
+ **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way.
4
+
5
+ The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image.
6
+
7
+ The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to squeeze-and-excitation blocks.
8
+
9
+ This collection of models amends EfficientNet by adding [CondConv](https://paperswithcode.com/method/condconv) convolutions.
10
+
11
+ The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu).
12
+
13
+ ## How do I use this model on an image?
14
+
15
+ To load a pretrained model:
16
+
17
+ ```py
18
+ >>> import timm
19
+ >>> model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True)
20
+ >>> model.eval()
21
+ ```
22
+
23
+ To load and preprocess the image:
24
+
25
+ ```py
26
+ >>> import urllib
27
+ >>> from PIL import Image
28
+ >>> from timm.data import resolve_data_config
29
+ >>> from timm.data.transforms_factory import create_transform
30
+
31
+ >>> config = resolve_data_config({}, model=model)
32
+ >>> transform = create_transform(**config)
33
+
34
+ >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
35
+ >>> urllib.request.urlretrieve(url, filename)
36
+ >>> img = Image.open(filename).convert('RGB')
37
+ >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
38
+ ```
39
+
40
+ To get the model predictions:
41
+
42
+ ```py
43
+ >>> import torch
44
+ >>> with torch.no_grad():
45
+ ... out = model(tensor)
46
+ >>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
47
+ >>> print(probabilities.shape)
48
+ >>> # prints: torch.Size([1000])
49
+ ```
50
+
51
+ To get the top-5 predictions class names:
52
+
53
+ ```py
54
+ >>> # Get imagenet class mappings
55
+ >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
56
+ >>> urllib.request.urlretrieve(url, filename)
57
+ >>> with open("imagenet_classes.txt", "r") as f:
58
+ ... categories = [s.strip() for s in f.readlines()]
59
+
60
+ >>> # Print top categories per image
61
+ >>> top5_prob, top5_catid = torch.topk(probabilities, 5)
62
+ >>> for i in range(top5_prob.size(0)):
63
+ ... print(categories[top5_catid[i]], top5_prob[i].item())
64
+ >>> # prints class names and probabilities like:
65
+ >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
66
+ ```
67
+
68
+ Replace the model name with the variant you want to use, e.g. `tf_efficientnet_cc_b0_4e`. You can find the IDs in the model summaries at the top of this page.
69
+
70
+ To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.
71
+
72
+ ## How do I finetune this model?
73
+
74
+ You can finetune any of the pre-trained models just by changing the classifier (the last layer).
75
+
76
+ ```py
77
+ >>> model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
78
+ ```
79
+ To finetune on your own dataset, you have to write a training loop or adapt [timm's training
80
+ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
81
+
82
+ ## How do I train this model?
83
+
84
+ You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
85
+
86
+ ## Citation
87
+
88
+ ```BibTeX
89
+ @article{DBLP:journals/corr/abs-1904-04971,
90
+ author = {Brandon Yang and
91
+ Gabriel Bender and
92
+ Quoc V. Le and
93
+ Jiquan Ngiam},
94
+ title = {Soft Conditional Computation},
95
+ journal = {CoRR},
96
+ volume = {abs/1904.04971},
97
+ year = {2019},
98
+ url = {http://arxiv.org/abs/1904.04971},
99
+ archivePrefix = {arXiv},
100
+ eprint = {1904.04971},
101
+ timestamp = {Thu, 25 Apr 2019 13:55:01 +0200},
102
+ biburl = {https://dblp.org/rec/journals/corr/abs-1904-04971.bib},
103
+ bibsource = {dblp computer science bibliography, https://dblp.org}
104
+ }
105
+ ```
106
+
107
+ <!--
108
+ Type: model-index
109
+ Collections:
110
+ - Name: TF EfficientNet CondConv
111
+ Paper:
112
+ Title: 'CondConv: Conditionally Parameterized Convolutions for Efficient Inference'
113
+ URL: https://paperswithcode.com/paper/soft-conditional-computation
114
+ Models:
115
+ - Name: tf_efficientnet_cc_b0_4e
116
+ In Collection: TF EfficientNet CondConv
117
+ Metadata:
118
+ FLOPs: 224153788
119
+ Parameters: 13310000
120
+ File Size: 53490940
121
+ Architecture:
122
+ - 1x1 Convolution
123
+ - Average Pooling
124
+ - Batch Normalization
125
+ - CondConv
126
+ - Convolution
127
+ - Dense Connections
128
+ - Dropout
129
+ - Inverted Residual Block
130
+ - Squeeze-and-Excitation Block
131
+ - Swish
132
+ Tasks:
133
+ - Image Classification
134
+ Training Techniques:
135
+ - AutoAugment
136
+ - Label Smoothing
137
+ - RMSProp
138
+ - Stochastic Depth
139
+ - Weight Decay
140
+ Training Data:
141
+ - ImageNet
142
+ ID: tf_efficientnet_cc_b0_4e
143
+ LR: 0.256
144
+ Epochs: 350
145
+ Crop Pct: '0.875'
146
+ Momentum: 0.9
147
+ Batch Size: 2048
148
+ Image Size: '224'
149
+ Weight Decay: 1.0e-05
150
+ Interpolation: bicubic
151
+ RMSProp Decay: 0.9
152
+ Label Smoothing: 0.1
153
+ BatchNorm Momentum: 0.99
154
+ Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1561
155
+ Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth
156
+ Results:
157
+ - Task: Image Classification
158
+ Dataset: ImageNet
159
+ Metrics:
160
+ Top 1 Accuracy: 77.32%
161
+ Top 5 Accuracy: 93.32%
162
+ - Name: tf_efficientnet_cc_b0_8e
163
+ In Collection: TF EfficientNet CondConv
164
+ Metadata:
165
+ FLOPs: 224158524
166
+ Parameters: 24010000
167
+ File Size: 96287616
168
+ Architecture:
169
+ - 1x1 Convolution
170
+ - Average Pooling
171
+ - Batch Normalization
172
+ - CondConv
173
+ - Convolution
174
+ - Dense Connections
175
+ - Dropout
176
+ - Inverted Residual Block
177
+ - Squeeze-and-Excitation Block
178
+ - Swish
179
+ Tasks:
180
+ - Image Classification
181
+ Training Techniques:
182
+ - AutoAugment
183
+ - Label Smoothing
184
+ - RMSProp
185
+ - Stochastic Depth
186
+ - Weight Decay
187
+ Training Data:
188
+ - ImageNet
189
+ ID: tf_efficientnet_cc_b0_8e
190
+ LR: 0.256
191
+ Epochs: 350
192
+ Crop Pct: '0.875'
193
+ Momentum: 0.9
194
+ Batch Size: 2048
195
+ Image Size: '224'
196
+ Weight Decay: 1.0e-05
197
+ Interpolation: bicubic
198
+ RMSProp Decay: 0.9
199
+ Label Smoothing: 0.1
200
+ BatchNorm Momentum: 0.99
201
+ Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1572
202
+ Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth
203
+ Results:
204
+ - Task: Image Classification
205
+ Dataset: ImageNet
206
+ Metrics:
207
+ Top 1 Accuracy: 77.91%
208
+ Top 5 Accuracy: 93.65%
209
+ - Name: tf_efficientnet_cc_b1_8e
210
+ In Collection: TF EfficientNet CondConv
211
+ Metadata:
212
+ FLOPs: 370427824
213
+ Parameters: 39720000
214
+ File Size: 159206198
215
+ Architecture:
216
+ - 1x1 Convolution
217
+ - Average Pooling
218
+ - Batch Normalization
219
+ - CondConv
220
+ - Convolution
221
+ - Dense Connections
222
+ - Dropout
223
+ - Inverted Residual Block
224
+ - Squeeze-and-Excitation Block
225
+ - Swish
226
+ Tasks:
227
+ - Image Classification
228
+ Training Techniques:
229
+ - AutoAugment
230
+ - Label Smoothing
231
+ - RMSProp
232
+ - Stochastic Depth
233
+ - Weight Decay
234
+ Training Data:
235
+ - ImageNet
236
+ ID: tf_efficientnet_cc_b1_8e
237
+ LR: 0.256
238
+ Epochs: 350
239
+ Crop Pct: '0.882'
240
+ Momentum: 0.9
241
+ Batch Size: 2048
242
+ Image Size: '240'
243
+ Weight Decay: 1.0e-05
244
+ Interpolation: bicubic
245
+ RMSProp Decay: 0.9
246
+ Label Smoothing: 0.1
247
+ BatchNorm Momentum: 0.99
248
+ Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1584
249
+ Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth
250
+ Results:
251
+ - Task: Image Classification
252
+ Dataset: ImageNet
253
+ Metrics:
254
+ Top 1 Accuracy: 79.33%
255
+ Top 5 Accuracy: 94.37%
256
+ -->
pytorch-image-models/hfdocs/source/models/tf-inception-v3.mdx ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # (Tensorflow) Inception v3
2
+
3
+ **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module).
4
+
5
+ The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models).
6
+
7
+ ## How do I use this model on an image?
8
+
9
+ To load a pretrained model:
10
+
11
+ ```py
12
+ >>> import timm
13
+ >>> model = timm.create_model('tf_inception_v3', pretrained=True)
14
+ >>> model.eval()
15
+ ```
16
+
17
+ To load and preprocess the image:
18
+
19
+ ```py
20
+ >>> import urllib
21
+ >>> from PIL import Image
22
+ >>> from timm.data import resolve_data_config
23
+ >>> from timm.data.transforms_factory import create_transform
24
+
25
+ >>> config = resolve_data_config({}, model=model)
26
+ >>> transform = create_transform(**config)
27
+
28
+ >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
29
+ >>> urllib.request.urlretrieve(url, filename)
30
+ >>> img = Image.open(filename).convert('RGB')
31
+ >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
32
+ ```
33
+
34
+ To get the model predictions:
35
+
36
+ ```py
37
+ >>> import torch
38
+ >>> with torch.no_grad():
39
+ ... out = model(tensor)
40
+ >>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
41
+ >>> print(probabilities.shape)
42
+ >>> # prints: torch.Size([1000])
43
+ ```
44
+
45
+ To get the top-5 predictions class names:
46
+
47
+ ```py
48
+ >>> # Get imagenet class mappings
49
+ >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
50
+ >>> urllib.request.urlretrieve(url, filename)
51
+ >>> with open("imagenet_classes.txt", "r") as f:
52
+ ... categories = [s.strip() for s in f.readlines()]
53
+
54
+ >>> # Print top categories per image
55
+ >>> top5_prob, top5_catid = torch.topk(probabilities, 5)
56
+ >>> for i in range(top5_prob.size(0)):
57
+ ... print(categories[top5_catid[i]], top5_prob[i].item())
58
+ >>> # prints class names and probabilities like:
59
+ >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
60
+ ```
61
+
62
+ Replace the model name with the variant you want to use, e.g. `tf_inception_v3`. You can find the IDs in the model summaries at the top of this page.
63
+
64
+ To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.
65
+
66
+ ## How do I finetune this model?
67
+
68
+ You can finetune any of the pre-trained models just by changing the classifier (the last layer).
69
+
70
+ ```py
71
+ >>> model = timm.create_model('tf_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
72
+ ```
73
+ To finetune on your own dataset, you have to write a training loop or adapt [timm's training
74
+ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
75
+
76
+ ## How do I train this model?
77
+
78
+ You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
+
80
+ ## Citation
81
+
82
+ ```BibTeX
83
+ @article{DBLP:journals/corr/SzegedyVISW15,
84
+ author = {Christian Szegedy and
85
+ Vincent Vanhoucke and
86
+ Sergey Ioffe and
87
+ Jonathon Shlens and
88
+ Zbigniew Wojna},
89
+ title = {Rethinking the Inception Architecture for Computer Vision},
90
+ journal = {CoRR},
91
+ volume = {abs/1512.00567},
92
+ year = {2015},
93
+ url = {http://arxiv.org/abs/1512.00567},
94
+ archivePrefix = {arXiv},
95
+ eprint = {1512.00567},
96
+ timestamp = {Mon, 13 Aug 2018 16:49:07 +0200},
97
+ biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib},
98
+ bibsource = {dblp computer science bibliography, https://dblp.org}
99
+ }
100
+ ```
101
+
102
+ <!--
103
+ Type: model-index
104
+ Collections:
105
+ - Name: TF Inception v3
106
+ Paper:
107
+ Title: Rethinking the Inception Architecture for Computer Vision
108
+ URL: https://paperswithcode.com/paper/rethinking-the-inception-architecture-for
109
+ Models:
110
+ - Name: tf_inception_v3
111
+ In Collection: TF Inception v3
112
+ Metadata:
113
+ FLOPs: 7352418880
114
+ Parameters: 23830000
115
+ File Size: 95549439
116
+ Architecture:
117
+ - 1x1 Convolution
118
+ - Auxiliary Classifier
119
+ - Average Pooling
120
+ - Average Pooling
121
+ - Batch Normalization
122
+ - Convolution
123
+ - Dense Connections
124
+ - Dropout
125
+ - Inception-v3 Module
126
+ - Max Pooling
127
+ - ReLU
128
+ - Softmax
129
+ Tasks:
130
+ - Image Classification
131
+ Training Techniques:
132
+ - Gradient Clipping
133
+ - Label Smoothing
134
+ - RMSProp
135
+ - Weight Decay
136
+ Training Data:
137
+ - ImageNet
138
+ Training Resources: 50x NVIDIA Kepler GPUs
139
+ ID: tf_inception_v3
140
+ LR: 0.045
141
+ Dropout: 0.2
142
+ Crop Pct: '0.875'
143
+ Momentum: 0.9
144
+ Image Size: '299'
145
+ Interpolation: bicubic
146
+ Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L449
147
+ Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_inception_v3-e0069de4.pth
148
+ Results:
149
+ - Task: Image Classification
150
+ Dataset: ImageNet
151
+ Metrics:
152
+ Top 1 Accuracy: 77.87%
153
+ Top 5 Accuracy: 93.65%
154
+ -->
pytorch-image-models/hfdocs/source/models/wide-resnet.mdx ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Wide ResNet
2
+
3
+ **Wide Residual Networks** are a variant on [ResNets](https://paperswithcode.com/method/resnet) where we decrease depth and increase the width of residual networks. This is achieved through the use of [wide residual blocks](https://paperswithcode.com/method/wide-residual-block).
4
+
5
+ ## How do I use this model on an image?
6
+
7
+ To load a pretrained model:
8
+
9
+ ```py
10
+ >>> import timm
11
+ >>> model = timm.create_model('wide_resnet101_2', pretrained=True)
12
+ >>> model.eval()
13
+ ```
14
+
15
+ To load and preprocess the image:
16
+
17
+ ```py
18
+ >>> import urllib
19
+ >>> from PIL import Image
20
+ >>> from timm.data import resolve_data_config
21
+ >>> from timm.data.transforms_factory import create_transform
22
+
23
+ >>> config = resolve_data_config({}, model=model)
24
+ >>> transform = create_transform(**config)
25
+
26
+ >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
27
+ >>> urllib.request.urlretrieve(url, filename)
28
+ >>> img = Image.open(filename).convert('RGB')
29
+ >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
30
+ ```
31
+
32
+ To get the model predictions:
33
+
34
+ ```py
35
+ >>> import torch
36
+ >>> with torch.no_grad():
37
+ ... out = model(tensor)
38
+ >>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
39
+ >>> print(probabilities.shape)
40
+ >>> # prints: torch.Size([1000])
41
+ ```
42
+
43
+ To get the top-5 predictions class names:
44
+
45
+ ```py
46
+ >>> # Get imagenet class mappings
47
+ >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
48
+ >>> urllib.request.urlretrieve(url, filename)
49
+ >>> with open("imagenet_classes.txt", "r") as f:
50
+ ... categories = [s.strip() for s in f.readlines()]
51
+
52
+ >>> # Print top categories per image
53
+ >>> top5_prob, top5_catid = torch.topk(probabilities, 5)
54
+ >>> for i in range(top5_prob.size(0)):
55
+ ... print(categories[top5_catid[i]], top5_prob[i].item())
56
+ >>> # prints class names and probabilities like:
57
+ >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
58
+ ```
59
+
60
+ Replace the model name with the variant you want to use, e.g. `wide_resnet101_2`. You can find the IDs in the model summaries at the top of this page.
61
+
62
+ To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.
63
+
64
+ ## How do I finetune this model?
65
+
66
+ You can finetune any of the pre-trained models just by changing the classifier (the last layer).
67
+
68
+ ```py
69
+ >>> model = timm.create_model('wide_resnet101_2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
70
+ ```
71
+ To finetune on your own dataset, you have to write a training loop or adapt [timm's training
72
+ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
73
+
74
+ ## How do I train this model?
75
+
76
+ You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
+
78
+ ## Citation
79
+
80
+ ```BibTeX
81
+ @article{DBLP:journals/corr/ZagoruykoK16,
82
+ author = {Sergey Zagoruyko and
83
+ Nikos Komodakis},
84
+ title = {Wide Residual Networks},
85
+ journal = {CoRR},
86
+ volume = {abs/1605.07146},
87
+ year = {2016},
88
+ url = {http://arxiv.org/abs/1605.07146},
89
+ archivePrefix = {arXiv},
90
+ eprint = {1605.07146},
91
+ timestamp = {Mon, 13 Aug 2018 16:46:42 +0200},
92
+ biburl = {https://dblp.org/rec/journals/corr/ZagoruykoK16.bib},
93
+ bibsource = {dblp computer science bibliography, https://dblp.org}
94
+ }
95
+ ```
96
+
97
+ <!--
98
+ Type: model-index
99
+ Collections:
100
+ - Name: Wide ResNet
101
+ Paper:
102
+ Title: Wide Residual Networks
103
+ URL: https://paperswithcode.com/paper/wide-residual-networks
104
+ Models:
105
+ - Name: wide_resnet101_2
106
+ In Collection: Wide ResNet
107
+ Metadata:
108
+ FLOPs: 29304929280
109
+ Parameters: 126890000
110
+ File Size: 254695146
111
+ Architecture:
112
+ - 1x1 Convolution
113
+ - Batch Normalization
114
+ - Convolution
115
+ - Global Average Pooling
116
+ - Max Pooling
117
+ - ReLU
118
+ - Residual Connection
119
+ - Softmax
120
+ - Wide Residual Block
121
+ Tasks:
122
+ - Image Classification
123
+ Training Data:
124
+ - ImageNet
125
+ ID: wide_resnet101_2
126
+ Crop Pct: '0.875'
127
+ Image Size: '224'
128
+ Interpolation: bilinear
129
+ Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/resnet.py#L802
130
+ Weights: https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth
131
+ Results:
132
+ - Task: Image Classification
133
+ Dataset: ImageNet
134
+ Metrics:
135
+ Top 1 Accuracy: 78.85%
136
+ Top 5 Accuracy: 94.28%
137
+ - Name: wide_resnet50_2
138
+ In Collection: Wide ResNet
139
+ Metadata:
140
+ FLOPs: 14688058368
141
+ Parameters: 68880000
142
+ File Size: 275853271
143
+ Architecture:
144
+ - 1x1 Convolution
145
+ - Batch Normalization
146
+ - Convolution
147
+ - Global Average Pooling
148
+ - Max Pooling
149
+ - ReLU
150
+ - Residual Connection
151
+ - Softmax
152
+ - Wide Residual Block
153
+ Tasks:
154
+ - Image Classification
155
+ Training Data:
156
+ - ImageNet
157
+ ID: wide_resnet50_2
158
+ Crop Pct: '0.875'
159
+ Image Size: '224'
160
+ Interpolation: bicubic
161
+ Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/resnet.py#L790
162
+ Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth
163
+ Results:
164
+ - Task: Image Classification
165
+ Dataset: ImageNet
166
+ Metrics:
167
+ Top 1 Accuracy: 81.45%
168
+ Top 5 Accuracy: 95.52%
169
+ -->
pytorch-image-models/hfdocs/source/reference/models.mdx ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Models
2
+
3
+ [[autodoc]] timm.create_model
4
+
5
+ [[autodoc]] timm.list_models
pytorch-image-models/results/README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Validation and Benchmark Results
2
+
3
+ This folder contains validation and benchmark results for the models in this collection. Validation scores are currently only run for models with pretrained weights and ImageNet-1k heads, benchmark numbers are run for all.
4
+
5
+ ## Datasets
6
+
7
+ There are currently results for the ImageNet validation set and 5 additional test / label sets.
8
+
9
+ The test set results include rank and top-1/top-5 differences from clean validation. For the "Real Labels", ImageNetV2, and Sketch test sets, the differences were calculated against the full 1000 class ImageNet-1k validation set. For both the Adversarial and Rendition sets, the differences were calculated against 'clean' runs on the ImageNet-1k validation set with the same 200 classes used in each test set respectively.
10
+
11
+ ### ImageNet Validation - [`results-imagenet.csv`](results-imagenet.csv)
12
+
13
+ The standard 50,000 image ImageNet-1k validation set. Model selection during training utilizes this validation set, so it is not a true test set. Question: Does anyone have the official ImageNet-1k test set classification labels now that challenges are done?
14
+
15
+ * Source: http://image-net.org/challenges/LSVRC/2012/index
16
+ * Paper: "ImageNet Large Scale Visual Recognition Challenge" - https://arxiv.org/abs/1409.0575
17
+
18
+ ### ImageNet-"Real Labels" - [`results-imagenet-real.csv`](results-imagenet-real.csv)
19
+
20
+ The usual ImageNet-1k validation set with a fresh new set of labels intended to improve on mistakes in the original annotation process.
21
+
22
+ * Source: https://github.com/google-research/reassessed-imagenet
23
+ * Paper: "Are we done with ImageNet?" - https://arxiv.org/abs/2006.07159
24
+
25
+ ### ImageNetV2 Matched Frequency - [`results-imagenetv2-matched-frequency.csv`](results-imagenetv2-matched-frequency.csv)
26
+
27
+ An ImageNet test set of 10,000 images sampled from new images roughly 10 years after the original. Care was taken to replicate the original ImageNet curation/sampling process.
28
+
29
+ * Source: https://github.com/modestyachts/ImageNetV2
30
+ * Paper: "Do ImageNet Classifiers Generalize to ImageNet?" - https://arxiv.org/abs/1902.10811
31
+
32
+ ### ImageNet-Sketch - [`results-sketch.csv`](results-sketch.csv)
33
+
34
+ 50,000 non photographic (or photos of such) images (sketches, doodles, mostly monochromatic) covering all 1000 ImageNet classes.
35
+
36
+ * Source: https://github.com/HaohanWang/ImageNet-Sketch
37
+ * Paper: "Learning Robust Global Representations by Penalizing Local Predictive Power" - https://arxiv.org/abs/1905.13549
38
+
39
+ ### ImageNet-Adversarial - [`results-imagenet-a.csv`](results-imagenet-a.csv)
40
+
41
+ A collection of 7500 images covering 200 of the 1000 ImageNet classes. Images are naturally occurring adversarial examples that confuse typical ImageNet classifiers. This is a challenging dataset, your typical ResNet-50 will score 0% top-1.
42
+
43
+ For clean validation with same 200 classes, see [`results-imagenet-a-clean.csv`](results-imagenet-a-clean.csv)
44
+
45
+ * Source: https://github.com/hendrycks/natural-adv-examples
46
+ * Paper: "Natural Adversarial Examples" - https://arxiv.org/abs/1907.07174
47
+
48
+ ### ImageNet-Rendition - [`results-imagenet-r.csv`](results-imagenet-r.csv)
49
+
50
+ Renditions of 200 ImageNet classes resulting in 30,000 images for testing robustness.
51
+
52
+ For clean validation with same 200 classes, see [`results-imagenet-r-clean.csv`](results-imagenet-r-clean.csv)
53
+
54
+ * Source: https://github.com/hendrycks/imagenet-r
55
+ * Paper: "The Many Faces of Robustness" - https://arxiv.org/abs/2006.16241
56
+
57
+ ### TODO
58
+ * Explore adding a reduced version of ImageNet-C (Corruptions) and ImageNet-P (Perturbations) from https://github.com/hendrycks/robustness. The originals are huge and image size specific.
59
+
60
+
61
+ ## Benchmark
62
+
63
+ CSV files with a `model_benchmark` prefix include benchmark numbers for models on various accelerators with different precision. Currently only run on RTX 3090 w/ AMP for inference, I intend to add more in the future.
64
+
65
+ ## Metadata
66
+
67
+ CSV files with `model_metadata` prefix contain extra information about the source training, currently the pretraining dataset and technique (ie distillation, SSL, WSL, etc). Eventually I'd like to have metadata about augmentation, regularization, etc. but that will be a challenge to source consistently.
pytorch-image-models/results/results-imagenet-r.csv ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/results/results-imagenet-real.csv ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/results/results-imagenet.csv ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/results/results-imagenetv2-matched-frequency.csv ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/results/results-sketch.csv ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/tests/test_layers.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from timm.layers import create_act_layer, set_layer_config, get_act_layer, get_act_fn
5
+
6
+ import importlib
7
+ import os
8
+
9
+ torch_backend = os.environ.get('TORCH_BACKEND')
10
+ if torch_backend is not None:
11
+ importlib.import_module(torch_backend)
12
+ torch_device = os.environ.get('TORCH_DEVICE', 'cpu')
13
+
14
+ class MLP(nn.Module):
15
+ def __init__(self, act_layer="relu", inplace=True):
16
+ super(MLP, self).__init__()
17
+ self.fc1 = nn.Linear(1000, 100)
18
+ self.act = create_act_layer(act_layer, inplace=inplace)
19
+ self.fc2 = nn.Linear(100, 10)
20
+
21
+ def forward(self, x):
22
+ x = self.fc1(x)
23
+ x = self.act(x)
24
+ x = self.fc2(x)
25
+ return x
26
+
27
+
28
+ def _run_act_layer_grad(act_type, inplace=True):
29
+ x = torch.rand(10, 1000) * 10
30
+ m = MLP(act_layer=act_type, inplace=inplace)
31
+
32
+ def _run(x, act_layer=''):
33
+ if act_layer:
34
+ # replace act layer if set
35
+ m.act = create_act_layer(act_layer, inplace=inplace)
36
+ out = m(x)
37
+ l = (out - 0).pow(2).sum()
38
+ return l
39
+
40
+ x = x.to(device=torch_device)
41
+ m.to(device=torch_device)
42
+
43
+ out_me = _run(x)
44
+
45
+ with set_layer_config(scriptable=True):
46
+ out_jit = _run(x, act_type)
47
+
48
+ assert torch.isclose(out_jit, out_me)
49
+
50
+ with set_layer_config(no_jit=True):
51
+ out_basic = _run(x, act_type)
52
+
53
+ assert torch.isclose(out_basic, out_jit)
54
+
55
+
56
+ def test_swish_grad():
57
+ for _ in range(100):
58
+ _run_act_layer_grad('swish')
59
+
60
+
61
+ def test_mish_grad():
62
+ for _ in range(100):
63
+ _run_act_layer_grad('mish')
64
+
65
+
66
+ def test_hard_sigmoid_grad():
67
+ for _ in range(100):
68
+ _run_act_layer_grad('hard_sigmoid', inplace=None)
69
+
70
+
71
+ def test_hard_swish_grad():
72
+ for _ in range(100):
73
+ _run_act_layer_grad('hard_swish')
74
+
75
+
76
+ def test_hard_mish_grad():
77
+ for _ in range(100):
78
+ _run_act_layer_grad('hard_mish')
79
+
80
+ def test_get_act_layer_empty_string():
81
+ # Empty string should return None
82
+ assert get_act_layer('') is None
83
+
84
+
85
+ def test_create_act_layer_inplace_error():
86
+ class NoInplaceAct(nn.Module):
87
+ def __init__(self):
88
+ super().__init__()
89
+ def forward(self, x):
90
+ return x
91
+
92
+ # Should recover when inplace arg causes TypeError
93
+ layer = create_act_layer(NoInplaceAct, inplace=True)
94
+ assert isinstance(layer, NoInplaceAct)
95
+
96
+
97
+ def test_create_act_layer_edge_cases():
98
+ # Test None input
99
+ assert create_act_layer(None) is None
100
+
101
+ # Test TypeError handling for inplace
102
+ class CustomAct(nn.Module):
103
+ def __init__(self, **kwargs):
104
+ super().__init__()
105
+ def forward(self, x):
106
+ return x
107
+
108
+ result = create_act_layer(CustomAct, inplace=True)
109
+ assert isinstance(result, CustomAct)
110
+
111
+
112
+ def test_get_act_fn_callable():
113
+ def custom_act(x):
114
+ return x
115
+ assert get_act_fn(custom_act) is custom_act
116
+
117
+
118
+ def test_get_act_fn_none():
119
+ assert get_act_fn(None) is None
120
+ assert get_act_fn('') is None
121
+
pytorch-image-models/tests/test_models.py ADDED
@@ -0,0 +1,710 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Run tests for all models
2
+
3
+ Tests that run on CI should have a specific marker, e.g. @pytest.mark.base. This
4
+ marker is used to parallelize the CI runs, with one runner for each marker.
5
+
6
+ If new tests are added, ensure that they use one of the existing markers
7
+ (documented in pyproject.toml > pytest > markers) or that a new marker is added
8
+ for this set of tests. If using a new marker, adjust the test matrix in
9
+ .github/workflows/tests.yml to run tests with this new marker, otherwise the
10
+ tests will be skipped on CI.
11
+
12
+ """
13
+
14
+ import pytest
15
+ import torch
16
+ import platform
17
+ import os
18
+ import fnmatch
19
+
20
+ _IS_MAC = platform.system() == 'Darwin'
21
+
22
+ try:
23
+ from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer
24
+ has_fx_feature_extraction = True
25
+ except ImportError:
26
+ has_fx_feature_extraction = False
27
+
28
+ import timm
29
+ from timm import list_models, list_pretrained, create_model, set_scriptable, get_pretrained_cfg_value
30
+ from timm.layers import Format, get_spatial_dim, get_channel_dim
31
+ from timm.models import get_notrace_modules, get_notrace_functions
32
+
33
+ import importlib
34
+ import os
35
+
36
+ torch_backend = os.environ.get('TORCH_BACKEND')
37
+ if torch_backend is not None:
38
+ importlib.import_module(torch_backend)
39
+ torch_device = os.environ.get('TORCH_DEVICE', 'cpu')
40
+ timeout = os.environ.get('TIMEOUT')
41
+ timeout120 = int(timeout) if timeout else 120
42
+ timeout240 = int(timeout) if timeout else 240
43
+ timeout360 = int(timeout) if timeout else 360
44
+
45
+ if hasattr(torch._C, '_jit_set_profiling_executor'):
46
+ # legacy executor is too slow to compile large models for unit tests
47
+ # no need for the fusion performance here
48
+ torch._C._jit_set_profiling_executor(True)
49
+ torch._C._jit_set_profiling_mode(False)
50
+
51
+ # models with forward_intermediates() and support for FeatureGetterNet features_only wrapper
52
+ FEAT_INTER_FILTERS = [
53
+ 'vision_transformer', 'vision_transformer_sam', 'vision_transformer_hybrid', 'vision_transformer_relpos',
54
+ 'beit', 'mvitv2', 'eva', 'cait', 'xcit', 'volo', 'twins', 'deit', 'swin_transformer', 'swin_transformer_v2',
55
+ 'swin_transformer_v2_cr', 'maxxvit', 'efficientnet', 'mobilenetv3', 'levit', 'efficientformer', 'resnet',
56
+ 'regnet', 'byobnet', 'byoanet', 'mlp_mixer', 'hiera', 'fastvit', 'hieradet_sam2'
57
+ ]
58
+
59
+ # transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output.
60
+ NON_STD_FILTERS = [
61
+ 'vit_*', 'tnt_*', 'pit_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
62
+ 'convit_*', 'levit*', 'visformer*', 'deit*', 'xcit_*', 'crossvit_*', 'beit*',
63
+ 'poolformer_*', 'volo_*', 'sequencer2d_*', 'mvitv2*', 'gcvit*', 'efficientformer*', 'sam_hiera*',
64
+ 'eva_*', 'flexivit*', 'eva02*', 'samvit_*', 'efficientvit_m*', 'tiny_vit_*', 'hiera_*', 'vitamin*', 'test_vit*',
65
+ ]
66
+ NUM_NON_STD = len(NON_STD_FILTERS)
67
+
68
+ # exclude models that cause specific test failures
69
+ if 'GITHUB_ACTIONS' in os.environ:
70
+ # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
71
+ EXCLUDE_FILTERS = [
72
+ '*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm', '*50x3_bitm',
73
+ '*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*', '*efficientnetv2_xl*',
74
+ '*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*', '*huge*', '*giant*', '*gigantic*',
75
+ '*enormous*', 'maxvit_xlarge*', 'regnet*1280', 'regnet*2560']
76
+ NON_STD_EXCLUDE_FILTERS = ['*huge*', '*giant*', '*gigantic*', '*enormous*']
77
+ else:
78
+ EXCLUDE_FILTERS = ['*enormous*']
79
+ NON_STD_EXCLUDE_FILTERS = ['*gigantic*', '*enormous*']
80
+
81
+ EXCLUDE_JIT_FILTERS = ['hiera_*']
82
+
83
+ TARGET_FWD_SIZE = MAX_FWD_SIZE = 384
84
+ TARGET_BWD_SIZE = 128
85
+ MAX_BWD_SIZE = 320
86
+ MAX_FWD_OUT_SIZE = 448
87
+ TARGET_JIT_SIZE = 128
88
+ MAX_JIT_SIZE = 320
89
+ TARGET_FFEAT_SIZE = 96
90
+ MAX_FFEAT_SIZE = 256
91
+ TARGET_FWD_FX_SIZE = 128
92
+ MAX_FWD_FX_SIZE = 256
93
+ TARGET_BWD_FX_SIZE = 128
94
+ MAX_BWD_FX_SIZE = 224
95
+
96
+
97
+ def _get_input_size(model=None, model_name='', target=None):
98
+ if model is None:
99
+ assert model_name, "One of model or model_name must be provided"
100
+ input_size = get_pretrained_cfg_value(model_name, 'input_size')
101
+ fixed_input_size = get_pretrained_cfg_value(model_name, 'fixed_input_size')
102
+ min_input_size = get_pretrained_cfg_value(model_name, 'min_input_size')
103
+ else:
104
+ default_cfg = model.default_cfg
105
+ input_size = default_cfg['input_size']
106
+ fixed_input_size = default_cfg.get('fixed_input_size', None)
107
+ min_input_size = default_cfg.get('min_input_size', None)
108
+ assert input_size is not None
109
+
110
+ if fixed_input_size:
111
+ return input_size
112
+
113
+ if min_input_size:
114
+ if target and max(input_size) > target:
115
+ input_size = min_input_size
116
+ else:
117
+ if target and max(input_size) > target:
118
+ input_size = tuple([min(x, target) for x in input_size])
119
+ return input_size
120
+
121
+
122
+ @pytest.mark.base
123
+ @pytest.mark.timeout(timeout240)
124
+ @pytest.mark.parametrize('model_name', list_pretrained('test_*'))
125
+ @pytest.mark.parametrize('batch_size', [1])
126
+ def test_model_inference(model_name, batch_size):
127
+ """Run a single forward pass with each model"""
128
+ from PIL import Image
129
+ from huggingface_hub import snapshot_download
130
+ import tempfile
131
+ import safetensors
132
+
133
+ model = create_model(model_name, pretrained=True)
134
+ model.eval()
135
+ pp = timm.data.create_transform(**timm.data.resolve_data_config(model=model))
136
+
137
+ with tempfile.TemporaryDirectory() as temp_dir:
138
+ snapshot_download(
139
+ repo_id='timm/' + model_name, repo_type='model', local_dir=temp_dir, allow_patterns='test/*'
140
+ )
141
+ rand_tensors = safetensors.torch.load_file(os.path.join(temp_dir, 'test', 'rand_tensors.safetensors'))
142
+ owl_tensors = safetensors.torch.load_file(os.path.join(temp_dir, 'test', 'owl_tensors.safetensors'))
143
+ test_owl = Image.open(os.path.join(temp_dir, 'test', 'test_owl.jpg'))
144
+
145
+ with torch.no_grad():
146
+ rand_output = model(rand_tensors['input'])
147
+ rand_features = model.forward_features(rand_tensors['input'])
148
+ rand_pre_logits = model.forward_head(rand_features, pre_logits=True)
149
+ assert torch.allclose(rand_output, rand_tensors['output'], rtol=1e-3, atol=1e-4), 'rand output does not match'
150
+ assert torch.allclose(rand_features, rand_tensors['features'], rtol=1e-3, atol=1e-4), 'rand features do not match'
151
+ assert torch.allclose(rand_pre_logits, rand_tensors['pre_logits'], rtol=1e-3, atol=1e-4), 'rand pre_logits do not match'
152
+
153
+ def _test_owl(owl_input, tol=(1e-3, 1e-4)):
154
+ owl_output = model(owl_input)
155
+ owl_features = model.forward_features(owl_input)
156
+ owl_pre_logits = model.forward_head(owl_features.clone(), pre_logits=True)
157
+ assert owl_output.softmax(1).argmax(1) == 24 # owl
158
+ assert torch.allclose(owl_output, owl_tensors['output'], rtol=tol[0], atol=tol[1]), 'owl output does not match'
159
+ assert torch.allclose(owl_features, owl_tensors['features'], rtol=tol[0], atol=tol[1]), 'owl output does not match'
160
+ assert torch.allclose(owl_pre_logits, owl_tensors['pre_logits'], rtol=tol[0], atol=tol[1]), 'owl output does not match'
161
+
162
+ _test_owl(owl_tensors['input']) # test with original pp owl tensor
163
+ _test_owl(pp(test_owl).unsqueeze(0), tol=(1e-1, 1e-1)) # re-process from original jpg, Pillow output can change a lot btw ver
164
+
165
+
166
+ @pytest.mark.base
167
+ @pytest.mark.timeout(timeout120)
168
+ @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS))
169
+ @pytest.mark.parametrize('batch_size', [1])
170
+ def test_model_forward(model_name, batch_size):
171
+ """Run a single forward pass with each model"""
172
+ model = create_model(model_name, pretrained=False)
173
+ model.eval()
174
+
175
+ input_size = _get_input_size(model=model, target=TARGET_FWD_SIZE)
176
+ if max(input_size) > MAX_FWD_SIZE:
177
+ pytest.skip("Fixed input size model > limit.")
178
+ inputs = torch.randn((batch_size, *input_size))
179
+ inputs = inputs.to(torch_device)
180
+ model.to(torch_device)
181
+ outputs = model(inputs)
182
+
183
+ assert outputs.shape[0] == batch_size
184
+ assert not torch.isnan(outputs).any(), 'Output included NaNs'
185
+
186
+
187
+ @pytest.mark.base
188
+ @pytest.mark.timeout(timeout120)
189
+ @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS, name_matches_cfg=True))
190
+ @pytest.mark.parametrize('batch_size', [2])
191
+ def test_model_backward(model_name, batch_size):
192
+ """Run a single forward pass with each model"""
193
+ input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_SIZE)
194
+ if max(input_size) > MAX_BWD_SIZE:
195
+ pytest.skip("Fixed input size model > limit.")
196
+
197
+ model = create_model(model_name, pretrained=False, num_classes=42)
198
+ num_params = sum([x.numel() for x in model.parameters()])
199
+ model.train()
200
+
201
+ inputs = torch.randn((batch_size, *input_size))
202
+ inputs = inputs.to(torch_device)
203
+ model.to(torch_device)
204
+ outputs = model(inputs)
205
+ if isinstance(outputs, tuple):
206
+ outputs = torch.cat(outputs)
207
+ outputs.mean().backward()
208
+ for n, x in model.named_parameters():
209
+ assert x.grad is not None, f'No gradient for {n}'
210
+ num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
211
+
212
+ assert outputs.shape[-1] == 42
213
+ assert num_params == num_grad, 'Some parameters are missing gradients'
214
+ assert not torch.isnan(outputs).any(), 'Output included NaNs'
215
+
216
+
217
+ # models with extra conv/linear layers after pooling
218
+ EARLY_POOL_MODELS = (
219
+ timm.models.EfficientVit,
220
+ timm.models.EfficientVitLarge,
221
+ timm.models.HighPerfGpuNet,
222
+ timm.models.GhostNet,
223
+ timm.models.MetaNeXt, # InceptionNeXt
224
+ timm.models.MobileNetV3,
225
+ timm.models.RepGhostNet,
226
+ timm.models.VGG,
227
+ )
228
+
229
+ @pytest.mark.cfg
230
+ @pytest.mark.timeout(timeout360)
231
+ @pytest.mark.parametrize('model_name', list_models(
232
+ exclude_filters=EXCLUDE_FILTERS + NON_STD_FILTERS, include_tags=True))
233
+ @pytest.mark.parametrize('batch_size', [1])
234
+ def test_model_default_cfgs(model_name, batch_size):
235
+ """Run a single forward pass with each model"""
236
+ model = create_model(model_name, pretrained=False)
237
+ model.eval()
238
+ model.to(torch_device)
239
+ assert getattr(model, 'num_classes') >= 0
240
+ assert getattr(model, 'num_features') > 0
241
+ assert getattr(model, 'head_hidden_size') > 0
242
+ state_dict = model.state_dict()
243
+ cfg = model.default_cfg
244
+
245
+ pool_size = cfg['pool_size']
246
+ input_size = model.default_cfg['input_size']
247
+ output_fmt = getattr(model, 'output_fmt', 'NCHW')
248
+ spatial_axis = get_spatial_dim(output_fmt)
249
+ assert len(spatial_axis) == 2 # TODO add 1D sequence support
250
+ feat_axis = get_channel_dim(output_fmt)
251
+
252
+ if all([x <= MAX_FWD_OUT_SIZE for x in input_size]) and \
253
+ not any([fnmatch.fnmatch(model_name, x) for x in EXCLUDE_FILTERS]):
254
+ # output sizes only checked if default res <= 448 * 448 to keep resource down
255
+ input_size = tuple([min(x, MAX_FWD_OUT_SIZE) for x in input_size])
256
+ input_tensor = torch.randn((batch_size, *input_size), device=torch_device)
257
+
258
+ # test forward_features (always unpooled) & forward_head w/ pre_logits
259
+ outputs = model.forward_features(input_tensor)
260
+ outputs_pre = model.forward_head(outputs, pre_logits=True)
261
+ assert outputs.shape[spatial_axis[0]] == pool_size[0], f'unpooled feature shape {outputs.shape} != config'
262
+ assert outputs.shape[spatial_axis[1]] == pool_size[1], f'unpooled feature shape {outputs.shape} != config'
263
+ assert outputs.shape[feat_axis] == model.num_features, f'unpooled feature dim {outputs.shape[feat_axis]} != model.num_features {model.num_features}'
264
+ assert outputs_pre.shape[1] == model.head_hidden_size, f'pre_logits feature dim {outputs_pre.shape[1]} != model.head_hidden_size {model.head_hidden_size}'
265
+
266
+ # test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
267
+ model.reset_classifier(0)
268
+ model.to(torch_device)
269
+ outputs = model.forward(input_tensor)
270
+ assert len(outputs.shape) == 2
271
+ assert outputs.shape[1] == model.head_hidden_size, f'feature dim w/ removed classifier {outputs.shape[1]} != model.head_hidden_size {model.head_hidden_size}'
272
+ assert outputs.shape == outputs_pre.shape, f'output shape of pre_logits {outputs_pre.shape} does not match reset_head(0) {outputs.shape}'
273
+
274
+ # test model forward after removing pooling and classifier
275
+ if not isinstance(model, EARLY_POOL_MODELS):
276
+ model.reset_classifier(0, '') # reset classifier and disable global pooling
277
+ model.to(torch_device)
278
+ outputs = model.forward(input_tensor)
279
+ assert len(outputs.shape) == 4
280
+ assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1]
281
+
282
+ # test classifier + global pool deletion via __init__
283
+ if 'pruned' not in model_name and not isinstance(model, EARLY_POOL_MODELS):
284
+ model = create_model(model_name, pretrained=False, num_classes=0, global_pool='').eval()
285
+ model.to(torch_device)
286
+ outputs = model.forward(input_tensor)
287
+ assert len(outputs.shape) == 4
288
+ assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1]
289
+
290
+ # check classifier name matches default_cfg
291
+ if cfg.get('num_classes', None):
292
+ classifier = cfg['classifier']
293
+ if not isinstance(classifier, (tuple, list)):
294
+ classifier = classifier,
295
+ for c in classifier:
296
+ assert c + ".weight" in state_dict.keys(), f'{c} not in model params'
297
+
298
+ # check first conv(s) names match default_cfg
299
+ first_conv = cfg['first_conv']
300
+ if isinstance(first_conv, str):
301
+ first_conv = (first_conv,)
302
+ assert isinstance(first_conv, (tuple, list))
303
+ for fc in first_conv:
304
+ assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params'
305
+
306
+
307
+ @pytest.mark.cfg
308
+ @pytest.mark.timeout(timeout360)
309
+ @pytest.mark.parametrize('model_name', list_models(filter=NON_STD_FILTERS, exclude_filters=NON_STD_EXCLUDE_FILTERS, include_tags=True))
310
+ @pytest.mark.parametrize('batch_size', [1])
311
+ def test_model_default_cfgs_non_std(model_name, batch_size):
312
+ """Run a single forward pass with each model"""
313
+ model = create_model(model_name, pretrained=False)
314
+ model.eval()
315
+ model.to(torch_device)
316
+ assert getattr(model, 'num_classes') >= 0
317
+ assert getattr(model, 'num_features') > 0
318
+ assert getattr(model, 'head_hidden_size') > 0
319
+ state_dict = model.state_dict()
320
+ cfg = model.default_cfg
321
+
322
+ input_size = _get_input_size(model=model)
323
+ if max(input_size) > 320: # FIXME const
324
+ pytest.skip("Fixed input size model > limit.")
325
+
326
+ input_tensor = torch.randn((batch_size, *input_size), device=torch_device)
327
+ feat_dim = getattr(model, 'feature_dim', None)
328
+
329
+ outputs = model.forward_features(input_tensor)
330
+ outputs_pre = model.forward_head(outputs, pre_logits=True)
331
+ if isinstance(outputs, (tuple, list)):
332
+ # cannot currently verify multi-tensor output.
333
+ pass
334
+ else:
335
+ if feat_dim is None:
336
+ feat_dim = -1 if outputs.ndim == 3 else 1
337
+ assert outputs.shape[feat_dim] == model.num_features
338
+ assert outputs_pre.shape[1] == model.head_hidden_size
339
+
340
+ # test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
341
+ model.reset_classifier(0)
342
+ model.to(torch_device)
343
+ outputs = model.forward(input_tensor)
344
+ if isinstance(outputs, (tuple, list)):
345
+ outputs = outputs[0]
346
+ if feat_dim is None:
347
+ feat_dim = -1 if outputs.ndim == 3 else 1
348
+ assert outputs.shape[feat_dim] == model.head_hidden_size, 'pooled num_features != config'
349
+ assert outputs.shape == outputs_pre.shape
350
+
351
+ model = create_model(model_name, pretrained=False, num_classes=0).eval()
352
+ model.to(torch_device)
353
+ outputs = model.forward(input_tensor)
354
+ if isinstance(outputs, (tuple, list)):
355
+ outputs = outputs[0]
356
+ if feat_dim is None:
357
+ feat_dim = -1 if outputs.ndim == 3 else 1
358
+ assert outputs.shape[feat_dim] == model.num_features
359
+
360
+ # check classifier name matches default_cfg
361
+ if cfg.get('num_classes', None):
362
+ classifier = cfg['classifier']
363
+ if not isinstance(classifier, (tuple, list)):
364
+ classifier = classifier,
365
+ for c in classifier:
366
+ assert c + ".weight" in state_dict.keys(), f'{c} not in model params'
367
+
368
+ # check first conv(s) names match default_cfg
369
+ first_conv = cfg['first_conv']
370
+ if isinstance(first_conv, str):
371
+ first_conv = (first_conv,)
372
+ assert isinstance(first_conv, (tuple, list))
373
+ for fc in first_conv:
374
+ assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params'
375
+
376
+
377
+ if 'GITHUB_ACTIONS' not in os.environ:
378
+ @pytest.mark.timeout(240)
379
+ @pytest.mark.parametrize('model_name', list_models(pretrained=True))
380
+ @pytest.mark.parametrize('batch_size', [1])
381
+ def test_model_load_pretrained(model_name, batch_size):
382
+ """Create that pretrained weights load, verify support for in_chans != 3 while doing so."""
383
+ in_chans = 3 if 'pruned' in model_name else 1 # pruning not currently supported with in_chans change
384
+ create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=5)
385
+ create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=0)
386
+
387
+ @pytest.mark.timeout(240)
388
+ @pytest.mark.parametrize('model_name', list_models(pretrained=True, exclude_filters=NON_STD_FILTERS))
389
+ @pytest.mark.parametrize('batch_size', [1])
390
+ def test_model_features_pretrained(model_name, batch_size):
391
+ """Create that pretrained weights load when features_only==True."""
392
+ create_model(model_name, pretrained=True, features_only=True)
393
+
394
+
395
+ @pytest.mark.torchscript
396
+ @pytest.mark.timeout(timeout120)
397
+ @pytest.mark.parametrize(
398
+ 'model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS, name_matches_cfg=True))
399
+ @pytest.mark.parametrize('batch_size', [1])
400
+ def test_model_forward_torchscript(model_name, batch_size):
401
+ """Run a single forward pass with each model"""
402
+ input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
403
+ if max(input_size) > MAX_JIT_SIZE:
404
+ pytest.skip("Fixed input size model > limit.")
405
+
406
+ with set_scriptable(True):
407
+ model = create_model(model_name, pretrained=False)
408
+ model.eval()
409
+
410
+ model = torch.jit.script(model)
411
+ model.to(torch_device)
412
+ outputs = model(torch.randn((batch_size, *input_size)))
413
+
414
+ assert outputs.shape[0] == batch_size
415
+ assert not torch.isnan(outputs).any(), 'Output included NaNs'
416
+
417
+
418
+ EXCLUDE_FEAT_FILTERS = [
419
+ '*pruned*', # hopefully fix at some point
420
+ ] + NON_STD_FILTERS
421
+ if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system():
422
+ # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
423
+ EXCLUDE_FEAT_FILTERS += ['*resnext101_32x32d', '*resnext101_32x16d']
424
+
425
+
426
+ @pytest.mark.features
427
+ @pytest.mark.timeout(120)
428
+ @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FEAT_FILTERS))
429
+ @pytest.mark.parametrize('batch_size', [1])
430
+ def test_model_forward_features(model_name, batch_size):
431
+ """Run a single forward pass with each model in feature extraction mode"""
432
+ model = create_model(model_name, pretrained=False, features_only=True)
433
+ model.eval()
434
+ expected_channels = model.feature_info.channels()
435
+ expected_reduction = model.feature_info.reduction()
436
+ assert len(expected_channels) >= 3 # all models here should have at least 3 default feat levels
437
+
438
+ input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
439
+ if max(input_size) > MAX_FFEAT_SIZE:
440
+ pytest.skip("Fixed input size model > limit.")
441
+ output_fmt = getattr(model, 'output_fmt', 'NCHW')
442
+ feat_axis = get_channel_dim(output_fmt)
443
+ spatial_axis = get_spatial_dim(output_fmt)
444
+ import math
445
+
446
+ outputs = model(torch.randn((batch_size, *input_size)))
447
+ assert len(expected_channels) == len(outputs)
448
+ spatial_size = input_size[-2:]
449
+ for e, r, o in zip(expected_channels, expected_reduction, outputs):
450
+ assert e == o.shape[feat_axis]
451
+ assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1
452
+ assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1
453
+ assert o.shape[0] == batch_size
454
+ assert not torch.isnan(o).any()
455
+
456
+
457
+ @pytest.mark.features
458
+ @pytest.mark.timeout(120)
459
+ @pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*']))
460
+ @pytest.mark.parametrize('batch_size', [1])
461
+ def test_model_forward_intermediates_features(model_name, batch_size):
462
+ """Run a single forward pass with each model in feature extraction mode"""
463
+ model = create_model(model_name, pretrained=False, features_only=True, feature_cls='getter')
464
+ model.eval()
465
+ expected_channels = model.feature_info.channels()
466
+ expected_reduction = model.feature_info.reduction()
467
+
468
+ input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
469
+ if max(input_size) > MAX_FFEAT_SIZE:
470
+ pytest.skip("Fixed input size model > limit.")
471
+ output_fmt = getattr(model, 'output_fmt', 'NCHW')
472
+ feat_axis = get_channel_dim(output_fmt)
473
+ spatial_axis = get_spatial_dim(output_fmt)
474
+ import math
475
+
476
+ outputs = model(torch.randn((batch_size, *input_size)))
477
+ assert len(expected_channels) == len(outputs)
478
+ spatial_size = input_size[-2:]
479
+ for e, r, o in zip(expected_channels, expected_reduction, outputs):
480
+ print(o.shape)
481
+ assert e == o.shape[feat_axis]
482
+ assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1
483
+ assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1
484
+ assert o.shape[0] == batch_size
485
+ assert not torch.isnan(o).any()
486
+
487
+
488
+ @pytest.mark.features
489
+ @pytest.mark.timeout(120)
490
+ @pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*']))
491
+ @pytest.mark.parametrize('batch_size', [1])
492
+ def test_model_forward_intermediates(model_name, batch_size):
493
+ """Run a single forward pass with each model in feature extraction mode"""
494
+ model = create_model(model_name, pretrained=False)
495
+ model.eval()
496
+ feature_info = timm.models.FeatureInfo(model.feature_info, len(model.feature_info))
497
+ expected_channels = feature_info.channels()
498
+ expected_reduction = feature_info.reduction()
499
+ assert len(expected_channels) >= 3 # all models here should have at least 3 feature levels
500
+
501
+ input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
502
+ if max(input_size) > MAX_FFEAT_SIZE:
503
+ pytest.skip("Fixed input size model > limit.")
504
+ output_fmt = 'NCHW' # NOTE output_fmt determined by forward_intermediates() arg, not model attribute
505
+ feat_axis = get_channel_dim(output_fmt)
506
+ spatial_axis = get_spatial_dim(output_fmt)
507
+ import math
508
+
509
+ output, intermediates = model.forward_intermediates(
510
+ torch.randn((batch_size, *input_size)),
511
+ output_fmt=output_fmt,
512
+ )
513
+ assert len(expected_channels) == len(intermediates)
514
+ spatial_size = input_size[-2:]
515
+ for e, r, o in zip(expected_channels, expected_reduction, intermediates):
516
+ assert e == o.shape[feat_axis]
517
+ assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1
518
+ assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1
519
+ assert o.shape[0] == batch_size
520
+ assert not torch.isnan(o).any()
521
+
522
+
523
+ def _create_fx_model(model, train=False):
524
+ # This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
525
+ # So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
526
+ # node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
527
+ tracer_kwargs = dict(
528
+ leaf_modules=get_notrace_modules(),
529
+ autowrap_functions=get_notrace_functions(),
530
+ #enable_cpatching=True,
531
+ param_shapes_constant=True
532
+ )
533
+ train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs)
534
+
535
+ eval_return_nodes = [eval_nodes[-1]]
536
+ train_return_nodes = [train_nodes[-1]]
537
+ if train:
538
+ tracer = NodePathTracer(**tracer_kwargs)
539
+ graph = tracer.trace(model)
540
+ graph_nodes = list(reversed(graph.nodes))
541
+ output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()]
542
+ graph_node_names = [n.name for n in graph_nodes]
543
+ output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names]
544
+ train_return_nodes = [train_nodes[ix] for ix in output_node_indices]
545
+
546
+ fx_model = create_feature_extractor(
547
+ model,
548
+ train_return_nodes=train_return_nodes,
549
+ eval_return_nodes=eval_return_nodes,
550
+ tracer_kwargs=tracer_kwargs,
551
+ )
552
+ return fx_model
553
+
554
+
555
+ EXCLUDE_FX_FILTERS = ['vit_gi*', 'hiera*']
556
+ # not enough memory to run fx on more models than other tests
557
+ if 'GITHUB_ACTIONS' in os.environ:
558
+ EXCLUDE_FX_FILTERS += [
559
+ 'beit_large*',
560
+ 'mixer_l*',
561
+ '*nfnet_f2*',
562
+ '*resnext101_32x32d',
563
+ 'resnetv2_152x2*',
564
+ 'resmlp_big*',
565
+ 'resnetrs270',
566
+ 'swin_large*',
567
+ 'vgg*',
568
+ 'vit_large*',
569
+ 'vit_base_patch8*',
570
+ 'xcit_large*',
571
+ ]
572
+
573
+
574
+ @pytest.mark.fxforward
575
+ @pytest.mark.timeout(120)
576
+ @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS))
577
+ @pytest.mark.parametrize('batch_size', [1])
578
+ def test_model_forward_fx(model_name, batch_size):
579
+ """
580
+ Symbolically trace each model and run single forward pass through the resulting GraphModule
581
+ Also check that the output of a forward pass through the GraphModule is the same as that from the original Module
582
+ """
583
+ if not has_fx_feature_extraction:
584
+ pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
585
+
586
+ model = create_model(model_name, pretrained=False)
587
+ model.eval()
588
+
589
+ input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE)
590
+ if max(input_size) > MAX_FWD_FX_SIZE:
591
+ pytest.skip("Fixed input size model > limit.")
592
+ with torch.no_grad():
593
+ inputs = torch.randn((batch_size, *input_size))
594
+ outputs = model(inputs)
595
+ if isinstance(outputs, tuple):
596
+ outputs = torch.cat(outputs)
597
+
598
+ model = _create_fx_model(model)
599
+ fx_outputs = tuple(model(inputs).values())
600
+ if isinstance(fx_outputs, tuple):
601
+ fx_outputs = torch.cat(fx_outputs)
602
+
603
+ assert torch.all(fx_outputs == outputs)
604
+ assert outputs.shape[0] == batch_size
605
+ assert not torch.isnan(outputs).any(), 'Output included NaNs'
606
+
607
+
608
+ @pytest.mark.fxbackward
609
+ @pytest.mark.timeout(120)
610
+ @pytest.mark.parametrize('model_name', list_models(
611
+ exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True))
612
+ @pytest.mark.parametrize('batch_size', [2])
613
+ def test_model_backward_fx(model_name, batch_size):
614
+ """Symbolically trace each model and run single backward pass through the resulting GraphModule"""
615
+ if not has_fx_feature_extraction:
616
+ pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
617
+
618
+ input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE)
619
+ if max(input_size) > MAX_BWD_FX_SIZE:
620
+ pytest.skip("Fixed input size model > limit.")
621
+
622
+ model = create_model(model_name, pretrained=False, num_classes=42)
623
+ model.train()
624
+ num_params = sum([x.numel() for x in model.parameters()])
625
+ if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6:
626
+ pytest.skip("Skipping FX backward test on model with more than 100M params.")
627
+
628
+ model = _create_fx_model(model, train=True)
629
+ outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
630
+ if isinstance(outputs, tuple):
631
+ outputs = torch.cat(outputs)
632
+ outputs.mean().backward()
633
+ for n, x in model.named_parameters():
634
+ assert x.grad is not None, f'No gradient for {n}'
635
+ num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
636
+
637
+ assert outputs.shape[-1] == 42
638
+ assert num_params == num_grad, 'Some parameters are missing gradients'
639
+ assert not torch.isnan(outputs).any(), 'Output included NaNs'
640
+
641
+
642
+ if 'GITHUB_ACTIONS' not in os.environ:
643
+ # FIXME this test is causing GitHub actions to run out of RAM and abruptly kill the test process
644
+
645
+ # reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow
646
+ EXCLUDE_FX_JIT_FILTERS = [
647
+ 'deit_*_distilled_patch16_224',
648
+ 'levit*',
649
+ 'pit_*_distilled_224',
650
+ ] + EXCLUDE_FX_FILTERS
651
+
652
+
653
+ @pytest.mark.timeout(120)
654
+ @pytest.mark.parametrize(
655
+ 'model_name', list_models(
656
+ exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True))
657
+ @pytest.mark.parametrize('batch_size', [1])
658
+ def test_model_forward_fx_torchscript(model_name, batch_size):
659
+ """Symbolically trace each model, script it, and run single forward pass"""
660
+ if not has_fx_feature_extraction:
661
+ pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
662
+
663
+ input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
664
+ if max(input_size) > MAX_JIT_SIZE:
665
+ pytest.skip("Fixed input size model > limit.")
666
+
667
+ with set_scriptable(True):
668
+ model = create_model(model_name, pretrained=False)
669
+ model.eval()
670
+
671
+ model = torch.jit.script(_create_fx_model(model))
672
+ with torch.no_grad():
673
+ outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
674
+ if isinstance(outputs, tuple):
675
+ outputs = torch.cat(outputs)
676
+
677
+ assert outputs.shape[0] == batch_size
678
+ assert not torch.isnan(outputs).any(), 'Output included NaNs'
679
+
680
+ @pytest.mark.timeout(120)
681
+ @pytest.mark.parametrize('model_name', ["regnetx_002"])
682
+ @pytest.mark.parametrize('batch_size', [1])
683
+ def test_model_forward_torchscript_with_features_fx(model_name, batch_size):
684
+ """Create a model with feature extraction based on fx, script it, and run
685
+ a single forward pass"""
686
+ if not has_fx_feature_extraction:
687
+ pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
688
+
689
+ allowed_models = list_models(
690
+ exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS,
691
+ name_matches_cfg=True
692
+ )
693
+ assert model_name in allowed_models, f"{model_name=} not supported for this test"
694
+
695
+ input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
696
+ assert max(input_size) <= MAX_JIT_SIZE, "Fixed input size model > limit. Pick a different model to run this test"
697
+
698
+ with set_scriptable(True):
699
+ model = create_model(model_name, pretrained=False, features_only=True, feature_cfg={"feature_cls": "fx"})
700
+ model.eval()
701
+
702
+ model = torch.jit.script(model)
703
+ with torch.no_grad():
704
+ outputs = model(torch.randn((batch_size, *input_size)))
705
+
706
+ assert isinstance(outputs, list)
707
+
708
+ for tensor in outputs:
709
+ assert tensor.shape[0] == batch_size
710
+ assert not torch.isnan(tensor).any(), 'Output included NaNs'
pytorch-image-models/timm/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .version import __version__
2
+ from .layers import is_scriptable, is_exportable, set_scriptable, set_exportable
3
+ from .models import create_model, list_models, list_pretrained, is_model, list_modules, model_entrypoint, \
4
+ is_model_pretrained, get_pretrained_cfg, get_pretrained_cfg_value
pytorch-image-models/timm/data/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .auto_augment import RandAugment, AutoAugment, rand_augment_ops, auto_augment_policy,\
2
+ rand_augment_transform, auto_augment_transform
3
+ from .config import resolve_data_config, resolve_model_data_config
4
+ from .constants import *
5
+ from .dataset import ImageDataset, IterableImageDataset, AugMixDataset
6
+ from .dataset_factory import create_dataset
7
+ from .dataset_info import DatasetInfo, CustomDatasetInfo
8
+ from .imagenet_info import ImageNetInfo, infer_imagenet_subset
9
+ from .loader import create_loader
10
+ from .mixup import Mixup, FastCollateMixup
11
+ from .readers import create_reader
12
+ from .readers import get_img_extensions, is_img_extension, set_img_extensions, add_img_extensions, del_img_extensions
13
+ from .real_labels import RealLabelsImagenet
14
+ from .transforms import *
15
+ from .transforms_factory import create_transform
pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc ADDED
Binary file (27.6 kB). View file
 
pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc ADDED
Binary file (2.72 kB). View file
 
pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc ADDED
Binary file (5.83 kB). View file
 
pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc ADDED
Binary file (6.03 kB). View file
 
pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc ADDED
Binary file (3.35 kB). View file
 
pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc ADDED
Binary file (4.42 kB). View file
 
pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc ADDED
Binary file (3.83 kB). View file
 
pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc ADDED
Binary file (11.2 kB). View file
 
pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc ADDED
Binary file (3.94 kB). View file
 
pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc ADDED
Binary file (2.52 kB). View file
 
pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc ADDED
Binary file (18.3 kB). View file
 
pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc ADDED
Binary file (12.6 kB). View file
 
pytorch-image-models/timm/data/_info/imagenet12k_synsets.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/timm/data/_info/imagenet21k_goog_synsets.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/timm/data/_info/imagenet22k_ms_synsets.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/timm/data/_info/imagenet22k_ms_to_12k_indices.txt ADDED
@@ -0,0 +1,11821 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1001
2
+ 1003
3
+ 1004
4
+ 1005
5
+ 1006
6
+ 1007
7
+ 1008
8
+ 1009
9
+ 1010
10
+ 1011
11
+ 1013
12
+ 1014
13
+ 1015
14
+ 1016
15
+ 1017
16
+ 1018
17
+ 1019
18
+ 1020
19
+ 1021
20
+ 1023
21
+ 1024
22
+ 1026
23
+ 1027
24
+ 1028
25
+ 1029
26
+ 1030
27
+ 1031
28
+ 1032
29
+ 1033
30
+ 1034
31
+ 1037
32
+ 1038
33
+ 1041
34
+ 1043
35
+ 1044
36
+ 1045
37
+ 1046
38
+ 1047
39
+ 1048
40
+ 1049
41
+ 1050
42
+ 1051
43
+ 1053
44
+ 1055
45
+ 1056
46
+ 1057
47
+ 1058
48
+ 1060
49
+ 1061
50
+ 1062
51
+ 1063
52
+ 1064
53
+ 1065
54
+ 1066
55
+ 1067
56
+ 1068
57
+ 1069
58
+ 1070
59
+ 1071
60
+ 1072
61
+ 1073
62
+ 1074
63
+ 1075
64
+ 1076
65
+ 1077
66
+ 1078
67
+ 1079
68
+ 1080
69
+ 1081
70
+ 1082
71
+ 1083
72
+ 1084
73
+ 1085
74
+ 1086
75
+ 1089
76
+ 1090
77
+ 1091
78
+ 1093
79
+ 1094
80
+ 1095
81
+ 1096
82
+ 1097
83
+ 1099
84
+ 1100
85
+ 1101
86
+ 1102
87
+ 1103
88
+ 1105
89
+ 1107
90
+ 1108
91
+ 1109
92
+ 1110
93
+ 1111
94
+ 1112
95
+ 1113
96
+ 1114
97
+ 1115
98
+ 1116
99
+ 1117
100
+ 1118
101
+ 1119
102
+ 1120
103
+ 1121
104
+ 1122
105
+ 1123
106
+ 1124
107
+ 1125
108
+ 1126
109
+ 1127
110
+ 1128
111
+ 1129
112
+ 1130
113
+ 1131
114
+ 1132
115
+ 1133
116
+ 1134
117
+ 1135
118
+ 1137
119
+ 1138
120
+ 1140
121
+ 1141
122
+ 1142
123
+ 1143
124
+ 1144
125
+ 1146
126
+ 1147
127
+ 1148
128
+ 1149
129
+ 1151
130
+ 1152
131
+ 1153
132
+ 1154
133
+ 1156
134
+ 1157
135
+ 1158
136
+ 1159
137
+ 1161
138
+ 1162
139
+ 1164
140
+ 1165
141
+ 1166
142
+ 1167
143
+ 1168
144
+ 1169
145
+ 1170
146
+ 1171
147
+ 1172
148
+ 1173
149
+ 1175
150
+ 1176
151
+ 1179
152
+ 1180
153
+ 1181
154
+ 1182
155
+ 1184
156
+ 1188
157
+ 1192
158
+ 1193
159
+ 1195
160
+ 1196
161
+ 1197
162
+ 1199
163
+ 1200
164
+ 1203
165
+ 1206
166
+ 1209
167
+ 1210
168
+ 1211
169
+ 1212
170
+ 1213
171
+ 1214
172
+ 1215
173
+ 1216
174
+ 1217
175
+ 1218
176
+ 1219
177
+ 1220
178
+ 1221
179
+ 1222
180
+ 1223
181
+ 1224
182
+ 1225
183
+ 1226
184
+ 1227
185
+ 1230
186
+ 1231
187
+ 1235
188
+ 1249
189
+ 1250
190
+ 1251
191
+ 1252
192
+ 1253
193
+ 1254
194
+ 1289
195
+ 1292
196
+ 1295
197
+ 1301
198
+ 1306
199
+ 1307
200
+ 1312
201
+ 1313
202
+ 1315
203
+ 1317
204
+ 1320
205
+ 1324
206
+ 1325
207
+ 1326
208
+ 1327
209
+ 1332
210
+ 1341
211
+ 1343
212
+ 1347
213
+ 1352
214
+ 1353
215
+ 1354
216
+ 1356
217
+ 0
218
+ 1359
219
+ 1365
220
+ 1366
221
+ 1
222
+ 1367
223
+ 1368
224
+ 1375
225
+ 1377
226
+ 1378
227
+ 1380
228
+ 1381
229
+ 1382
230
+ 1383
231
+ 1384
232
+ 1390
233
+ 1393
234
+ 1396
235
+ 1400
236
+ 1403
237
+ 1406
238
+ 1408
239
+ 1409
240
+ 1411
241
+ 1413
242
+ 1414
243
+ 1416
244
+ 1420
245
+ 1421
246
+ 1422
247
+ 1428
248
+ 1429
249
+ 1438
250
+ 1439
251
+ 1449
252
+ 1450
253
+ 1453
254
+ 1454
255
+ 1455
256
+ 2
257
+ 1458
258
+ 1461
259
+ 1462
260
+ 1463
261
+ 1465
262
+ 1466
263
+ 1467
264
+ 1468
265
+ 1469
266
+ 1470
267
+ 1471
268
+ 3
269
+ 1473
270
+ 1475
271
+ 1478
272
+ 4
273
+ 1484
274
+ 1485
275
+ 1486
276
+ 5
277
+ 1487
278
+ 6
279
+ 1492
280
+ 1493
281
+ 1495
282
+ 1496
283
+ 1498
284
+ 1503
285
+ 1504
286
+ 1505
287
+ 1506
288
+ 7
289
+ 1507
290
+ 8
291
+ 1511
292
+ 1514
293
+ 1515
294
+ 9
295
+ 1516
296
+ 1517
297
+ 1518
298
+ 1519
299
+ 1520
300
+ 1523
301
+ 1526
302
+ 1528
303
+ 1529
304
+ 1530
305
+ 1531
306
+ 1532
307
+ 1533
308
+ 1534
309
+ 1535
310
+ 1536
311
+ 10
312
+ 11
313
+ 1537
314
+ 1538
315
+ 1540
316
+ 1541
317
+ 1542
318
+ 1543
319
+ 12
320
+ 1544
321
+ 1545
322
+ 1546
323
+ 1547
324
+ 1548
325
+ 1549
326
+ 13
327
+ 1550
328
+ 1552
329
+ 1553
330
+ 1554
331
+ 1555
332
+ 1556
333
+ 1557
334
+ 1558
335
+ 1559
336
+ 1560
337
+ 14
338
+ 1561
339
+ 1562
340
+ 1563
341
+ 1565
342
+ 1566
343
+ 1568
344
+ 1569
345
+ 1570
346
+ 1571
347
+ 1572
348
+ 1573
349
+ 1574
350
+ 1575
351
+ 1576
352
+ 1577
353
+ 1580
354
+ 1581
355
+ 1583
356
+ 1586
357
+ 1587
358
+ 1588
359
+ 1589
360
+ 1590
361
+ 1592
362
+ 1593
363
+ 1594
364
+ 1595
365
+ 1596
366
+ 1597
367
+ 1598
368
+ 1599
369
+ 1600
370
+ 1601
371
+ 1603
372
+ 1604
373
+ 1605
374
+ 1606
375
+ 1608
376
+ 1609
377
+ 1613
378
+ 1614
379
+ 1615
380
+ 1616
381
+ 1617
382
+ 1619
383
+ 1620
384
+ 1621
385
+ 1622
386
+ 1623
387
+ 1624
388
+ 1625
389
+ 15
390
+ 1627
391
+ 1628
392
+ 1629
393
+ 1630
394
+ 1631
395
+ 16
396
+ 1632
397
+ 1633
398
+ 1634
399
+ 1636
400
+ 1637
401
+ 1638
402
+ 1639
403
+ 1640
404
+ 1641
405
+ 1642
406
+ 1643
407
+ 1644
408
+ 1646
409
+ 1647
410
+ 1648
411
+ 1649
412
+ 1650
413
+ 1651
414
+ 1652
415
+ 1653
416
+ 1654
417
+ 1655
418
+ 1656
419
+ 1657
420
+ 1658
421
+ 1660
422
+ 1661
423
+ 1662
424
+ 1663
425
+ 1664
426
+ 1665
427
+ 1666
428
+ 1667
429
+ 1668
430
+ 1669
431
+ 1670
432
+ 1671
433
+ 1672
434
+ 1674
435
+ 1675
436
+ 1676
437
+ 1677
438
+ 1678
439
+ 1679
440
+ 1680
441
+ 1681
442
+ 1683
443
+ 1684
444
+ 1685
445
+ 1686
446
+ 1687
447
+ 1688
448
+ 1689
449
+ 1690
450
+ 1691
451
+ 1693
452
+ 1694
453
+ 1696
454
+ 1697
455
+ 1698
456
+ 1699
457
+ 1700
458
+ 1701
459
+ 1702
460
+ 1703
461
+ 1704
462
+ 1705
463
+ 17
464
+ 1709
465
+ 1710
466
+ 1712
467
+ 1714
468
+ 18
469
+ 1715
470
+ 1717
471
+ 1718
472
+ 1719
473
+ 1720
474
+ 1721
475
+ 1722
476
+ 1723
477
+ 1724
478
+ 1725
479
+ 1726
480
+ 1727
481
+ 1728
482
+ 1729
483
+ 1730
484
+ 1732
485
+ 1733
486
+ 1734
487
+ 1736
488
+ 1738
489
+ 1739
490
+ 1740
491
+ 1742
492
+ 1743
493
+ 1744
494
+ 1745
495
+ 19
496
+ 1746
497
+ 1747
498
+ 1748
499
+ 1749
500
+ 1750
501
+ 1753
502
+ 1754
503
+ 1755
504
+ 1756
505
+ 1757
506
+ 1758
507
+ 1760
508
+ 1761
509
+ 1762
510
+ 1763
511
+ 1764
512
+ 1765
513
+ 1766
514
+ 1767
515
+ 1769
516
+ 1770
517
+ 1771
518
+ 1772
519
+ 1774
520
+ 1776
521
+ 1778
522
+ 1779
523
+ 20
524
+ 1783
525
+ 1784
526
+ 1786
527
+ 1787
528
+ 1788
529
+ 1789
530
+ 1790
531
+ 1791
532
+ 1792
533
+ 1795
534
+ 1796
535
+ 1797
536
+ 1801
537
+ 1802
538
+ 1803
539
+ 1804
540
+ 21
541
+ 1805
542
+ 1806
543
+ 1807
544
+ 1808
545
+ 1809
546
+ 1810
547
+ 1811
548
+ 1812
549
+ 1813
550
+ 1814
551
+ 1816
552
+ 1817
553
+ 1818
554
+ 1819
555
+ 1820
556
+ 1821
557
+ 1823
558
+ 1824
559
+ 1825
560
+ 1826
561
+ 1827
562
+ 1828
563
+ 1829
564
+ 22
565
+ 1830
566
+ 1831
567
+ 1832
568
+ 1833
569
+ 1834
570
+ 23
571
+ 1837
572
+ 1838
573
+ 1839
574
+ 1840
575
+ 1841
576
+ 1842
577
+ 1843
578
+ 1844
579
+ 1845
580
+ 1846
581
+ 1847
582
+ 1848
583
+ 1849
584
+ 1850
585
+ 1851
586
+ 1852
587
+ 1853
588
+ 24
589
+ 1854
590
+ 1855
591
+ 1856
592
+ 1857
593
+ 1858
594
+ 1859
595
+ 1860
596
+ 1861
597
+ 1862
598
+ 1863
599
+ 1864
600
+ 1866
601
+ 1867
602
+ 1869
603
+ 1870
604
+ 25
605
+ 1871
606
+ 1873
607
+ 26
608
+ 1874
609
+ 1876
610
+ 1877
611
+ 27
612
+ 28
613
+ 1880
614
+ 29
615
+ 1882
616
+ 1883
617
+ 1886
618
+ 1889
619
+ 1890
620
+ 1892
621
+ 1895
622
+ 1901
623
+ 1902
624
+ 1903
625
+ 1904
626
+ 30
627
+ 1905
628
+ 1908
629
+ 1910
630
+ 1913
631
+ 1914
632
+ 31
633
+ 32
634
+ 1916
635
+ 1917
636
+ 1918
637
+ 1919
638
+ 1920
639
+ 1921
640
+ 1922
641
+ 1925
642
+ 1927
643
+ 1928
644
+ 1930
645
+ 1931
646
+ 1935
647
+ 1936
648
+ 1937
649
+ 1938
650
+ 1943
651
+ 1946
652
+ 1950
653
+ 1953
654
+ 1957
655
+ 1958
656
+ 1959
657
+ 1960
658
+ 33
659
+ 1961
660
+ 1962
661
+ 1963
662
+ 1964
663
+ 34
664
+ 1965
665
+ 1966
666
+ 1967
667
+ 35
668
+ 1968
669
+ 36
670
+ 1969
671
+ 1970
672
+ 1971
673
+ 1972
674
+ 37
675
+ 1973
676
+ 1974
677
+ 1975
678
+ 1976
679
+ 1977
680
+ 1978
681
+ 1979
682
+ 1981
683
+ 1984
684
+ 1986
685
+ 1987
686
+ 38
687
+ 39
688
+ 1990
689
+ 1991
690
+ 1992
691
+ 1995
692
+ 1996
693
+ 1997
694
+ 1998
695
+ 1999
696
+ 2000
697
+ 2001
698
+ 2003
699
+ 2004
700
+ 2005
701
+ 2006
702
+ 2007
703
+ 40
704
+ 2009
705
+ 2010
706
+ 2011
707
+ 41
708
+ 2014
709
+ 2021
710
+ 42
711
+ 43
712
+ 2023
713
+ 44
714
+ 2025
715
+ 2026
716
+ 2027
717
+ 45
718
+ 2030
719
+ 2032
720
+ 46
721
+ 2033
722
+ 47
723
+ 2035
724
+ 2036
725
+ 48
726
+ 2037
727
+ 2038
728
+ 49
729
+ 2039
730
+ 2042
731
+ 50
732
+ 2043
733
+ 2044
734
+ 2046
735
+ 2048
736
+ 51
737
+ 2069
738
+ 2088
739
+ 2089
740
+ 52
741
+ 53
742
+ 54
743
+ 55
744
+ 2092
745
+ 2093
746
+ 2094
747
+ 2095
748
+ 2096
749
+ 2099
750
+ 2101
751
+ 2103
752
+ 2104
753
+ 2105
754
+ 2108
755
+ 2109
756
+ 2110
757
+ 2111
758
+ 56
759
+ 2112
760
+ 2113
761
+ 57
762
+ 2114
763
+ 2115
764
+ 58
765
+ 2120
766
+ 2121
767
+ 2122
768
+ 2123
769
+ 2125
770
+ 59
771
+ 60
772
+ 2130
773
+ 2132
774
+ 2134
775
+ 2135
776
+ 61
777
+ 2137
778
+ 2138
779
+ 2139
780
+ 2140
781
+ 2141
782
+ 2142
783
+ 62
784
+ 2144
785
+ 2145
786
+ 2146
787
+ 2148
788
+ 2151
789
+ 2152
790
+ 63
791
+ 2153
792
+ 2154
793
+ 2155
794
+ 2156
795
+ 2157
796
+ 2158
797
+ 64
798
+ 2159
799
+ 2160
800
+ 2162
801
+ 2164
802
+ 65
803
+ 2165
804
+ 2166
805
+ 2167
806
+ 2168
807
+ 2169
808
+ 66
809
+ 2170
810
+ 2171
811
+ 2172
812
+ 2173
813
+ 67
814
+ 2174
815
+ 2176
816
+ 68
817
+ 2177
818
+ 2178
819
+ 2180
820
+ 2181
821
+ 2182
822
+ 2183
823
+ 2184
824
+ 2185
825
+ 2187
826
+ 69
827
+ 2188
828
+ 70
829
+ 71
830
+ 2189
831
+ 2191
832
+ 2193
833
+ 2194
834
+ 72
835
+ 73
836
+ 74
837
+ 75
838
+ 76
839
+ 77
840
+ 2196
841
+ 78
842
+ 2200
843
+ 2204
844
+ 2208
845
+ 2210
846
+ 2219
847
+ 2220
848
+ 79
849
+ 2224
850
+ 2225
851
+ 2228
852
+ 2233
853
+ 2238
854
+ 2240
855
+ 2243
856
+ 2244
857
+ 2245
858
+ 2246
859
+ 2247
860
+ 2248
861
+ 2250
862
+ 2252
863
+ 2253
864
+ 2255
865
+ 2257
866
+ 2259
867
+ 2260
868
+ 2261
869
+ 2262
870
+ 2263
871
+ 80
872
+ 2264
873
+ 81
874
+ 2268
875
+ 2269
876
+ 2270
877
+ 2271
878
+ 2272
879
+ 82
880
+ 2273
881
+ 83
882
+ 2274
883
+ 2275
884
+ 2278
885
+ 2280
886
+ 2285
887
+ 2288
888
+ 2289
889
+ 2292
890
+ 2293
891
+ 2294
892
+ 2296
893
+ 2298
894
+ 84
895
+ 2300
896
+ 2301
897
+ 2302
898
+ 85
899
+ 2303
900
+ 2304
901
+ 86
902
+ 2305
903
+ 2306
904
+ 2309
905
+ 2310
906
+ 2311
907
+ 2312
908
+ 2315
909
+ 2317
910
+ 2318
911
+ 2319
912
+ 2320
913
+ 2321
914
+ 2322
915
+ 2324
916
+ 2325
917
+ 2326
918
+ 2329
919
+ 2330
920
+ 2333
921
+ 2337
922
+ 2338
923
+ 2339
924
+ 87
925
+ 2340
926
+ 88
927
+ 2341
928
+ 2342
929
+ 89
930
+ 2343
931
+ 2344
932
+ 2345
933
+ 2346
934
+ 90
935
+ 2348
936
+ 2349
937
+ 2351
938
+ 2352
939
+ 2354
940
+ 2355
941
+ 2357
942
+ 91
943
+ 2360
944
+ 2362
945
+ 2363
946
+ 2365
947
+ 2366
948
+ 2367
949
+ 2368
950
+ 92
951
+ 93
952
+ 2369
953
+ 2370
954
+ 2372
955
+ 2375
956
+ 2376
957
+ 94
958
+ 2380
959
+ 2381
960
+ 2382
961
+ 2387
962
+ 2390
963
+ 2391
964
+ 2392
965
+ 2393
966
+ 2394
967
+ 2396
968
+ 2398
969
+ 2399
970
+ 2400
971
+ 2401
972
+ 2402
973
+ 2404
974
+ 2405
975
+ 95
976
+ 96
977
+ 2407
978
+ 2408
979
+ 2409
980
+ 2411
981
+ 2412
982
+ 2414
983
+ 97
984
+ 2415
985
+ 2416
986
+ 2417
987
+ 2418
988
+ 2419
989
+ 2420
990
+ 2421
991
+ 2422
992
+ 2423
993
+ 2424
994
+ 2425
995
+ 2426
996
+ 2427
997
+ 2428
998
+ 2429
999
+ 2430
1000
+ 2431
1001
+ 2432
1002
+ 2433
1003
+ 2434
1004
+ 2435
1005
+ 2436
1006
+ 2437
1007
+ 2438
1008
+ 2439
1009
+ 2440
1010
+ 2441
1011
+ 2442
1012
+ 2443
1013
+ 2444
1014
+ 2445
1015
+ 2446
1016
+ 2447
1017
+ 2448
1018
+ 2449
1019
+ 2450
1020
+ 2451
1021
+ 2452
1022
+ 2453
1023
+ 98
1024
+ 2454
1025
+ 2455
1026
+ 99
1027
+ 2456
1028
+ 2457
1029
+ 2458
1030
+ 2459
1031
+ 2460
1032
+ 2461
1033
+ 2462
1034
+ 2463
1035
+ 2464
1036
+ 2465
1037
+ 2466
1038
+ 2467
1039
+ 2468
1040
+ 2469
1041
+ 2470
1042
+ 2471
1043
+ 2472
1044
+ 2473
1045
+ 2474
1046
+ 2475
1047
+ 2476
1048
+ 100
1049
+ 2477
1050
+ 2481
1051
+ 2482
1052
+ 101
1053
+ 2484
1054
+ 102
1055
+ 2485
1056
+ 103
1057
+ 2486
1058
+ 2487
1059
+ 2488
1060
+ 2490
1061
+ 2491
1062
+ 2493
1063
+ 2494
1064
+ 104
1065
+ 2495
1066
+ 2498
1067
+ 2499
1068
+ 2500
1069
+ 2506
1070
+ 2509
1071
+ 105
1072
+ 106
1073
+ 2515
1074
+ 2517
1075
+ 2519
1076
+ 2520
1077
+ 2521
1078
+ 2522
1079
+ 2523
1080
+ 2524
1081
+ 2525
1082
+ 2526
1083
+ 2527
1084
+ 2529
1085
+ 2536
1086
+ 2537
1087
+ 2545
1088
+ 2549
1089
+ 2552
1090
+ 2555
1091
+ 2556
1092
+ 2558
1093
+ 2560
1094
+ 2561
1095
+ 2562
1096
+ 2564
1097
+ 2565
1098
+ 2572
1099
+ 107
1100
+ 2580
1101
+ 108
1102
+ 2584
1103
+ 2585
1104
+ 2586
1105
+ 2587
1106
+ 2588
1107
+ 2589
1108
+ 2591
1109
+ 109
1110
+ 2592
1111
+ 2593
1112
+ 2594
1113
+ 2599
1114
+ 2602
1115
+ 110
1116
+ 111
1117
+ 2627
1118
+ 2630
1119
+ 2635
1120
+ 2636
1121
+ 2638
1122
+ 2642
1123
+ 2643
1124
+ 112
1125
+ 2645
1126
+ 113
1127
+ 2646
1128
+ 2647
1129
+ 2648
1130
+ 114
1131
+ 2652
1132
+ 2655
1133
+ 2656
1134
+ 2658
1135
+ 2659
1136
+ 115
1137
+ 2662
1138
+ 2663
1139
+ 2666
1140
+ 2667
1141
+ 2668
1142
+ 116
1143
+ 2670
1144
+ 2671
1145
+ 2672
1146
+ 2673
1147
+ 2674
1148
+ 2675
1149
+ 2676
1150
+ 2678
1151
+ 2680
1152
+ 2681
1153
+ 2682
1154
+ 2683
1155
+ 2686
1156
+ 2689
1157
+ 2691
1158
+ 2692
1159
+ 2693
1160
+ 2694
1161
+ 2697
1162
+ 2698
1163
+ 117
1164
+ 2706
1165
+ 2707
1166
+ 2709
1167
+ 2713
1168
+ 2715
1169
+ 2717
1170
+ 2718
1171
+ 2719
1172
+ 118
1173
+ 119
1174
+ 2727
1175
+ 120
1176
+ 121
1177
+ 2730
1178
+ 2731
1179
+ 2732
1180
+ 122
1181
+ 2736
1182
+ 123
1183
+ 124
1184
+ 2737
1185
+ 125
1186
+ 2739
1187
+ 2741
1188
+ 2748
1189
+ 126
1190
+ 2750
1191
+ 2751
1192
+ 2754
1193
+ 2757
1194
+ 2764
1195
+ 2765
1196
+ 2766
1197
+ 2768
1198
+ 2769
1199
+ 127
1200
+ 128
1201
+ 2770
1202
+ 2771
1203
+ 2772
1204
+ 2773
1205
+ 2774
1206
+ 2775
1207
+ 2776
1208
+ 2777
1209
+ 2778
1210
+ 2779
1211
+ 2780
1212
+ 129
1213
+ 2781
1214
+ 2782
1215
+ 130
1216
+ 2783
1217
+ 2784
1218
+ 2785
1219
+ 2786
1220
+ 131
1221
+ 2787
1222
+ 2788
1223
+ 2789
1224
+ 132
1225
+ 2790
1226
+ 2791
1227
+ 2792
1228
+ 2793
1229
+ 2794
1230
+ 133
1231
+ 2795
1232
+ 2796
1233
+ 2797
1234
+ 134
1235
+ 2798
1236
+ 2799
1237
+ 135
1238
+ 2800
1239
+ 2801
1240
+ 2802
1241
+ 2803
1242
+ 2804
1243
+ 2806
1244
+ 2807
1245
+ 2808
1246
+ 2809
1247
+ 2810
1248
+ 136
1249
+ 2811
1250
+ 2812
1251
+ 2813
1252
+ 137
1253
+ 2814
1254
+ 138
1255
+ 2815
1256
+ 2817
1257
+ 2820
1258
+ 2822
1259
+ 2823
1260
+ 2824
1261
+ 2825
1262
+ 2826
1263
+ 2827
1264
+ 2828
1265
+ 2829
1266
+ 2830
1267
+ 139
1268
+ 2831
1269
+ 2832
1270
+ 2833
1271
+ 2834
1272
+ 2835
1273
+ 2836
1274
+ 140
1275
+ 2837
1276
+ 141
1277
+ 2838
1278
+ 2839
1279
+ 2840
1280
+ 2841
1281
+ 2842
1282
+ 2843
1283
+ 2844
1284
+ 2845
1285
+ 2846
1286
+ 2848
1287
+ 2850
1288
+ 2851
1289
+ 2853
1290
+ 2854
1291
+ 2855
1292
+ 2856
1293
+ 2857
1294
+ 142
1295
+ 2859
1296
+ 2861
1297
+ 2862
1298
+ 2864
1299
+ 2865
1300
+ 2866
1301
+ 2867
1302
+ 2868
1303
+ 2871
1304
+ 2873
1305
+ 143
1306
+ 2874
1307
+ 2875
1308
+ 2877
1309
+ 2878
1310
+ 2879
1311
+ 2882
1312
+ 2884
1313
+ 2885
1314
+ 2886
1315
+ 2887
1316
+ 2888
1317
+ 2889
1318
+ 2890
1319
+ 2891
1320
+ 2892
1321
+ 2893
1322
+ 2894
1323
+ 2895
1324
+ 2896
1325
+ 2897
1326
+ 2898
1327
+ 2899
1328
+ 2900
1329
+ 2901
1330
+ 2902
1331
+ 2903
1332
+ 2904
1333
+ 2905
1334
+ 2906
1335
+ 2907
1336
+ 2908
1337
+ 2909
1338
+ 2910
1339
+ 2911
1340
+ 2912
1341
+ 2914
1342
+ 2916
1343
+ 2917
1344
+ 2918
1345
+ 2919
1346
+ 2920
1347
+ 2921
1348
+ 144
1349
+ 2923
1350
+ 2924
1351
+ 2925
1352
+ 2926
1353
+ 2927
1354
+ 2928
1355
+ 2929
1356
+ 2930
1357
+ 2931
1358
+ 2932
1359
+ 2933
1360
+ 2934
1361
+ 2935
1362
+ 145
1363
+ 2936
1364
+ 2937
1365
+ 2938
1366
+ 2939
1367
+ 146
1368
+ 2941
1369
+ 2943
1370
+ 2946
1371
+ 2947
1372
+ 2948
1373
+ 2949
1374
+ 2953
1375
+ 2954
1376
+ 2955
1377
+ 2956
1378
+ 2957
1379
+ 2959
1380
+ 2960
1381
+ 2961
1382
+ 2962
1383
+ 2963
1384
+ 147
1385
+ 2965
1386
+ 2966
1387
+ 2970
1388
+ 2971
1389
+ 2972
1390
+ 2973
1391
+ 2974
1392
+ 2975
1393
+ 2976
1394
+ 148
1395
+ 2980
1396
+ 2981
1397
+ 2983
1398
+ 2985
1399
+ 149
1400
+ 2987
1401
+ 2988
1402
+ 2989
1403
+ 2990
1404
+ 2991
1405
+ 2992
1406
+ 2993
1407
+ 2994
1408
+ 2995
1409
+ 2996
1410
+ 150
1411
+ 2997
1412
+ 2998
1413
+ 2999
1414
+ 3000
1415
+ 3001
1416
+ 3002
1417
+ 3003
1418
+ 3004
1419
+ 3005
1420
+ 3007
1421
+ 3008
1422
+ 3012
1423
+ 3013
1424
+ 3014
1425
+ 3016
1426
+ 3017
1427
+ 3018
1428
+ 3021
1429
+ 3022
1430
+ 151
1431
+ 153
1432
+ 154
1433
+ 155
1434
+ 3024
1435
+ 156
1436
+ 3025
1437
+ 157
1438
+ 158
1439
+ 3026
1440
+ 159
1441
+ 3028
1442
+ 160
1443
+ 161
1444
+ 162
1445
+ 163
1446
+ 164
1447
+ 3030
1448
+ 3032
1449
+ 3033
1450
+ 3034
1451
+ 167
1452
+ 168
1453
+ 3038
1454
+ 169
1455
+ 170
1456
+ 3039
1457
+ 171
1458
+ 172
1459
+ 173
1460
+ 174
1461
+ 176
1462
+ 177
1463
+ 178
1464
+ 3041
1465
+ 3042
1466
+ 179
1467
+ 180
1468
+ 181
1469
+ 182
1470
+ 183
1471
+ 184
1472
+ 185
1473
+ 186
1474
+ 187
1475
+ 3043
1476
+ 3044
1477
+ 3045
1478
+ 3046
1479
+ 188
1480
+ 3048
1481
+ 189
1482
+ 3049
1483
+ 190
1484
+ 191
1485
+ 192
1486
+ 193
1487
+ 194
1488
+ 195
1489
+ 3050
1490
+ 196
1491
+ 197
1492
+ 198
1493
+ 199
1494
+ 200
1495
+ 201
1496
+ 3051
1497
+ 202
1498
+ 203
1499
+ 204
1500
+ 3053
1501
+ 3054
1502
+ 3055
1503
+ 3056
1504
+ 205
1505
+ 206
1506
+ 207
1507
+ 208
1508
+ 209
1509
+ 3057
1510
+ 210
1511
+ 3058
1512
+ 211
1513
+ 212
1514
+ 213
1515
+ 214
1516
+ 3059
1517
+ 215
1518
+ 216
1519
+ 3061
1520
+ 217
1521
+ 218
1522
+ 219
1523
+ 220
1524
+ 3062
1525
+ 221
1526
+ 3065
1527
+ 3066
1528
+ 222
1529
+ 3068
1530
+ 223
1531
+ 3069
1532
+ 3070
1533
+ 224
1534
+ 225
1535
+ 226
1536
+ 227
1537
+ 228
1538
+ 229
1539
+ 230
1540
+ 231
1541
+ 232
1542
+ 233
1543
+ 234
1544
+ 235
1545
+ 3071
1546
+ 3072
1547
+ 236
1548
+ 237
1549
+ 3073
1550
+ 238
1551
+ 239
1552
+ 240
1553
+ 241
1554
+ 242
1555
+ 3074
1556
+ 243
1557
+ 244
1558
+ 3075
1559
+ 245
1560
+ 246
1561
+ 247
1562
+ 3080
1563
+ 248
1564
+ 249
1565
+ 250
1566
+ 251
1567
+ 252
1568
+ 253
1569
+ 254
1570
+ 255
1571
+ 256
1572
+ 257
1573
+ 3082
1574
+ 258
1575
+ 259
1576
+ 260
1577
+ 261
1578
+ 3083
1579
+ 3084
1580
+ 263
1581
+ 264
1582
+ 3085
1583
+ 265
1584
+ 266
1585
+ 267
1586
+ 3087
1587
+ 269
1588
+ 270
1589
+ 271
1590
+ 272
1591
+ 3089
1592
+ 3090
1593
+ 273
1594
+ 274
1595
+ 275
1596
+ 276
1597
+ 3093
1598
+ 3095
1599
+ 3097
1600
+ 277
1601
+ 3102
1602
+ 3103
1603
+ 278
1604
+ 279
1605
+ 280
1606
+ 3105
1607
+ 3106
1608
+ 3107
1609
+ 3108
1610
+ 3109
1611
+ 3110
1612
+ 3111
1613
+ 3112
1614
+ 3114
1615
+ 3115
1616
+ 281
1617
+ 282
1618
+ 3116
1619
+ 283
1620
+ 3117
1621
+ 284
1622
+ 3118
1623
+ 3119
1624
+ 285
1625
+ 3121
1626
+ 3122
1627
+ 3123
1628
+ 3124
1629
+ 3125
1630
+ 286
1631
+ 3126
1632
+ 3129
1633
+ 3130
1634
+ 3132
1635
+ 3133
1636
+ 287
1637
+ 3134
1638
+ 3135
1639
+ 3136
1640
+ 3137
1641
+ 3138
1642
+ 3139
1643
+ 288
1644
+ 3141
1645
+ 289
1646
+ 290
1647
+ 291
1648
+ 3142
1649
+ 292
1650
+ 3144
1651
+ 3145
1652
+ 3146
1653
+ 293
1654
+ 3150
1655
+ 294
1656
+ 3152
1657
+ 3153
1658
+ 3154
1659
+ 295
1660
+ 3156
1661
+ 296
1662
+ 297
1663
+ 3158
1664
+ 3161
1665
+ 3163
1666
+ 3165
1667
+ 298
1668
+ 299
1669
+ 3170
1670
+ 3171
1671
+ 3172
1672
+ 3173
1673
+ 3174
1674
+ 3194
1675
+ 3195
1676
+ 3197
1677
+ 3198
1678
+ 3199
1679
+ 3200
1680
+ 3205
1681
+ 3209
1682
+ 3212
1683
+ 3213
1684
+ 3215
1685
+ 3219
1686
+ 3220
1687
+ 3222
1688
+ 3223
1689
+ 3225
1690
+ 3226
1691
+ 3228
1692
+ 3230
1693
+ 3231
1694
+ 300
1695
+ 301
1696
+ 3232
1697
+ 3234
1698
+ 3235
1699
+ 302
1700
+ 3237
1701
+ 3239
1702
+ 303
1703
+ 3241
1704
+ 304
1705
+ 3243
1706
+ 3244
1707
+ 305
1708
+ 3252
1709
+ 3255
1710
+ 3256
1711
+ 3257
1712
+ 306
1713
+ 3260
1714
+ 3261
1715
+ 3262
1716
+ 3263
1717
+ 3264
1718
+ 3265
1719
+ 3266
1720
+ 307
1721
+ 3279
1722
+ 3280
1723
+ 3281
1724
+ 3282
1725
+ 3287
1726
+ 3289
1727
+ 3290
1728
+ 3301
1729
+ 308
1730
+ 3304
1731
+ 3306
1732
+ 3307
1733
+ 3308
1734
+ 3309
1735
+ 3316
1736
+ 3317
1737
+ 3318
1738
+ 3319
1739
+ 3321
1740
+ 3322
1741
+ 3326
1742
+ 3329
1743
+ 3330
1744
+ 3332
1745
+ 3333
1746
+ 3335
1747
+ 3336
1748
+ 3340
1749
+ 3345
1750
+ 3346
1751
+ 3347
1752
+ 309
1753
+ 3349
1754
+ 3350
1755
+ 3353
1756
+ 3354
1757
+ 3355
1758
+ 3356
1759
+ 3358
1760
+ 3359
1761
+ 3360
1762
+ 3362
1763
+ 3364
1764
+ 3365
1765
+ 3367
1766
+ 3369
1767
+ 3370
1768
+ 3371
1769
+ 3372
1770
+ 3373
1771
+ 3374
1772
+ 3376
1773
+ 3379
1774
+ 3381
1775
+ 3382
1776
+ 3383
1777
+ 3384
1778
+ 3386
1779
+ 3389
1780
+ 310
1781
+ 3394
1782
+ 3395
1783
+ 3396
1784
+ 3397
1785
+ 3401
1786
+ 3404
1787
+ 311
1788
+ 3411
1789
+ 3412
1790
+ 3413
1791
+ 3415
1792
+ 3416
1793
+ 3418
1794
+ 312
1795
+ 3419
1796
+ 3421
1797
+ 3424
1798
+ 313
1799
+ 3425
1800
+ 314
1801
+ 3427
1802
+ 3428
1803
+ 3430
1804
+ 315
1805
+ 3432
1806
+ 3433
1807
+ 3434
1808
+ 3436
1809
+ 3444
1810
+ 3445
1811
+ 3446
1812
+ 3448
1813
+ 3451
1814
+ 3454
1815
+ 3458
1816
+ 3462
1817
+ 3464
1818
+ 3475
1819
+ 3479
1820
+ 3480
1821
+ 3489
1822
+ 316
1823
+ 3495
1824
+ 3497
1825
+ 3498
1826
+ 317
1827
+ 3502
1828
+ 3510
1829
+ 3511
1830
+ 3514
1831
+ 318
1832
+ 3516
1833
+ 3518
1834
+ 3521
1835
+ 3524
1836
+ 319
1837
+ 320
1838
+ 3531
1839
+ 3538
1840
+ 3539
1841
+ 3540
1842
+ 3541
1843
+ 3542
1844
+ 3543
1845
+ 3544
1846
+ 3545
1847
+ 321
1848
+ 3546
1849
+ 3547
1850
+ 3548
1851
+ 3549
1852
+ 3550
1853
+ 322
1854
+ 3552
1855
+ 3553
1856
+ 3555
1857
+ 3556
1858
+ 3557
1859
+ 3558
1860
+ 323
1861
+ 324
1862
+ 3560
1863
+ 3561
1864
+ 325
1865
+ 326
1866
+ 3563
1867
+ 3564
1868
+ 3565
1869
+ 3566
1870
+ 3567
1871
+ 3568
1872
+ 3570
1873
+ 3572
1874
+ 3573
1875
+ 3576
1876
+ 3577
1877
+ 3580
1878
+ 3583
1879
+ 3586
1880
+ 3587
1881
+ 3589
1882
+ 3596
1883
+ 3599
1884
+ 3605
1885
+ 3606
1886
+ 3613
1887
+ 3617
1888
+ 3618
1889
+ 3620
1890
+ 3622
1891
+ 3623
1892
+ 3626
1893
+ 3628
1894
+ 3629
1895
+ 3630
1896
+ 3631
1897
+ 3632
1898
+ 3633
1899
+ 3636
1900
+ 3637
1901
+ 3640
1902
+ 3643
1903
+ 3647
1904
+ 3649
1905
+ 3652
1906
+ 3653
1907
+ 3655
1908
+ 3657
1909
+ 3658
1910
+ 3662
1911
+ 3663
1912
+ 3664
1913
+ 3665
1914
+ 3666
1915
+ 3667
1916
+ 3669
1917
+ 3672
1918
+ 3673
1919
+ 3675
1920
+ 3678
1921
+ 3680
1922
+ 327
1923
+ 3681
1924
+ 3682
1925
+ 328
1926
+ 3684
1927
+ 3685
1928
+ 3689
1929
+ 329
1930
+ 3690
1931
+ 3692
1932
+ 3694
1933
+ 3695
1934
+ 3696
1935
+ 3697
1936
+ 3698
1937
+ 330
1938
+ 3699
1939
+ 331
1940
+ 3703
1941
+ 3704
1942
+ 3707
1943
+ 3708
1944
+ 332
1945
+ 3710
1946
+ 3713
1947
+ 3714
1948
+ 3715
1949
+ 3718
1950
+ 3720
1951
+ 3722
1952
+ 3723
1953
+ 3726
1954
+ 3727
1955
+ 3734
1956
+ 3736
1957
+ 3741
1958
+ 3746
1959
+ 3753
1960
+ 3755
1961
+ 333
1962
+ 3759
1963
+ 3760
1964
+ 334
1965
+ 3776
1966
+ 3782
1967
+ 3790
1968
+ 3794
1969
+ 3799
1970
+ 3800
1971
+ 3801
1972
+ 3802
1973
+ 335
1974
+ 3803
1975
+ 3804
1976
+ 3805
1977
+ 3806
1978
+ 3807
1979
+ 3808
1980
+ 3809
1981
+ 3810
1982
+ 3812
1983
+ 3813
1984
+ 3814
1985
+ 3815
1986
+ 3817
1987
+ 3818
1988
+ 336
1989
+ 3823
1990
+ 3824
1991
+ 337
1992
+ 3827
1993
+ 3828
1994
+ 3830
1995
+ 338
1996
+ 3831
1997
+ 3832
1998
+ 3833
1999
+ 3834
2000
+ 3837
2001
+ 3838
2002
+ 3843
2003
+ 3849
2004
+ 3852
2005
+ 3853
2006
+ 3854
2007
+ 3855
2008
+ 3856
2009
+ 3857
2010
+ 3861
2011
+ 3862
2012
+ 3863
2013
+ 3864
2014
+ 3865
2015
+ 3866
2016
+ 3867
2017
+ 3868
2018
+ 3869
2019
+ 3870
2020
+ 3871
2021
+ 3875
2022
+ 3879
2023
+ 3880
2024
+ 3881
2025
+ 3882
2026
+ 3883
2027
+ 3884
2028
+ 3886
2029
+ 3887
2030
+ 3888
2031
+ 3889
2032
+ 3890
2033
+ 3891
2034
+ 3892
2035
+ 3893
2036
+ 3895
2037
+ 3896
2038
+ 3897
2039
+ 3898
2040
+ 3899
2041
+ 3900
2042
+ 3901
2043
+ 3902
2044
+ 3903
2045
+ 3904
2046
+ 3905
2047
+ 3906
2048
+ 3907
2049
+ 3908
2050
+ 3909
2051
+ 3914
2052
+ 3919
2053
+ 3920
2054
+ 3921
2055
+ 3922
2056
+ 3923
2057
+ 3925
2058
+ 3926
2059
+ 3927
2060
+ 3928
2061
+ 3929
2062
+ 3931
2063
+ 3932
2064
+ 3934
2065
+ 3935
2066
+ 3938
2067
+ 3939
2068
+ 3940
2069
+ 339
2070
+ 3941
2071
+ 3942
2072
+ 3943
2073
+ 3944
2074
+ 3945
2075
+ 3948
2076
+ 3949
2077
+ 3951
2078
+ 3952
2079
+ 340
2080
+ 3956
2081
+ 3957
2082
+ 3958
2083
+ 3960
2084
+ 3961
2085
+ 3963
2086
+ 3964
2087
+ 3965
2088
+ 3966
2089
+ 3967
2090
+ 3968
2091
+ 3969
2092
+ 341
2093
+ 3970
2094
+ 3973
2095
+ 3974
2096
+ 342
2097
+ 343
2098
+ 3977
2099
+ 3978
2100
+ 344
2101
+ 3980
2102
+ 3982
2103
+ 3983
2104
+ 3984
2105
+ 345
2106
+ 3986
2107
+ 3987
2108
+ 3988
2109
+ 3989
2110
+ 3991
2111
+ 3993
2112
+ 3994
2113
+ 3995
2114
+ 3996
2115
+ 3997
2116
+ 3998
2117
+ 3999
2118
+ 4002
2119
+ 4003
2120
+ 4005
2121
+ 4006
2122
+ 4007
2123
+ 4008
2124
+ 4009
2125
+ 4010
2126
+ 4012
2127
+ 4014
2128
+ 4015
2129
+ 4016
2130
+ 4017
2131
+ 4019
2132
+ 346
2133
+ 4021
2134
+ 4024
2135
+ 4026
2136
+ 347
2137
+ 4028
2138
+ 4029
2139
+ 4030
2140
+ 4031
2141
+ 4032
2142
+ 348
2143
+ 4033
2144
+ 4034
2145
+ 4035
2146
+ 4040
2147
+ 4041
2148
+ 4043
2149
+ 4048
2150
+ 4049
2151
+ 4051
2152
+ 4052
2153
+ 4055
2154
+ 4056
2155
+ 349
2156
+ 4057
2157
+ 4058
2158
+ 4059
2159
+ 4060
2160
+ 4061
2161
+ 4062
2162
+ 4063
2163
+ 4065
2164
+ 4066
2165
+ 4067
2166
+ 350
2167
+ 4070
2168
+ 4073
2169
+ 4074
2170
+ 4075
2171
+ 4076
2172
+ 4077
2173
+ 4078
2174
+ 4079
2175
+ 4080
2176
+ 351
2177
+ 4081
2178
+ 352
2179
+ 353
2180
+ 4082
2181
+ 4084
2182
+ 4085
2183
+ 4086
2184
+ 4087
2185
+ 4090
2186
+ 4092
2187
+ 4094
2188
+ 4096
2189
+ 4097
2190
+ 4098
2191
+ 4100
2192
+ 4101
2193
+ 4102
2194
+ 4104
2195
+ 4105
2196
+ 4107
2197
+ 4108
2198
+ 4109
2199
+ 4112
2200
+ 4113
2201
+ 4114
2202
+ 4115
2203
+ 4117
2204
+ 4118
2205
+ 4119
2206
+ 4120
2207
+ 4121
2208
+ 4122
2209
+ 4123
2210
+ 4124
2211
+ 4125
2212
+ 4127
2213
+ 4128
2214
+ 4131
2215
+ 4138
2216
+ 354
2217
+ 4139
2218
+ 355
2219
+ 4141
2220
+ 4142
2221
+ 4143
2222
+ 4144
2223
+ 4145
2224
+ 4146
2225
+ 356
2226
+ 4148
2227
+ 357
2228
+ 4152
2229
+ 358
2230
+ 4153
2231
+ 359
2232
+ 360
2233
+ 4157
2234
+ 4158
2235
+ 4159
2236
+ 361
2237
+ 4160
2238
+ 362
2239
+ 4164
2240
+ 4165
2241
+ 4170
2242
+ 4173
2243
+ 4181
2244
+ 363
2245
+ 4183
2246
+ 4189
2247
+ 364
2248
+ 4190
2249
+ 4191
2250
+ 4194
2251
+ 4195
2252
+ 4197
2253
+ 4198
2254
+ 4200
2255
+ 4201
2256
+ 4202
2257
+ 4203
2258
+ 4204
2259
+ 4209
2260
+ 4210
2261
+ 4211
2262
+ 4219
2263
+ 4220
2264
+ 4222
2265
+ 4234
2266
+ 365
2267
+ 366
2268
+ 4235
2269
+ 4236
2270
+ 4237
2271
+ 4238
2272
+ 367
2273
+ 4240
2274
+ 4241
2275
+ 4242
2276
+ 368
2277
+ 369
2278
+ 4244
2279
+ 4245
2280
+ 370
2281
+ 4248
2282
+ 371
2283
+ 372
2284
+ 4251
2285
+ 4252
2286
+ 373
2287
+ 4254
2288
+ 4255
2289
+ 4256
2290
+ 374
2291
+ 4258
2292
+ 375
2293
+ 4259
2294
+ 376
2295
+ 377
2296
+ 4262
2297
+ 4263
2298
+ 378
2299
+ 379
2300
+ 380
2301
+ 381
2302
+ 382
2303
+ 4272
2304
+ 383
2305
+ 4275
2306
+ 4276
2307
+ 4278
2308
+ 384
2309
+ 4280
2310
+ 4286
2311
+ 385
2312
+ 386
2313
+ 4296
2314
+ 4297
2315
+ 4299
2316
+ 4300
2317
+ 4301
2318
+ 387
2319
+ 388
2320
+ 4303
2321
+ 4305
2322
+ 4306
2323
+ 389
2324
+ 4315
2325
+ 4317
2326
+ 4319
2327
+ 4321
2328
+ 4324
2329
+ 4325
2330
+ 4326
2331
+ 4330
2332
+ 4335
2333
+ 4337
2334
+ 4341
2335
+ 390
2336
+ 4345
2337
+ 4346
2338
+ 4347
2339
+ 4353
2340
+ 4355
2341
+ 4356
2342
+ 4359
2343
+ 4362
2344
+ 4365
2345
+ 4367
2346
+ 4370
2347
+ 4372
2348
+ 4373
2349
+ 4374
2350
+ 4375
2351
+ 4376
2352
+ 4377
2353
+ 391
2354
+ 4378
2355
+ 4379
2356
+ 4380
2357
+ 4381
2358
+ 4382
2359
+ 4383
2360
+ 4390
2361
+ 4393
2362
+ 4395
2363
+ 4398
2364
+ 4406
2365
+ 4409
2366
+ 4411
2367
+ 4420
2368
+ 4422
2369
+ 4423
2370
+ 4424
2371
+ 4425
2372
+ 4426
2373
+ 4427
2374
+ 4433
2375
+ 4434
2376
+ 4435
2377
+ 4436
2378
+ 4437
2379
+ 4440
2380
+ 4441
2381
+ 4444
2382
+ 4445
2383
+ 4446
2384
+ 4448
2385
+ 4450
2386
+ 4452
2387
+ 4453
2388
+ 4454
2389
+ 4460
2390
+ 4461
2391
+ 4462
2392
+ 4463
2393
+ 4466
2394
+ 4468
2395
+ 4472
2396
+ 4473
2397
+ 4475
2398
+ 4476
2399
+ 4481
2400
+ 4482
2401
+ 4485
2402
+ 4490
2403
+ 4491
2404
+ 4492
2405
+ 4495
2406
+ 4496
2407
+ 4497
2408
+ 4498
2409
+ 4502
2410
+ 4507
2411
+ 4508
2412
+ 4509
2413
+ 4510
2414
+ 4512
2415
+ 4516
2416
+ 4518
2417
+ 4524
2418
+ 4526
2419
+ 4528
2420
+ 4533
2421
+ 4536
2422
+ 4544
2423
+ 4545
2424
+ 4547
2425
+ 4551
2426
+ 4555
2427
+ 4556
2428
+ 4557
2429
+ 4558
2430
+ 4559
2431
+ 4564
2432
+ 4570
2433
+ 4571
2434
+ 4576
2435
+ 4577
2436
+ 4578
2437
+ 392
2438
+ 4579
2439
+ 393
2440
+ 4581
2441
+ 4582
2442
+ 4583
2443
+ 4590
2444
+ 4592
2445
+ 4594
2446
+ 4597
2447
+ 4607
2448
+ 4611
2449
+ 4612
2450
+ 4613
2451
+ 4615
2452
+ 4624
2453
+ 4625
2454
+ 4626
2455
+ 4627
2456
+ 4628
2457
+ 4629
2458
+ 4630
2459
+ 4632
2460
+ 4634
2461
+ 4636
2462
+ 4637
2463
+ 4638
2464
+ 4639
2465
+ 4642
2466
+ 4644
2467
+ 4645
2468
+ 4646
2469
+ 4647
2470
+ 4648
2471
+ 4649
2472
+ 4668
2473
+ 4669
2474
+ 394
2475
+ 4671
2476
+ 4672
2477
+ 395
2478
+ 4675
2479
+ 396
2480
+ 4677
2481
+ 4678
2482
+ 4692
2483
+ 4693
2484
+ 4697
2485
+ 4699
2486
+ 4700
2487
+ 4702
2488
+ 4703
2489
+ 4704
2490
+ 397
2491
+ 4706
2492
+ 4707
2493
+ 4709
2494
+ 4711
2495
+ 4712
2496
+ 4714
2497
+ 4720
2498
+ 4722
2499
+ 4731
2500
+ 398
2501
+ 4738
2502
+ 4739
2503
+ 4740
2504
+ 399
2505
+ 4741
2506
+ 4742
2507
+ 4743
2508
+ 4744
2509
+ 4748
2510
+ 4750
2511
+ 400
2512
+ 4751
2513
+ 4752
2514
+ 4753
2515
+ 4754
2516
+ 4757
2517
+ 401
2518
+ 4759
2519
+ 402
2520
+ 4764
2521
+ 4768
2522
+ 4771
2523
+ 4773
2524
+ 4775
2525
+ 4776
2526
+ 4778
2527
+ 4779
2528
+ 4780
2529
+ 4782
2530
+ 4784
2531
+ 4786
2532
+ 4787
2533
+ 4788
2534
+ 4789
2535
+ 4795
2536
+ 4799
2537
+ 4800
2538
+ 4801
2539
+ 4802
2540
+ 4803
2541
+ 403
2542
+ 4804
2543
+ 4806
2544
+ 4807
2545
+ 4808
2546
+ 4809
2547
+ 4810
2548
+ 4811
2549
+ 4812
2550
+ 4813
2551
+ 404
2552
+ 4816
2553
+ 4817
2554
+ 4818
2555
+ 405
2556
+ 4821
2557
+ 4824
2558
+ 4826
2559
+ 4827
2560
+ 4829
2561
+ 4831
2562
+ 4836
2563
+ 4838
2564
+ 4842
2565
+ 406
2566
+ 4843
2567
+ 4844
2568
+ 4845
2569
+ 4846
2570
+ 4847
2571
+ 4848
2572
+ 407
2573
+ 4851
2574
+ 4853
2575
+ 4854
2576
+ 408
2577
+ 4855
2578
+ 4856
2579
+ 4857
2580
+ 4858
2581
+ 4860
2582
+ 409
2583
+ 4862
2584
+ 4863
2585
+ 4864
2586
+ 4866
2587
+ 4867
2588
+ 4868
2589
+ 4870
2590
+ 4871
2591
+ 4872
2592
+ 4873
2593
+ 4874
2594
+ 4875
2595
+ 4880
2596
+ 4882
2597
+ 4886
2598
+ 4887
2599
+ 4888
2600
+ 4889
2601
+ 4891
2602
+ 4894
2603
+ 4896
2604
+ 4897
2605
+ 4898
2606
+ 4899
2607
+ 4900
2608
+ 4901
2609
+ 4902
2610
+ 410
2611
+ 4904
2612
+ 4906
2613
+ 4907
2614
+ 411
2615
+ 4911
2616
+ 4912
2617
+ 4913
2618
+ 4914
2619
+ 4915
2620
+ 4916
2621
+ 4917
2622
+ 4918
2623
+ 4919
2624
+ 4920
2625
+ 4922
2626
+ 4923
2627
+ 4924
2628
+ 4926
2629
+ 4928
2630
+ 4929
2631
+ 4932
2632
+ 4933
2633
+ 4934
2634
+ 4937
2635
+ 4938
2636
+ 4939
2637
+ 4940
2638
+ 4942
2639
+ 4943
2640
+ 4944
2641
+ 4946
2642
+ 4949
2643
+ 4950
2644
+ 4951
2645
+ 4953
2646
+ 4954
2647
+ 4957
2648
+ 4961
2649
+ 4962
2650
+ 412
2651
+ 4966
2652
+ 4967
2653
+ 413
2654
+ 4975
2655
+ 4976
2656
+ 4977
2657
+ 4981
2658
+ 4982
2659
+ 4985
2660
+ 4986
2661
+ 4987
2662
+ 4989
2663
+ 4990
2664
+ 4992
2665
+ 4993
2666
+ 4994
2667
+ 4996
2668
+ 4998
2669
+ 5000
2670
+ 5002
2671
+ 5003
2672
+ 5004
2673
+ 5005
2674
+ 5006
2675
+ 5007
2676
+ 5009
2677
+ 5011
2678
+ 5012
2679
+ 5013
2680
+ 5014
2681
+ 5016
2682
+ 5017
2683
+ 5018
2684
+ 5020
2685
+ 5021
2686
+ 5022
2687
+ 5024
2688
+ 5025
2689
+ 5026
2690
+ 5027
2691
+ 5028
2692
+ 5030
2693
+ 5031
2694
+ 5036
2695
+ 5037
2696
+ 5039
2697
+ 5040
2698
+ 5041
2699
+ 5042
2700
+ 5044
2701
+ 5045
2702
+ 5048
2703
+ 5049
2704
+ 5050
2705
+ 5051
2706
+ 5052
2707
+ 5053
2708
+ 5054
2709
+ 5055
2710
+ 5056
2711
+ 5057
2712
+ 5059
2713
+ 5060
2714
+ 5061
2715
+ 5062
2716
+ 5063
2717
+ 414
2718
+ 5064
2719
+ 5066
2720
+ 5068
2721
+ 5069
2722
+ 5070
2723
+ 5071
2724
+ 5072
2725
+ 5074
2726
+ 5075
2727
+ 5076
2728
+ 5078
2729
+ 5079
2730
+ 5080
2731
+ 5081
2732
+ 5082
2733
+ 5083
2734
+ 5084
2735
+ 5085
2736
+ 5086
2737
+ 5089
2738
+ 5090
2739
+ 5091
2740
+ 415
2741
+ 5093
2742
+ 5094
2743
+ 5095
2744
+ 416
2745
+ 5098
2746
+ 5101
2747
+ 5102
2748
+ 5104
2749
+ 5105
2750
+ 5112
2751
+ 5113
2752
+ 5114
2753
+ 5116
2754
+ 417
2755
+ 5120
2756
+ 5121
2757
+ 5122
2758
+ 418
2759
+ 5124
2760
+ 5125
2761
+ 5126
2762
+ 5127
2763
+ 5128
2764
+ 5130
2765
+ 419
2766
+ 5131
2767
+ 5132
2768
+ 5135
2769
+ 5136
2770
+ 5139
2771
+ 420
2772
+ 5140
2773
+ 421
2774
+ 5143
2775
+ 5145
2776
+ 5146
2777
+ 5147
2778
+ 422
2779
+ 423
2780
+ 424
2781
+ 5149
2782
+ 5151
2783
+ 5152
2784
+ 5154
2785
+ 5155
2786
+ 425
2787
+ 5159
2788
+ 5161
2789
+ 426
2790
+ 5164
2791
+ 427
2792
+ 5167
2793
+ 5168
2794
+ 5171
2795
+ 5172
2796
+ 5175
2797
+ 428
2798
+ 5176
2799
+ 5177
2800
+ 429
2801
+ 5179
2802
+ 5180
2803
+ 5181
2804
+ 5182
2805
+ 5183
2806
+ 5184
2807
+ 5187
2808
+ 5188
2809
+ 5189
2810
+ 5190
2811
+ 5191
2812
+ 5192
2813
+ 430
2814
+ 5193
2815
+ 5194
2816
+ 5195
2817
+ 5196
2818
+ 5197
2819
+ 5198
2820
+ 5200
2821
+ 5201
2822
+ 5202
2823
+ 431
2824
+ 5203
2825
+ 432
2826
+ 5206
2827
+ 5207
2828
+ 5208
2829
+ 5209
2830
+ 433
2831
+ 5213
2832
+ 5214
2833
+ 5215
2834
+ 5216
2835
+ 434
2836
+ 435
2837
+ 5219
2838
+ 5220
2839
+ 5226
2840
+ 5227
2841
+ 5228
2842
+ 5229
2843
+ 5230
2844
+ 5231
2845
+ 5232
2846
+ 5233
2847
+ 5234
2848
+ 5235
2849
+ 5236
2850
+ 5240
2851
+ 5241
2852
+ 5242
2853
+ 5243
2854
+ 5244
2855
+ 5245
2856
+ 5247
2857
+ 5249
2858
+ 436
2859
+ 5250
2860
+ 437
2861
+ 5252
2862
+ 438
2863
+ 5253
2864
+ 5255
2865
+ 5256
2866
+ 5257
2867
+ 439
2868
+ 5262
2869
+ 5265
2870
+ 5268
2871
+ 5269
2872
+ 5270
2873
+ 5271
2874
+ 5272
2875
+ 5274
2876
+ 5275
2877
+ 5276
2878
+ 5277
2879
+ 5279
2880
+ 5282
2881
+ 5283
2882
+ 440
2883
+ 5284
2884
+ 5285
2885
+ 441
2886
+ 5286
2887
+ 5287
2888
+ 5288
2889
+ 5290
2890
+ 5291
2891
+ 5292
2892
+ 5294
2893
+ 442
2894
+ 5296
2895
+ 5297
2896
+ 5300
2897
+ 5303
2898
+ 5305
2899
+ 5307
2900
+ 5308
2901
+ 5309
2902
+ 5313
2903
+ 5315
2904
+ 5316
2905
+ 5317
2906
+ 5318
2907
+ 5319
2908
+ 5325
2909
+ 443
2910
+ 5327
2911
+ 5329
2912
+ 444
2913
+ 5330
2914
+ 5332
2915
+ 5333
2916
+ 5334
2917
+ 5335
2918
+ 5336
2919
+ 5338
2920
+ 445
2921
+ 5344
2922
+ 5347
2923
+ 5349
2924
+ 5351
2925
+ 5352
2926
+ 5353
2927
+ 5354
2928
+ 5355
2929
+ 446
2930
+ 5357
2931
+ 5359
2932
+ 447
2933
+ 5360
2934
+ 5364
2935
+ 5365
2936
+ 5366
2937
+ 5367
2938
+ 5368
2939
+ 5370
2940
+ 448
2941
+ 5375
2942
+ 5380
2943
+ 5382
2944
+ 5384
2945
+ 5387
2946
+ 5388
2947
+ 5390
2948
+ 5391
2949
+ 5393
2950
+ 5394
2951
+ 5395
2952
+ 5398
2953
+ 5399
2954
+ 5400
2955
+ 5402
2956
+ 5403
2957
+ 5404
2958
+ 5405
2959
+ 5406
2960
+ 5411
2961
+ 5412
2962
+ 5414
2963
+ 5415
2964
+ 5416
2965
+ 5417
2966
+ 5418
2967
+ 5420
2968
+ 5422
2969
+ 5425
2970
+ 5426
2971
+ 5428
2972
+ 5429
2973
+ 5430
2974
+ 449
2975
+ 5433
2976
+ 5434
2977
+ 5435
2978
+ 450
2979
+ 5436
2980
+ 5437
2981
+ 5439
2982
+ 5443
2983
+ 5444
2984
+ 5445
2985
+ 5446
2986
+ 5449
2987
+ 5450
2988
+ 5452
2989
+ 5454
2990
+ 5455
2991
+ 451
2992
+ 5457
2993
+ 5458
2994
+ 5460
2995
+ 5461
2996
+ 5464
2997
+ 5465
2998
+ 5469
2999
+ 5470
3000
+ 5471
3001
+ 5472
3002
+ 5473
3003
+ 5474
3004
+ 452
3005
+ 5475
3006
+ 5476
3007
+ 453
3008
+ 5478
3009
+ 5479
3010
+ 5480
3011
+ 5481
3012
+ 454
3013
+ 5483
3014
+ 5484
3015
+ 5485
3016
+ 5486
3017
+ 5487
3018
+ 5488
3019
+ 5490
3020
+ 5491
3021
+ 5492
3022
+ 5495
3023
+ 5496
3024
+ 5498
3025
+ 5502
3026
+ 5503
3027
+ 5505
3028
+ 5506
3029
+ 455
3030
+ 5509
3031
+ 5511
3032
+ 5512
3033
+ 5514
3034
+ 5516
3035
+ 5517
3036
+ 456
3037
+ 5520
3038
+ 5521
3039
+ 5522
3040
+ 5523
3041
+ 5524
3042
+ 5525
3043
+ 5527
3044
+ 5528
3045
+ 5529
3046
+ 5530
3047
+ 5532
3048
+ 5533
3049
+ 5534
3050
+ 457
3051
+ 5536
3052
+ 5540
3053
+ 5541
3054
+ 5543
3055
+ 5544
3056
+ 5545
3057
+ 5546
3058
+ 5547
3059
+ 5549
3060
+ 5550
3061
+ 5551
3062
+ 5553
3063
+ 5554
3064
+ 5558
3065
+ 5559
3066
+ 5562
3067
+ 5563
3068
+ 5564
3069
+ 5565
3070
+ 5567
3071
+ 5568
3072
+ 5569
3073
+ 458
3074
+ 5570
3075
+ 5572
3076
+ 459
3077
+ 5574
3078
+ 5577
3079
+ 5578
3080
+ 5579
3081
+ 5581
3082
+ 5582
3083
+ 460
3084
+ 461
3085
+ 5585
3086
+ 5586
3087
+ 5589
3088
+ 5593
3089
+ 5595
3090
+ 5598
3091
+ 5599
3092
+ 5600
3093
+ 5601
3094
+ 5602
3095
+ 5603
3096
+ 5606
3097
+ 5609
3098
+ 5610
3099
+ 5611
3100
+ 5614
3101
+ 5616
3102
+ 5617
3103
+ 5619
3104
+ 5621
3105
+ 5622
3106
+ 5624
3107
+ 5626
3108
+ 5628
3109
+ 5629
3110
+ 5630
3111
+ 5631
3112
+ 5632
3113
+ 462
3114
+ 5635
3115
+ 5637
3116
+ 5638
3117
+ 5639
3118
+ 5641
3119
+ 5642
3120
+ 5646
3121
+ 463
3122
+ 5648
3123
+ 464
3124
+ 5650
3125
+ 5652
3126
+ 5654
3127
+ 5655
3128
+ 5656
3129
+ 5657
3130
+ 5658
3131
+ 5659
3132
+ 5660
3133
+ 5661
3134
+ 5662
3135
+ 5664
3136
+ 5665
3137
+ 465
3138
+ 466
3139
+ 5666
3140
+ 5667
3141
+ 5668
3142
+ 5670
3143
+ 5671
3144
+ 5672
3145
+ 5674
3146
+ 5675
3147
+ 5676
3148
+ 5677
3149
+ 5679
3150
+ 5681
3151
+ 5682
3152
+ 5684
3153
+ 5686
3154
+ 5687
3155
+ 5689
3156
+ 5690
3157
+ 5691
3158
+ 5695
3159
+ 5696
3160
+ 5698
3161
+ 5700
3162
+ 5701
3163
+ 5705
3164
+ 5707
3165
+ 5708
3166
+ 5709
3167
+ 5711
3168
+ 5712
3169
+ 5713
3170
+ 5714
3171
+ 467
3172
+ 5716
3173
+ 5717
3174
+ 5718
3175
+ 5719
3176
+ 5721
3177
+ 5723
3178
+ 5725
3179
+ 5727
3180
+ 5728
3181
+ 5730
3182
+ 468
3183
+ 5732
3184
+ 5733
3185
+ 5734
3186
+ 5735
3187
+ 5736
3188
+ 5737
3189
+ 5738
3190
+ 5739
3191
+ 5740
3192
+ 5741
3193
+ 5742
3194
+ 5743
3195
+ 5744
3196
+ 5746
3197
+ 5747
3198
+ 5748
3199
+ 5749
3200
+ 5750
3201
+ 5752
3202
+ 5753
3203
+ 5754
3204
+ 5755
3205
+ 5756
3206
+ 5757
3207
+ 5758
3208
+ 5762
3209
+ 5765
3210
+ 469
3211
+ 5767
3212
+ 5769
3213
+ 5770
3214
+ 5777
3215
+ 5778
3216
+ 5779
3217
+ 5780
3218
+ 5783
3219
+ 5784
3220
+ 5785
3221
+ 5786
3222
+ 5788
3223
+ 5789
3224
+ 5794
3225
+ 5795
3226
+ 5796
3227
+ 5797
3228
+ 5799
3229
+ 5800
3230
+ 5802
3231
+ 5803
3232
+ 470
3233
+ 5806
3234
+ 5807
3235
+ 5811
3236
+ 5813
3237
+ 5817
3238
+ 5819
3239
+ 471
3240
+ 5820
3241
+ 472
3242
+ 473
3243
+ 5821
3244
+ 5822
3245
+ 5823
3246
+ 5824
3247
+ 5825
3248
+ 5826
3249
+ 5827
3250
+ 5828
3251
+ 5832
3252
+ 5833
3253
+ 5837
3254
+ 5838
3255
+ 5839
3256
+ 5840
3257
+ 5841
3258
+ 5842
3259
+ 5843
3260
+ 5845
3261
+ 5846
3262
+ 5847
3263
+ 5848
3264
+ 5849
3265
+ 5852
3266
+ 5854
3267
+ 5855
3268
+ 5856
3269
+ 5857
3270
+ 5858
3271
+ 5859
3272
+ 5860
3273
+ 5861
3274
+ 5862
3275
+ 5864
3276
+ 5865
3277
+ 5866
3278
+ 5867
3279
+ 474
3280
+ 5869
3281
+ 5870
3282
+ 5871
3283
+ 5872
3284
+ 5873
3285
+ 5878
3286
+ 5882
3287
+ 5883
3288
+ 475
3289
+ 476
3290
+ 5886
3291
+ 477
3292
+ 5891
3293
+ 5894
3294
+ 5895
3295
+ 5897
3296
+ 5899
3297
+ 5900
3298
+ 5901
3299
+ 5903
3300
+ 5907
3301
+ 5908
3302
+ 5909
3303
+ 5910
3304
+ 5911
3305
+ 478
3306
+ 5912
3307
+ 5913
3308
+ 5914
3309
+ 5916
3310
+ 5919
3311
+ 5920
3312
+ 5921
3313
+ 5922
3314
+ 479
3315
+ 5923
3316
+ 5926
3317
+ 5927
3318
+ 5930
3319
+ 5931
3320
+ 5932
3321
+ 5933
3322
+ 5937
3323
+ 480
3324
+ 5938
3325
+ 5939
3326
+ 5940
3327
+ 5941
3328
+ 5942
3329
+ 5944
3330
+ 5945
3331
+ 5946
3332
+ 481
3333
+ 5947
3334
+ 482
3335
+ 5948
3336
+ 5949
3337
+ 5951
3338
+ 5952
3339
+ 483
3340
+ 5955
3341
+ 5957
3342
+ 484
3343
+ 5959
3344
+ 5960
3345
+ 5961
3346
+ 5962
3347
+ 5963
3348
+ 5965
3349
+ 5966
3350
+ 5969
3351
+ 5970
3352
+ 5971
3353
+ 5976
3354
+ 5978
3355
+ 5981
3356
+ 5982
3357
+ 5986
3358
+ 5987
3359
+ 485
3360
+ 5988
3361
+ 5989
3362
+ 5990
3363
+ 5991
3364
+ 5992
3365
+ 5995
3366
+ 5996
3367
+ 5997
3368
+ 486
3369
+ 5998
3370
+ 487
3371
+ 5999
3372
+ 6000
3373
+ 6001
3374
+ 6003
3375
+ 6005
3376
+ 6006
3377
+ 6007
3378
+ 6008
3379
+ 6009
3380
+ 6010
3381
+ 6011
3382
+ 6013
3383
+ 6015
3384
+ 6016
3385
+ 488
3386
+ 6017
3387
+ 489
3388
+ 490
3389
+ 491
3390
+ 6019
3391
+ 6022
3392
+ 6023
3393
+ 6025
3394
+ 6027
3395
+ 6028
3396
+ 6029
3397
+ 6030
3398
+ 6032
3399
+ 6037
3400
+ 6038
3401
+ 6039
3402
+ 6040
3403
+ 6043
3404
+ 6046
3405
+ 6048
3406
+ 6049
3407
+ 6050
3408
+ 6052
3409
+ 6055
3410
+ 6056
3411
+ 6057
3412
+ 6058
3413
+ 6059
3414
+ 6060
3415
+ 6061
3416
+ 6062
3417
+ 6063
3418
+ 6065
3419
+ 6069
3420
+ 6071
3421
+ 6072
3422
+ 6073
3423
+ 6074
3424
+ 492
3425
+ 6075
3426
+ 6076
3427
+ 6077
3428
+ 6079
3429
+ 6081
3430
+ 6082
3431
+ 6083
3432
+ 6084
3433
+ 493
3434
+ 6085
3435
+ 494
3436
+ 6088
3437
+ 495
3438
+ 6090
3439
+ 6094
3440
+ 6095
3441
+ 6096
3442
+ 6097
3443
+ 6098
3444
+ 6099
3445
+ 6100
3446
+ 6101
3447
+ 6102
3448
+ 6107
3449
+ 6108
3450
+ 496
3451
+ 6110
3452
+ 6111
3453
+ 6112
3454
+ 6113
3455
+ 6115
3456
+ 497
3457
+ 6116
3458
+ 6117
3459
+ 6119
3460
+ 6121
3461
+ 6122
3462
+ 6123
3463
+ 6124
3464
+ 6125
3465
+ 6126
3466
+ 6127
3467
+ 6128
3468
+ 6129
3469
+ 498
3470
+ 6131
3471
+ 6132
3472
+ 6134
3473
+ 6135
3474
+ 6136
3475
+ 6137
3476
+ 6139
3477
+ 6140
3478
+ 6143
3479
+ 6144
3480
+ 6148
3481
+ 6153
3482
+ 6155
3483
+ 6157
3484
+ 6158
3485
+ 6159
3486
+ 6160
3487
+ 6161
3488
+ 6162
3489
+ 6164
3490
+ 6165
3491
+ 6166
3492
+ 6168
3493
+ 6170
3494
+ 6172
3495
+ 499
3496
+ 6173
3497
+ 6174
3498
+ 500
3499
+ 6176
3500
+ 6181
3501
+ 6182
3502
+ 6184
3503
+ 6187
3504
+ 6189
3505
+ 6190
3506
+ 501
3507
+ 6192
3508
+ 6193
3509
+ 6194
3510
+ 6195
3511
+ 6196
3512
+ 6197
3513
+ 502
3514
+ 6199
3515
+ 6200
3516
+ 6201
3517
+ 6202
3518
+ 6205
3519
+ 6206
3520
+ 6208
3521
+ 6209
3522
+ 6210
3523
+ 6211
3524
+ 6212
3525
+ 6213
3526
+ 6214
3527
+ 6215
3528
+ 6222
3529
+ 6224
3530
+ 6226
3531
+ 6233
3532
+ 6234
3533
+ 6235
3534
+ 6238
3535
+ 6239
3536
+ 6240
3537
+ 6245
3538
+ 6249
3539
+ 6250
3540
+ 6251
3541
+ 6252
3542
+ 6254
3543
+ 6255
3544
+ 6256
3545
+ 503
3546
+ 6257
3547
+ 6260
3548
+ 6261
3549
+ 6262
3550
+ 6263
3551
+ 6264
3552
+ 504
3553
+ 505
3554
+ 6266
3555
+ 6267
3556
+ 6268
3557
+ 6270
3558
+ 6271
3559
+ 6272
3560
+ 506
3561
+ 6275
3562
+ 6277
3563
+ 6278
3564
+ 6279
3565
+ 6280
3566
+ 6281
3567
+ 6282
3568
+ 6283
3569
+ 6284
3570
+ 6285
3571
+ 6286
3572
+ 6290
3573
+ 6291
3574
+ 6295
3575
+ 6296
3576
+ 6297
3577
+ 6298
3578
+ 6300
3579
+ 6301
3580
+ 6302
3581
+ 6303
3582
+ 6304
3583
+ 6305
3584
+ 507
3585
+ 6308
3586
+ 6309
3587
+ 6310
3588
+ 6315
3589
+ 6316
3590
+ 6317
3591
+ 6320
3592
+ 6321
3593
+ 6322
3594
+ 6323
3595
+ 6324
3596
+ 6328
3597
+ 6329
3598
+ 6333
3599
+ 6335
3600
+ 6337
3601
+ 6338
3602
+ 6339
3603
+ 6340
3604
+ 6341
3605
+ 508
3606
+ 6342
3607
+ 6344
3608
+ 6346
3609
+ 6348
3610
+ 6349
3611
+ 6350
3612
+ 6351
3613
+ 6352
3614
+ 6353
3615
+ 6354
3616
+ 6357
3617
+ 6358
3618
+ 6359
3619
+ 509
3620
+ 6362
3621
+ 6363
3622
+ 6364
3623
+ 6365
3624
+ 6369
3625
+ 6371
3626
+ 6374
3627
+ 6375
3628
+ 6377
3629
+ 6378
3630
+ 6381
3631
+ 6382
3632
+ 510
3633
+ 6385
3634
+ 6386
3635
+ 6387
3636
+ 6388
3637
+ 6389
3638
+ 6391
3639
+ 6393
3640
+ 6394
3641
+ 6395
3642
+ 6396
3643
+ 6399
3644
+ 511
3645
+ 6400
3646
+ 6401
3647
+ 6402
3648
+ 6403
3649
+ 6406
3650
+ 6407
3651
+ 6408
3652
+ 6409
3653
+ 6410
3654
+ 6412
3655
+ 6415
3656
+ 6416
3657
+ 6419
3658
+ 6420
3659
+ 6422
3660
+ 6423
3661
+ 6428
3662
+ 6429
3663
+ 6430
3664
+ 6432
3665
+ 6435
3666
+ 512
3667
+ 6437
3668
+ 6438
3669
+ 6439
3670
+ 513
3671
+ 6441
3672
+ 6442
3673
+ 6443
3674
+ 6446
3675
+ 6447
3676
+ 6448
3677
+ 6450
3678
+ 6451
3679
+ 6453
3680
+ 6454
3681
+ 6455
3682
+ 6459
3683
+ 6460
3684
+ 6462
3685
+ 6463
3686
+ 6466
3687
+ 6467
3688
+ 6471
3689
+ 6472
3690
+ 6473
3691
+ 6474
3692
+ 6476
3693
+ 6477
3694
+ 6480
3695
+ 6481
3696
+ 6482
3697
+ 6483
3698
+ 6484
3699
+ 6485
3700
+ 6487
3701
+ 6489
3702
+ 6490
3703
+ 514
3704
+ 515
3705
+ 6492
3706
+ 6493
3707
+ 6494
3708
+ 516
3709
+ 6496
3710
+ 6498
3711
+ 6499
3712
+ 517
3713
+ 6502
3714
+ 6503
3715
+ 518
3716
+ 519
3717
+ 6505
3718
+ 6506
3719
+ 6507
3720
+ 6508
3721
+ 6509
3722
+ 6510
3723
+ 6512
3724
+ 6513
3725
+ 6517
3726
+ 520
3727
+ 6520
3728
+ 6521
3729
+ 6522
3730
+ 6523
3731
+ 6525
3732
+ 6526
3733
+ 6527
3734
+ 6528
3735
+ 521
3736
+ 522
3737
+ 6532
3738
+ 6533
3739
+ 6534
3740
+ 6540
3741
+ 6542
3742
+ 6546
3743
+ 6547
3744
+ 6549
3745
+ 6552
3746
+ 6553
3747
+ 6554
3748
+ 6556
3749
+ 6559
3750
+ 6560
3751
+ 6561
3752
+ 6563
3753
+ 523
3754
+ 6568
3755
+ 6575
3756
+ 6578
3757
+ 6579
3758
+ 524
3759
+ 6584
3760
+ 6585
3761
+ 6586
3762
+ 6589
3763
+ 6590
3764
+ 6591
3765
+ 6593
3766
+ 6595
3767
+ 6597
3768
+ 6599
3769
+ 6600
3770
+ 6603
3771
+ 6604
3772
+ 6609
3773
+ 6614
3774
+ 6615
3775
+ 6619
3776
+ 6621
3777
+ 6622
3778
+ 6623
3779
+ 6627
3780
+ 6628
3781
+ 6629
3782
+ 525
3783
+ 6632
3784
+ 6634
3785
+ 6641
3786
+ 6642
3787
+ 6647
3788
+ 6648
3789
+ 6649
3790
+ 6651
3791
+ 6653
3792
+ 6654
3793
+ 6658
3794
+ 6664
3795
+ 6665
3796
+ 6666
3797
+ 6672
3798
+ 6675
3799
+ 6676
3800
+ 6677
3801
+ 6678
3802
+ 6679
3803
+ 6681
3804
+ 6684
3805
+ 6685
3806
+ 6686
3807
+ 6688
3808
+ 6689
3809
+ 6690
3810
+ 6691
3811
+ 6693
3812
+ 6698
3813
+ 6699
3814
+ 6700
3815
+ 6701
3816
+ 6702
3817
+ 6704
3818
+ 6706
3819
+ 6708
3820
+ 526
3821
+ 6709
3822
+ 527
3823
+ 6710
3824
+ 6711
3825
+ 6713
3826
+ 6714
3827
+ 6715
3828
+ 6720
3829
+ 6723
3830
+ 6724
3831
+ 6725
3832
+ 6727
3833
+ 528
3834
+ 529
3835
+ 6730
3836
+ 6732
3837
+ 6736
3838
+ 6740
3839
+ 6742
3840
+ 6743
3841
+ 6744
3842
+ 6745
3843
+ 6751
3844
+ 6754
3845
+ 6755
3846
+ 530
3847
+ 6757
3848
+ 6758
3849
+ 6759
3850
+ 531
3851
+ 6762
3852
+ 6765
3853
+ 6766
3854
+ 6767
3855
+ 6768
3856
+ 6769
3857
+ 6770
3858
+ 6771
3859
+ 6772
3860
+ 6773
3861
+ 532
3862
+ 6774
3863
+ 6775
3864
+ 6776
3865
+ 6779
3866
+ 6782
3867
+ 6786
3868
+ 6788
3869
+ 6792
3870
+ 6793
3871
+ 6794
3872
+ 6797
3873
+ 6798
3874
+ 6801
3875
+ 6802
3876
+ 6803
3877
+ 6805
3878
+ 533
3879
+ 6806
3880
+ 534
3881
+ 6807
3882
+ 535
3883
+ 6808
3884
+ 6809
3885
+ 6811
3886
+ 6812
3887
+ 6813
3888
+ 6814
3889
+ 6816
3890
+ 6819
3891
+ 6820
3892
+ 6823
3893
+ 6826
3894
+ 6827
3895
+ 6828
3896
+ 6829
3897
+ 6831
3898
+ 6836
3899
+ 6840
3900
+ 6842
3901
+ 536
3902
+ 537
3903
+ 6847
3904
+ 6848
3905
+ 6849
3906
+ 6850
3907
+ 6851
3908
+ 6852
3909
+ 6854
3910
+ 538
3911
+ 6855
3912
+ 6856
3913
+ 6857
3914
+ 6858
3915
+ 6859
3916
+ 6860
3917
+ 6861
3918
+ 6862
3919
+ 6865
3920
+ 539
3921
+ 6867
3922
+ 6868
3923
+ 6871
3924
+ 6872
3925
+ 6874
3926
+ 6877
3927
+ 6878
3928
+ 6880
3929
+ 6881
3930
+ 6882
3931
+ 6883
3932
+ 6885
3933
+ 6886
3934
+ 6890
3935
+ 6891
3936
+ 6893
3937
+ 6895
3938
+ 6897
3939
+ 6899
3940
+ 6900
3941
+ 6901
3942
+ 6902
3943
+ 6904
3944
+ 6907
3945
+ 6908
3946
+ 6909
3947
+ 6910
3948
+ 6911
3949
+ 6912
3950
+ 6913
3951
+ 6914
3952
+ 6915
3953
+ 6916
3954
+ 6918
3955
+ 6919
3956
+ 6920
3957
+ 6922
3958
+ 6924
3959
+ 6925
3960
+ 6927
3961
+ 6928
3962
+ 6929
3963
+ 6930
3964
+ 6931
3965
+ 6934
3966
+ 6935
3967
+ 6937
3968
+ 6938
3969
+ 540
3970
+ 6939
3971
+ 6940
3972
+ 6941
3973
+ 6942
3974
+ 6947
3975
+ 6949
3976
+ 6951
3977
+ 6952
3978
+ 6954
3979
+ 6955
3980
+ 6958
3981
+ 6959
3982
+ 6962
3983
+ 6964
3984
+ 6965
3985
+ 6969
3986
+ 541
3987
+ 6971
3988
+ 6972
3989
+ 6973
3990
+ 542
3991
+ 6975
3992
+ 6978
3993
+ 6979
3994
+ 6980
3995
+ 6984
3996
+ 6988
3997
+ 6990
3998
+ 6991
3999
+ 6992
4000
+ 6993
4001
+ 6994
4002
+ 6997
4003
+ 543
4004
+ 7001
4005
+ 7002
4006
+ 7003
4007
+ 7006
4008
+ 7007
4009
+ 7009
4010
+ 7010
4011
+ 7012
4012
+ 7014
4013
+ 7015
4014
+ 7016
4015
+ 544
4016
+ 7017
4017
+ 7018
4018
+ 7022
4019
+ 7023
4020
+ 7026
4021
+ 7027
4022
+ 7028
4023
+ 7029
4024
+ 7030
4025
+ 7031
4026
+ 7032
4027
+ 7033
4028
+ 7034
4029
+ 7038
4030
+ 7042
4031
+ 7044
4032
+ 7045
4033
+ 7046
4034
+ 7048
4035
+ 7049
4036
+ 7050
4037
+ 7051
4038
+ 7052
4039
+ 7053
4040
+ 7055
4041
+ 7056
4042
+ 7057
4043
+ 7059
4044
+ 7060
4045
+ 545
4046
+ 546
4047
+ 7065
4048
+ 7066
4049
+ 7067
4050
+ 547
4051
+ 7068
4052
+ 7069
4053
+ 7070
4054
+ 7071
4055
+ 7072
4056
+ 7073
4057
+ 7074
4058
+ 7075
4059
+ 7081
4060
+ 7084
4061
+ 7088
4062
+ 7090
4063
+ 7091
4064
+ 7092
4065
+ 7095
4066
+ 7100
4067
+ 7101
4068
+ 7103
4069
+ 7105
4070
+ 7106
4071
+ 7107
4072
+ 7110
4073
+ 7112
4074
+ 7113
4075
+ 7114
4076
+ 7115
4077
+ 7117
4078
+ 7119
4079
+ 7120
4080
+ 7121
4081
+ 7122
4082
+ 7125
4083
+ 7126
4084
+ 7127
4085
+ 7128
4086
+ 7129
4087
+ 548
4088
+ 7130
4089
+ 7132
4090
+ 549
4091
+ 7133
4092
+ 7136
4093
+ 7137
4094
+ 7141
4095
+ 7142
4096
+ 7143
4097
+ 7144
4098
+ 7145
4099
+ 7146
4100
+ 7148
4101
+ 7150
4102
+ 7152
4103
+ 7153
4104
+ 7155
4105
+ 7156
4106
+ 550
4107
+ 7157
4108
+ 7158
4109
+ 7159
4110
+ 7161
4111
+ 7162
4112
+ 7164
4113
+ 7165
4114
+ 7167
4115
+ 7169
4116
+ 7170
4117
+ 7171
4118
+ 7172
4119
+ 7174
4120
+ 7175
4121
+ 7177
4122
+ 7184
4123
+ 7186
4124
+ 7188
4125
+ 7189
4126
+ 7190
4127
+ 7192
4128
+ 7193
4129
+ 7194
4130
+ 7195
4131
+ 7196
4132
+ 7197
4133
+ 7198
4134
+ 7200
4135
+ 551
4136
+ 7201
4137
+ 7202
4138
+ 7205
4139
+ 7206
4140
+ 7211
4141
+ 7212
4142
+ 7213
4143
+ 7214
4144
+ 7215
4145
+ 7216
4146
+ 7218
4147
+ 7220
4148
+ 7221
4149
+ 7222
4150
+ 7223
4151
+ 7224
4152
+ 7226
4153
+ 7227
4154
+ 7229
4155
+ 7231
4156
+ 7232
4157
+ 7233
4158
+ 7234
4159
+ 7235
4160
+ 7236
4161
+ 7239
4162
+ 7242
4163
+ 7243
4164
+ 7245
4165
+ 552
4166
+ 7246
4167
+ 7247
4168
+ 7251
4169
+ 7252
4170
+ 7253
4171
+ 7254
4172
+ 7255
4173
+ 7256
4174
+ 7257
4175
+ 7260
4176
+ 7261
4177
+ 7262
4178
+ 7267
4179
+ 7269
4180
+ 7270
4181
+ 7272
4182
+ 7273
4183
+ 7276
4184
+ 7277
4185
+ 7278
4186
+ 7280
4187
+ 7281
4188
+ 7284
4189
+ 7285
4190
+ 7287
4191
+ 7288
4192
+ 7293
4193
+ 7294
4194
+ 553
4195
+ 7297
4196
+ 7301
4197
+ 7303
4198
+ 7304
4199
+ 7306
4200
+ 7309
4201
+ 7310
4202
+ 7311
4203
+ 7312
4204
+ 7313
4205
+ 7314
4206
+ 7316
4207
+ 7321
4208
+ 7322
4209
+ 7323
4210
+ 7324
4211
+ 7325
4212
+ 554
4213
+ 7327
4214
+ 555
4215
+ 7330
4216
+ 7331
4217
+ 7333
4218
+ 556
4219
+ 7335
4220
+ 7337
4221
+ 7341
4222
+ 7343
4223
+ 7344
4224
+ 7345
4225
+ 7348
4226
+ 7351
4227
+ 7352
4228
+ 7355
4229
+ 7358
4230
+ 7359
4231
+ 7360
4232
+ 7362
4233
+ 557
4234
+ 7367
4235
+ 7368
4236
+ 7370
4237
+ 7371
4238
+ 7372
4239
+ 7373
4240
+ 7374
4241
+ 7376
4242
+ 7377
4243
+ 7378
4244
+ 7379
4245
+ 7381
4246
+ 7382
4247
+ 7383
4248
+ 7386
4249
+ 7387
4250
+ 7388
4251
+ 7392
4252
+ 7393
4253
+ 7394
4254
+ 7395
4255
+ 7396
4256
+ 7398
4257
+ 7400
4258
+ 7401
4259
+ 7402
4260
+ 7403
4261
+ 7406
4262
+ 7407
4263
+ 7408
4264
+ 7410
4265
+ 7411
4266
+ 7415
4267
+ 7416
4268
+ 7420
4269
+ 7422
4270
+ 558
4271
+ 7423
4272
+ 7426
4273
+ 7427
4274
+ 7428
4275
+ 7431
4276
+ 7432
4277
+ 7434
4278
+ 7435
4279
+ 7436
4280
+ 7437
4281
+ 7438
4282
+ 7439
4283
+ 7440
4284
+ 559
4285
+ 7442
4286
+ 7443
4287
+ 7444
4288
+ 560
4289
+ 7449
4290
+ 7450
4291
+ 7452
4292
+ 7456
4293
+ 7457
4294
+ 7458
4295
+ 7464
4296
+ 7465
4297
+ 7468
4298
+ 7470
4299
+ 561
4300
+ 7477
4301
+ 7479
4302
+ 7480
4303
+ 7482
4304
+ 7483
4305
+ 7484
4306
+ 7486
4307
+ 562
4308
+ 563
4309
+ 7487
4310
+ 564
4311
+ 7490
4312
+ 7491
4313
+ 7492
4314
+ 7494
4315
+ 7497
4316
+ 7498
4317
+ 7499
4318
+ 7501
4319
+ 7503
4320
+ 7504
4321
+ 7507
4322
+ 565
4323
+ 7509
4324
+ 7510
4325
+ 7511
4326
+ 566
4327
+ 7512
4328
+ 7514
4329
+ 7515
4330
+ 7516
4331
+ 7517
4332
+ 7518
4333
+ 7520
4334
+ 7521
4335
+ 7523
4336
+ 7524
4337
+ 7525
4338
+ 7526
4339
+ 7528
4340
+ 7529
4341
+ 7530
4342
+ 567
4343
+ 7531
4344
+ 7532
4345
+ 7533
4346
+ 7535
4347
+ 7536
4348
+ 7539
4349
+ 7540
4350
+ 7542
4351
+ 568
4352
+ 7543
4353
+ 7544
4354
+ 7546
4355
+ 7547
4356
+ 7548
4357
+ 7549
4358
+ 7551
4359
+ 7552
4360
+ 7553
4361
+ 7554
4362
+ 7557
4363
+ 7558
4364
+ 7559
4365
+ 7560
4366
+ 7565
4367
+ 7566
4368
+ 7567
4369
+ 7568
4370
+ 7569
4371
+ 7573
4372
+ 7581
4373
+ 7583
4374
+ 7584
4375
+ 7585
4376
+ 7586
4377
+ 7587
4378
+ 7589
4379
+ 7591
4380
+ 7592
4381
+ 7593
4382
+ 7594
4383
+ 7595
4384
+ 569
4385
+ 7596
4386
+ 7597
4387
+ 7598
4388
+ 7599
4389
+ 7600
4390
+ 7601
4391
+ 7602
4392
+ 7603
4393
+ 7605
4394
+ 7606
4395
+ 7607
4396
+ 7608
4397
+ 7610
4398
+ 7611
4399
+ 7612
4400
+ 7613
4401
+ 7616
4402
+ 7619
4403
+ 7622
4404
+ 7623
4405
+ 7624
4406
+ 7625
4407
+ 7626
4408
+ 570
4409
+ 7628
4410
+ 7629
4411
+ 7630
4412
+ 7631
4413
+ 7632
4414
+ 571
4415
+ 7633
4416
+ 7634
4417
+ 7635
4418
+ 7636
4419
+ 7640
4420
+ 7641
4421
+ 7642
4422
+ 7643
4423
+ 7644
4424
+ 7645
4425
+ 7646
4426
+ 7647
4427
+ 7648
4428
+ 7650
4429
+ 7651
4430
+ 7652
4431
+ 7653
4432
+ 7654
4433
+ 7656
4434
+ 7658
4435
+ 7659
4436
+ 7660
4437
+ 7665
4438
+ 7666
4439
+ 7667
4440
+ 7669
4441
+ 7670
4442
+ 7671
4443
+ 7672
4444
+ 7673
4445
+ 7674
4446
+ 7675
4447
+ 7678
4448
+ 7682
4449
+ 7684
4450
+ 7685
4451
+ 7686
4452
+ 7687
4453
+ 7688
4454
+ 7689
4455
+ 7691
4456
+ 7692
4457
+ 7694
4458
+ 7695
4459
+ 7696
4460
+ 7698
4461
+ 7699
4462
+ 7701
4463
+ 7704
4464
+ 7705
4465
+ 7706
4466
+ 7707
4467
+ 572
4468
+ 7709
4469
+ 573
4470
+ 7710
4471
+ 7711
4472
+ 574
4473
+ 575
4474
+ 7712
4475
+ 7713
4476
+ 7714
4477
+ 7715
4478
+ 7716
4479
+ 576
4480
+ 577
4481
+ 7719
4482
+ 7721
4483
+ 7723
4484
+ 7724
4485
+ 578
4486
+ 7727
4487
+ 7728
4488
+ 7730
4489
+ 7731
4490
+ 7734
4491
+ 7735
4492
+ 7736
4493
+ 7737
4494
+ 7738
4495
+ 579
4496
+ 7739
4497
+ 7741
4498
+ 7742
4499
+ 7743
4500
+ 7744
4501
+ 7745
4502
+ 7746
4503
+ 7747
4504
+ 7749
4505
+ 7752
4506
+ 7753
4507
+ 7754
4508
+ 7755
4509
+ 7756
4510
+ 7757
4511
+ 7758
4512
+ 7760
4513
+ 580
4514
+ 7761
4515
+ 7763
4516
+ 581
4517
+ 7766
4518
+ 7767
4519
+ 7768
4520
+ 7771
4521
+ 582
4522
+ 7774
4523
+ 7775
4524
+ 7780
4525
+ 7781
4526
+ 7782
4527
+ 7787
4528
+ 7789
4529
+ 7790
4530
+ 7792
4531
+ 7795
4532
+ 7796
4533
+ 7797
4534
+ 583
4535
+ 7801
4536
+ 7802
4537
+ 7804
4538
+ 7806
4539
+ 7807
4540
+ 7809
4541
+ 7810
4542
+ 7812
4543
+ 7816
4544
+ 7819
4545
+ 7822
4546
+ 7828
4547
+ 7834
4548
+ 7835
4549
+ 7836
4550
+ 7838
4551
+ 7840
4552
+ 7841
4553
+ 584
4554
+ 585
4555
+ 7846
4556
+ 586
4557
+ 7849
4558
+ 7850
4559
+ 7851
4560
+ 7853
4561
+ 7854
4562
+ 7855
4563
+ 7856
4564
+ 587
4565
+ 7861
4566
+ 588
4567
+ 7862
4568
+ 7863
4569
+ 7865
4570
+ 589
4571
+ 7868
4572
+ 7869
4573
+ 7870
4574
+ 7871
4575
+ 7872
4576
+ 7873
4577
+ 7874
4578
+ 7875
4579
+ 7876
4580
+ 590
4581
+ 591
4582
+ 7878
4583
+ 7879
4584
+ 7880
4585
+ 7881
4586
+ 7882
4587
+ 7883
4588
+ 7884
4589
+ 7886
4590
+ 7887
4591
+ 7890
4592
+ 7892
4593
+ 7893
4594
+ 7894
4595
+ 7899
4596
+ 7900
4597
+ 7902
4598
+ 7904
4599
+ 592
4600
+ 7905
4601
+ 593
4602
+ 7909
4603
+ 7910
4604
+ 7911
4605
+ 594
4606
+ 7912
4607
+ 7916
4608
+ 7918
4609
+ 595
4610
+ 7920
4611
+ 7921
4612
+ 7922
4613
+ 7924
4614
+ 7925
4615
+ 596
4616
+ 7927
4617
+ 7928
4618
+ 7929
4619
+ 7931
4620
+ 7933
4621
+ 7936
4622
+ 7939
4623
+ 7942
4624
+ 7943
4625
+ 7944
4626
+ 7945
4627
+ 7949
4628
+ 7951
4629
+ 7954
4630
+ 7955
4631
+ 7957
4632
+ 7959
4633
+ 7960
4634
+ 7961
4635
+ 7962
4636
+ 7964
4637
+ 7965
4638
+ 7966
4639
+ 7967
4640
+ 7968
4641
+ 7969
4642
+ 7970
4643
+ 7971
4644
+ 7973
4645
+ 7974
4646
+ 7976
4647
+ 7977
4648
+ 7978
4649
+ 7981
4650
+ 7987
4651
+ 7988
4652
+ 7990
4653
+ 7993
4654
+ 7994
4655
+ 7995
4656
+ 7998
4657
+ 7999
4658
+ 8000
4659
+ 8004
4660
+ 8006
4661
+ 8007
4662
+ 8009
4663
+ 8010
4664
+ 8011
4665
+ 8013
4666
+ 8015
4667
+ 8016
4668
+ 8019
4669
+ 8020
4670
+ 8022
4671
+ 8025
4672
+ 8026
4673
+ 8028
4674
+ 8029
4675
+ 8031
4676
+ 8032
4677
+ 8033
4678
+ 8034
4679
+ 8037
4680
+ 8040
4681
+ 8041
4682
+ 8044
4683
+ 8045
4684
+ 8047
4685
+ 8049
4686
+ 8053
4687
+ 597
4688
+ 8054
4689
+ 8057
4690
+ 8058
4691
+ 8059
4692
+ 8060
4693
+ 8061
4694
+ 8062
4695
+ 598
4696
+ 8064
4697
+ 599
4698
+ 8065
4699
+ 8066
4700
+ 8071
4701
+ 600
4702
+ 8072
4703
+ 8073
4704
+ 601
4705
+ 8079
4706
+ 8080
4707
+ 602
4708
+ 8083
4709
+ 8085
4710
+ 8087
4711
+ 8088
4712
+ 8090
4713
+ 8091
4714
+ 603
4715
+ 8094
4716
+ 8099
4717
+ 8100
4718
+ 8101
4719
+ 8103
4720
+ 8104
4721
+ 8106
4722
+ 8107
4723
+ 8108
4724
+ 8109
4725
+ 8111
4726
+ 8112
4727
+ 8113
4728
+ 8114
4729
+ 8115
4730
+ 8117
4731
+ 8118
4732
+ 8119
4733
+ 8120
4734
+ 8121
4735
+ 8123
4736
+ 8124
4737
+ 8125
4738
+ 604
4739
+ 8126
4740
+ 8127
4741
+ 8128
4742
+ 8129
4743
+ 8131
4744
+ 8133
4745
+ 8134
4746
+ 8135
4747
+ 8136
4748
+ 8137
4749
+ 8141
4750
+ 8144
4751
+ 8146
4752
+ 8148
4753
+ 8150
4754
+ 8151
4755
+ 8152
4756
+ 8153
4757
+ 8154
4758
+ 8155
4759
+ 8158
4760
+ 8159
4761
+ 8163
4762
+ 8164
4763
+ 8165
4764
+ 8168
4765
+ 8170
4766
+ 8172
4767
+ 8173
4768
+ 8174
4769
+ 8178
4770
+ 8180
4771
+ 8181
4772
+ 8182
4773
+ 8183
4774
+ 8184
4775
+ 8187
4776
+ 8188
4777
+ 8189
4778
+ 8190
4779
+ 8193
4780
+ 8194
4781
+ 8196
4782
+ 8200
4783
+ 8201
4784
+ 8205
4785
+ 8208
4786
+ 8210
4787
+ 8213
4788
+ 8215
4789
+ 8219
4790
+ 8223
4791
+ 8225
4792
+ 8227
4793
+ 8229
4794
+ 8230
4795
+ 8232
4796
+ 8236
4797
+ 8238
4798
+ 8239
4799
+ 8244
4800
+ 8247
4801
+ 8249
4802
+ 8250
4803
+ 8251
4804
+ 8253
4805
+ 8255
4806
+ 8257
4807
+ 8259
4808
+ 8262
4809
+ 8263
4810
+ 605
4811
+ 8266
4812
+ 606
4813
+ 8267
4814
+ 8269
4815
+ 8271
4816
+ 8274
4817
+ 8275
4818
+ 8277
4819
+ 8279
4820
+ 8280
4821
+ 8282
4822
+ 8284
4823
+ 8285
4824
+ 8287
4825
+ 607
4826
+ 8288
4827
+ 8294
4828
+ 8295
4829
+ 8296
4830
+ 8297
4831
+ 8298
4832
+ 8300
4833
+ 8303
4834
+ 8305
4835
+ 608
4836
+ 609
4837
+ 8307
4838
+ 8308
4839
+ 8309
4840
+ 610
4841
+ 8310
4842
+ 8312
4843
+ 8313
4844
+ 8316
4845
+ 8317
4846
+ 8318
4847
+ 8320
4848
+ 611
4849
+ 612
4850
+ 8324
4851
+ 8325
4852
+ 8326
4853
+ 8327
4854
+ 8328
4855
+ 8329
4856
+ 8330
4857
+ 8331
4858
+ 613
4859
+ 8336
4860
+ 8337
4861
+ 8338
4862
+ 8339
4863
+ 8340
4864
+ 8341
4865
+ 8345
4866
+ 8348
4867
+ 8349
4868
+ 8350
4869
+ 8352
4870
+ 8355
4871
+ 8358
4872
+ 8359
4873
+ 8362
4874
+ 8363
4875
+ 8367
4876
+ 8368
4877
+ 8369
4878
+ 8370
4879
+ 8373
4880
+ 8374
4881
+ 8375
4882
+ 8376
4883
+ 8377
4884
+ 8378
4885
+ 8380
4886
+ 8381
4887
+ 8383
4888
+ 8384
4889
+ 8385
4890
+ 8386
4891
+ 8387
4892
+ 8390
4893
+ 8391
4894
+ 8392
4895
+ 8393
4896
+ 8394
4897
+ 614
4898
+ 8397
4899
+ 8402
4900
+ 8404
4901
+ 8405
4902
+ 8406
4903
+ 8407
4904
+ 8408
4905
+ 8409
4906
+ 8410
4907
+ 8412
4908
+ 8413
4909
+ 8414
4910
+ 8416
4911
+ 8418
4912
+ 8419
4913
+ 8420
4914
+ 615
4915
+ 8421
4916
+ 8422
4917
+ 8423
4918
+ 8424
4919
+ 8426
4920
+ 8427
4921
+ 8428
4922
+ 8429
4923
+ 8430
4924
+ 8434
4925
+ 616
4926
+ 8435
4927
+ 8437
4928
+ 8439
4929
+ 8443
4930
+ 8444
4931
+ 8445
4932
+ 8447
4933
+ 617
4934
+ 8448
4935
+ 8450
4936
+ 8452
4937
+ 8453
4938
+ 8454
4939
+ 618
4940
+ 8458
4941
+ 8459
4942
+ 8461
4943
+ 8462
4944
+ 8463
4945
+ 8465
4946
+ 8467
4947
+ 8468
4948
+ 8470
4949
+ 619
4950
+ 8473
4951
+ 8478
4952
+ 8479
4953
+ 8481
4954
+ 8484
4955
+ 8485
4956
+ 8486
4957
+ 8490
4958
+ 620
4959
+ 8492
4960
+ 8493
4961
+ 8494
4962
+ 8495
4963
+ 8498
4964
+ 8499
4965
+ 8500
4966
+ 8503
4967
+ 8504
4968
+ 8505
4969
+ 8506
4970
+ 8508
4971
+ 8510
4972
+ 8512
4973
+ 8515
4974
+ 8517
4975
+ 8518
4976
+ 621
4977
+ 8519
4978
+ 8520
4979
+ 8522
4980
+ 8523
4981
+ 8525
4982
+ 8527
4983
+ 8528
4984
+ 8529
4985
+ 8531
4986
+ 8532
4987
+ 8533
4988
+ 8534
4989
+ 8535
4990
+ 8537
4991
+ 8539
4992
+ 8540
4993
+ 8541
4994
+ 622
4995
+ 8543
4996
+ 623
4997
+ 8546
4998
+ 8547
4999
+ 8548
5000
+ 8549
5001
+ 8550
5002
+ 8551
5003
+ 8553
5004
+ 624
5005
+ 8554
5006
+ 625
5007
+ 8557
5008
+ 8558
5009
+ 8560
5010
+ 8565
5011
+ 8567
5012
+ 8569
5013
+ 8571
5014
+ 626
5015
+ 8572
5016
+ 8574
5017
+ 8575
5018
+ 8576
5019
+ 8577
5020
+ 8578
5021
+ 8579
5022
+ 8580
5023
+ 8581
5024
+ 8583
5025
+ 8584
5026
+ 627
5027
+ 8585
5028
+ 8587
5029
+ 628
5030
+ 8589
5031
+ 8591
5032
+ 8592
5033
+ 8593
5034
+ 8596
5035
+ 8600
5036
+ 629
5037
+ 8601
5038
+ 8602
5039
+ 8603
5040
+ 8606
5041
+ 8607
5042
+ 8609
5043
+ 8610
5044
+ 630
5045
+ 8612
5046
+ 8613
5047
+ 8614
5048
+ 8615
5049
+ 8619
5050
+ 8620
5051
+ 8621
5052
+ 8623
5053
+ 8624
5054
+ 8625
5055
+ 8626
5056
+ 8627
5057
+ 8628
5058
+ 8630
5059
+ 8632
5060
+ 8633
5061
+ 8636
5062
+ 8637
5063
+ 8640
5064
+ 8641
5065
+ 8642
5066
+ 8644
5067
+ 8645
5068
+ 8647
5069
+ 8650
5070
+ 8651
5071
+ 8654
5072
+ 8655
5073
+ 631
5074
+ 632
5075
+ 8657
5076
+ 8661
5077
+ 633
5078
+ 8663
5079
+ 8664
5080
+ 8665
5081
+ 8666
5082
+ 8669
5083
+ 8673
5084
+ 8675
5085
+ 8676
5086
+ 8678
5087
+ 8679
5088
+ 8681
5089
+ 634
5090
+ 8685
5091
+ 8687
5092
+ 8690
5093
+ 8691
5094
+ 8692
5095
+ 8693
5096
+ 8694
5097
+ 8695
5098
+ 8697
5099
+ 8698
5100
+ 8700
5101
+ 8702
5102
+ 8710
5103
+ 8711
5104
+ 8712
5105
+ 8713
5106
+ 635
5107
+ 8718
5108
+ 8724
5109
+ 8726
5110
+ 8728
5111
+ 8729
5112
+ 636
5113
+ 637
5114
+ 638
5115
+ 639
5116
+ 8738
5117
+ 8740
5118
+ 8741
5119
+ 8742
5120
+ 8746
5121
+ 8748
5122
+ 8749
5123
+ 8750
5124
+ 8752
5125
+ 8753
5126
+ 8754
5127
+ 8756
5128
+ 8757
5129
+ 8758
5130
+ 8759
5131
+ 8760
5132
+ 640
5133
+ 8761
5134
+ 8762
5135
+ 8763
5136
+ 8764
5137
+ 8766
5138
+ 8767
5139
+ 8768
5140
+ 8769
5141
+ 8771
5142
+ 8773
5143
+ 641
5144
+ 8775
5145
+ 8776
5146
+ 642
5147
+ 8777
5148
+ 8778
5149
+ 8779
5150
+ 8783
5151
+ 8785
5152
+ 8787
5153
+ 8789
5154
+ 8790
5155
+ 8791
5156
+ 8792
5157
+ 643
5158
+ 8793
5159
+ 8795
5160
+ 8796
5161
+ 8802
5162
+ 8803
5163
+ 8804
5164
+ 8805
5165
+ 8806
5166
+ 8807
5167
+ 8808
5168
+ 8809
5169
+ 8810
5170
+ 8812
5171
+ 644
5172
+ 8817
5173
+ 8818
5174
+ 8819
5175
+ 8822
5176
+ 8823
5177
+ 8824
5178
+ 8825
5179
+ 8827
5180
+ 8828
5181
+ 8829
5182
+ 645
5183
+ 646
5184
+ 8834
5185
+ 647
5186
+ 8835
5187
+ 8836
5188
+ 8837
5189
+ 8838
5190
+ 8842
5191
+ 8843
5192
+ 8844
5193
+ 8845
5194
+ 8846
5195
+ 8847
5196
+ 8848
5197
+ 8849
5198
+ 648
5199
+ 649
5200
+ 8851
5201
+ 8852
5202
+ 8853
5203
+ 8855
5204
+ 8856
5205
+ 8858
5206
+ 8859
5207
+ 8860
5208
+ 8861
5209
+ 8862
5210
+ 8863
5211
+ 8866
5212
+ 8871
5213
+ 8872
5214
+ 8874
5215
+ 8876
5216
+ 8879
5217
+ 8881
5218
+ 8882
5219
+ 8886
5220
+ 8888
5221
+ 650
5222
+ 8889
5223
+ 8890
5224
+ 8891
5225
+ 651
5226
+ 8895
5227
+ 8896
5228
+ 8897
5229
+ 652
5230
+ 8900
5231
+ 653
5232
+ 8902
5233
+ 8903
5234
+ 8906
5235
+ 8907
5236
+ 8908
5237
+ 8910
5238
+ 8911
5239
+ 8914
5240
+ 8915
5241
+ 8916
5242
+ 8917
5243
+ 8918
5244
+ 8919
5245
+ 8923
5246
+ 8924
5247
+ 654
5248
+ 8926
5249
+ 8928
5250
+ 655
5251
+ 656
5252
+ 8931
5253
+ 8932
5254
+ 8933
5255
+ 8934
5256
+ 8936
5257
+ 657
5258
+ 8938
5259
+ 8939
5260
+ 658
5261
+ 8940
5262
+ 8941
5263
+ 659
5264
+ 8942
5265
+ 8943
5266
+ 8944
5267
+ 660
5268
+ 8946
5269
+ 661
5270
+ 662
5271
+ 8950
5272
+ 8952
5273
+ 663
5274
+ 8961
5275
+ 8962
5276
+ 664
5277
+ 8963
5278
+ 8964
5279
+ 8967
5280
+ 8971
5281
+ 8973
5282
+ 665
5283
+ 8975
5284
+ 8977
5285
+ 8979
5286
+ 8980
5287
+ 8981
5288
+ 8982
5289
+ 666
5290
+ 667
5291
+ 8983
5292
+ 8984
5293
+ 668
5294
+ 669
5295
+ 8985
5296
+ 8986
5297
+ 8987
5298
+ 8988
5299
+ 8992
5300
+ 8993
5301
+ 8994
5302
+ 8995
5303
+ 8996
5304
+ 670
5305
+ 8997
5306
+ 8998
5307
+ 8999
5308
+ 9000
5309
+ 671
5310
+ 672
5311
+ 673
5312
+ 9001
5313
+ 674
5314
+ 9002
5315
+ 9003
5316
+ 9004
5317
+ 9005
5318
+ 9006
5319
+ 9007
5320
+ 675
5321
+ 9009
5322
+ 9010
5323
+ 9014
5324
+ 9015
5325
+ 9016
5326
+ 9017
5327
+ 9018
5328
+ 9019
5329
+ 9026
5330
+ 9031
5331
+ 9032
5332
+ 9033
5333
+ 9034
5334
+ 9035
5335
+ 9036
5336
+ 9037
5337
+ 9039
5338
+ 9040
5339
+ 676
5340
+ 677
5341
+ 9046
5342
+ 9047
5343
+ 9050
5344
+ 9054
5345
+ 9055
5346
+ 9059
5347
+ 9060
5348
+ 9061
5349
+ 9062
5350
+ 9063
5351
+ 9067
5352
+ 9068
5353
+ 678
5354
+ 9073
5355
+ 679
5356
+ 9074
5357
+ 9076
5358
+ 9077
5359
+ 9078
5360
+ 9079
5361
+ 9081
5362
+ 9082
5363
+ 9083
5364
+ 9086
5365
+ 9088
5366
+ 9090
5367
+ 9091
5368
+ 9092
5369
+ 9093
5370
+ 9095
5371
+ 9096
5372
+ 9100
5373
+ 9101
5374
+ 9103
5375
+ 9104
5376
+ 9105
5377
+ 9106
5378
+ 9107
5379
+ 9108
5380
+ 9113
5381
+ 9115
5382
+ 9117
5383
+ 9118
5384
+ 680
5385
+ 9122
5386
+ 9123
5387
+ 9125
5388
+ 9126
5389
+ 9129
5390
+ 9131
5391
+ 9133
5392
+ 681
5393
+ 9135
5394
+ 9138
5395
+ 9141
5396
+ 9142
5397
+ 9144
5398
+ 9145
5399
+ 9146
5400
+ 9147
5401
+ 9148
5402
+ 682
5403
+ 9150
5404
+ 683
5405
+ 9154
5406
+ 9155
5407
+ 684
5408
+ 9158
5409
+ 685
5410
+ 9160
5411
+ 9161
5412
+ 9162
5413
+ 9163
5414
+ 9165
5415
+ 9168
5416
+ 9170
5417
+ 9171
5418
+ 686
5419
+ 9173
5420
+ 9174
5421
+ 9176
5422
+ 9177
5423
+ 9180
5424
+ 9182
5425
+ 9183
5426
+ 9184
5427
+ 9185
5428
+ 9188
5429
+ 9189
5430
+ 9191
5431
+ 9192
5432
+ 9196
5433
+ 9197
5434
+ 9199
5435
+ 9200
5436
+ 9201
5437
+ 9203
5438
+ 9204
5439
+ 9205
5440
+ 9207
5441
+ 9209
5442
+ 687
5443
+ 9210
5444
+ 9211
5445
+ 9212
5446
+ 9213
5447
+ 9214
5448
+ 9215
5449
+ 9217
5450
+ 9218
5451
+ 9220
5452
+ 9222
5453
+ 9226
5454
+ 9227
5455
+ 688
5456
+ 9228
5457
+ 9229
5458
+ 9230
5459
+ 9233
5460
+ 9234
5461
+ 9235
5462
+ 9236
5463
+ 9237
5464
+ 9238
5465
+ 9240
5466
+ 9242
5467
+ 9243
5468
+ 9245
5469
+ 9247
5470
+ 9248
5471
+ 9249
5472
+ 9250
5473
+ 9253
5474
+ 9254
5475
+ 9255
5476
+ 9256
5477
+ 9258
5478
+ 9259
5479
+ 9261
5480
+ 689
5481
+ 690
5482
+ 9265
5483
+ 9266
5484
+ 691
5485
+ 9270
5486
+ 9273
5487
+ 9274
5488
+ 9275
5489
+ 9276
5490
+ 9277
5491
+ 692
5492
+ 9278
5493
+ 693
5494
+ 9283
5495
+ 9286
5496
+ 694
5497
+ 9287
5498
+ 695
5499
+ 9288
5500
+ 9289
5501
+ 9290
5502
+ 9291
5503
+ 696
5504
+ 9293
5505
+ 697
5506
+ 9294
5507
+ 698
5508
+ 9295
5509
+ 9296
5510
+ 9301
5511
+ 9302
5512
+ 9304
5513
+ 9307
5514
+ 9308
5515
+ 9312
5516
+ 9313
5517
+ 9314
5518
+ 9315
5519
+ 9316
5520
+ 699
5521
+ 9322
5522
+ 9323
5523
+ 9324
5524
+ 9325
5525
+ 9326
5526
+ 9328
5527
+ 9329
5528
+ 9330
5529
+ 9331
5530
+ 9332
5531
+ 9333
5532
+ 9334
5533
+ 9336
5534
+ 9337
5535
+ 700
5536
+ 701
5537
+ 702
5538
+ 9344
5539
+ 9346
5540
+ 9347
5541
+ 9348
5542
+ 9349
5543
+ 9351
5544
+ 9352
5545
+ 703
5546
+ 704
5547
+ 9353
5548
+ 9354
5549
+ 9355
5550
+ 9356
5551
+ 9357
5552
+ 9359
5553
+ 9360
5554
+ 9361
5555
+ 705
5556
+ 9365
5557
+ 9366
5558
+ 9367
5559
+ 9368
5560
+ 9373
5561
+ 9374
5562
+ 9375
5563
+ 9376
5564
+ 9377
5565
+ 706
5566
+ 9381
5567
+ 9385
5568
+ 9386
5569
+ 9387
5570
+ 9389
5571
+ 9390
5572
+ 707
5573
+ 9392
5574
+ 9393
5575
+ 9396
5576
+ 9397
5577
+ 708
5578
+ 9398
5579
+ 9399
5580
+ 9400
5581
+ 9401
5582
+ 9402
5583
+ 9403
5584
+ 9407
5585
+ 9409
5586
+ 9410
5587
+ 9414
5588
+ 9419
5589
+ 709
5590
+ 710
5591
+ 9421
5592
+ 9422
5593
+ 9423
5594
+ 9427
5595
+ 9428
5596
+ 9429
5597
+ 9430
5598
+ 9431
5599
+ 9433
5600
+ 9435
5601
+ 9436
5602
+ 9437
5603
+ 9438
5604
+ 9439
5605
+ 9440
5606
+ 9442
5607
+ 9443
5608
+ 711
5609
+ 9446
5610
+ 9447
5611
+ 9449
5612
+ 9451
5613
+ 9453
5614
+ 9454
5615
+ 9455
5616
+ 9456
5617
+ 9457
5618
+ 712
5619
+ 9460
5620
+ 9461
5621
+ 9462
5622
+ 9463
5623
+ 9466
5624
+ 9467
5625
+ 713
5626
+ 9470
5627
+ 9473
5628
+ 9474
5629
+ 9475
5630
+ 9477
5631
+ 9479
5632
+ 714
5633
+ 715
5634
+ 716
5635
+ 717
5636
+ 9487
5637
+ 9488
5638
+ 718
5639
+ 9493
5640
+ 9494
5641
+ 9495
5642
+ 9496
5643
+ 9497
5644
+ 9499
5645
+ 9500
5646
+ 719
5647
+ 9503
5648
+ 720
5649
+ 9504
5650
+ 9505
5651
+ 9506
5652
+ 721
5653
+ 9507
5654
+ 9508
5655
+ 9509
5656
+ 9511
5657
+ 9515
5658
+ 9516
5659
+ 9517
5660
+ 9519
5661
+ 9520
5662
+ 9521
5663
+ 9523
5664
+ 722
5665
+ 9527
5666
+ 9528
5667
+ 9529
5668
+ 9531
5669
+ 9533
5670
+ 9534
5671
+ 9535
5672
+ 723
5673
+ 9540
5674
+ 9541
5675
+ 9544
5676
+ 9545
5677
+ 724
5678
+ 9546
5679
+ 9547
5680
+ 9548
5681
+ 9549
5682
+ 9550
5683
+ 9551
5684
+ 725
5685
+ 9554
5686
+ 9556
5687
+ 9563
5688
+ 9566
5689
+ 9567
5690
+ 726
5691
+ 9568
5692
+ 9569
5693
+ 727
5694
+ 9574
5695
+ 9575
5696
+ 9576
5697
+ 9577
5698
+ 9578
5699
+ 9579
5700
+ 9580
5701
+ 728
5702
+ 9583
5703
+ 9584
5704
+ 9587
5705
+ 9588
5706
+ 9589
5707
+ 729
5708
+ 9593
5709
+ 9596
5710
+ 9599
5711
+ 9600
5712
+ 9602
5713
+ 9603
5714
+ 9604
5715
+ 9605
5716
+ 9606
5717
+ 9607
5718
+ 9611
5719
+ 9612
5720
+ 9613
5721
+ 730
5722
+ 9614
5723
+ 9615
5724
+ 9617
5725
+ 9618
5726
+ 731
5727
+ 9621
5728
+ 9622
5729
+ 9629
5730
+ 9630
5731
+ 9632
5732
+ 9633
5733
+ 9634
5734
+ 9635
5735
+ 9636
5736
+ 9637
5737
+ 9638
5738
+ 9639
5739
+ 732
5740
+ 733
5741
+ 9646
5742
+ 734
5743
+ 9647
5744
+ 9649
5745
+ 9650
5746
+ 9651
5747
+ 9654
5748
+ 9655
5749
+ 735
5750
+ 9658
5751
+ 9659
5752
+ 9660
5753
+ 9661
5754
+ 9662
5755
+ 9663
5756
+ 736
5757
+ 9664
5758
+ 9666
5759
+ 737
5760
+ 9668
5761
+ 9672
5762
+ 9673
5763
+ 9674
5764
+ 9675
5765
+ 9676
5766
+ 9677
5767
+ 9678
5768
+ 9679
5769
+ 9681
5770
+ 9682
5771
+ 9683
5772
+ 9684
5773
+ 9686
5774
+ 9687
5775
+ 9688
5776
+ 9691
5777
+ 9692
5778
+ 9698
5779
+ 9701
5780
+ 738
5781
+ 9702
5782
+ 9705
5783
+ 9706
5784
+ 9707
5785
+ 9708
5786
+ 739
5787
+ 9709
5788
+ 9711
5789
+ 9712
5790
+ 9713
5791
+ 9714
5792
+ 9716
5793
+ 9719
5794
+ 9722
5795
+ 740
5796
+ 9723
5797
+ 9725
5798
+ 9727
5799
+ 9728
5800
+ 9729
5801
+ 741
5802
+ 9733
5803
+ 9736
5804
+ 9738
5805
+ 9739
5806
+ 9741
5807
+ 9743
5808
+ 9745
5809
+ 9747
5810
+ 9749
5811
+ 9750
5812
+ 9753
5813
+ 9755
5814
+ 9757
5815
+ 9758
5816
+ 742
5817
+ 9759
5818
+ 9760
5819
+ 743
5820
+ 9768
5821
+ 744
5822
+ 745
5823
+ 9769
5824
+ 9774
5825
+ 9775
5826
+ 9776
5827
+ 9781
5828
+ 9785
5829
+ 9786
5830
+ 9788
5831
+ 9789
5832
+ 9790
5833
+ 9793
5834
+ 9795
5835
+ 9796
5836
+ 746
5837
+ 9798
5838
+ 9800
5839
+ 9801
5840
+ 9803
5841
+ 9804
5842
+ 9809
5843
+ 9810
5844
+ 9818
5845
+ 747
5846
+ 9820
5847
+ 9821
5848
+ 9822
5849
+ 9823
5850
+ 9825
5851
+ 9826
5852
+ 748
5853
+ 9827
5854
+ 9828
5855
+ 9829
5856
+ 9831
5857
+ 9834
5858
+ 9835
5859
+ 9836
5860
+ 9837
5861
+ 9838
5862
+ 9840
5863
+ 9841
5864
+ 9845
5865
+ 9847
5866
+ 9852
5867
+ 9855
5868
+ 749
5869
+ 750
5870
+ 9858
5871
+ 9863
5872
+ 9864
5873
+ 9866
5874
+ 9870
5875
+ 751
5876
+ 9873
5877
+ 9874
5878
+ 9875
5879
+ 9876
5880
+ 9877
5881
+ 752
5882
+ 9880
5883
+ 9881
5884
+ 9882
5885
+ 9883
5886
+ 753
5887
+ 9885
5888
+ 9886
5889
+ 9887
5890
+ 754
5891
+ 9888
5892
+ 9891
5893
+ 9896
5894
+ 9897
5895
+ 9898
5896
+ 9899
5897
+ 755
5898
+ 9902
5899
+ 9903
5900
+ 9904
5901
+ 9907
5902
+ 9908
5903
+ 9909
5904
+ 9910
5905
+ 9911
5906
+ 9913
5907
+ 9916
5908
+ 756
5909
+ 9917
5910
+ 9918
5911
+ 9919
5912
+ 9920
5913
+ 9921
5914
+ 9923
5915
+ 9926
5916
+ 9928
5917
+ 9931
5918
+ 9932
5919
+ 9933
5920
+ 9934
5921
+ 9935
5922
+ 9937
5923
+ 9939
5924
+ 9940
5925
+ 9945
5926
+ 9946
5927
+ 9947
5928
+ 9948
5929
+ 9949
5930
+ 9953
5931
+ 9954
5932
+ 9955
5933
+ 9957
5934
+ 9959
5935
+ 9962
5936
+ 9963
5937
+ 9966
5938
+ 9968
5939
+ 9969
5940
+ 9970
5941
+ 9972
5942
+ 9975
5943
+ 9976
5944
+ 9977
5945
+ 9979
5946
+ 9980
5947
+ 9981
5948
+ 757
5949
+ 9982
5950
+ 9983
5951
+ 9986
5952
+ 758
5953
+ 9993
5954
+ 9994
5955
+ 9995
5956
+ 9996
5957
+ 9997
5958
+ 9999
5959
+ 759
5960
+ 10002
5961
+ 10003
5962
+ 10004
5963
+ 760
5964
+ 10008
5965
+ 10009
5966
+ 10010
5967
+ 10011
5968
+ 10012
5969
+ 10014
5970
+ 10015
5971
+ 761
5972
+ 10016
5973
+ 10017
5974
+ 10018
5975
+ 10020
5976
+ 10022
5977
+ 10023
5978
+ 10024
5979
+ 10029
5980
+ 10032
5981
+ 10034
5982
+ 10035
5983
+ 10036
5984
+ 10037
5985
+ 10038
5986
+ 762
5987
+ 10039
5988
+ 10042
5989
+ 10043
5990
+ 10044
5991
+ 10046
5992
+ 10048
5993
+ 10051
5994
+ 763
5995
+ 10056
5996
+ 10061
5997
+ 10062
5998
+ 10063
5999
+ 10070
6000
+ 10071
6001
+ 10072
6002
+ 10073
6003
+ 764
6004
+ 10076
6005
+ 10079
6006
+ 10083
6007
+ 10084
6008
+ 10090
6009
+ 10092
6010
+ 10093
6011
+ 10094
6012
+ 10095
6013
+ 10097
6014
+ 10101
6015
+ 10103
6016
+ 10104
6017
+ 10108
6018
+ 10110
6019
+ 10111
6020
+ 10112
6021
+ 765
6022
+ 10114
6023
+ 10117
6024
+ 10119
6025
+ 10120
6026
+ 10121
6027
+ 10122
6028
+ 10123
6029
+ 10125
6030
+ 10127
6031
+ 10128
6032
+ 10129
6033
+ 10130
6034
+ 10131
6035
+ 10132
6036
+ 10133
6037
+ 10134
6038
+ 10135
6039
+ 10136
6040
+ 10138
6041
+ 10140
6042
+ 10141
6043
+ 10143
6044
+ 10145
6045
+ 10146
6046
+ 10149
6047
+ 10154
6048
+ 10155
6049
+ 10156
6050
+ 766
6051
+ 10157
6052
+ 10159
6053
+ 10160
6054
+ 10161
6055
+ 10162
6056
+ 10163
6057
+ 10164
6058
+ 10167
6059
+ 10168
6060
+ 10169
6061
+ 10170
6062
+ 10171
6063
+ 10173
6064
+ 10177
6065
+ 10179
6066
+ 10180
6067
+ 10181
6068
+ 10183
6069
+ 10184
6070
+ 10185
6071
+ 10186
6072
+ 767
6073
+ 10189
6074
+ 10191
6075
+ 768
6076
+ 10192
6077
+ 769
6078
+ 10193
6079
+ 10194
6080
+ 10195
6081
+ 10196
6082
+ 10198
6083
+ 770
6084
+ 10200
6085
+ 10203
6086
+ 10204
6087
+ 10205
6088
+ 10207
6089
+ 10208
6090
+ 10209
6091
+ 10210
6092
+ 10211
6093
+ 10212
6094
+ 10216
6095
+ 10217
6096
+ 10218
6097
+ 10219
6098
+ 10220
6099
+ 10221
6100
+ 10222
6101
+ 771
6102
+ 10226
6103
+ 10229
6104
+ 10230
6105
+ 772
6106
+ 10237
6107
+ 10238
6108
+ 10239
6109
+ 10240
6110
+ 10241
6111
+ 10242
6112
+ 10243
6113
+ 10244
6114
+ 10248
6115
+ 10249
6116
+ 10251
6117
+ 10254
6118
+ 10255
6119
+ 773
6120
+ 10258
6121
+ 10259
6122
+ 10261
6123
+ 10263
6124
+ 774
6125
+ 10265
6126
+ 10266
6127
+ 10267
6128
+ 10268
6129
+ 10269
6130
+ 10270
6131
+ 10271
6132
+ 10272
6133
+ 10274
6134
+ 10275
6135
+ 775
6136
+ 10276
6137
+ 10277
6138
+ 10278
6139
+ 10279
6140
+ 10280
6141
+ 10281
6142
+ 10282
6143
+ 10283
6144
+ 10285
6145
+ 10287
6146
+ 10288
6147
+ 10289
6148
+ 10290
6149
+ 10291
6150
+ 10293
6151
+ 776
6152
+ 10296
6153
+ 777
6154
+ 10297
6155
+ 10298
6156
+ 778
6157
+ 10301
6158
+ 10302
6159
+ 10303
6160
+ 10304
6161
+ 10306
6162
+ 10307
6163
+ 10308
6164
+ 10310
6165
+ 10311
6166
+ 10312
6167
+ 10313
6168
+ 779
6169
+ 10314
6170
+ 780
6171
+ 10318
6172
+ 10320
6173
+ 10323
6174
+ 10324
6175
+ 10325
6176
+ 10326
6177
+ 781
6178
+ 10327
6179
+ 10330
6180
+ 10334
6181
+ 782
6182
+ 10335
6183
+ 783
6184
+ 10337
6185
+ 10338
6186
+ 784
6187
+ 10341
6188
+ 10342
6189
+ 10348
6190
+ 10349
6191
+ 10354
6192
+ 10355
6193
+ 10356
6194
+ 10361
6195
+ 10362
6196
+ 10365
6197
+ 10366
6198
+ 10367
6199
+ 10369
6200
+ 10370
6201
+ 10371
6202
+ 785
6203
+ 10372
6204
+ 10373
6205
+ 10375
6206
+ 10376
6207
+ 10377
6208
+ 10378
6209
+ 10382
6210
+ 10384
6211
+ 10388
6212
+ 10392
6213
+ 10394
6214
+ 10398
6215
+ 10399
6216
+ 10400
6217
+ 10401
6218
+ 10402
6219
+ 10403
6220
+ 10404
6221
+ 10405
6222
+ 10408
6223
+ 10409
6224
+ 10410
6225
+ 10412
6226
+ 10413
6227
+ 10415
6228
+ 10419
6229
+ 10420
6230
+ 10422
6231
+ 10423
6232
+ 10424
6233
+ 10426
6234
+ 10430
6235
+ 10431
6236
+ 10432
6237
+ 10433
6238
+ 10434
6239
+ 10436
6240
+ 10437
6241
+ 10438
6242
+ 786
6243
+ 10439
6244
+ 10440
6245
+ 10441
6246
+ 10443
6247
+ 10444
6248
+ 10446
6249
+ 10447
6250
+ 10448
6251
+ 10449
6252
+ 10452
6253
+ 10453
6254
+ 10455
6255
+ 10456
6256
+ 10457
6257
+ 10458
6258
+ 10459
6259
+ 10460
6260
+ 10461
6261
+ 10462
6262
+ 10464
6263
+ 10465
6264
+ 10466
6265
+ 10467
6266
+ 10470
6267
+ 10472
6268
+ 10474
6269
+ 10475
6270
+ 10476
6271
+ 10477
6272
+ 10478
6273
+ 10481
6274
+ 10483
6275
+ 10484
6276
+ 10485
6277
+ 787
6278
+ 10488
6279
+ 10490
6280
+ 10494
6281
+ 10495
6282
+ 10497
6283
+ 10500
6284
+ 10501
6285
+ 10502
6286
+ 10506
6287
+ 10507
6288
+ 10508
6289
+ 10509
6290
+ 10510
6291
+ 10511
6292
+ 10512
6293
+ 10513
6294
+ 10514
6295
+ 788
6296
+ 10515
6297
+ 10516
6298
+ 789
6299
+ 10517
6300
+ 10520
6301
+ 10522
6302
+ 790
6303
+ 791
6304
+ 10525
6305
+ 10526
6306
+ 10529
6307
+ 10530
6308
+ 10531
6309
+ 10532
6310
+ 10533
6311
+ 10534
6312
+ 10535
6313
+ 10536
6314
+ 10537
6315
+ 10538
6316
+ 792
6317
+ 10539
6318
+ 10541
6319
+ 10542
6320
+ 793
6321
+ 794
6322
+ 10543
6323
+ 10544
6324
+ 10547
6325
+ 10548
6326
+ 10549
6327
+ 10550
6328
+ 10553
6329
+ 10554
6330
+ 10555
6331
+ 10556
6332
+ 10557
6333
+ 10558
6334
+ 10559
6335
+ 10560
6336
+ 10564
6337
+ 10566
6338
+ 10567
6339
+ 10570
6340
+ 10571
6341
+ 10575
6342
+ 10576
6343
+ 10577
6344
+ 10579
6345
+ 10581
6346
+ 10582
6347
+ 10584
6348
+ 10585
6349
+ 10587
6350
+ 10591
6351
+ 10592
6352
+ 10593
6353
+ 10594
6354
+ 10595
6355
+ 10598
6356
+ 10599
6357
+ 10601
6358
+ 10602
6359
+ 10603
6360
+ 10605
6361
+ 10606
6362
+ 10608
6363
+ 10610
6364
+ 10613
6365
+ 10616
6366
+ 795
6367
+ 10617
6368
+ 10619
6369
+ 10620
6370
+ 10621
6371
+ 10622
6372
+ 10623
6373
+ 10625
6374
+ 796
6375
+ 10626
6376
+ 10627
6377
+ 10629
6378
+ 10631
6379
+ 10632
6380
+ 10633
6381
+ 10634
6382
+ 10635
6383
+ 10638
6384
+ 10640
6385
+ 10642
6386
+ 10646
6387
+ 10649
6388
+ 10650
6389
+ 797
6390
+ 10654
6391
+ 10656
6392
+ 10657
6393
+ 10660
6394
+ 10661
6395
+ 10662
6396
+ 10663
6397
+ 798
6398
+ 799
6399
+ 10667
6400
+ 10669
6401
+ 10672
6402
+ 10675
6403
+ 10677
6404
+ 10678
6405
+ 10680
6406
+ 10682
6407
+ 800
6408
+ 10686
6409
+ 10687
6410
+ 10689
6411
+ 10692
6412
+ 10694
6413
+ 10695
6414
+ 10697
6415
+ 10698
6416
+ 10699
6417
+ 10702
6418
+ 10703
6419
+ 10704
6420
+ 10706
6421
+ 10707
6422
+ 10708
6423
+ 10709
6424
+ 10710
6425
+ 10711
6426
+ 10712
6427
+ 10713
6428
+ 10715
6429
+ 10716
6430
+ 801
6431
+ 10717
6432
+ 10718
6433
+ 802
6434
+ 803
6435
+ 10719
6436
+ 10720
6437
+ 10721
6438
+ 10722
6439
+ 10723
6440
+ 10725
6441
+ 10726
6442
+ 804
6443
+ 805
6444
+ 806
6445
+ 10728
6446
+ 10731
6447
+ 10734
6448
+ 10736
6449
+ 10738
6450
+ 10739
6451
+ 10740
6452
+ 10741
6453
+ 10742
6454
+ 807
6455
+ 10743
6456
+ 10744
6457
+ 10745
6458
+ 10746
6459
+ 10747
6460
+ 808
6461
+ 10751
6462
+ 10753
6463
+ 10754
6464
+ 10757
6465
+ 10760
6466
+ 809
6467
+ 10764
6468
+ 10765
6469
+ 810
6470
+ 10772
6471
+ 10773
6472
+ 811
6473
+ 10775
6474
+ 812
6475
+ 10776
6476
+ 10777
6477
+ 10778
6478
+ 10780
6479
+ 10784
6480
+ 10793
6481
+ 10796
6482
+ 10797
6483
+ 813
6484
+ 10798
6485
+ 10800
6486
+ 10802
6487
+ 10805
6488
+ 10806
6489
+ 10808
6490
+ 10810
6491
+ 814
6492
+ 10811
6493
+ 10812
6494
+ 10813
6495
+ 10815
6496
+ 10817
6497
+ 815
6498
+ 10819
6499
+ 816
6500
+ 10821
6501
+ 10823
6502
+ 10824
6503
+ 10825
6504
+ 10826
6505
+ 10830
6506
+ 10831
6507
+ 10832
6508
+ 10840
6509
+ 10841
6510
+ 10844
6511
+ 10845
6512
+ 10846
6513
+ 10847
6514
+ 10848
6515
+ 10849
6516
+ 10850
6517
+ 10851
6518
+ 10853
6519
+ 10854
6520
+ 10855
6521
+ 10856
6522
+ 10857
6523
+ 10858
6524
+ 817
6525
+ 10859
6526
+ 10861
6527
+ 10862
6528
+ 818
6529
+ 10866
6530
+ 10867
6531
+ 10868
6532
+ 10871
6533
+ 10872
6534
+ 10874
6535
+ 10875
6536
+ 10877
6537
+ 10878
6538
+ 10879
6539
+ 10880
6540
+ 10881
6541
+ 10882
6542
+ 10883
6543
+ 10888
6544
+ 10889
6545
+ 10891
6546
+ 10892
6547
+ 10893
6548
+ 10894
6549
+ 10898
6550
+ 10899
6551
+ 10900
6552
+ 10901
6553
+ 10903
6554
+ 10905
6555
+ 819
6556
+ 10906
6557
+ 10907
6558
+ 10908
6559
+ 10909
6560
+ 10910
6561
+ 10912
6562
+ 10913
6563
+ 10914
6564
+ 10917
6565
+ 10918
6566
+ 10921
6567
+ 10927
6568
+ 10928
6569
+ 10929
6570
+ 10930
6571
+ 10931
6572
+ 10933
6573
+ 10934
6574
+ 10936
6575
+ 10938
6576
+ 10939
6577
+ 10940
6578
+ 10942
6579
+ 10944
6580
+ 10945
6581
+ 10946
6582
+ 10947
6583
+ 10951
6584
+ 10952
6585
+ 10953
6586
+ 10954
6587
+ 820
6588
+ 10955
6589
+ 10958
6590
+ 10959
6591
+ 821
6592
+ 822
6593
+ 10960
6594
+ 10962
6595
+ 10963
6596
+ 10967
6597
+ 10968
6598
+ 10969
6599
+ 10972
6600
+ 10974
6601
+ 10975
6602
+ 10976
6603
+ 10978
6604
+ 10979
6605
+ 10982
6606
+ 823
6607
+ 10983
6608
+ 10984
6609
+ 10985
6610
+ 10986
6611
+ 10988
6612
+ 10989
6613
+ 10993
6614
+ 10997
6615
+ 10999
6616
+ 11000
6617
+ 11003
6618
+ 11005
6619
+ 11007
6620
+ 11008
6621
+ 11010
6622
+ 824
6623
+ 825
6624
+ 11014
6625
+ 11015
6626
+ 11016
6627
+ 11017
6628
+ 11019
6629
+ 826
6630
+ 11021
6631
+ 11024
6632
+ 11027
6633
+ 11028
6634
+ 827
6635
+ 11031
6636
+ 11033
6637
+ 11035
6638
+ 11036
6639
+ 11038
6640
+ 11041
6641
+ 828
6642
+ 11042
6643
+ 11044
6644
+ 11045
6645
+ 11046
6646
+ 11047
6647
+ 11049
6648
+ 11050
6649
+ 829
6650
+ 11051
6651
+ 11052
6652
+ 830
6653
+ 11054
6654
+ 11057
6655
+ 11058
6656
+ 11062
6657
+ 11064
6658
+ 11065
6659
+ 11066
6660
+ 11067
6661
+ 11070
6662
+ 11074
6663
+ 11075
6664
+ 831
6665
+ 11076
6666
+ 11077
6667
+ 11079
6668
+ 11080
6669
+ 832
6670
+ 11081
6671
+ 11085
6672
+ 11086
6673
+ 833
6674
+ 11089
6675
+ 11092
6676
+ 11093
6677
+ 11097
6678
+ 11098
6679
+ 11100
6680
+ 834
6681
+ 11102
6682
+ 11103
6683
+ 11104
6684
+ 11105
6685
+ 11107
6686
+ 11108
6687
+ 11109
6688
+ 11110
6689
+ 835
6690
+ 11111
6691
+ 836
6692
+ 837
6693
+ 11114
6694
+ 11116
6695
+ 11117
6696
+ 838
6697
+ 11118
6698
+ 11120
6699
+ 11122
6700
+ 11123
6701
+ 11124
6702
+ 11128
6703
+ 11129
6704
+ 11132
6705
+ 11133
6706
+ 11134
6707
+ 11135
6708
+ 11140
6709
+ 11144
6710
+ 11146
6711
+ 11147
6712
+ 11149
6713
+ 11154
6714
+ 11157
6715
+ 11158
6716
+ 839
6717
+ 11160
6718
+ 11161
6719
+ 840
6720
+ 11162
6721
+ 11163
6722
+ 11167
6723
+ 11170
6724
+ 11171
6725
+ 11174
6726
+ 11175
6727
+ 841
6728
+ 11177
6729
+ 11179
6730
+ 842
6731
+ 11180
6732
+ 843
6733
+ 844
6734
+ 11182
6735
+ 11183
6736
+ 11185
6737
+ 11186
6738
+ 11187
6739
+ 11188
6740
+ 11190
6741
+ 11193
6742
+ 11194
6743
+ 11195
6744
+ 11198
6745
+ 845
6746
+ 11199
6747
+ 11202
6748
+ 11204
6749
+ 11205
6750
+ 11206
6751
+ 11207
6752
+ 846
6753
+ 11208
6754
+ 11209
6755
+ 11211
6756
+ 11212
6757
+ 11213
6758
+ 11214
6759
+ 11216
6760
+ 11218
6761
+ 11219
6762
+ 11220
6763
+ 11221
6764
+ 11223
6765
+ 11225
6766
+ 11226
6767
+ 11229
6768
+ 11230
6769
+ 11231
6770
+ 11233
6771
+ 11234
6772
+ 11235
6773
+ 11236
6774
+ 11237
6775
+ 11238
6776
+ 11240
6777
+ 11241
6778
+ 11246
6779
+ 847
6780
+ 11247
6781
+ 11248
6782
+ 11249
6783
+ 11250
6784
+ 11253
6785
+ 11254
6786
+ 11255
6787
+ 11256
6788
+ 11257
6789
+ 11258
6790
+ 11259
6791
+ 11260
6792
+ 848
6793
+ 11261
6794
+ 11263
6795
+ 11264
6796
+ 11265
6797
+ 11269
6798
+ 11270
6799
+ 11271
6800
+ 11273
6801
+ 11276
6802
+ 11278
6803
+ 11279
6804
+ 11280
6805
+ 11283
6806
+ 11284
6807
+ 11285
6808
+ 849
6809
+ 11287
6810
+ 11288
6811
+ 11289
6812
+ 11290
6813
+ 11292
6814
+ 11293
6815
+ 11294
6816
+ 11295
6817
+ 11296
6818
+ 11298
6819
+ 11300
6820
+ 11301
6821
+ 11302
6822
+ 11303
6823
+ 11304
6824
+ 11305
6825
+ 11307
6826
+ 11308
6827
+ 11309
6828
+ 11310
6829
+ 11311
6830
+ 11312
6831
+ 11313
6832
+ 11314
6833
+ 851
6834
+ 11317
6835
+ 11318
6836
+ 11319
6837
+ 11320
6838
+ 11321
6839
+ 11322
6840
+ 11325
6841
+ 11327
6842
+ 11328
6843
+ 11329
6844
+ 11330
6845
+ 11331
6846
+ 11333
6847
+ 852
6848
+ 11334
6849
+ 11335
6850
+ 11337
6851
+ 11345
6852
+ 11348
6853
+ 11350
6854
+ 11353
6855
+ 11355
6856
+ 11356
6857
+ 11357
6858
+ 11358
6859
+ 11359
6860
+ 11361
6861
+ 11363
6862
+ 11365
6863
+ 11366
6864
+ 11367
6865
+ 853
6866
+ 11368
6867
+ 854
6868
+ 11370
6869
+ 11371
6870
+ 11372
6871
+ 11380
6872
+ 11381
6873
+ 11383
6874
+ 11384
6875
+ 855
6876
+ 11387
6877
+ 11388
6878
+ 11391
6879
+ 11392
6880
+ 11396
6881
+ 856
6882
+ 11400
6883
+ 857
6884
+ 11402
6885
+ 11404
6886
+ 11405
6887
+ 11408
6888
+ 11411
6889
+ 11412
6890
+ 11415
6891
+ 11416
6892
+ 11417
6893
+ 11418
6894
+ 11419
6895
+ 858
6896
+ 11423
6897
+ 11424
6898
+ 11425
6899
+ 11433
6900
+ 11434
6901
+ 11435
6902
+ 11437
6903
+ 11439
6904
+ 11440
6905
+ 11442
6906
+ 11445
6907
+ 11446
6908
+ 859
6909
+ 11447
6910
+ 11449
6911
+ 11450
6912
+ 860
6913
+ 11452
6914
+ 11455
6915
+ 11457
6916
+ 11458
6917
+ 11459
6918
+ 11462
6919
+ 11464
6920
+ 11465
6921
+ 11466
6922
+ 11468
6923
+ 11469
6924
+ 861
6925
+ 11470
6926
+ 11472
6927
+ 11473
6928
+ 11477
6929
+ 11478
6930
+ 11479
6931
+ 11481
6932
+ 11482
6933
+ 11483
6934
+ 11485
6935
+ 11487
6936
+ 11488
6937
+ 11489
6938
+ 11490
6939
+ 11492
6940
+ 11493
6941
+ 11494
6942
+ 11495
6943
+ 11499
6944
+ 11501
6945
+ 11503
6946
+ 862
6947
+ 11507
6948
+ 11509
6949
+ 11511
6950
+ 11512
6951
+ 863
6952
+ 11514
6953
+ 11515
6954
+ 11518
6955
+ 11519
6956
+ 11520
6957
+ 11521
6958
+ 11522
6959
+ 11523
6960
+ 11524
6961
+ 864
6962
+ 11525
6963
+ 11526
6964
+ 865
6965
+ 11528
6966
+ 11530
6967
+ 11531
6968
+ 11532
6969
+ 11534
6970
+ 866
6971
+ 11535
6972
+ 11536
6973
+ 11537
6974
+ 11538
6975
+ 867
6976
+ 11541
6977
+ 11542
6978
+ 11544
6979
+ 11546
6980
+ 11548
6981
+ 11550
6982
+ 11553
6983
+ 11556
6984
+ 11559
6985
+ 11560
6986
+ 11561
6987
+ 11563
6988
+ 11565
6989
+ 11568
6990
+ 868
6991
+ 11570
6992
+ 11571
6993
+ 11572
6994
+ 11573
6995
+ 11574
6996
+ 11578
6997
+ 869
6998
+ 11584
6999
+ 11585
7000
+ 11586
7001
+ 11590
7002
+ 11594
7003
+ 11595
7004
+ 870
7005
+ 11597
7006
+ 871
7007
+ 11598
7008
+ 11600
7009
+ 872
7010
+ 11601
7011
+ 11604
7012
+ 873
7013
+ 11605
7014
+ 11608
7015
+ 874
7016
+ 875
7017
+ 11609
7018
+ 11611
7019
+ 11612
7020
+ 11613
7021
+ 11614
7022
+ 11615
7023
+ 11616
7024
+ 11617
7025
+ 11618
7026
+ 11619
7027
+ 11621
7028
+ 11622
7029
+ 11623
7030
+ 11625
7031
+ 11627
7032
+ 11628
7033
+ 876
7034
+ 11631
7035
+ 11637
7036
+ 11638
7037
+ 11639
7038
+ 11640
7039
+ 11641
7040
+ 11643
7041
+ 11644
7042
+ 11645
7043
+ 11647
7044
+ 11650
7045
+ 11652
7046
+ 11655
7047
+ 877
7048
+ 11659
7049
+ 11660
7050
+ 11661
7051
+ 11662
7052
+ 11663
7053
+ 11664
7054
+ 11665
7055
+ 11666
7056
+ 11671
7057
+ 11673
7058
+ 11676
7059
+ 11678
7060
+ 11679
7061
+ 878
7062
+ 11681
7063
+ 11683
7064
+ 11684
7065
+ 879
7066
+ 11690
7067
+ 11691
7068
+ 11692
7069
+ 11693
7070
+ 11694
7071
+ 880
7072
+ 11696
7073
+ 11697
7074
+ 11698
7075
+ 11699
7076
+ 11701
7077
+ 881
7078
+ 11706
7079
+ 11707
7080
+ 11708
7081
+ 11709
7082
+ 11710
7083
+ 11711
7084
+ 882
7085
+ 11713
7086
+ 11714
7087
+ 11715
7088
+ 11716
7089
+ 11717
7090
+ 11721
7091
+ 11722
7092
+ 11723
7093
+ 11726
7094
+ 883
7095
+ 884
7096
+ 11728
7097
+ 11729
7098
+ 11730
7099
+ 11733
7100
+ 885
7101
+ 11734
7102
+ 886
7103
+ 11735
7104
+ 11736
7105
+ 11737
7106
+ 11740
7107
+ 11741
7108
+ 11742
7109
+ 11743
7110
+ 11744
7111
+ 11745
7112
+ 11746
7113
+ 11747
7114
+ 11749
7115
+ 11750
7116
+ 11751
7117
+ 887
7118
+ 11753
7119
+ 888
7120
+ 11755
7121
+ 11757
7122
+ 11758
7123
+ 11759
7124
+ 11760
7125
+ 11761
7126
+ 11762
7127
+ 11763
7128
+ 11764
7129
+ 11765
7130
+ 11766
7131
+ 11767
7132
+ 11768
7133
+ 11769
7134
+ 11770
7135
+ 11771
7136
+ 11773
7137
+ 889
7138
+ 11778
7139
+ 11780
7140
+ 11781
7141
+ 11783
7142
+ 890
7143
+ 11784
7144
+ 11788
7145
+ 11791
7146
+ 11792
7147
+ 11796
7148
+ 11797
7149
+ 891
7150
+ 11798
7151
+ 11800
7152
+ 11801
7153
+ 11803
7154
+ 11804
7155
+ 11805
7156
+ 11806
7157
+ 11808
7158
+ 11809
7159
+ 11812
7160
+ 11813
7161
+ 11816
7162
+ 892
7163
+ 893
7164
+ 11817
7165
+ 11818
7166
+ 11819
7167
+ 11821
7168
+ 894
7169
+ 11823
7170
+ 895
7171
+ 11827
7172
+ 11829
7173
+ 896
7174
+ 11830
7175
+ 11831
7176
+ 897
7177
+ 11832
7178
+ 11834
7179
+ 11835
7180
+ 11836
7181
+ 11837
7182
+ 11838
7183
+ 11839
7184
+ 11840
7185
+ 11842
7186
+ 898
7187
+ 11845
7188
+ 11848
7189
+ 11851
7190
+ 11852
7191
+ 11854
7192
+ 11855
7193
+ 11857
7194
+ 11858
7195
+ 899
7196
+ 11861
7197
+ 11863
7198
+ 11864
7199
+ 11865
7200
+ 11869
7201
+ 11870
7202
+ 900
7203
+ 11872
7204
+ 11873
7205
+ 11876
7206
+ 11877
7207
+ 11879
7208
+ 11880
7209
+ 11881
7210
+ 11882
7211
+ 11886
7212
+ 11887
7213
+ 11889
7214
+ 11890
7215
+ 11892
7216
+ 11894
7217
+ 11897
7218
+ 11898
7219
+ 11899
7220
+ 11900
7221
+ 11901
7222
+ 11903
7223
+ 11908
7224
+ 11909
7225
+ 11910
7226
+ 11913
7227
+ 11914
7228
+ 11918
7229
+ 11919
7230
+ 11920
7231
+ 11921
7232
+ 11922
7233
+ 11926
7234
+ 11928
7235
+ 11934
7236
+ 11935
7237
+ 901
7238
+ 11936
7239
+ 902
7240
+ 11937
7241
+ 11938
7242
+ 11939
7243
+ 11940
7244
+ 11942
7245
+ 11943
7246
+ 11944
7247
+ 11945
7248
+ 11946
7249
+ 11948
7250
+ 11949
7251
+ 903
7252
+ 11953
7253
+ 11954
7254
+ 11958
7255
+ 11959
7256
+ 11960
7257
+ 11961
7258
+ 11962
7259
+ 11963
7260
+ 11964
7261
+ 11965
7262
+ 11966
7263
+ 11967
7264
+ 11968
7265
+ 11969
7266
+ 11971
7267
+ 904
7268
+ 11972
7269
+ 905
7270
+ 11973
7271
+ 11974
7272
+ 11975
7273
+ 11976
7274
+ 11977
7275
+ 906
7276
+ 11980
7277
+ 907
7278
+ 11982
7279
+ 11983
7280
+ 11984
7281
+ 11986
7282
+ 908
7283
+ 11988
7284
+ 11989
7285
+ 11990
7286
+ 11991
7287
+ 11993
7288
+ 11994
7289
+ 11995
7290
+ 11996
7291
+ 11998
7292
+ 12000
7293
+ 12001
7294
+ 12005
7295
+ 909
7296
+ 12008
7297
+ 12010
7298
+ 12011
7299
+ 12012
7300
+ 910
7301
+ 12014
7302
+ 12016
7303
+ 12017
7304
+ 12018
7305
+ 911
7306
+ 12019
7307
+ 12021
7308
+ 12025
7309
+ 12027
7310
+ 12028
7311
+ 12029
7312
+ 12030
7313
+ 912
7314
+ 12034
7315
+ 12035
7316
+ 12037
7317
+ 12038
7318
+ 913
7319
+ 12039
7320
+ 12040
7321
+ 12041
7322
+ 12044
7323
+ 12046
7324
+ 12047
7325
+ 12048
7326
+ 12050
7327
+ 12051
7328
+ 12052
7329
+ 12054
7330
+ 12056
7331
+ 12057
7332
+ 12058
7333
+ 12061
7334
+ 12062
7335
+ 12065
7336
+ 914
7337
+ 12067
7338
+ 915
7339
+ 12069
7340
+ 12071
7341
+ 12074
7342
+ 12075
7343
+ 12078
7344
+ 12079
7345
+ 12080
7346
+ 12084
7347
+ 12086
7348
+ 12093
7349
+ 12094
7350
+ 12095
7351
+ 12096
7352
+ 12097
7353
+ 12098
7354
+ 12099
7355
+ 12100
7356
+ 12102
7357
+ 12103
7358
+ 12104
7359
+ 12105
7360
+ 12106
7361
+ 12107
7362
+ 12108
7363
+ 12109
7364
+ 12110
7365
+ 12111
7366
+ 12112
7367
+ 12113
7368
+ 12115
7369
+ 12116
7370
+ 12117
7371
+ 12118
7372
+ 12119
7373
+ 12120
7374
+ 12121
7375
+ 12122
7376
+ 12123
7377
+ 12124
7378
+ 12125
7379
+ 12126
7380
+ 12128
7381
+ 12129
7382
+ 12131
7383
+ 12132
7384
+ 12133
7385
+ 12134
7386
+ 12135
7387
+ 12136
7388
+ 12138
7389
+ 12139
7390
+ 12140
7391
+ 12142
7392
+ 12145
7393
+ 12147
7394
+ 12148
7395
+ 12149
7396
+ 12151
7397
+ 12153
7398
+ 12155
7399
+ 12158
7400
+ 12159
7401
+ 12165
7402
+ 12168
7403
+ 12169
7404
+ 12172
7405
+ 12174
7406
+ 12175
7407
+ 12176
7408
+ 12177
7409
+ 12178
7410
+ 12179
7411
+ 12180
7412
+ 12181
7413
+ 12183
7414
+ 12189
7415
+ 12191
7416
+ 12193
7417
+ 12194
7418
+ 12196
7419
+ 12205
7420
+ 12207
7421
+ 12209
7422
+ 12215
7423
+ 12229
7424
+ 12231
7425
+ 12232
7426
+ 12238
7427
+ 12239
7428
+ 12241
7429
+ 12243
7430
+ 12247
7431
+ 12254
7432
+ 12258
7433
+ 12261
7434
+ 12262
7435
+ 12263
7436
+ 12264
7437
+ 12265
7438
+ 12266
7439
+ 12267
7440
+ 12268
7441
+ 12269
7442
+ 12270
7443
+ 12271
7444
+ 12274
7445
+ 12275
7446
+ 12276
7447
+ 12278
7448
+ 12282
7449
+ 12284
7450
+ 12285
7451
+ 12286
7452
+ 12287
7453
+ 12288
7454
+ 12291
7455
+ 12292
7456
+ 12293
7457
+ 12294
7458
+ 12295
7459
+ 916
7460
+ 12298
7461
+ 12300
7462
+ 12301
7463
+ 12305
7464
+ 12308
7465
+ 12310
7466
+ 917
7467
+ 12312
7468
+ 12313
7469
+ 12314
7470
+ 918
7471
+ 12321
7472
+ 919
7473
+ 920
7474
+ 12322
7475
+ 12323
7476
+ 12324
7477
+ 12325
7478
+ 921
7479
+ 12326
7480
+ 12327
7481
+ 12328
7482
+ 12329
7483
+ 12331
7484
+ 12333
7485
+ 12334
7486
+ 12335
7487
+ 12337
7488
+ 12338
7489
+ 12339
7490
+ 12340
7491
+ 12341
7492
+ 12342
7493
+ 12346
7494
+ 12350
7495
+ 12354
7496
+ 12359
7497
+ 12360
7498
+ 922
7499
+ 12361
7500
+ 12362
7501
+ 12368
7502
+ 12374
7503
+ 12375
7504
+ 12379
7505
+ 12381
7506
+ 12383
7507
+ 12386
7508
+ 12390
7509
+ 12392
7510
+ 12394
7511
+ 12396
7512
+ 12399
7513
+ 12400
7514
+ 12401
7515
+ 12402
7516
+ 12403
7517
+ 12404
7518
+ 12405
7519
+ 12406
7520
+ 12408
7521
+ 12409
7522
+ 12410
7523
+ 12411
7524
+ 12412
7525
+ 12413
7526
+ 12415
7527
+ 12417
7528
+ 12418
7529
+ 12419
7530
+ 12423
7531
+ 12424
7532
+ 12425
7533
+ 923
7534
+ 12426
7535
+ 12427
7536
+ 12428
7537
+ 12429
7538
+ 12430
7539
+ 12431
7540
+ 12432
7541
+ 12433
7542
+ 12435
7543
+ 12436
7544
+ 12438
7545
+ 12439
7546
+ 12441
7547
+ 12443
7548
+ 924
7549
+ 925
7550
+ 12449
7551
+ 12450
7552
+ 12451
7553
+ 12455
7554
+ 12456
7555
+ 12458
7556
+ 12460
7557
+ 12461
7558
+ 12463
7559
+ 12465
7560
+ 12467
7561
+ 12468
7562
+ 12469
7563
+ 12470
7564
+ 12471
7565
+ 12473
7566
+ 12474
7567
+ 12475
7568
+ 12476
7569
+ 12478
7570
+ 12479
7571
+ 12480
7572
+ 12481
7573
+ 12482
7574
+ 12483
7575
+ 12485
7576
+ 12486
7577
+ 12487
7578
+ 12488
7579
+ 12494
7580
+ 12495
7581
+ 926
7582
+ 12496
7583
+ 12499
7584
+ 12503
7585
+ 12504
7586
+ 12506
7587
+ 12507
7588
+ 12509
7589
+ 12510
7590
+ 12511
7591
+ 12512
7592
+ 12514
7593
+ 12516
7594
+ 12517
7595
+ 12520
7596
+ 12526
7597
+ 12528
7598
+ 12530
7599
+ 12536
7600
+ 12537
7601
+ 12538
7602
+ 12540
7603
+ 12541
7604
+ 12544
7605
+ 12547
7606
+ 12554
7607
+ 12555
7608
+ 12556
7609
+ 12557
7610
+ 12560
7611
+ 12564
7612
+ 12566
7613
+ 12567
7614
+ 12568
7615
+ 12570
7616
+ 12571
7617
+ 12574
7618
+ 12575
7619
+ 12576
7620
+ 12578
7621
+ 12579
7622
+ 12584
7623
+ 12585
7624
+ 12586
7625
+ 12589
7626
+ 12592
7627
+ 12595
7628
+ 12596
7629
+ 12598
7630
+ 12599
7631
+ 12603
7632
+ 12606
7633
+ 12608
7634
+ 12610
7635
+ 12612
7636
+ 12615
7637
+ 12618
7638
+ 12619
7639
+ 12620
7640
+ 12621
7641
+ 12623
7642
+ 12624
7643
+ 12625
7644
+ 12627
7645
+ 12629
7646
+ 12630
7647
+ 12632
7648
+ 927
7649
+ 12634
7650
+ 12636
7651
+ 928
7652
+ 12638
7653
+ 12639
7654
+ 12641
7655
+ 12642
7656
+ 12643
7657
+ 12644
7658
+ 12645
7659
+ 929
7660
+ 12647
7661
+ 12650
7662
+ 12651
7663
+ 12652
7664
+ 12653
7665
+ 12655
7666
+ 12660
7667
+ 12661
7668
+ 12663
7669
+ 12664
7670
+ 12665
7671
+ 12667
7672
+ 12671
7673
+ 12672
7674
+ 12674
7675
+ 12681
7676
+ 12684
7677
+ 12685
7678
+ 12686
7679
+ 12687
7680
+ 12689
7681
+ 12690
7682
+ 12692
7683
+ 12693
7684
+ 12695
7685
+ 12696
7686
+ 12697
7687
+ 12698
7688
+ 12699
7689
+ 12700
7690
+ 12702
7691
+ 12703
7692
+ 12704
7693
+ 12705
7694
+ 12706
7695
+ 12710
7696
+ 12711
7697
+ 12713
7698
+ 12714
7699
+ 12716
7700
+ 12717
7701
+ 12718
7702
+ 12719
7703
+ 12721
7704
+ 12723
7705
+ 12724
7706
+ 12727
7707
+ 12729
7708
+ 12731
7709
+ 12733
7710
+ 12735
7711
+ 12737
7712
+ 12738
7713
+ 12741
7714
+ 12742
7715
+ 12744
7716
+ 12745
7717
+ 12746
7718
+ 12747
7719
+ 12748
7720
+ 12749
7721
+ 12750
7722
+ 12751
7723
+ 12754
7724
+ 12755
7725
+ 12756
7726
+ 12757
7727
+ 930
7728
+ 12758
7729
+ 12759
7730
+ 12761
7731
+ 12762
7732
+ 12763
7733
+ 12764
7734
+ 12766
7735
+ 12768
7736
+ 12769
7737
+ 12770
7738
+ 12771
7739
+ 12772
7740
+ 12773
7741
+ 12777
7742
+ 12778
7743
+ 12779
7744
+ 12780
7745
+ 12781
7746
+ 12782
7747
+ 12783
7748
+ 12784
7749
+ 12786
7750
+ 12789
7751
+ 12791
7752
+ 12792
7753
+ 12798
7754
+ 12799
7755
+ 12800
7756
+ 12801
7757
+ 12802
7758
+ 12803
7759
+ 12804
7760
+ 12805
7761
+ 12806
7762
+ 12807
7763
+ 12808
7764
+ 12809
7765
+ 12810
7766
+ 12811
7767
+ 12812
7768
+ 12813
7769
+ 12818
7770
+ 12820
7771
+ 12821
7772
+ 12823
7773
+ 931
7774
+ 12825
7775
+ 12827
7776
+ 12828
7777
+ 12829
7778
+ 12830
7779
+ 12835
7780
+ 932
7781
+ 12836
7782
+ 12837
7783
+ 12838
7784
+ 12839
7785
+ 12840
7786
+ 12841
7787
+ 12842
7788
+ 12843
7789
+ 12844
7790
+ 933
7791
+ 934
7792
+ 12846
7793
+ 12847
7794
+ 12848
7795
+ 12849
7796
+ 12850
7797
+ 12851
7798
+ 12852
7799
+ 12853
7800
+ 12855
7801
+ 12856
7802
+ 12858
7803
+ 12859
7804
+ 12860
7805
+ 12861
7806
+ 12863
7807
+ 12865
7808
+ 12866
7809
+ 12867
7810
+ 12869
7811
+ 12871
7812
+ 12872
7813
+ 12873
7814
+ 12874
7815
+ 12875
7816
+ 12876
7817
+ 935
7818
+ 12880
7819
+ 12881
7820
+ 12882
7821
+ 12883
7822
+ 12884
7823
+ 12885
7824
+ 12886
7825
+ 12887
7826
+ 12888
7827
+ 12889
7828
+ 12890
7829
+ 12891
7830
+ 12892
7831
+ 12893
7832
+ 12894
7833
+ 12895
7834
+ 936
7835
+ 12896
7836
+ 12897
7837
+ 937
7838
+ 938
7839
+ 12898
7840
+ 12899
7841
+ 12900
7842
+ 12901
7843
+ 12902
7844
+ 12903
7845
+ 939
7846
+ 12904
7847
+ 940
7848
+ 12907
7849
+ 941
7850
+ 942
7851
+ 943
7852
+ 944
7853
+ 12916
7854
+ 12919
7855
+ 12921
7856
+ 12925
7857
+ 12926
7858
+ 12927
7859
+ 945
7860
+ 12928
7861
+ 12930
7862
+ 12931
7863
+ 12932
7864
+ 12933
7865
+ 12935
7866
+ 12936
7867
+ 12937
7868
+ 12939
7869
+ 12941
7870
+ 12942
7871
+ 12943
7872
+ 12944
7873
+ 12945
7874
+ 12946
7875
+ 12948
7876
+ 12951
7877
+ 12952
7878
+ 12953
7879
+ 12955
7880
+ 12957
7881
+ 12958
7882
+ 12959
7883
+ 12961
7884
+ 12962
7885
+ 12964
7886
+ 12967
7887
+ 12968
7888
+ 12969
7889
+ 12970
7890
+ 12974
7891
+ 12975
7892
+ 12977
7893
+ 12978
7894
+ 12979
7895
+ 12981
7896
+ 12982
7897
+ 12983
7898
+ 12988
7899
+ 12989
7900
+ 12990
7901
+ 12991
7902
+ 946
7903
+ 12992
7904
+ 12993
7905
+ 12994
7906
+ 12996
7907
+ 12997
7908
+ 12998
7909
+ 13000
7910
+ 13002
7911
+ 13003
7912
+ 13004
7913
+ 13005
7914
+ 13009
7915
+ 13010
7916
+ 13011
7917
+ 13015
7918
+ 13016
7919
+ 13017
7920
+ 13019
7921
+ 13020
7922
+ 13021
7923
+ 13022
7924
+ 13023
7925
+ 947
7926
+ 13024
7927
+ 13028
7928
+ 13029
7929
+ 13030
7930
+ 13031
7931
+ 13033
7932
+ 13034
7933
+ 13035
7934
+ 13037
7935
+ 13038
7936
+ 13042
7937
+ 13046
7938
+ 13047
7939
+ 13048
7940
+ 13050
7941
+ 13052
7942
+ 13053
7943
+ 13054
7944
+ 13055
7945
+ 13058
7946
+ 13059
7947
+ 13062
7948
+ 13067
7949
+ 948
7950
+ 13072
7951
+ 13073
7952
+ 13075
7953
+ 13077
7954
+ 13078
7955
+ 13079
7956
+ 13080
7957
+ 13082
7958
+ 13083
7959
+ 13084
7960
+ 13087
7961
+ 949
7962
+ 13090
7963
+ 13091
7964
+ 13092
7965
+ 13095
7966
+ 950
7967
+ 13097
7968
+ 13098
7969
+ 13099
7970
+ 13100
7971
+ 13101
7972
+ 13102
7973
+ 13103
7974
+ 13105
7975
+ 13106
7976
+ 13107
7977
+ 951
7978
+ 13108
7979
+ 13109
7980
+ 13110
7981
+ 13111
7982
+ 13113
7983
+ 13115
7984
+ 13116
7985
+ 13117
7986
+ 13118
7987
+ 13119
7988
+ 13120
7989
+ 13122
7990
+ 13124
7991
+ 13126
7992
+ 13127
7993
+ 13129
7994
+ 13132
7995
+ 952
7996
+ 953
7997
+ 954
7998
+ 13134
7999
+ 13135
8000
+ 13138
8001
+ 955
8002
+ 13139
8003
+ 13140
8004
+ 13142
8005
+ 13144
8006
+ 13145
8007
+ 13147
8008
+ 13149
8009
+ 13151
8010
+ 13152
8011
+ 13153
8012
+ 13154
8013
+ 13158
8014
+ 13163
8015
+ 13165
8016
+ 13170
8017
+ 13172
8018
+ 956
8019
+ 13178
8020
+ 13179
8021
+ 13180
8022
+ 13183
8023
+ 13184
8024
+ 13187
8025
+ 13188
8026
+ 13189
8027
+ 13192
8028
+ 13193
8029
+ 13194
8030
+ 13195
8031
+ 13196
8032
+ 13198
8033
+ 13199
8034
+ 13200
8035
+ 13201
8036
+ 13202
8037
+ 13206
8038
+ 13207
8039
+ 13208
8040
+ 13212
8041
+ 13213
8042
+ 13214
8043
+ 13215
8044
+ 13216
8045
+ 13217
8046
+ 13218
8047
+ 13219
8048
+ 13221
8049
+ 13223
8050
+ 957
8051
+ 13225
8052
+ 13229
8053
+ 13230
8054
+ 13232
8055
+ 13236
8056
+ 13239
8057
+ 13242
8058
+ 13245
8059
+ 13246
8060
+ 13248
8061
+ 13249
8062
+ 13254
8063
+ 13255
8064
+ 13256
8065
+ 13257
8066
+ 13258
8067
+ 13264
8068
+ 13266
8069
+ 13267
8070
+ 13268
8071
+ 13270
8072
+ 13271
8073
+ 958
8074
+ 13274
8075
+ 13276
8076
+ 13277
8077
+ 13278
8078
+ 13282
8079
+ 13287
8080
+ 13288
8081
+ 13289
8082
+ 13290
8083
+ 13291
8084
+ 13296
8085
+ 13297
8086
+ 13298
8087
+ 13300
8088
+ 13301
8089
+ 13302
8090
+ 13303
8091
+ 13305
8092
+ 13306
8093
+ 13307
8094
+ 13308
8095
+ 13309
8096
+ 13310
8097
+ 13311
8098
+ 13312
8099
+ 13313
8100
+ 13318
8101
+ 13321
8102
+ 13322
8103
+ 13325
8104
+ 13327
8105
+ 13328
8106
+ 13339
8107
+ 13340
8108
+ 13341
8109
+ 13342
8110
+ 13343
8111
+ 13347
8112
+ 13348
8113
+ 13349
8114
+ 13351
8115
+ 13352
8116
+ 13353
8117
+ 13354
8118
+ 13355
8119
+ 13357
8120
+ 13358
8121
+ 13359
8122
+ 13360
8123
+ 13364
8124
+ 13366
8125
+ 13367
8126
+ 13369
8127
+ 13370
8128
+ 13371
8129
+ 13372
8130
+ 13373
8131
+ 13375
8132
+ 13377
8133
+ 13378
8134
+ 13380
8135
+ 13381
8136
+ 13382
8137
+ 13383
8138
+ 13385
8139
+ 13387
8140
+ 13389
8141
+ 13390
8142
+ 13391
8143
+ 13393
8144
+ 13394
8145
+ 13395
8146
+ 13397
8147
+ 13398
8148
+ 13399
8149
+ 13401
8150
+ 13403
8151
+ 13405
8152
+ 13406
8153
+ 13410
8154
+ 13413
8155
+ 13417
8156
+ 13419
8157
+ 13420
8158
+ 13422
8159
+ 13423
8160
+ 13426
8161
+ 13427
8162
+ 13428
8163
+ 13429
8164
+ 13431
8165
+ 13432
8166
+ 13437
8167
+ 13439
8168
+ 13440
8169
+ 13441
8170
+ 13443
8171
+ 959
8172
+ 13447
8173
+ 13455
8174
+ 13458
8175
+ 13464
8176
+ 13467
8177
+ 13468
8178
+ 13470
8179
+ 13473
8180
+ 13474
8181
+ 13478
8182
+ 960
8183
+ 13484
8184
+ 13487
8185
+ 13491
8186
+ 13492
8187
+ 13493
8188
+ 13494
8189
+ 13495
8190
+ 13506
8191
+ 13511
8192
+ 13513
8193
+ 13515
8194
+ 13516
8195
+ 13517
8196
+ 13518
8197
+ 13519
8198
+ 13520
8199
+ 13521
8200
+ 13522
8201
+ 13523
8202
+ 13524
8203
+ 13525
8204
+ 13526
8205
+ 13528
8206
+ 13531
8207
+ 13532
8208
+ 13533
8209
+ 13534
8210
+ 13535
8211
+ 13537
8212
+ 13538
8213
+ 13544
8214
+ 13546
8215
+ 13548
8216
+ 13557
8217
+ 13558
8218
+ 13561
8219
+ 13562
8220
+ 13563
8221
+ 13564
8222
+ 13565
8223
+ 13570
8224
+ 13572
8225
+ 13573
8226
+ 13574
8227
+ 13575
8228
+ 13577
8229
+ 13579
8230
+ 13580
8231
+ 13581
8232
+ 13582
8233
+ 13583
8234
+ 13585
8235
+ 13586
8236
+ 13587
8237
+ 13591
8238
+ 13593
8239
+ 13594
8240
+ 13599
8241
+ 13605
8242
+ 13612
8243
+ 13617
8244
+ 13621
8245
+ 13629
8246
+ 13632
8247
+ 13634
8248
+ 13640
8249
+ 13642
8250
+ 13643
8251
+ 13644
8252
+ 13646
8253
+ 13648
8254
+ 13649
8255
+ 13652
8256
+ 961
8257
+ 13653
8258
+ 13656
8259
+ 13658
8260
+ 13659
8261
+ 13660
8262
+ 13661
8263
+ 13662
8264
+ 13663
8265
+ 13664
8266
+ 13669
8267
+ 13670
8268
+ 13672
8269
+ 13674
8270
+ 13679
8271
+ 13680
8272
+ 13681
8273
+ 13682
8274
+ 13683
8275
+ 13687
8276
+ 13688
8277
+ 13689
8278
+ 13690
8279
+ 13692
8280
+ 13693
8281
+ 13694
8282
+ 13695
8283
+ 13696
8284
+ 13697
8285
+ 13698
8286
+ 13699
8287
+ 13702
8288
+ 13703
8289
+ 13704
8290
+ 13706
8291
+ 13707
8292
+ 13709
8293
+ 13710
8294
+ 13711
8295
+ 13712
8296
+ 13713
8297
+ 13715
8298
+ 13716
8299
+ 13717
8300
+ 13721
8301
+ 13723
8302
+ 13725
8303
+ 13727
8304
+ 962
8305
+ 13728
8306
+ 13730
8307
+ 13732
8308
+ 13733
8309
+ 963
8310
+ 13735
8311
+ 13736
8312
+ 13737
8313
+ 13738
8314
+ 13739
8315
+ 13742
8316
+ 964
8317
+ 13746
8318
+ 13747
8319
+ 13748
8320
+ 13752
8321
+ 13756
8322
+ 13759
8323
+ 13760
8324
+ 13761
8325
+ 13762
8326
+ 13763
8327
+ 13767
8328
+ 13768
8329
+ 13769
8330
+ 13770
8331
+ 13771
8332
+ 13772
8333
+ 13773
8334
+ 13775
8335
+ 13777
8336
+ 13778
8337
+ 13779
8338
+ 13780
8339
+ 13781
8340
+ 13782
8341
+ 13783
8342
+ 965
8343
+ 13785
8344
+ 13786
8345
+ 13789
8346
+ 13790
8347
+ 13791
8348
+ 13793
8349
+ 13795
8350
+ 13799
8351
+ 13800
8352
+ 13801
8353
+ 13802
8354
+ 13804
8355
+ 13805
8356
+ 13806
8357
+ 13807
8358
+ 13808
8359
+ 13809
8360
+ 13810
8361
+ 13811
8362
+ 13812
8363
+ 13814
8364
+ 13816
8365
+ 13817
8366
+ 13820
8367
+ 13821
8368
+ 13822
8369
+ 13824
8370
+ 13825
8371
+ 13826
8372
+ 13827
8373
+ 13829
8374
+ 13833
8375
+ 13834
8376
+ 13835
8377
+ 13836
8378
+ 13837
8379
+ 966
8380
+ 13838
8381
+ 13839
8382
+ 13841
8383
+ 13842
8384
+ 13844
8385
+ 13845
8386
+ 13846
8387
+ 13847
8388
+ 13848
8389
+ 13849
8390
+ 13850
8391
+ 13851
8392
+ 13852
8393
+ 13853
8394
+ 13854
8395
+ 13855
8396
+ 13856
8397
+ 13857
8398
+ 13858
8399
+ 13859
8400
+ 13860
8401
+ 13861
8402
+ 13864
8403
+ 13865
8404
+ 13866
8405
+ 13867
8406
+ 13868
8407
+ 13870
8408
+ 13871
8409
+ 13872
8410
+ 13873
8411
+ 13874
8412
+ 13875
8413
+ 13876
8414
+ 13877
8415
+ 13878
8416
+ 13879
8417
+ 13880
8418
+ 13882
8419
+ 13883
8420
+ 13884
8421
+ 13885
8422
+ 13886
8423
+ 13887
8424
+ 13888
8425
+ 13889
8426
+ 13891
8427
+ 13892
8428
+ 13893
8429
+ 13894
8430
+ 13895
8431
+ 13896
8432
+ 13897
8433
+ 13898
8434
+ 13899
8435
+ 13900
8436
+ 13901
8437
+ 13902
8438
+ 13905
8439
+ 13906
8440
+ 13907
8441
+ 13908
8442
+ 13909
8443
+ 13910
8444
+ 13911
8445
+ 13912
8446
+ 13913
8447
+ 13915
8448
+ 13916
8449
+ 13917
8450
+ 13918
8451
+ 13919
8452
+ 13920
8453
+ 13921
8454
+ 13922
8455
+ 13923
8456
+ 13924
8457
+ 13927
8458
+ 13928
8459
+ 13929
8460
+ 13930
8461
+ 13931
8462
+ 13932
8463
+ 13933
8464
+ 13934
8465
+ 13935
8466
+ 13936
8467
+ 13937
8468
+ 13938
8469
+ 13939
8470
+ 13940
8471
+ 13941
8472
+ 13942
8473
+ 13943
8474
+ 13945
8475
+ 13949
8476
+ 13953
8477
+ 13954
8478
+ 13956
8479
+ 13957
8480
+ 13958
8481
+ 13962
8482
+ 13963
8483
+ 13964
8484
+ 13966
8485
+ 13969
8486
+ 13973
8487
+ 13974
8488
+ 13975
8489
+ 13976
8490
+ 13977
8491
+ 13978
8492
+ 13980
8493
+ 13982
8494
+ 13983
8495
+ 13986
8496
+ 13987
8497
+ 13989
8498
+ 13990
8499
+ 13991
8500
+ 13992
8501
+ 13993
8502
+ 13995
8503
+ 13996
8504
+ 13997
8505
+ 13998
8506
+ 13999
8507
+ 14003
8508
+ 14004
8509
+ 14005
8510
+ 14007
8511
+ 14009
8512
+ 14010
8513
+ 14011
8514
+ 967
8515
+ 14015
8516
+ 14016
8517
+ 14017
8518
+ 14018
8519
+ 14019
8520
+ 14020
8521
+ 14022
8522
+ 14024
8523
+ 14025
8524
+ 14026
8525
+ 14028
8526
+ 14029
8527
+ 14030
8528
+ 14032
8529
+ 14034
8530
+ 14035
8531
+ 14036
8532
+ 14038
8533
+ 14039
8534
+ 14041
8535
+ 14042
8536
+ 14043
8537
+ 14044
8538
+ 14045
8539
+ 14048
8540
+ 14049
8541
+ 14052
8542
+ 14053
8543
+ 14054
8544
+ 14057
8545
+ 14058
8546
+ 14060
8547
+ 14061
8548
+ 14063
8549
+ 14064
8550
+ 14065
8551
+ 14067
8552
+ 14068
8553
+ 14070
8554
+ 14071
8555
+ 14072
8556
+ 14074
8557
+ 14075
8558
+ 14076
8559
+ 14078
8560
+ 14080
8561
+ 14081
8562
+ 14082
8563
+ 968
8564
+ 14083
8565
+ 14086
8566
+ 14087
8567
+ 14089
8568
+ 969
8569
+ 14094
8570
+ 14095
8571
+ 14096
8572
+ 14099
8573
+ 14103
8574
+ 14109
8575
+ 14112
8576
+ 14113
8577
+ 14114
8578
+ 14115
8579
+ 14118
8580
+ 14120
8581
+ 14121
8582
+ 14125
8583
+ 14127
8584
+ 14128
8585
+ 14129
8586
+ 14130
8587
+ 14131
8588
+ 14132
8589
+ 14133
8590
+ 14134
8591
+ 14136
8592
+ 14138
8593
+ 14139
8594
+ 14141
8595
+ 14142
8596
+ 14145
8597
+ 14146
8598
+ 14147
8599
+ 14152
8600
+ 14156
8601
+ 14157
8602
+ 14159
8603
+ 14161
8604
+ 14162
8605
+ 14165
8606
+ 14166
8607
+ 14167
8608
+ 14170
8609
+ 14174
8610
+ 14178
8611
+ 14180
8612
+ 14181
8613
+ 14183
8614
+ 14184
8615
+ 14185
8616
+ 14186
8617
+ 14189
8618
+ 14192
8619
+ 14194
8620
+ 14195
8621
+ 14198
8622
+ 14201
8623
+ 14202
8624
+ 14206
8625
+ 14207
8626
+ 14208
8627
+ 14209
8628
+ 14210
8629
+ 14213
8630
+ 14214
8631
+ 14218
8632
+ 14221
8633
+ 14225
8634
+ 14226
8635
+ 14230
8636
+ 14232
8637
+ 14235
8638
+ 14243
8639
+ 14246
8640
+ 14247
8641
+ 970
8642
+ 14249
8643
+ 14250
8644
+ 14253
8645
+ 14254
8646
+ 14255
8647
+ 14256
8648
+ 14258
8649
+ 14266
8650
+ 14267
8651
+ 14268
8652
+ 14269
8653
+ 14270
8654
+ 14272
8655
+ 14274
8656
+ 971
8657
+ 14275
8658
+ 14276
8659
+ 14277
8660
+ 14278
8661
+ 14280
8662
+ 14281
8663
+ 14282
8664
+ 14283
8665
+ 972
8666
+ 14284
8667
+ 14286
8668
+ 14287
8669
+ 14289
8670
+ 973
8671
+ 14291
8672
+ 14292
8673
+ 14293
8674
+ 14294
8675
+ 14296
8676
+ 14298
8677
+ 14300
8678
+ 14302
8679
+ 14303
8680
+ 14307
8681
+ 14308
8682
+ 14310
8683
+ 14312
8684
+ 14313
8685
+ 14314
8686
+ 14316
8687
+ 14317
8688
+ 14319
8689
+ 974
8690
+ 14320
8691
+ 14323
8692
+ 14324
8693
+ 14326
8694
+ 14328
8695
+ 14329
8696
+ 14330
8697
+ 14331
8698
+ 14332
8699
+ 14334
8700
+ 14335
8701
+ 14336
8702
+ 14338
8703
+ 14339
8704
+ 14344
8705
+ 14348
8706
+ 975
8707
+ 14350
8708
+ 14351
8709
+ 14353
8710
+ 14357
8711
+ 14359
8712
+ 14360
8713
+ 14367
8714
+ 14368
8715
+ 14370
8716
+ 14372
8717
+ 14374
8718
+ 14375
8719
+ 14376
8720
+ 14377
8721
+ 14378
8722
+ 14379
8723
+ 14384
8724
+ 14386
8725
+ 14387
8726
+ 14388
8727
+ 14389
8728
+ 14390
8729
+ 976
8730
+ 14392
8731
+ 14395
8732
+ 14396
8733
+ 14397
8734
+ 14398
8735
+ 14400
8736
+ 14401
8737
+ 14402
8738
+ 14403
8739
+ 14404
8740
+ 14406
8741
+ 14407
8742
+ 14408
8743
+ 14409
8744
+ 14411
8745
+ 977
8746
+ 978
8747
+ 14416
8748
+ 14418
8749
+ 14421
8750
+ 14422
8751
+ 14423
8752
+ 14424
8753
+ 14425
8754
+ 14426
8755
+ 14427
8756
+ 14428
8757
+ 14430
8758
+ 14431
8759
+ 14432
8760
+ 14433
8761
+ 14434
8762
+ 14435
8763
+ 14436
8764
+ 14437
8765
+ 14438
8766
+ 14439
8767
+ 14440
8768
+ 14442
8769
+ 14443
8770
+ 14444
8771
+ 14445
8772
+ 14446
8773
+ 14449
8774
+ 14452
8775
+ 14453
8776
+ 14457
8777
+ 979
8778
+ 14461
8779
+ 980
8780
+ 14465
8781
+ 14466
8782
+ 14467
8783
+ 14471
8784
+ 14474
8785
+ 14479
8786
+ 14480
8787
+ 14482
8788
+ 14483
8789
+ 14485
8790
+ 14493
8791
+ 14498
8792
+ 14499
8793
+ 14500
8794
+ 14501
8795
+ 14503
8796
+ 14504
8797
+ 14505
8798
+ 14506
8799
+ 14507
8800
+ 14508
8801
+ 14509
8802
+ 14512
8803
+ 14514
8804
+ 14517
8805
+ 14520
8806
+ 14522
8807
+ 14525
8808
+ 14526
8809
+ 14527
8810
+ 14528
8811
+ 14530
8812
+ 14532
8813
+ 14533
8814
+ 14535
8815
+ 14536
8816
+ 14538
8817
+ 14541
8818
+ 14544
8819
+ 14546
8820
+ 14550
8821
+ 14554
8822
+ 14561
8823
+ 14562
8824
+ 14565
8825
+ 14578
8826
+ 14586
8827
+ 14598
8828
+ 14599
8829
+ 14600
8830
+ 14601
8831
+ 14605
8832
+ 14609
8833
+ 14612
8834
+ 14613
8835
+ 14615
8836
+ 14619
8837
+ 14621
8838
+ 14622
8839
+ 14623
8840
+ 14627
8841
+ 14630
8842
+ 14631
8843
+ 14633
8844
+ 14635
8845
+ 14636
8846
+ 14637
8847
+ 14640
8848
+ 14641
8849
+ 14642
8850
+ 14643
8851
+ 14644
8852
+ 14645
8853
+ 14646
8854
+ 14648
8855
+ 14652
8856
+ 14653
8857
+ 14654
8858
+ 14659
8859
+ 14660
8860
+ 14667
8861
+ 14669
8862
+ 14671
8863
+ 14673
8864
+ 14675
8865
+ 14676
8866
+ 14679
8867
+ 14683
8868
+ 14684
8869
+ 14685
8870
+ 14686
8871
+ 14688
8872
+ 14690
8873
+ 14693
8874
+ 14696
8875
+ 14697
8876
+ 14698
8877
+ 14699
8878
+ 14700
8879
+ 14701
8880
+ 14702
8881
+ 14703
8882
+ 14704
8883
+ 14706
8884
+ 14710
8885
+ 14712
8886
+ 14716
8887
+ 14717
8888
+ 14718
8889
+ 14719
8890
+ 14722
8891
+ 14723
8892
+ 14725
8893
+ 14727
8894
+ 14728
8895
+ 14729
8896
+ 14730
8897
+ 14733
8898
+ 14734
8899
+ 14735
8900
+ 14736
8901
+ 14737
8902
+ 14739
8903
+ 14741
8904
+ 14742
8905
+ 14743
8906
+ 14744
8907
+ 14745
8908
+ 14749
8909
+ 14750
8910
+ 14754
8911
+ 14756
8912
+ 14760
8913
+ 14763
8914
+ 14764
8915
+ 14766
8916
+ 14768
8917
+ 14769
8918
+ 14773
8919
+ 14779
8920
+ 14780
8921
+ 14785
8922
+ 14786
8923
+ 14787
8924
+ 14788
8925
+ 14789
8926
+ 14791
8927
+ 14793
8928
+ 14794
8929
+ 14795
8930
+ 14797
8931
+ 14799
8932
+ 14803
8933
+ 14807
8934
+ 14810
8935
+ 14812
8936
+ 14813
8937
+ 14815
8938
+ 14817
8939
+ 14822
8940
+ 14824
8941
+ 14826
8942
+ 14827
8943
+ 14829
8944
+ 14833
8945
+ 14834
8946
+ 14838
8947
+ 14841
8948
+ 14843
8949
+ 14854
8950
+ 14861
8951
+ 14862
8952
+ 14871
8953
+ 14872
8954
+ 14874
8955
+ 14875
8956
+ 14879
8957
+ 14883
8958
+ 14884
8959
+ 14885
8960
+ 14887
8961
+ 14888
8962
+ 14889
8963
+ 14897
8964
+ 14900
8965
+ 14904
8966
+ 14907
8967
+ 14912
8968
+ 14913
8969
+ 14920
8970
+ 14921
8971
+ 14922
8972
+ 14926
8973
+ 14927
8974
+ 14932
8975
+ 14936
8976
+ 14939
8977
+ 14942
8978
+ 14944
8979
+ 14947
8980
+ 14948
8981
+ 14949
8982
+ 14950
8983
+ 14956
8984
+ 14957
8985
+ 14958
8986
+ 14961
8987
+ 14962
8988
+ 14963
8989
+ 14967
8990
+ 14972
8991
+ 14973
8992
+ 14977
8993
+ 14978
8994
+ 14982
8995
+ 14983
8996
+ 981
8997
+ 14984
8998
+ 14985
8999
+ 14986
9000
+ 14987
9001
+ 14992
9002
+ 14993
9003
+ 14994
9004
+ 14996
9005
+ 14997
9006
+ 14999
9007
+ 15000
9008
+ 15002
9009
+ 15003
9010
+ 15005
9011
+ 15008
9012
+ 15009
9013
+ 15011
9014
+ 15014
9015
+ 15016
9016
+ 15017
9017
+ 15020
9018
+ 15025
9019
+ 15027
9020
+ 15028
9021
+ 15032
9022
+ 15033
9023
+ 15035
9024
+ 15037
9025
+ 15040
9026
+ 15043
9027
+ 15047
9028
+ 15048
9029
+ 15049
9030
+ 15051
9031
+ 15052
9032
+ 15067
9033
+ 15080
9034
+ 15081
9035
+ 15082
9036
+ 15084
9037
+ 15086
9038
+ 15087
9039
+ 15089
9040
+ 15090
9041
+ 15091
9042
+ 15092
9043
+ 15096
9044
+ 15098
9045
+ 15099
9046
+ 15104
9047
+ 15106
9048
+ 15112
9049
+ 15115
9050
+ 15116
9051
+ 15118
9052
+ 15120
9053
+ 15125
9054
+ 15126
9055
+ 15127
9056
+ 15129
9057
+ 15130
9058
+ 15131
9059
+ 15133
9060
+ 15135
9061
+ 15138
9062
+ 15140
9063
+ 15141
9064
+ 15145
9065
+ 15146
9066
+ 15147
9067
+ 15148
9068
+ 15152
9069
+ 15155
9070
+ 15157
9071
+ 15158
9072
+ 15159
9073
+ 15162
9074
+ 15163
9075
+ 15165
9076
+ 15168
9077
+ 15178
9078
+ 15184
9079
+ 15185
9080
+ 15186
9081
+ 15187
9082
+ 15188
9083
+ 15189
9084
+ 15190
9085
+ 15192
9086
+ 15193
9087
+ 15194
9088
+ 15198
9089
+ 15201
9090
+ 15205
9091
+ 15206
9092
+ 15207
9093
+ 15208
9094
+ 15210
9095
+ 15211
9096
+ 15214
9097
+ 15216
9098
+ 15217
9099
+ 15221
9100
+ 15222
9101
+ 15223
9102
+ 15225
9103
+ 15226
9104
+ 15228
9105
+ 15229
9106
+ 15230
9107
+ 15231
9108
+ 15234
9109
+ 15237
9110
+ 15239
9111
+ 15242
9112
+ 15249
9113
+ 15253
9114
+ 15255
9115
+ 15256
9116
+ 15258
9117
+ 15259
9118
+ 15260
9119
+ 15261
9120
+ 15263
9121
+ 15268
9122
+ 15269
9123
+ 15274
9124
+ 15276
9125
+ 15279
9126
+ 15282
9127
+ 15291
9128
+ 15300
9129
+ 15310
9130
+ 15318
9131
+ 15319
9132
+ 15322
9133
+ 15323
9134
+ 15325
9135
+ 15326
9136
+ 15328
9137
+ 15329
9138
+ 15337
9139
+ 15339
9140
+ 15340
9141
+ 15341
9142
+ 15357
9143
+ 15359
9144
+ 15360
9145
+ 15361
9146
+ 15362
9147
+ 15363
9148
+ 15364
9149
+ 15366
9150
+ 15369
9151
+ 15372
9152
+ 15385
9153
+ 15386
9154
+ 15389
9155
+ 15391
9156
+ 15393
9157
+ 15396
9158
+ 15402
9159
+ 15413
9160
+ 15415
9161
+ 15418
9162
+ 15422
9163
+ 15424
9164
+ 15427
9165
+ 15429
9166
+ 15435
9167
+ 15440
9168
+ 15441
9169
+ 15442
9170
+ 15449
9171
+ 15451
9172
+ 15453
9173
+ 15454
9174
+ 15458
9175
+ 15459
9176
+ 15461
9177
+ 15463
9178
+ 15465
9179
+ 15467
9180
+ 15468
9181
+ 15471
9182
+ 15475
9183
+ 15477
9184
+ 15478
9185
+ 15485
9186
+ 15487
9187
+ 15495
9188
+ 15496
9189
+ 15497
9190
+ 15499
9191
+ 15508
9192
+ 15512
9193
+ 15525
9194
+ 15538
9195
+ 15539
9196
+ 15540
9197
+ 15544
9198
+ 15553
9199
+ 15554
9200
+ 15556
9201
+ 15557
9202
+ 15559
9203
+ 15561
9204
+ 15562
9205
+ 15563
9206
+ 15564
9207
+ 15568
9208
+ 15569
9209
+ 15571
9210
+ 15575
9211
+ 15576
9212
+ 15580
9213
+ 15582
9214
+ 15583
9215
+ 15585
9216
+ 15590
9217
+ 15591
9218
+ 15592
9219
+ 15595
9220
+ 15596
9221
+ 15597
9222
+ 15598
9223
+ 15600
9224
+ 15601
9225
+ 15607
9226
+ 15608
9227
+ 15616
9228
+ 15618
9229
+ 15619
9230
+ 15620
9231
+ 15621
9232
+ 15627
9233
+ 15631
9234
+ 15636
9235
+ 15642
9236
+ 15643
9237
+ 15656
9238
+ 15663
9239
+ 15667
9240
+ 15671
9241
+ 15672
9242
+ 15677
9243
+ 15678
9244
+ 15685
9245
+ 15686
9246
+ 15691
9247
+ 15695
9248
+ 15698
9249
+ 15701
9250
+ 15702
9251
+ 15704
9252
+ 15707
9253
+ 15708
9254
+ 15713
9255
+ 15719
9256
+ 15722
9257
+ 15723
9258
+ 15724
9259
+ 15726
9260
+ 15728
9261
+ 15730
9262
+ 15733
9263
+ 15734
9264
+ 15735
9265
+ 15736
9266
+ 15737
9267
+ 15738
9268
+ 15739
9269
+ 15740
9270
+ 15741
9271
+ 15742
9272
+ 15743
9273
+ 15745
9274
+ 15746
9275
+ 15748
9276
+ 982
9277
+ 15753
9278
+ 15755
9279
+ 15760
9280
+ 15763
9281
+ 15765
9282
+ 15766
9283
+ 15773
9284
+ 15777
9285
+ 15780
9286
+ 15782
9287
+ 15784
9288
+ 15791
9289
+ 15792
9290
+ 15793
9291
+ 15796
9292
+ 15799
9293
+ 15803
9294
+ 15804
9295
+ 15815
9296
+ 15818
9297
+ 15820
9298
+ 15821
9299
+ 15825
9300
+ 15830
9301
+ 15839
9302
+ 15842
9303
+ 15845
9304
+ 15846
9305
+ 15847
9306
+ 15849
9307
+ 15854
9308
+ 15855
9309
+ 15858
9310
+ 15859
9311
+ 15863
9312
+ 15866
9313
+ 15868
9314
+ 15873
9315
+ 15877
9316
+ 15881
9317
+ 15883
9318
+ 15885
9319
+ 15888
9320
+ 15890
9321
+ 15896
9322
+ 15897
9323
+ 15899
9324
+ 15900
9325
+ 15901
9326
+ 15905
9327
+ 15909
9328
+ 15910
9329
+ 15916
9330
+ 15917
9331
+ 15928
9332
+ 15930
9333
+ 15935
9334
+ 15938
9335
+ 15939
9336
+ 15940
9337
+ 15947
9338
+ 15952
9339
+ 15954
9340
+ 15955
9341
+ 15957
9342
+ 15958
9343
+ 15961
9344
+ 15962
9345
+ 15963
9346
+ 15965
9347
+ 15975
9348
+ 15976
9349
+ 15977
9350
+ 15978
9351
+ 15980
9352
+ 15993
9353
+ 15994
9354
+ 15999
9355
+ 16000
9356
+ 16007
9357
+ 16010
9358
+ 16011
9359
+ 16012
9360
+ 16014
9361
+ 16018
9362
+ 16019
9363
+ 16020
9364
+ 16021
9365
+ 16023
9366
+ 16024
9367
+ 16027
9368
+ 16030
9369
+ 16031
9370
+ 16032
9371
+ 16035
9372
+ 16036
9373
+ 16044
9374
+ 16045
9375
+ 16055
9376
+ 16057
9377
+ 16060
9378
+ 16062
9379
+ 16067
9380
+ 16072
9381
+ 16076
9382
+ 16077
9383
+ 16078
9384
+ 16087
9385
+ 16088
9386
+ 16090
9387
+ 16095
9388
+ 16098
9389
+ 16101
9390
+ 16108
9391
+ 16109
9392
+ 16110
9393
+ 16112
9394
+ 16113
9395
+ 16116
9396
+ 16117
9397
+ 16119
9398
+ 16123
9399
+ 16124
9400
+ 16125
9401
+ 16132
9402
+ 16133
9403
+ 16135
9404
+ 16137
9405
+ 16145
9406
+ 16149
9407
+ 16156
9408
+ 16157
9409
+ 16159
9410
+ 16160
9411
+ 16162
9412
+ 16163
9413
+ 16165
9414
+ 16166
9415
+ 16168
9416
+ 16171
9417
+ 16172
9418
+ 16174
9419
+ 16175
9420
+ 16179
9421
+ 16181
9422
+ 16185
9423
+ 16188
9424
+ 16190
9425
+ 16193
9426
+ 16194
9427
+ 16195
9428
+ 16203
9429
+ 16208
9430
+ 16209
9431
+ 16214
9432
+ 16215
9433
+ 16216
9434
+ 16217
9435
+ 16230
9436
+ 16231
9437
+ 16233
9438
+ 16235
9439
+ 16241
9440
+ 16243
9441
+ 16252
9442
+ 16257
9443
+ 16259
9444
+ 16260
9445
+ 16267
9446
+ 16272
9447
+ 16274
9448
+ 16275
9449
+ 16278
9450
+ 16280
9451
+ 16287
9452
+ 16290
9453
+ 16296
9454
+ 16297
9455
+ 16300
9456
+ 16304
9457
+ 16305
9458
+ 16306
9459
+ 16307
9460
+ 16308
9461
+ 16312
9462
+ 16318
9463
+ 16323
9464
+ 16328
9465
+ 16329
9466
+ 16330
9467
+ 16331
9468
+ 16333
9469
+ 16334
9470
+ 16335
9471
+ 16338
9472
+ 16344
9473
+ 16350
9474
+ 16351
9475
+ 16357
9476
+ 16358
9477
+ 16359
9478
+ 16363
9479
+ 16364
9480
+ 16365
9481
+ 16373
9482
+ 16376
9483
+ 16379
9484
+ 16380
9485
+ 16389
9486
+ 16391
9487
+ 16392
9488
+ 16395
9489
+ 16396
9490
+ 16400
9491
+ 16404
9492
+ 16405
9493
+ 16406
9494
+ 16407
9495
+ 16408
9496
+ 16409
9497
+ 16413
9498
+ 16416
9499
+ 16421
9500
+ 16430
9501
+ 16432
9502
+ 16434
9503
+ 16437
9504
+ 16439
9505
+ 16440
9506
+ 16441
9507
+ 16442
9508
+ 16448
9509
+ 16451
9510
+ 16452
9511
+ 16453
9512
+ 16460
9513
+ 16463
9514
+ 16471
9515
+ 16472
9516
+ 16475
9517
+ 16476
9518
+ 16479
9519
+ 16490
9520
+ 16492
9521
+ 16493
9522
+ 16494
9523
+ 16497
9524
+ 16510
9525
+ 16514
9526
+ 16519
9527
+ 16520
9528
+ 16524
9529
+ 16525
9530
+ 16528
9531
+ 16529
9532
+ 16533
9533
+ 16538
9534
+ 16542
9535
+ 16545
9536
+ 16546
9537
+ 16556
9538
+ 16558
9539
+ 16561
9540
+ 16563
9541
+ 16567
9542
+ 16568
9543
+ 16571
9544
+ 16576
9545
+ 16584
9546
+ 16592
9547
+ 16600
9548
+ 16601
9549
+ 16603
9550
+ 16604
9551
+ 16607
9552
+ 16608
9553
+ 16609
9554
+ 16615
9555
+ 16619
9556
+ 16621
9557
+ 16626
9558
+ 16632
9559
+ 16634
9560
+ 16635
9561
+ 16638
9562
+ 16642
9563
+ 16646
9564
+ 16651
9565
+ 16664
9566
+ 16665
9567
+ 16667
9568
+ 16669
9569
+ 16670
9570
+ 16671
9571
+ 16675
9572
+ 16676
9573
+ 16681
9574
+ 16684
9575
+ 16685
9576
+ 16686
9577
+ 16688
9578
+ 16696
9579
+ 16705
9580
+ 16709
9581
+ 16710
9582
+ 16711
9583
+ 16720
9584
+ 16721
9585
+ 16724
9586
+ 16729
9587
+ 16742
9588
+ 16743
9589
+ 16745
9590
+ 16746
9591
+ 16751
9592
+ 16752
9593
+ 16755
9594
+ 16756
9595
+ 983
9596
+ 16760
9597
+ 16765
9598
+ 16767
9599
+ 16770
9600
+ 16774
9601
+ 16775
9602
+ 16778
9603
+ 16779
9604
+ 16780
9605
+ 16789
9606
+ 16792
9607
+ 16794
9608
+ 16798
9609
+ 16802
9610
+ 16804
9611
+ 16805
9612
+ 16806
9613
+ 16807
9614
+ 16815
9615
+ 16816
9616
+ 16818
9617
+ 16820
9618
+ 16827
9619
+ 16828
9620
+ 16832
9621
+ 16833
9622
+ 16840
9623
+ 16844
9624
+ 16848
9625
+ 16849
9626
+ 16851
9627
+ 16853
9628
+ 16856
9629
+ 16859
9630
+ 16860
9631
+ 16863
9632
+ 16864
9633
+ 16865
9634
+ 16866
9635
+ 16870
9636
+ 16880
9637
+ 16888
9638
+ 16889
9639
+ 16893
9640
+ 16894
9641
+ 16895
9642
+ 16896
9643
+ 16897
9644
+ 16900
9645
+ 16902
9646
+ 16905
9647
+ 16907
9648
+ 16909
9649
+ 16913
9650
+ 16915
9651
+ 16917
9652
+ 16920
9653
+ 16922
9654
+ 16923
9655
+ 16926
9656
+ 16931
9657
+ 16932
9658
+ 16935
9659
+ 16943
9660
+ 16946
9661
+ 16955
9662
+ 16963
9663
+ 16972
9664
+ 16977
9665
+ 16978
9666
+ 16980
9667
+ 16982
9668
+ 16985
9669
+ 16987
9670
+ 16988
9671
+ 16990
9672
+ 16992
9673
+ 16996
9674
+ 16997
9675
+ 17003
9676
+ 17004
9677
+ 17008
9678
+ 17009
9679
+ 17013
9680
+ 17018
9681
+ 17019
9682
+ 17022
9683
+ 17023
9684
+ 17025
9685
+ 17028
9686
+ 17032
9687
+ 17036
9688
+ 17037
9689
+ 17041
9690
+ 17044
9691
+ 17047
9692
+ 17052
9693
+ 17053
9694
+ 17054
9695
+ 17055
9696
+ 17067
9697
+ 17068
9698
+ 17072
9699
+ 17078
9700
+ 17096
9701
+ 17102
9702
+ 17109
9703
+ 17122
9704
+ 17125
9705
+ 17126
9706
+ 17129
9707
+ 17133
9708
+ 17136
9709
+ 17141
9710
+ 17143
9711
+ 17148
9712
+ 17150
9713
+ 17156
9714
+ 17159
9715
+ 17161
9716
+ 17170
9717
+ 17171
9718
+ 17173
9719
+ 17174
9720
+ 17180
9721
+ 17182
9722
+ 17184
9723
+ 17186
9724
+ 17193
9725
+ 17195
9726
+ 17198
9727
+ 17201
9728
+ 17203
9729
+ 17207
9730
+ 17208
9731
+ 17218
9732
+ 17223
9733
+ 17225
9734
+ 17226
9735
+ 17232
9736
+ 17243
9737
+ 17246
9738
+ 17263
9739
+ 17264
9740
+ 17268
9741
+ 17269
9742
+ 17270
9743
+ 17279
9744
+ 17283
9745
+ 17284
9746
+ 17287
9747
+ 17289
9748
+ 17290
9749
+ 17295
9750
+ 17301
9751
+ 17305
9752
+ 17312
9753
+ 17313
9754
+ 17314
9755
+ 17316
9756
+ 17320
9757
+ 17321
9758
+ 17324
9759
+ 17325
9760
+ 17327
9761
+ 17328
9762
+ 17329
9763
+ 17331
9764
+ 17332
9765
+ 17334
9766
+ 17341
9767
+ 17344
9768
+ 17345
9769
+ 17353
9770
+ 17354
9771
+ 17355
9772
+ 17356
9773
+ 17357
9774
+ 17360
9775
+ 17361
9776
+ 17363
9777
+ 17365
9778
+ 17366
9779
+ 17368
9780
+ 17369
9781
+ 17370
9782
+ 17371
9783
+ 17374
9784
+ 17375
9785
+ 17376
9786
+ 17377
9787
+ 17378
9788
+ 17379
9789
+ 17381
9790
+ 17382
9791
+ 17384
9792
+ 17385
9793
+ 17388
9794
+ 17389
9795
+ 17390
9796
+ 17391
9797
+ 17392
9798
+ 17394
9799
+ 17395
9800
+ 17397
9801
+ 17399
9802
+ 17400
9803
+ 17402
9804
+ 17403
9805
+ 17404
9806
+ 17407
9807
+ 17408
9808
+ 17409
9809
+ 17410
9810
+ 17411
9811
+ 17415
9812
+ 17416
9813
+ 17417
9814
+ 17418
9815
+ 17419
9816
+ 17420
9817
+ 17421
9818
+ 17422
9819
+ 17423
9820
+ 17424
9821
+ 17425
9822
+ 17426
9823
+ 17427
9824
+ 17428
9825
+ 17429
9826
+ 17430
9827
+ 17431
9828
+ 17432
9829
+ 17434
9830
+ 17435
9831
+ 17437
9832
+ 17438
9833
+ 17439
9834
+ 17440
9835
+ 17441
9836
+ 17442
9837
+ 17444
9838
+ 17445
9839
+ 17446
9840
+ 17447
9841
+ 17450
9842
+ 17455
9843
+ 17457
9844
+ 17459
9845
+ 17462
9846
+ 17463
9847
+ 17464
9848
+ 17465
9849
+ 17466
9850
+ 17467
9851
+ 17470
9852
+ 17471
9853
+ 17472
9854
+ 17473
9855
+ 17474
9856
+ 17475
9857
+ 17478
9858
+ 17479
9859
+ 17480
9860
+ 17481
9861
+ 17483
9862
+ 17485
9863
+ 17486
9864
+ 17497
9865
+ 17501
9866
+ 17507
9867
+ 17508
9868
+ 17513
9869
+ 17514
9870
+ 17518
9871
+ 17519
9872
+ 17523
9873
+ 17524
9874
+ 17525
9875
+ 17527
9876
+ 17531
9877
+ 17532
9878
+ 17533
9879
+ 17535
9880
+ 17536
9881
+ 17537
9882
+ 17538
9883
+ 17541
9884
+ 17544
9885
+ 17549
9886
+ 17554
9887
+ 17555
9888
+ 17566
9889
+ 17575
9890
+ 17580
9891
+ 17581
9892
+ 17582
9893
+ 17583
9894
+ 17584
9895
+ 17585
9896
+ 17586
9897
+ 17589
9898
+ 17593
9899
+ 17594
9900
+ 17599
9901
+ 17601
9902
+ 17603
9903
+ 17606
9904
+ 17609
9905
+ 17610
9906
+ 17611
9907
+ 17613
9908
+ 17614
9909
+ 17616
9910
+ 17618
9911
+ 17620
9912
+ 17621
9913
+ 17625
9914
+ 17626
9915
+ 17627
9916
+ 17628
9917
+ 17630
9918
+ 17633
9919
+ 17634
9920
+ 17636
9921
+ 17640
9922
+ 17641
9923
+ 17642
9924
+ 17645
9925
+ 17648
9926
+ 17649
9927
+ 17650
9928
+ 17651
9929
+ 17652
9930
+ 17656
9931
+ 17658
9932
+ 17659
9933
+ 17661
9934
+ 17663
9935
+ 17665
9936
+ 17666
9937
+ 17667
9938
+ 17669
9939
+ 17670
9940
+ 17672
9941
+ 17674
9942
+ 17675
9943
+ 17676
9944
+ 17677
9945
+ 17678
9946
+ 17679
9947
+ 17681
9948
+ 17687
9949
+ 17691
9950
+ 17693
9951
+ 17694
9952
+ 17695
9953
+ 17696
9954
+ 17699
9955
+ 17703
9956
+ 17704
9957
+ 17707
9958
+ 17726
9959
+ 17736
9960
+ 17737
9961
+ 17738
9962
+ 17740
9963
+ 17741
9964
+ 17742
9965
+ 17744
9966
+ 17745
9967
+ 17748
9968
+ 17749
9969
+ 17750
9970
+ 17751
9971
+ 17752
9972
+ 17753
9973
+ 17754
9974
+ 17755
9975
+ 17757
9976
+ 17758
9977
+ 17759
9978
+ 17760
9979
+ 17763
9980
+ 17777
9981
+ 17778
9982
+ 17779
9983
+ 17780
9984
+ 17785
9985
+ 17786
9986
+ 17789
9987
+ 17790
9988
+ 17795
9989
+ 17797
9990
+ 17798
9991
+ 17799
9992
+ 17801
9993
+ 17802
9994
+ 17804
9995
+ 17807
9996
+ 17808
9997
+ 17809
9998
+ 17811
9999
+ 17813
10000
+ 17814
10001
+ 17818
10002
+ 17819
10003
+ 17821
10004
+ 17826
10005
+ 17827
10006
+ 17828
10007
+ 17829
10008
+ 17830
10009
+ 17832
10010
+ 17833
10011
+ 17835
10012
+ 17836
10013
+ 17841
10014
+ 17850
10015
+ 17854
10016
+ 17856
10017
+ 17857
10018
+ 17860
10019
+ 17861
10020
+ 17862
10021
+ 17865
10022
+ 17867
10023
+ 17868
10024
+ 17870
10025
+ 17871
10026
+ 17872
10027
+ 17873
10028
+ 17874
10029
+ 17875
10030
+ 17876
10031
+ 17877
10032
+ 17878
10033
+ 17879
10034
+ 17881
10035
+ 17883
10036
+ 17884
10037
+ 17885
10038
+ 17886
10039
+ 17887
10040
+ 17888
10041
+ 17889
10042
+ 17891
10043
+ 17892
10044
+ 17893
10045
+ 17894
10046
+ 17895
10047
+ 17896
10048
+ 17897
10049
+ 17900
10050
+ 17901
10051
+ 17903
10052
+ 17904
10053
+ 17905
10054
+ 17906
10055
+ 17910
10056
+ 17912
10057
+ 17915
10058
+ 17917
10059
+ 17920
10060
+ 17929
10061
+ 17933
10062
+ 17934
10063
+ 17940
10064
+ 17944
10065
+ 17949
10066
+ 17951
10067
+ 17953
10068
+ 17954
10069
+ 17955
10070
+ 17961
10071
+ 17962
10072
+ 17963
10073
+ 17964
10074
+ 17965
10075
+ 17968
10076
+ 17969
10077
+ 17970
10078
+ 17973
10079
+ 17974
10080
+ 17975
10081
+ 17976
10082
+ 17978
10083
+ 17979
10084
+ 17980
10085
+ 17981
10086
+ 17985
10087
+ 17986
10088
+ 17987
10089
+ 17988
10090
+ 17990
10091
+ 17991
10092
+ 17994
10093
+ 17995
10094
+ 17998
10095
+ 17999
10096
+ 18000
10097
+ 18002
10098
+ 18005
10099
+ 18006
10100
+ 18007
10101
+ 18014
10102
+ 18015
10103
+ 18020
10104
+ 18022
10105
+ 18023
10106
+ 18027
10107
+ 18032
10108
+ 18035
10109
+ 18036
10110
+ 18037
10111
+ 18038
10112
+ 18039
10113
+ 18040
10114
+ 18041
10115
+ 18042
10116
+ 18043
10117
+ 18045
10118
+ 18047
10119
+ 18050
10120
+ 18051
10121
+ 984
10122
+ 18052
10123
+ 18053
10124
+ 18055
10125
+ 18059
10126
+ 18064
10127
+ 18065
10128
+ 18071
10129
+ 18073
10130
+ 18075
10131
+ 18077
10132
+ 18078
10133
+ 18080
10134
+ 18081
10135
+ 18082
10136
+ 18084
10137
+ 18085
10138
+ 18086
10139
+ 18087
10140
+ 18091
10141
+ 18092
10142
+ 18095
10143
+ 18099
10144
+ 18100
10145
+ 18102
10146
+ 18103
10147
+ 18104
10148
+ 18105
10149
+ 18106
10150
+ 18107
10151
+ 18108
10152
+ 18110
10153
+ 18111
10154
+ 18113
10155
+ 18114
10156
+ 18117
10157
+ 18118
10158
+ 18120
10159
+ 18121
10160
+ 18122
10161
+ 18124
10162
+ 18125
10163
+ 18127
10164
+ 18128
10165
+ 18129
10166
+ 18130
10167
+ 18131
10168
+ 18134
10169
+ 18135
10170
+ 18137
10171
+ 18139
10172
+ 18140
10173
+ 18144
10174
+ 18150
10175
+ 18151
10176
+ 18152
10177
+ 18154
10178
+ 18155
10179
+ 18156
10180
+ 18158
10181
+ 18159
10182
+ 18160
10183
+ 18162
10184
+ 18164
10185
+ 18165
10186
+ 18166
10187
+ 18174
10188
+ 18175
10189
+ 18181
10190
+ 18182
10191
+ 18187
10192
+ 18188
10193
+ 18191
10194
+ 18192
10195
+ 18218
10196
+ 985
10197
+ 18219
10198
+ 18220
10199
+ 18222
10200
+ 18226
10201
+ 18229
10202
+ 18230
10203
+ 18231
10204
+ 18232
10205
+ 18234
10206
+ 18235
10207
+ 18236
10208
+ 18237
10209
+ 18240
10210
+ 18241
10211
+ 18243
10212
+ 18244
10213
+ 18246
10214
+ 18248
10215
+ 18249
10216
+ 18250
10217
+ 18252
10218
+ 18253
10219
+ 18254
10220
+ 18256
10221
+ 18259
10222
+ 18260
10223
+ 18262
10224
+ 18263
10225
+ 18264
10226
+ 18265
10227
+ 18267
10228
+ 18270
10229
+ 18272
10230
+ 18273
10231
+ 18274
10232
+ 18277
10233
+ 18278
10234
+ 18282
10235
+ 18283
10236
+ 18284
10237
+ 18286
10238
+ 18287
10239
+ 18288
10240
+ 18289
10241
+ 18290
10242
+ 18293
10243
+ 18296
10244
+ 18297
10245
+ 18299
10246
+ 18300
10247
+ 18302
10248
+ 18303
10249
+ 18309
10250
+ 18310
10251
+ 18311
10252
+ 18312
10253
+ 18316
10254
+ 18317
10255
+ 18318
10256
+ 18319
10257
+ 18320
10258
+ 18321
10259
+ 18322
10260
+ 18324
10261
+ 18335
10262
+ 18338
10263
+ 18339
10264
+ 18340
10265
+ 18341
10266
+ 18344
10267
+ 18345
10268
+ 18346
10269
+ 18347
10270
+ 18348
10271
+ 18349
10272
+ 18351
10273
+ 18356
10274
+ 18357
10275
+ 18362
10276
+ 18364
10277
+ 18368
10278
+ 18370
10279
+ 18371
10280
+ 18372
10281
+ 18373
10282
+ 18374
10283
+ 18377
10284
+ 18381
10285
+ 18386
10286
+ 18394
10287
+ 18399
10288
+ 18401
10289
+ 18404
10290
+ 18405
10291
+ 18407
10292
+ 18409
10293
+ 18411
10294
+ 18412
10295
+ 18413
10296
+ 18414
10297
+ 18416
10298
+ 18417
10299
+ 18418
10300
+ 18420
10301
+ 18425
10302
+ 18426
10303
+ 18432
10304
+ 18435
10305
+ 18436
10306
+ 18437
10307
+ 18439
10308
+ 18454
10309
+ 18455
10310
+ 18456
10311
+ 18457
10312
+ 18458
10313
+ 18459
10314
+ 18460
10315
+ 18461
10316
+ 18464
10317
+ 18465
10318
+ 18466
10319
+ 18468
10320
+ 18469
10321
+ 18472
10322
+ 18473
10323
+ 18474
10324
+ 18475
10325
+ 18476
10326
+ 18479
10327
+ 18482
10328
+ 18483
10329
+ 18486
10330
+ 18491
10331
+ 18492
10332
+ 18493
10333
+ 18495
10334
+ 18499
10335
+ 18500
10336
+ 18501
10337
+ 18502
10338
+ 18504
10339
+ 18505
10340
+ 18507
10341
+ 18508
10342
+ 18509
10343
+ 18510
10344
+ 18511
10345
+ 18512
10346
+ 18514
10347
+ 18519
10348
+ 18520
10349
+ 18521
10350
+ 18522
10351
+ 18523
10352
+ 18524
10353
+ 18525
10354
+ 18527
10355
+ 18528
10356
+ 18529
10357
+ 18530
10358
+ 18531
10359
+ 18535
10360
+ 18536
10361
+ 18537
10362
+ 18538
10363
+ 18542
10364
+ 18544
10365
+ 18545
10366
+ 18546
10367
+ 986
10368
+ 18548
10369
+ 18549
10370
+ 18551
10371
+ 18552
10372
+ 18553
10373
+ 18554
10374
+ 18555
10375
+ 18558
10376
+ 18559
10377
+ 18561
10378
+ 18562
10379
+ 18563
10380
+ 18565
10381
+ 18566
10382
+ 18567
10383
+ 18568
10384
+ 18570
10385
+ 18571
10386
+ 18572
10387
+ 18574
10388
+ 18577
10389
+ 18582
10390
+ 18585
10391
+ 18586
10392
+ 18587
10393
+ 18588
10394
+ 18589
10395
+ 18590
10396
+ 18593
10397
+ 18595
10398
+ 18597
10399
+ 18598
10400
+ 18599
10401
+ 18600
10402
+ 18601
10403
+ 18602
10404
+ 18603
10405
+ 18604
10406
+ 18605
10407
+ 18606
10408
+ 18607
10409
+ 18609
10410
+ 18610
10411
+ 18613
10412
+ 18615
10413
+ 18616
10414
+ 18618
10415
+ 18619
10416
+ 18622
10417
+ 18623
10418
+ 18624
10419
+ 18625
10420
+ 18627
10421
+ 18628
10422
+ 18629
10423
+ 18630
10424
+ 18631
10425
+ 18632
10426
+ 18633
10427
+ 18634
10428
+ 18635
10429
+ 18636
10430
+ 18643
10431
+ 18644
10432
+ 18645
10433
+ 18646
10434
+ 18648
10435
+ 18649
10436
+ 18650
10437
+ 18653
10438
+ 18654
10439
+ 18658
10440
+ 18659
10441
+ 18663
10442
+ 18669
10443
+ 18671
10444
+ 18672
10445
+ 18674
10446
+ 18676
10447
+ 18677
10448
+ 18681
10449
+ 18682
10450
+ 18683
10451
+ 18684
10452
+ 18692
10453
+ 18693
10454
+ 18696
10455
+ 18697
10456
+ 18699
10457
+ 18703
10458
+ 18706
10459
+ 18708
10460
+ 18709
10461
+ 18710
10462
+ 18715
10463
+ 18717
10464
+ 18727
10465
+ 18735
10466
+ 18737
10467
+ 18740
10468
+ 18742
10469
+ 18743
10470
+ 18747
10471
+ 18750
10472
+ 18752
10473
+ 18753
10474
+ 18756
10475
+ 18765
10476
+ 18766
10477
+ 18767
10478
+ 18771
10479
+ 18775
10480
+ 18778
10481
+ 18779
10482
+ 18787
10483
+ 18792
10484
+ 18793
10485
+ 18794
10486
+ 18796
10487
+ 18803
10488
+ 987
10489
+ 18806
10490
+ 18807
10491
+ 18809
10492
+ 18812
10493
+ 18813
10494
+ 18816
10495
+ 18819
10496
+ 18820
10497
+ 18827
10498
+ 18828
10499
+ 18833
10500
+ 18836
10501
+ 18837
10502
+ 18839
10503
+ 18840
10504
+ 18845
10505
+ 18846
10506
+ 18847
10507
+ 18848
10508
+ 18852
10509
+ 18853
10510
+ 18854
10511
+ 18858
10512
+ 18859
10513
+ 18860
10514
+ 18861
10515
+ 18863
10516
+ 18864
10517
+ 18865
10518
+ 18866
10519
+ 18868
10520
+ 18869
10521
+ 18870
10522
+ 18871
10523
+ 18874
10524
+ 18875
10525
+ 18876
10526
+ 18877
10527
+ 18878
10528
+ 18879
10529
+ 18880
10530
+ 18881
10531
+ 18882
10532
+ 18883
10533
+ 18884
10534
+ 18885
10535
+ 18896
10536
+ 18897
10537
+ 18899
10538
+ 18901
10539
+ 18911
10540
+ 18913
10541
+ 18917
10542
+ 18919
10543
+ 18922
10544
+ 18924
10545
+ 18925
10546
+ 18926
10547
+ 18932
10548
+ 18935
10549
+ 18938
10550
+ 18939
10551
+ 18940
10552
+ 18944
10553
+ 18948
10554
+ 18950
10555
+ 18953
10556
+ 18954
10557
+ 18956
10558
+ 18957
10559
+ 18959
10560
+ 18960
10561
+ 18961
10562
+ 18964
10563
+ 18965
10564
+ 18966
10565
+ 18968
10566
+ 18973
10567
+ 18990
10568
+ 18991
10569
+ 18992
10570
+ 18995
10571
+ 18997
10572
+ 18999
10573
+ 19000
10574
+ 19007
10575
+ 19023
10576
+ 19024
10577
+ 19027
10578
+ 19032
10579
+ 19038
10580
+ 19040
10581
+ 19042
10582
+ 19044
10583
+ 19045
10584
+ 19046
10585
+ 19050
10586
+ 19063
10587
+ 19067
10588
+ 19080
10589
+ 19081
10590
+ 19084
10591
+ 19086
10592
+ 19088
10593
+ 19089
10594
+ 19090
10595
+ 19091
10596
+ 19093
10597
+ 19094
10598
+ 19097
10599
+ 19098
10600
+ 19099
10601
+ 19103
10602
+ 19104
10603
+ 19107
10604
+ 19111
10605
+ 988
10606
+ 19114
10607
+ 19115
10608
+ 19116
10609
+ 19118
10610
+ 19121
10611
+ 19122
10612
+ 19126
10613
+ 19127
10614
+ 19130
10615
+ 19131
10616
+ 19132
10617
+ 19134
10618
+ 19135
10619
+ 19137
10620
+ 19139
10621
+ 19140
10622
+ 19143
10623
+ 19144
10624
+ 19145
10625
+ 19147
10626
+ 19148
10627
+ 19149
10628
+ 19150
10629
+ 19152
10630
+ 19153
10631
+ 19154
10632
+ 19155
10633
+ 19156
10634
+ 19157
10635
+ 19160
10636
+ 19161
10637
+ 19162
10638
+ 19164
10639
+ 19165
10640
+ 19166
10641
+ 19167
10642
+ 19168
10643
+ 19169
10644
+ 19170
10645
+ 19171
10646
+ 19173
10647
+ 19175
10648
+ 19176
10649
+ 19179
10650
+ 19182
10651
+ 19185
10652
+ 19186
10653
+ 19189
10654
+ 19190
10655
+ 19191
10656
+ 19193
10657
+ 19195
10658
+ 19197
10659
+ 19200
10660
+ 19203
10661
+ 19204
10662
+ 19205
10663
+ 19207
10664
+ 19208
10665
+ 19209
10666
+ 19211
10667
+ 19212
10668
+ 19214
10669
+ 19223
10670
+ 19224
10671
+ 19225
10672
+ 19228
10673
+ 19229
10674
+ 19230
10675
+ 19231
10676
+ 19232
10677
+ 19233
10678
+ 19236
10679
+ 19237
10680
+ 19238
10681
+ 19239
10682
+ 19240
10683
+ 19242
10684
+ 19243
10685
+ 19244
10686
+ 19246
10687
+ 19248
10688
+ 19249
10689
+ 19250
10690
+ 19254
10691
+ 19262
10692
+ 19264
10693
+ 19267
10694
+ 19268
10695
+ 19269
10696
+ 19270
10697
+ 19271
10698
+ 19272
10699
+ 19274
10700
+ 19275
10701
+ 19276
10702
+ 19277
10703
+ 19280
10704
+ 19281
10705
+ 19285
10706
+ 19286
10707
+ 19287
10708
+ 19294
10709
+ 19299
10710
+ 19300
10711
+ 19302
10712
+ 19303
10713
+ 19305
10714
+ 19306
10715
+ 19307
10716
+ 19310
10717
+ 19312
10718
+ 19314
10719
+ 19315
10720
+ 19316
10721
+ 19317
10722
+ 19320
10723
+ 19321
10724
+ 19326
10725
+ 19327
10726
+ 19328
10727
+ 19330
10728
+ 19331
10729
+ 19334
10730
+ 19335
10731
+ 19340
10732
+ 19341
10733
+ 19342
10734
+ 19343
10735
+ 19346
10736
+ 19347
10737
+ 19349
10738
+ 19352
10739
+ 19353
10740
+ 19354
10741
+ 19355
10742
+ 19357
10743
+ 19358
10744
+ 19359
10745
+ 19360
10746
+ 19361
10747
+ 19362
10748
+ 19364
10749
+ 19366
10750
+ 19370
10751
+ 19373
10752
+ 19374
10753
+ 19375
10754
+ 19376
10755
+ 19377
10756
+ 19379
10757
+ 19381
10758
+ 19383
10759
+ 19384
10760
+ 19387
10761
+ 19389
10762
+ 19391
10763
+ 19392
10764
+ 19395
10765
+ 19396
10766
+ 19398
10767
+ 19412
10768
+ 19413
10769
+ 19414
10770
+ 19415
10771
+ 19417
10772
+ 19424
10773
+ 19427
10774
+ 19429
10775
+ 19431
10776
+ 19433
10777
+ 19444
10778
+ 19445
10779
+ 19446
10780
+ 19447
10781
+ 19450
10782
+ 19451
10783
+ 19452
10784
+ 19456
10785
+ 19457
10786
+ 19458
10787
+ 19460
10788
+ 19461
10789
+ 19462
10790
+ 19463
10791
+ 19466
10792
+ 19467
10793
+ 19469
10794
+ 19471
10795
+ 19481
10796
+ 19482
10797
+ 19483
10798
+ 19487
10799
+ 19488
10800
+ 19491
10801
+ 19493
10802
+ 19494
10803
+ 19495
10804
+ 19496
10805
+ 19500
10806
+ 19502
10807
+ 19504
10808
+ 19505
10809
+ 19506
10810
+ 19507
10811
+ 19508
10812
+ 19511
10813
+ 19512
10814
+ 19513
10815
+ 19516
10816
+ 19518
10817
+ 19519
10818
+ 19521
10819
+ 19523
10820
+ 19524
10821
+ 19526
10822
+ 19527
10823
+ 19528
10824
+ 19529
10825
+ 19530
10826
+ 19531
10827
+ 19532
10828
+ 19534
10829
+ 19535
10830
+ 19536
10831
+ 19537
10832
+ 19538
10833
+ 19540
10834
+ 19542
10835
+ 19548
10836
+ 19549
10837
+ 19551
10838
+ 19552
10839
+ 19553
10840
+ 19556
10841
+ 19557
10842
+ 19558
10843
+ 19559
10844
+ 19560
10845
+ 19561
10846
+ 19563
10847
+ 19565
10848
+ 19566
10849
+ 19567
10850
+ 19573
10851
+ 19576
10852
+ 19577
10853
+ 19578
10854
+ 19585
10855
+ 19587
10856
+ 19588
10857
+ 19592
10858
+ 19593
10859
+ 19594
10860
+ 19597
10861
+ 19598
10862
+ 19600
10863
+ 19602
10864
+ 19607
10865
+ 19616
10866
+ 19617
10867
+ 19618
10868
+ 19621
10869
+ 19623
10870
+ 19624
10871
+ 19625
10872
+ 19626
10873
+ 19628
10874
+ 19632
10875
+ 19634
10876
+ 19637
10877
+ 19638
10878
+ 19639
10879
+ 19640
10880
+ 19642
10881
+ 19643
10882
+ 19644
10883
+ 19645
10884
+ 19648
10885
+ 19650
10886
+ 19651
10887
+ 19652
10888
+ 19653
10889
+ 19654
10890
+ 19658
10891
+ 19659
10892
+ 19665
10893
+ 19666
10894
+ 19673
10895
+ 19677
10896
+ 19678
10897
+ 19679
10898
+ 19680
10899
+ 19682
10900
+ 19683
10901
+ 19685
10902
+ 19686
10903
+ 19687
10904
+ 19688
10905
+ 19689
10906
+ 19691
10907
+ 19692
10908
+ 19693
10909
+ 19694
10910
+ 19697
10911
+ 19698
10912
+ 19699
10913
+ 19700
10914
+ 19702
10915
+ 19703
10916
+ 19704
10917
+ 19706
10918
+ 19707
10919
+ 19708
10920
+ 19709
10921
+ 19715
10922
+ 19717
10923
+ 19719
10924
+ 19720
10925
+ 19724
10926
+ 19727
10927
+ 19728
10928
+ 19730
10929
+ 19731
10930
+ 19732
10931
+ 19734
10932
+ 19738
10933
+ 19742
10934
+ 19743
10935
+ 19744
10936
+ 19747
10937
+ 19748
10938
+ 19751
10939
+ 19755
10940
+ 19756
10941
+ 19766
10942
+ 19767
10943
+ 19768
10944
+ 19769
10945
+ 19773
10946
+ 19774
10947
+ 19777
10948
+ 19779
10949
+ 19780
10950
+ 19783
10951
+ 19784
10952
+ 19787
10953
+ 19792
10954
+ 19802
10955
+ 19805
10956
+ 19807
10957
+ 19808
10958
+ 19811
10959
+ 19812
10960
+ 19815
10961
+ 19823
10962
+ 19827
10963
+ 19829
10964
+ 19841
10965
+ 19843
10966
+ 19845
10967
+ 19847
10968
+ 19848
10969
+ 19849
10970
+ 19850
10971
+ 19851
10972
+ 19855
10973
+ 19862
10974
+ 19868
10975
+ 19871
10976
+ 19872
10977
+ 19873
10978
+ 19874
10979
+ 19875
10980
+ 19876
10981
+ 19877
10982
+ 19881
10983
+ 19882
10984
+ 19883
10985
+ 19884
10986
+ 19889
10987
+ 19892
10988
+ 19897
10989
+ 19899
10990
+ 19904
10991
+ 19905
10992
+ 19906
10993
+ 19907
10994
+ 19912
10995
+ 19915
10996
+ 19917
10997
+ 19918
10998
+ 19919
10999
+ 19920
11000
+ 19924
11001
+ 19926
11002
+ 19927
11003
+ 19928
11004
+ 19932
11005
+ 19934
11006
+ 19936
11007
+ 19937
11008
+ 19938
11009
+ 19939
11010
+ 19940
11011
+ 19943
11012
+ 19945
11013
+ 19948
11014
+ 19953
11015
+ 19955
11016
+ 19956
11017
+ 19957
11018
+ 19962
11019
+ 19963
11020
+ 19966
11021
+ 19967
11022
+ 19974
11023
+ 19977
11024
+ 19978
11025
+ 19979
11026
+ 19980
11027
+ 19981
11028
+ 19982
11029
+ 19983
11030
+ 19984
11031
+ 19985
11032
+ 19986
11033
+ 19988
11034
+ 19995
11035
+ 19998
11036
+ 20000
11037
+ 20002
11038
+ 20007
11039
+ 20008
11040
+ 20009
11041
+ 20011
11042
+ 20018
11043
+ 20020
11044
+ 20028
11045
+ 989
11046
+ 20029
11047
+ 20030
11048
+ 20033
11049
+ 20034
11050
+ 20035
11051
+ 20038
11052
+ 20039
11053
+ 20041
11054
+ 20046
11055
+ 20051
11056
+ 20052
11057
+ 20053
11058
+ 20054
11059
+ 20056
11060
+ 20058
11061
+ 20059
11062
+ 20062
11063
+ 20063
11064
+ 20064
11065
+ 20065
11066
+ 20066
11067
+ 20067
11068
+ 20070
11069
+ 20071
11070
+ 20072
11071
+ 20073
11072
+ 20075
11073
+ 20077
11074
+ 20079
11075
+ 20080
11076
+ 20083
11077
+ 20090
11078
+ 20091
11079
+ 20093
11080
+ 20095
11081
+ 20096
11082
+ 20101
11083
+ 20102
11084
+ 20106
11085
+ 20107
11086
+ 20109
11087
+ 20111
11088
+ 20112
11089
+ 20113
11090
+ 20117
11091
+ 20119
11092
+ 20120
11093
+ 20124
11094
+ 20125
11095
+ 20126
11096
+ 20127
11097
+ 20131
11098
+ 20132
11099
+ 20135
11100
+ 20136
11101
+ 20137
11102
+ 20138
11103
+ 20149
11104
+ 20150
11105
+ 20152
11106
+ 20154
11107
+ 20156
11108
+ 20157
11109
+ 20158
11110
+ 20162
11111
+ 20163
11112
+ 20164
11113
+ 20171
11114
+ 20172
11115
+ 20174
11116
+ 20180
11117
+ 20181
11118
+ 20183
11119
+ 20187
11120
+ 20194
11121
+ 20196
11122
+ 20201
11123
+ 20202
11124
+ 20204
11125
+ 20207
11126
+ 20208
11127
+ 20216
11128
+ 20218
11129
+ 20220
11130
+ 20223
11131
+ 20224
11132
+ 20225
11133
+ 20227
11134
+ 20228
11135
+ 20229
11136
+ 20230
11137
+ 20231
11138
+ 20232
11139
+ 20233
11140
+ 20234
11141
+ 20235
11142
+ 20237
11143
+ 20239
11144
+ 20240
11145
+ 20241
11146
+ 20242
11147
+ 20245
11148
+ 20248
11149
+ 20249
11150
+ 20257
11151
+ 20259
11152
+ 20260
11153
+ 20266
11154
+ 20271
11155
+ 20274
11156
+ 20275
11157
+ 20276
11158
+ 20278
11159
+ 20280
11160
+ 20287
11161
+ 20289
11162
+ 20290
11163
+ 20291
11164
+ 20292
11165
+ 20293
11166
+ 20295
11167
+ 20296
11168
+ 20297
11169
+ 20298
11170
+ 20299
11171
+ 20300
11172
+ 20304
11173
+ 20305
11174
+ 20306
11175
+ 20309
11176
+ 20312
11177
+ 20314
11178
+ 20320
11179
+ 20321
11180
+ 20326
11181
+ 20327
11182
+ 20328
11183
+ 20334
11184
+ 20335
11185
+ 20336
11186
+ 20337
11187
+ 20339
11188
+ 20342
11189
+ 20344
11190
+ 20346
11191
+ 20356
11192
+ 20357
11193
+ 20358
11194
+ 20364
11195
+ 20365
11196
+ 20366
11197
+ 20367
11198
+ 20369
11199
+ 20371
11200
+ 20372
11201
+ 20373
11202
+ 20374
11203
+ 20375
11204
+ 20376
11205
+ 20377
11206
+ 20382
11207
+ 20383
11208
+ 20385
11209
+ 20388
11210
+ 20390
11211
+ 20394
11212
+ 20395
11213
+ 20399
11214
+ 20401
11215
+ 20403
11216
+ 20406
11217
+ 20407
11218
+ 20408
11219
+ 20409
11220
+ 20414
11221
+ 20415
11222
+ 20416
11223
+ 20417
11224
+ 20418
11225
+ 20419
11226
+ 20422
11227
+ 20423
11228
+ 20424
11229
+ 20425
11230
+ 20426
11231
+ 20427
11232
+ 20429
11233
+ 20431
11234
+ 20433
11235
+ 20434
11236
+ 20436
11237
+ 20446
11238
+ 20450
11239
+ 20453
11240
+ 20455
11241
+ 20458
11242
+ 20461
11243
+ 20465
11244
+ 20466
11245
+ 20469
11246
+ 990
11247
+ 20479
11248
+ 20480
11249
+ 20481
11250
+ 20483
11251
+ 20484
11252
+ 20486
11253
+ 20488
11254
+ 20489
11255
+ 20493
11256
+ 20497
11257
+ 20500
11258
+ 20501
11259
+ 20502
11260
+ 20503
11261
+ 20506
11262
+ 20507
11263
+ 20508
11264
+ 20512
11265
+ 20513
11266
+ 20514
11267
+ 20519
11268
+ 20520
11269
+ 20523
11270
+ 20524
11271
+ 20525
11272
+ 20526
11273
+ 20527
11274
+ 20528
11275
+ 20531
11276
+ 20532
11277
+ 20534
11278
+ 20536
11279
+ 20537
11280
+ 20538
11281
+ 20542
11282
+ 20546
11283
+ 20550
11284
+ 20551
11285
+ 20554
11286
+ 20557
11287
+ 20558
11288
+ 20560
11289
+ 20561
11290
+ 20562
11291
+ 20563
11292
+ 20565
11293
+ 20566
11294
+ 20570
11295
+ 20571
11296
+ 20574
11297
+ 20576
11298
+ 20577
11299
+ 20580
11300
+ 20583
11301
+ 20585
11302
+ 20586
11303
+ 20589
11304
+ 20591
11305
+ 20594
11306
+ 20597
11307
+ 20598
11308
+ 20599
11309
+ 20600
11310
+ 20602
11311
+ 20603
11312
+ 20604
11313
+ 20605
11314
+ 20606
11315
+ 20609
11316
+ 20611
11317
+ 20612
11318
+ 20614
11319
+ 20615
11320
+ 20617
11321
+ 20621
11322
+ 20622
11323
+ 20625
11324
+ 20626
11325
+ 20627
11326
+ 20629
11327
+ 20630
11328
+ 20632
11329
+ 20634
11330
+ 20636
11331
+ 20637
11332
+ 20638
11333
+ 20639
11334
+ 20643
11335
+ 20647
11336
+ 20649
11337
+ 20650
11338
+ 20651
11339
+ 20652
11340
+ 20659
11341
+ 20660
11342
+ 20662
11343
+ 20664
11344
+ 20668
11345
+ 20669
11346
+ 20670
11347
+ 20671
11348
+ 20672
11349
+ 20673
11350
+ 20674
11351
+ 20675
11352
+ 20676
11353
+ 20677
11354
+ 20678
11355
+ 20680
11356
+ 20687
11357
+ 20688
11358
+ 20690
11359
+ 20692
11360
+ 20695
11361
+ 20696
11362
+ 20697
11363
+ 20698
11364
+ 20700
11365
+ 20701
11366
+ 20702
11367
+ 20703
11368
+ 20704
11369
+ 20709
11370
+ 20710
11371
+ 20712
11372
+ 20713
11373
+ 20714
11374
+ 20715
11375
+ 20718
11376
+ 20719
11377
+ 20720
11378
+ 20721
11379
+ 20722
11380
+ 20723
11381
+ 20724
11382
+ 20725
11383
+ 20727
11384
+ 20728
11385
+ 20732
11386
+ 20733
11387
+ 20735
11388
+ 20736
11389
+ 20740
11390
+ 20741
11391
+ 20742
11392
+ 20746
11393
+ 20750
11394
+ 20757
11395
+ 20762
11396
+ 20763
11397
+ 20764
11398
+ 20765
11399
+ 20771
11400
+ 20772
11401
+ 20775
11402
+ 20776
11403
+ 20785
11404
+ 20791
11405
+ 20794
11406
+ 20795
11407
+ 20796
11408
+ 20797
11409
+ 20798
11410
+ 20799
11411
+ 20800
11412
+ 20801
11413
+ 20802
11414
+ 20805
11415
+ 20806
11416
+ 20808
11417
+ 20814
11418
+ 20816
11419
+ 20817
11420
+ 20820
11421
+ 20822
11422
+ 20827
11423
+ 20831
11424
+ 20832
11425
+ 20833
11426
+ 20838
11427
+ 20839
11428
+ 20841
11429
+ 20844
11430
+ 20845
11431
+ 20847
11432
+ 20848
11433
+ 20851
11434
+ 20855
11435
+ 20856
11436
+ 20858
11437
+ 20859
11438
+ 20860
11439
+ 20861
11440
+ 20862
11441
+ 20863
11442
+ 20867
11443
+ 20868
11444
+ 20869
11445
+ 20871
11446
+ 20874
11447
+ 20878
11448
+ 20881
11449
+ 20884
11450
+ 20885
11451
+ 20888
11452
+ 20889
11453
+ 20890
11454
+ 20892
11455
+ 20894
11456
+ 20898
11457
+ 20903
11458
+ 20905
11459
+ 20906
11460
+ 20908
11461
+ 20910
11462
+ 20911
11463
+ 20912
11464
+ 20914
11465
+ 20916
11466
+ 20919
11467
+ 20921
11468
+ 20925
11469
+ 20927
11470
+ 20928
11471
+ 20929
11472
+ 20934
11473
+ 20935
11474
+ 20944
11475
+ 20945
11476
+ 20946
11477
+ 20948
11478
+ 20949
11479
+ 20950
11480
+ 20951
11481
+ 20954
11482
+ 20955
11483
+ 20957
11484
+ 20958
11485
+ 20963
11486
+ 20964
11487
+ 20967
11488
+ 20971
11489
+ 20976
11490
+ 20987
11491
+ 20988
11492
+ 20989
11493
+ 20990
11494
+ 20993
11495
+ 20996
11496
+ 20997
11497
+ 21006
11498
+ 21009
11499
+ 21010
11500
+ 21015
11501
+ 21017
11502
+ 21020
11503
+ 21022
11504
+ 21025
11505
+ 21032
11506
+ 21033
11507
+ 991
11508
+ 21034
11509
+ 21035
11510
+ 21038
11511
+ 21042
11512
+ 21044
11513
+ 21045
11514
+ 21046
11515
+ 21047
11516
+ 21049
11517
+ 21050
11518
+ 21051
11519
+ 992
11520
+ 21052
11521
+ 21053
11522
+ 21054
11523
+ 21055
11524
+ 21056
11525
+ 21057
11526
+ 21059
11527
+ 21060
11528
+ 21061
11529
+ 21062
11530
+ 21063
11531
+ 21064
11532
+ 21065
11533
+ 21069
11534
+ 21070
11535
+ 21071
11536
+ 21072
11537
+ 21073
11538
+ 21074
11539
+ 21075
11540
+ 21078
11541
+ 21082
11542
+ 21084
11543
+ 21089
11544
+ 21090
11545
+ 21092
11546
+ 21093
11547
+ 21094
11548
+ 21098
11549
+ 21100
11550
+ 21106
11551
+ 21107
11552
+ 21118
11553
+ 21119
11554
+ 21121
11555
+ 21125
11556
+ 21127
11557
+ 21128
11558
+ 21130
11559
+ 21131
11560
+ 21134
11561
+ 21139
11562
+ 21142
11563
+ 21144
11564
+ 21151
11565
+ 21152
11566
+ 21153
11567
+ 21154
11568
+ 21155
11569
+ 21157
11570
+ 21159
11571
+ 21162
11572
+ 21164
11573
+ 21165
11574
+ 993
11575
+ 21171
11576
+ 21174
11577
+ 21175
11578
+ 994
11579
+ 21176
11580
+ 21178
11581
+ 21183
11582
+ 21184
11583
+ 995
11584
+ 21189
11585
+ 21192
11586
+ 21193
11587
+ 996
11588
+ 21199
11589
+ 21200
11590
+ 21201
11591
+ 997
11592
+ 21202
11593
+ 21203
11594
+ 21205
11595
+ 21220
11596
+ 21222
11597
+ 21225
11598
+ 21230
11599
+ 21233
11600
+ 21239
11601
+ 21253
11602
+ 21258
11603
+ 21269
11604
+ 21270
11605
+ 21272
11606
+ 21280
11607
+ 21282
11608
+ 21283
11609
+ 21285
11610
+ 21287
11611
+ 21288
11612
+ 21298
11613
+ 21304
11614
+ 21306
11615
+ 21308
11616
+ 21312
11617
+ 21313
11618
+ 21314
11619
+ 21316
11620
+ 21317
11621
+ 21318
11622
+ 21319
11623
+ 21320
11624
+ 21322
11625
+ 21328
11626
+ 21337
11627
+ 21338
11628
+ 21340
11629
+ 21344
11630
+ 21346
11631
+ 21350
11632
+ 21353
11633
+ 21357
11634
+ 21358
11635
+ 21359
11636
+ 21362
11637
+ 21364
11638
+ 998
11639
+ 21370
11640
+ 21374
11641
+ 21376
11642
+ 21377
11643
+ 21378
11644
+ 21382
11645
+ 21386
11646
+ 21388
11647
+ 21389
11648
+ 21397
11649
+ 21398
11650
+ 21402
11651
+ 21407
11652
+ 21408
11653
+ 21411
11654
+ 21414
11655
+ 21415
11656
+ 21419
11657
+ 21425
11658
+ 21428
11659
+ 21429
11660
+ 21431
11661
+ 21432
11662
+ 21433
11663
+ 21438
11664
+ 21441
11665
+ 21451
11666
+ 21459
11667
+ 21464
11668
+ 21467
11669
+ 21469
11670
+ 21476
11671
+ 21479
11672
+ 21484
11673
+ 21485
11674
+ 21486
11675
+ 21489
11676
+ 21494
11677
+ 21495
11678
+ 21497
11679
+ 21501
11680
+ 21502
11681
+ 21507
11682
+ 21511
11683
+ 21515
11684
+ 21516
11685
+ 21517
11686
+ 21519
11687
+ 21522
11688
+ 21524
11689
+ 21528
11690
+ 21529
11691
+ 21532
11692
+ 21533
11693
+ 21534
11694
+ 21537
11695
+ 21541
11696
+ 21545
11697
+ 21547
11698
+ 21548
11699
+ 21549
11700
+ 21550
11701
+ 21554
11702
+ 21560
11703
+ 21563
11704
+ 21569
11705
+ 21573
11706
+ 21576
11707
+ 21578
11708
+ 21579
11709
+ 21580
11710
+ 21581
11711
+ 21585
11712
+ 21589
11713
+ 21590
11714
+ 21591
11715
+ 21598
11716
+ 21601
11717
+ 21604
11718
+ 21606
11719
+ 21611
11720
+ 21615
11721
+ 21618
11722
+ 21620
11723
+ 21623
11724
+ 21625
11725
+ 21627
11726
+ 21635
11727
+ 21637
11728
+ 21638
11729
+ 21641
11730
+ 21644
11731
+ 21645
11732
+ 21648
11733
+ 21649
11734
+ 21650
11735
+ 21659
11736
+ 21661
11737
+ 21662
11738
+ 21663
11739
+ 21665
11740
+ 21666
11741
+ 21668
11742
+ 21669
11743
+ 21672
11744
+ 21673
11745
+ 21675
11746
+ 21678
11747
+ 21679
11748
+ 21680
11749
+ 21686
11750
+ 21688
11751
+ 21689
11752
+ 21690
11753
+ 21692
11754
+ 21702
11755
+ 21711
11756
+ 21712
11757
+ 21713
11758
+ 21716
11759
+ 21717
11760
+ 21721
11761
+ 21722
11762
+ 21723
11763
+ 21724
11764
+ 21727
11765
+ 21728
11766
+ 21729
11767
+ 21734
11768
+ 21739
11769
+ 21740
11770
+ 21741
11771
+ 21743
11772
+ 21744
11773
+ 21747
11774
+ 21748
11775
+ 21749
11776
+ 21754
11777
+ 21757
11778
+ 21758
11779
+ 21760
11780
+ 21761
11781
+ 21762
11782
+ 21763
11783
+ 21765
11784
+ 21772
11785
+ 21773
11786
+ 21774
11787
+ 21777
11788
+ 21778
11789
+ 21781
11790
+ 21782
11791
+ 21784
11792
+ 21786
11793
+ 21791
11794
+ 21792
11795
+ 21795
11796
+ 21796
11797
+ 21800
11798
+ 21801
11799
+ 21803
11800
+ 21804
11801
+ 21806
11802
+ 21811
11803
+ 21815
11804
+ 21816
11805
+ 999
11806
+ 21817
11807
+ 21818
11808
+ 21822
11809
+ 21825
11810
+ 21826
11811
+ 21827
11812
+ 21828
11813
+ 21829
11814
+ 21830
11815
+ 21831
11816
+ 21833
11817
+ 21835
11818
+ 21837
11819
+ 21838
11820
+ 21840
11821
+ 21841
pytorch-image-models/timm/data/_info/imagenet22k_ms_to_22k_indices.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/timm/data/_info/imagenet22k_synsets.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/timm/data/_info/imagenet_a_synsets.txt ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ n01498041
2
+ n01531178
3
+ n01534433
4
+ n01558993
5
+ n01580077
6
+ n01614925
7
+ n01616318
8
+ n01631663
9
+ n01641577
10
+ n01669191
11
+ n01677366
12
+ n01687978
13
+ n01694178
14
+ n01698640
15
+ n01735189
16
+ n01770081
17
+ n01770393
18
+ n01774750
19
+ n01784675
20
+ n01819313
21
+ n01820546
22
+ n01833805
23
+ n01843383
24
+ n01847000
25
+ n01855672
26
+ n01882714
27
+ n01910747
28
+ n01914609
29
+ n01924916
30
+ n01944390
31
+ n01985128
32
+ n01986214
33
+ n02007558
34
+ n02009912
35
+ n02037110
36
+ n02051845
37
+ n02077923
38
+ n02085620
39
+ n02099601
40
+ n02106550
41
+ n02106662
42
+ n02110958
43
+ n02119022
44
+ n02123394
45
+ n02127052
46
+ n02129165
47
+ n02133161
48
+ n02137549
49
+ n02165456
50
+ n02174001
51
+ n02177972
52
+ n02190166
53
+ n02206856
54
+ n02219486
55
+ n02226429
56
+ n02231487
57
+ n02233338
58
+ n02236044
59
+ n02259212
60
+ n02268443
61
+ n02279972
62
+ n02280649
63
+ n02281787
64
+ n02317335
65
+ n02325366
66
+ n02346627
67
+ n02356798
68
+ n02361337
69
+ n02410509
70
+ n02445715
71
+ n02454379
72
+ n02486410
73
+ n02492035
74
+ n02504458
75
+ n02655020
76
+ n02669723
77
+ n02672831
78
+ n02676566
79
+ n02690373
80
+ n02701002
81
+ n02730930
82
+ n02777292
83
+ n02782093
84
+ n02787622
85
+ n02793495
86
+ n02797295
87
+ n02802426
88
+ n02814860
89
+ n02815834
90
+ n02837789
91
+ n02879718
92
+ n02883205
93
+ n02895154
94
+ n02906734
95
+ n02948072
96
+ n02951358
97
+ n02980441
98
+ n02992211
99
+ n02999410
100
+ n03014705
101
+ n03026506
102
+ n03124043
103
+ n03125729
104
+ n03187595
105
+ n03196217
106
+ n03223299
107
+ n03250847
108
+ n03255030
109
+ n03291819
110
+ n03325584
111
+ n03355925
112
+ n03384352
113
+ n03388043
114
+ n03417042
115
+ n03443371
116
+ n03444034
117
+ n03445924
118
+ n03452741
119
+ n03483316
120
+ n03584829
121
+ n03590841
122
+ n03594945
123
+ n03617480
124
+ n03666591
125
+ n03670208
126
+ n03717622
127
+ n03720891
128
+ n03721384
129
+ n03724870
130
+ n03775071
131
+ n03788195
132
+ n03804744
133
+ n03837869
134
+ n03840681
135
+ n03854065
136
+ n03888257
137
+ n03891332
138
+ n03935335
139
+ n03982430
140
+ n04019541
141
+ n04033901
142
+ n04039381
143
+ n04067472
144
+ n04086273
145
+ n04099969
146
+ n04118538
147
+ n04131690
148
+ n04133789
149
+ n04141076
150
+ n04146614
151
+ n04147183
152
+ n04179913
153
+ n04208210
154
+ n04235860
155
+ n04252077
156
+ n04252225
157
+ n04254120
158
+ n04270147
159
+ n04275548
160
+ n04310018
161
+ n04317175
162
+ n04344873
163
+ n04347754
164
+ n04355338
165
+ n04366367
166
+ n04376876
167
+ n04389033
168
+ n04399382
169
+ n04442312
170
+ n04456115
171
+ n04482393
172
+ n04507155
173
+ n04509417
174
+ n04532670
175
+ n04540053
176
+ n04554684
177
+ n04562935
178
+ n04591713
179
+ n04606251
180
+ n07583066
181
+ n07695742
182
+ n07697313
183
+ n07697537
184
+ n07714990
185
+ n07718472
186
+ n07720875
187
+ n07734744
188
+ n07749582
189
+ n07753592
190
+ n07760859
191
+ n07768694
192
+ n07831146
193
+ n09229709
194
+ n09246464
195
+ n09472597
196
+ n09835506
197
+ n11879895
198
+ n12057211
199
+ n12144580
200
+ n12267677
pytorch-image-models/timm/data/_info/imagenet_r_indices.txt ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 2
3
+ 4
4
+ 6
5
+ 8
6
+ 9
7
+ 11
8
+ 13
9
+ 22
10
+ 23
11
+ 26
12
+ 29
13
+ 31
14
+ 39
15
+ 47
16
+ 63
17
+ 71
18
+ 76
19
+ 79
20
+ 84
21
+ 90
22
+ 94
23
+ 96
24
+ 97
25
+ 99
26
+ 100
27
+ 105
28
+ 107
29
+ 113
30
+ 122
31
+ 125
32
+ 130
33
+ 132
34
+ 144
35
+ 145
36
+ 147
37
+ 148
38
+ 150
39
+ 151
40
+ 155
41
+ 160
42
+ 161
43
+ 162
44
+ 163
45
+ 171
46
+ 172
47
+ 178
48
+ 187
49
+ 195
50
+ 199
51
+ 203
52
+ 207
53
+ 208
54
+ 219
55
+ 231
56
+ 232
57
+ 234
58
+ 235
59
+ 242
60
+ 245
61
+ 247
62
+ 250
63
+ 251
64
+ 254
65
+ 259
66
+ 260
67
+ 263
68
+ 265
69
+ 267
70
+ 269
71
+ 276
72
+ 277
73
+ 281
74
+ 288
75
+ 289
76
+ 291
77
+ 292
78
+ 293
79
+ 296
80
+ 299
81
+ 301
82
+ 308
83
+ 309
84
+ 310
85
+ 311
86
+ 314
87
+ 315
88
+ 319
89
+ 323
90
+ 327
91
+ 330
92
+ 334
93
+ 335
94
+ 337
95
+ 338
96
+ 340
97
+ 341
98
+ 344
99
+ 347
100
+ 353
101
+ 355
102
+ 361
103
+ 362
104
+ 365
105
+ 366
106
+ 367
107
+ 368
108
+ 372
109
+ 388
110
+ 390
111
+ 393
112
+ 397
113
+ 401
114
+ 407
115
+ 413
116
+ 414
117
+ 425
118
+ 428
119
+ 430
120
+ 435
121
+ 437
122
+ 441
123
+ 447
124
+ 448
125
+ 457
126
+ 462
127
+ 463
128
+ 469
129
+ 470
130
+ 471
131
+ 472
132
+ 476
133
+ 483
134
+ 487
135
+ 515
136
+ 546
137
+ 555
138
+ 558
139
+ 570
140
+ 579
141
+ 583
142
+ 587
143
+ 593
144
+ 594
145
+ 596
146
+ 609
147
+ 613
148
+ 617
149
+ 621
150
+ 629
151
+ 637
152
+ 657
153
+ 658
154
+ 701
155
+ 717
156
+ 724
157
+ 763
158
+ 768
159
+ 774
160
+ 776
161
+ 779
162
+ 780
163
+ 787
164
+ 805
165
+ 812
166
+ 815
167
+ 820
168
+ 824
169
+ 833
170
+ 847
171
+ 852
172
+ 866
173
+ 875
174
+ 883
175
+ 889
176
+ 895
177
+ 907
178
+ 928
179
+ 931
180
+ 932
181
+ 933
182
+ 934
183
+ 936
184
+ 937
185
+ 943
186
+ 945
187
+ 947
188
+ 948
189
+ 949
190
+ 951
191
+ 953
192
+ 954
193
+ 957
194
+ 963
195
+ 965
196
+ 967
197
+ 980
198
+ 981
199
+ 983
200
+ 988
pytorch-image-models/timm/data/_info/imagenet_r_synsets.txt ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ n01443537
2
+ n01484850
3
+ n01494475
4
+ n01498041
5
+ n01514859
6
+ n01518878
7
+ n01531178
8
+ n01534433
9
+ n01614925
10
+ n01616318
11
+ n01630670
12
+ n01632777
13
+ n01644373
14
+ n01677366
15
+ n01694178
16
+ n01748264
17
+ n01770393
18
+ n01774750
19
+ n01784675
20
+ n01806143
21
+ n01820546
22
+ n01833805
23
+ n01843383
24
+ n01847000
25
+ n01855672
26
+ n01860187
27
+ n01882714
28
+ n01910747
29
+ n01944390
30
+ n01983481
31
+ n01986214
32
+ n02007558
33
+ n02009912
34
+ n02051845
35
+ n02056570
36
+ n02066245
37
+ n02071294
38
+ n02077923
39
+ n02085620
40
+ n02086240
41
+ n02088094
42
+ n02088238
43
+ n02088364
44
+ n02088466
45
+ n02091032
46
+ n02091134
47
+ n02092339
48
+ n02094433
49
+ n02096585
50
+ n02097298
51
+ n02098286
52
+ n02099601
53
+ n02099712
54
+ n02102318
55
+ n02106030
56
+ n02106166
57
+ n02106550
58
+ n02106662
59
+ n02108089
60
+ n02108915
61
+ n02109525
62
+ n02110185
63
+ n02110341
64
+ n02110958
65
+ n02112018
66
+ n02112137
67
+ n02113023
68
+ n02113624
69
+ n02113799
70
+ n02114367
71
+ n02117135
72
+ n02119022
73
+ n02123045
74
+ n02128385
75
+ n02128757
76
+ n02129165
77
+ n02129604
78
+ n02130308
79
+ n02134084
80
+ n02138441
81
+ n02165456
82
+ n02190166
83
+ n02206856
84
+ n02219486
85
+ n02226429
86
+ n02233338
87
+ n02236044
88
+ n02268443
89
+ n02279972
90
+ n02317335
91
+ n02325366
92
+ n02346627
93
+ n02356798
94
+ n02363005
95
+ n02364673
96
+ n02391049
97
+ n02395406
98
+ n02398521
99
+ n02410509
100
+ n02423022
101
+ n02437616
102
+ n02445715
103
+ n02447366
104
+ n02480495
105
+ n02480855
106
+ n02481823
107
+ n02483362
108
+ n02486410
109
+ n02510455
110
+ n02526121
111
+ n02607072
112
+ n02655020
113
+ n02672831
114
+ n02701002
115
+ n02749479
116
+ n02769748
117
+ n02793495
118
+ n02797295
119
+ n02802426
120
+ n02808440
121
+ n02814860
122
+ n02823750
123
+ n02841315
124
+ n02843684
125
+ n02883205
126
+ n02906734
127
+ n02909870
128
+ n02939185
129
+ n02948072
130
+ n02950826
131
+ n02951358
132
+ n02966193
133
+ n02980441
134
+ n02992529
135
+ n03124170
136
+ n03272010
137
+ n03345487
138
+ n03372029
139
+ n03424325
140
+ n03452741
141
+ n03467068
142
+ n03481172
143
+ n03494278
144
+ n03495258
145
+ n03498962
146
+ n03594945
147
+ n03602883
148
+ n03630383
149
+ n03649909
150
+ n03676483
151
+ n03710193
152
+ n03773504
153
+ n03775071
154
+ n03888257
155
+ n03930630
156
+ n03947888
157
+ n04086273
158
+ n04118538
159
+ n04133789
160
+ n04141076
161
+ n04146614
162
+ n04147183
163
+ n04192698
164
+ n04254680
165
+ n04266014
166
+ n04275548
167
+ n04310018
168
+ n04325704
169
+ n04347754
170
+ n04389033
171
+ n04409515
172
+ n04465501
173
+ n04487394
174
+ n04522168
175
+ n04536866
176
+ n04552348
177
+ n04591713
178
+ n07614500
179
+ n07693725
180
+ n07695742
181
+ n07697313
182
+ n07697537
183
+ n07714571
184
+ n07714990
185
+ n07718472
186
+ n07720875
187
+ n07734744
188
+ n07742313
189
+ n07745940
190
+ n07749582
191
+ n07753275
192
+ n07753592
193
+ n07768694
194
+ n07873807
195
+ n07880968
196
+ n07920052
197
+ n09472597
198
+ n09835506
199
+ n10565667
200
+ n12267677
pytorch-image-models/timm/data/_info/imagenet_real_labels.json ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/timm/data/_info/imagenet_synset_to_definition.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/timm/data/_info/imagenet_synset_to_lemma.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch-image-models/timm/data/_info/imagenet_synsets.txt ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ n01440764
2
+ n01443537
3
+ n01484850
4
+ n01491361
5
+ n01494475
6
+ n01496331
7
+ n01498041
8
+ n01514668
9
+ n01514859
10
+ n01518878
11
+ n01530575
12
+ n01531178
13
+ n01532829
14
+ n01534433
15
+ n01537544
16
+ n01558993
17
+ n01560419
18
+ n01580077
19
+ n01582220
20
+ n01592084
21
+ n01601694
22
+ n01608432
23
+ n01614925
24
+ n01616318
25
+ n01622779
26
+ n01629819
27
+ n01630670
28
+ n01631663
29
+ n01632458
30
+ n01632777
31
+ n01641577
32
+ n01644373
33
+ n01644900
34
+ n01664065
35
+ n01665541
36
+ n01667114
37
+ n01667778
38
+ n01669191
39
+ n01675722
40
+ n01677366
41
+ n01682714
42
+ n01685808
43
+ n01687978
44
+ n01688243
45
+ n01689811
46
+ n01692333
47
+ n01693334
48
+ n01694178
49
+ n01695060
50
+ n01697457
51
+ n01698640
52
+ n01704323
53
+ n01728572
54
+ n01728920
55
+ n01729322
56
+ n01729977
57
+ n01734418
58
+ n01735189
59
+ n01737021
60
+ n01739381
61
+ n01740131
62
+ n01742172
63
+ n01744401
64
+ n01748264
65
+ n01749939
66
+ n01751748
67
+ n01753488
68
+ n01755581
69
+ n01756291
70
+ n01768244
71
+ n01770081
72
+ n01770393
73
+ n01773157
74
+ n01773549
75
+ n01773797
76
+ n01774384
77
+ n01774750
78
+ n01775062
79
+ n01776313
80
+ n01784675
81
+ n01795545
82
+ n01796340
83
+ n01797886
84
+ n01798484
85
+ n01806143
86
+ n01806567
87
+ n01807496
88
+ n01817953
89
+ n01818515
90
+ n01819313
91
+ n01820546
92
+ n01824575
93
+ n01828970
94
+ n01829413
95
+ n01833805
96
+ n01843065
97
+ n01843383
98
+ n01847000
99
+ n01855032
100
+ n01855672
101
+ n01860187
102
+ n01871265
103
+ n01872401
104
+ n01873310
105
+ n01877812
106
+ n01882714
107
+ n01883070
108
+ n01910747
109
+ n01914609
110
+ n01917289
111
+ n01924916
112
+ n01930112
113
+ n01943899
114
+ n01944390
115
+ n01945685
116
+ n01950731
117
+ n01955084
118
+ n01968897
119
+ n01978287
120
+ n01978455
121
+ n01980166
122
+ n01981276
123
+ n01983481
124
+ n01984695
125
+ n01985128
126
+ n01986214
127
+ n01990800
128
+ n02002556
129
+ n02002724
130
+ n02006656
131
+ n02007558
132
+ n02009229
133
+ n02009912
134
+ n02011460
135
+ n02012849
136
+ n02013706
137
+ n02017213
138
+ n02018207
139
+ n02018795
140
+ n02025239
141
+ n02027492
142
+ n02028035
143
+ n02033041
144
+ n02037110
145
+ n02051845
146
+ n02056570
147
+ n02058221
148
+ n02066245
149
+ n02071294
150
+ n02074367
151
+ n02077923
152
+ n02085620
153
+ n02085782
154
+ n02085936
155
+ n02086079
156
+ n02086240
157
+ n02086646
158
+ n02086910
159
+ n02087046
160
+ n02087394
161
+ n02088094
162
+ n02088238
163
+ n02088364
164
+ n02088466
165
+ n02088632
166
+ n02089078
167
+ n02089867
168
+ n02089973
169
+ n02090379
170
+ n02090622
171
+ n02090721
172
+ n02091032
173
+ n02091134
174
+ n02091244
175
+ n02091467
176
+ n02091635
177
+ n02091831
178
+ n02092002
179
+ n02092339
180
+ n02093256
181
+ n02093428
182
+ n02093647
183
+ n02093754
184
+ n02093859
185
+ n02093991
186
+ n02094114
187
+ n02094258
188
+ n02094433
189
+ n02095314
190
+ n02095570
191
+ n02095889
192
+ n02096051
193
+ n02096177
194
+ n02096294
195
+ n02096437
196
+ n02096585
197
+ n02097047
198
+ n02097130
199
+ n02097209
200
+ n02097298
201
+ n02097474
202
+ n02097658
203
+ n02098105
204
+ n02098286
205
+ n02098413
206
+ n02099267
207
+ n02099429
208
+ n02099601
209
+ n02099712
210
+ n02099849
211
+ n02100236
212
+ n02100583
213
+ n02100735
214
+ n02100877
215
+ n02101006
216
+ n02101388
217
+ n02101556
218
+ n02102040
219
+ n02102177
220
+ n02102318
221
+ n02102480
222
+ n02102973
223
+ n02104029
224
+ n02104365
225
+ n02105056
226
+ n02105162
227
+ n02105251
228
+ n02105412
229
+ n02105505
230
+ n02105641
231
+ n02105855
232
+ n02106030
233
+ n02106166
234
+ n02106382
235
+ n02106550
236
+ n02106662
237
+ n02107142
238
+ n02107312
239
+ n02107574
240
+ n02107683
241
+ n02107908
242
+ n02108000
243
+ n02108089
244
+ n02108422
245
+ n02108551
246
+ n02108915
247
+ n02109047
248
+ n02109525
249
+ n02109961
250
+ n02110063
251
+ n02110185
252
+ n02110341
253
+ n02110627
254
+ n02110806
255
+ n02110958
256
+ n02111129
257
+ n02111277
258
+ n02111500
259
+ n02111889
260
+ n02112018
261
+ n02112137
262
+ n02112350
263
+ n02112706
264
+ n02113023
265
+ n02113186
266
+ n02113624
267
+ n02113712
268
+ n02113799
269
+ n02113978
270
+ n02114367
271
+ n02114548
272
+ n02114712
273
+ n02114855
274
+ n02115641
275
+ n02115913
276
+ n02116738
277
+ n02117135
278
+ n02119022
279
+ n02119789
280
+ n02120079
281
+ n02120505
282
+ n02123045
283
+ n02123159
284
+ n02123394
285
+ n02123597
286
+ n02124075
287
+ n02125311
288
+ n02127052
289
+ n02128385
290
+ n02128757
291
+ n02128925
292
+ n02129165
293
+ n02129604
294
+ n02130308
295
+ n02132136
296
+ n02133161
297
+ n02134084
298
+ n02134418
299
+ n02137549
300
+ n02138441
301
+ n02165105
302
+ n02165456
303
+ n02167151
304
+ n02168699
305
+ n02169497
306
+ n02172182
307
+ n02174001
308
+ n02177972
309
+ n02190166
310
+ n02206856
311
+ n02219486
312
+ n02226429
313
+ n02229544
314
+ n02231487
315
+ n02233338
316
+ n02236044
317
+ n02256656
318
+ n02259212
319
+ n02264363
320
+ n02268443
321
+ n02268853
322
+ n02276258
323
+ n02277742
324
+ n02279972
325
+ n02280649
326
+ n02281406
327
+ n02281787
328
+ n02317335
329
+ n02319095
330
+ n02321529
331
+ n02325366
332
+ n02326432
333
+ n02328150
334
+ n02342885
335
+ n02346627
336
+ n02356798
337
+ n02361337
338
+ n02363005
339
+ n02364673
340
+ n02389026
341
+ n02391049
342
+ n02395406
343
+ n02396427
344
+ n02397096
345
+ n02398521
346
+ n02403003
347
+ n02408429
348
+ n02410509
349
+ n02412080
350
+ n02415577
351
+ n02417914
352
+ n02422106
353
+ n02422699
354
+ n02423022
355
+ n02437312
356
+ n02437616
357
+ n02441942
358
+ n02442845
359
+ n02443114
360
+ n02443484
361
+ n02444819
362
+ n02445715
363
+ n02447366
364
+ n02454379
365
+ n02457408
366
+ n02480495
367
+ n02480855
368
+ n02481823
369
+ n02483362
370
+ n02483708
371
+ n02484975
372
+ n02486261
373
+ n02486410
374
+ n02487347
375
+ n02488291
376
+ n02488702
377
+ n02489166
378
+ n02490219
379
+ n02492035
380
+ n02492660
381
+ n02493509
382
+ n02493793
383
+ n02494079
384
+ n02497673
385
+ n02500267
386
+ n02504013
387
+ n02504458
388
+ n02509815
389
+ n02510455
390
+ n02514041
391
+ n02526121
392
+ n02536864
393
+ n02606052
394
+ n02607072
395
+ n02640242
396
+ n02641379
397
+ n02643566
398
+ n02655020
399
+ n02666196
400
+ n02667093
401
+ n02669723
402
+ n02672831
403
+ n02676566
404
+ n02687172
405
+ n02690373
406
+ n02692877
407
+ n02699494
408
+ n02701002
409
+ n02704792
410
+ n02708093
411
+ n02727426
412
+ n02730930
413
+ n02747177
414
+ n02749479
415
+ n02769748
416
+ n02776631
417
+ n02777292
418
+ n02782093
419
+ n02783161
420
+ n02786058
421
+ n02787622
422
+ n02788148
423
+ n02790996
424
+ n02791124
425
+ n02791270
426
+ n02793495
427
+ n02794156
428
+ n02795169
429
+ n02797295
430
+ n02799071
431
+ n02802426
432
+ n02804414
433
+ n02804610
434
+ n02807133
435
+ n02808304
436
+ n02808440
437
+ n02814533
438
+ n02814860
439
+ n02815834
440
+ n02817516
441
+ n02823428
442
+ n02823750
443
+ n02825657
444
+ n02834397
445
+ n02835271
446
+ n02837789
447
+ n02840245
448
+ n02841315
449
+ n02843684
450
+ n02859443
451
+ n02860847
452
+ n02865351
453
+ n02869837
454
+ n02870880
455
+ n02871525
456
+ n02877765
457
+ n02879718
458
+ n02883205
459
+ n02892201
460
+ n02892767
461
+ n02894605
462
+ n02895154
463
+ n02906734
464
+ n02909870
465
+ n02910353
466
+ n02916936
467
+ n02917067
468
+ n02927161
469
+ n02930766
470
+ n02939185
471
+ n02948072
472
+ n02950826
473
+ n02951358
474
+ n02951585
475
+ n02963159
476
+ n02965783
477
+ n02966193
478
+ n02966687
479
+ n02971356
480
+ n02974003
481
+ n02977058
482
+ n02978881
483
+ n02979186
484
+ n02980441
485
+ n02981792
486
+ n02988304
487
+ n02992211
488
+ n02992529
489
+ n02999410
490
+ n03000134
491
+ n03000247
492
+ n03000684
493
+ n03014705
494
+ n03016953
495
+ n03017168
496
+ n03018349
497
+ n03026506
498
+ n03028079
499
+ n03032252
500
+ n03041632
501
+ n03042490
502
+ n03045698
503
+ n03047690
504
+ n03062245
505
+ n03063599
506
+ n03063689
507
+ n03065424
508
+ n03075370
509
+ n03085013
510
+ n03089624
511
+ n03095699
512
+ n03100240
513
+ n03109150
514
+ n03110669
515
+ n03124043
516
+ n03124170
517
+ n03125729
518
+ n03126707
519
+ n03127747
520
+ n03127925
521
+ n03131574
522
+ n03133878
523
+ n03134739
524
+ n03141823
525
+ n03146219
526
+ n03160309
527
+ n03179701
528
+ n03180011
529
+ n03187595
530
+ n03188531
531
+ n03196217
532
+ n03197337
533
+ n03201208
534
+ n03207743
535
+ n03207941
536
+ n03208938
537
+ n03216828
538
+ n03218198
539
+ n03220513
540
+ n03223299
541
+ n03240683
542
+ n03249569
543
+ n03250847
544
+ n03255030
545
+ n03259280
546
+ n03271574
547
+ n03272010
548
+ n03272562
549
+ n03290653
550
+ n03291819
551
+ n03297495
552
+ n03314780
553
+ n03325584
554
+ n03337140
555
+ n03344393
556
+ n03345487
557
+ n03347037
558
+ n03355925
559
+ n03372029
560
+ n03376595
561
+ n03379051
562
+ n03384352
563
+ n03388043
564
+ n03388183
565
+ n03388549
566
+ n03393912
567
+ n03394916
568
+ n03400231
569
+ n03404251
570
+ n03417042
571
+ n03424325
572
+ n03425413
573
+ n03443371
574
+ n03444034
575
+ n03445777
576
+ n03445924
577
+ n03447447
578
+ n03447721
579
+ n03450230
580
+ n03452741
581
+ n03457902
582
+ n03459775
583
+ n03461385
584
+ n03467068
585
+ n03476684
586
+ n03476991
587
+ n03478589
588
+ n03481172
589
+ n03482405
590
+ n03483316
591
+ n03485407
592
+ n03485794
593
+ n03492542
594
+ n03494278
595
+ n03495258
596
+ n03496892
597
+ n03498962
598
+ n03527444
599
+ n03529860
600
+ n03530642
601
+ n03532672
602
+ n03534580
603
+ n03535780
604
+ n03538406
605
+ n03544143
606
+ n03584254
607
+ n03584829
608
+ n03590841
609
+ n03594734
610
+ n03594945
611
+ n03595614
612
+ n03598930
613
+ n03599486
614
+ n03602883
615
+ n03617480
616
+ n03623198
617
+ n03627232
618
+ n03630383
619
+ n03633091
620
+ n03637318
621
+ n03642806
622
+ n03649909
623
+ n03657121
624
+ n03658185
625
+ n03661043
626
+ n03662601
627
+ n03666591
628
+ n03670208
629
+ n03673027
630
+ n03676483
631
+ n03680355
632
+ n03690938
633
+ n03691459
634
+ n03692522
635
+ n03697007
636
+ n03706229
637
+ n03709823
638
+ n03710193
639
+ n03710637
640
+ n03710721
641
+ n03717622
642
+ n03720891
643
+ n03721384
644
+ n03724870
645
+ n03729826
646
+ n03733131
647
+ n03733281
648
+ n03733805
649
+ n03742115
650
+ n03743016
651
+ n03759954
652
+ n03761084
653
+ n03763968
654
+ n03764736
655
+ n03769881
656
+ n03770439
657
+ n03770679
658
+ n03773504
659
+ n03775071
660
+ n03775546
661
+ n03776460
662
+ n03777568
663
+ n03777754
664
+ n03781244
665
+ n03782006
666
+ n03785016
667
+ n03786901
668
+ n03787032
669
+ n03788195
670
+ n03788365
671
+ n03791053
672
+ n03792782
673
+ n03792972
674
+ n03793489
675
+ n03794056
676
+ n03796401
677
+ n03803284
678
+ n03804744
679
+ n03814639
680
+ n03814906
681
+ n03825788
682
+ n03832673
683
+ n03837869
684
+ n03838899
685
+ n03840681
686
+ n03841143
687
+ n03843555
688
+ n03854065
689
+ n03857828
690
+ n03866082
691
+ n03868242
692
+ n03868863
693
+ n03871628
694
+ n03873416
695
+ n03874293
696
+ n03874599
697
+ n03876231
698
+ n03877472
699
+ n03877845
700
+ n03884397
701
+ n03887697
702
+ n03888257
703
+ n03888605
704
+ n03891251
705
+ n03891332
706
+ n03895866
707
+ n03899768
708
+ n03902125
709
+ n03903868
710
+ n03908618
711
+ n03908714
712
+ n03916031
713
+ n03920288
714
+ n03924679
715
+ n03929660
716
+ n03929855
717
+ n03930313
718
+ n03930630
719
+ n03933933
720
+ n03935335
721
+ n03937543
722
+ n03938244
723
+ n03942813
724
+ n03944341
725
+ n03947888
726
+ n03950228
727
+ n03954731
728
+ n03956157
729
+ n03958227
730
+ n03961711
731
+ n03967562
732
+ n03970156
733
+ n03976467
734
+ n03976657
735
+ n03977966
736
+ n03980874
737
+ n03982430
738
+ n03983396
739
+ n03991062
740
+ n03992509
741
+ n03995372
742
+ n03998194
743
+ n04004767
744
+ n04005630
745
+ n04008634
746
+ n04009552
747
+ n04019541
748
+ n04023962
749
+ n04026417
750
+ n04033901
751
+ n04033995
752
+ n04037443
753
+ n04039381
754
+ n04040759
755
+ n04041544
756
+ n04044716
757
+ n04049303
758
+ n04065272
759
+ n04067472
760
+ n04069434
761
+ n04070727
762
+ n04074963
763
+ n04081281
764
+ n04086273
765
+ n04090263
766
+ n04099969
767
+ n04111531
768
+ n04116512
769
+ n04118538
770
+ n04118776
771
+ n04120489
772
+ n04125021
773
+ n04127249
774
+ n04131690
775
+ n04133789
776
+ n04136333
777
+ n04141076
778
+ n04141327
779
+ n04141975
780
+ n04146614
781
+ n04147183
782
+ n04149813
783
+ n04152593
784
+ n04153751
785
+ n04154565
786
+ n04162706
787
+ n04179913
788
+ n04192698
789
+ n04200800
790
+ n04201297
791
+ n04204238
792
+ n04204347
793
+ n04208210
794
+ n04209133
795
+ n04209239
796
+ n04228054
797
+ n04229816
798
+ n04235860
799
+ n04238763
800
+ n04239074
801
+ n04243546
802
+ n04251144
803
+ n04252077
804
+ n04252225
805
+ n04254120
806
+ n04254680
807
+ n04254777
808
+ n04258138
809
+ n04259630
810
+ n04263257
811
+ n04264628
812
+ n04265275
813
+ n04266014
814
+ n04270147
815
+ n04273569
816
+ n04275548
817
+ n04277352
818
+ n04285008
819
+ n04286575
820
+ n04296562
821
+ n04310018
822
+ n04311004
823
+ n04311174
824
+ n04317175
825
+ n04325704
826
+ n04326547
827
+ n04328186
828
+ n04330267
829
+ n04332243
830
+ n04335435
831
+ n04336792
832
+ n04344873
833
+ n04346328
834
+ n04347754
835
+ n04350905
836
+ n04355338
837
+ n04355933
838
+ n04356056
839
+ n04357314
840
+ n04366367
841
+ n04367480
842
+ n04370456
843
+ n04371430
844
+ n04371774
845
+ n04372370
846
+ n04376876
847
+ n04380533
848
+ n04389033
849
+ n04392985
850
+ n04398044
851
+ n04399382
852
+ n04404412
853
+ n04409515
854
+ n04417672
855
+ n04418357
856
+ n04423845
857
+ n04428191
858
+ n04429376
859
+ n04435653
860
+ n04442312
861
+ n04443257
862
+ n04447861
863
+ n04456115
864
+ n04458633
865
+ n04461696
866
+ n04462240
867
+ n04465501
868
+ n04467665
869
+ n04476259
870
+ n04479046
871
+ n04482393
872
+ n04483307
873
+ n04485082
874
+ n04486054
875
+ n04487081
876
+ n04487394
877
+ n04493381
878
+ n04501370
879
+ n04505470
880
+ n04507155
881
+ n04509417
882
+ n04515003
883
+ n04517823
884
+ n04522168
885
+ n04523525
886
+ n04525038
887
+ n04525305
888
+ n04532106
889
+ n04532670
890
+ n04536866
891
+ n04540053
892
+ n04542943
893
+ n04548280
894
+ n04548362
895
+ n04550184
896
+ n04552348
897
+ n04553703
898
+ n04554684
899
+ n04557648
900
+ n04560804
901
+ n04562935
902
+ n04579145
903
+ n04579432
904
+ n04584207
905
+ n04589890
906
+ n04590129
907
+ n04591157
908
+ n04591713
909
+ n04592741
910
+ n04596742
911
+ n04597913
912
+ n04599235
913
+ n04604644
914
+ n04606251
915
+ n04612504
916
+ n04613696
917
+ n06359193
918
+ n06596364
919
+ n06785654
920
+ n06794110
921
+ n06874185
922
+ n07248320
923
+ n07565083
924
+ n07579787
925
+ n07583066
926
+ n07584110
927
+ n07590611
928
+ n07613480
929
+ n07614500
930
+ n07615774
931
+ n07684084
932
+ n07693725
933
+ n07695742
934
+ n07697313
935
+ n07697537
936
+ n07711569
937
+ n07714571
938
+ n07714990
939
+ n07715103
940
+ n07716358
941
+ n07716906
942
+ n07717410
943
+ n07717556
944
+ n07718472
945
+ n07718747
946
+ n07720875
947
+ n07730033
948
+ n07734744
949
+ n07742313
950
+ n07745940
951
+ n07747607
952
+ n07749582
953
+ n07753113
954
+ n07753275
955
+ n07753592
956
+ n07754684
957
+ n07760859
958
+ n07768694
959
+ n07802026
960
+ n07831146
961
+ n07836838
962
+ n07860988
963
+ n07871810
964
+ n07873807
965
+ n07875152
966
+ n07880968
967
+ n07892512
968
+ n07920052
969
+ n07930864
970
+ n07932039
971
+ n09193705
972
+ n09229709
973
+ n09246464
974
+ n09256479
975
+ n09288635
976
+ n09332890
977
+ n09399592
978
+ n09421951
979
+ n09428293
980
+ n09468604
981
+ n09472597
982
+ n09835506
983
+ n10148035
984
+ n10565667
985
+ n11879895
986
+ n11939491
987
+ n12057211
988
+ n12144580
989
+ n12267677
990
+ n12620546
991
+ n12768682
992
+ n12985857
993
+ n12998815
994
+ n13037406
995
+ n13040303
996
+ n13044778
997
+ n13052670
998
+ n13054560
999
+ n13133613
1000
+ n15075141
pytorch-image-models/timm/data/_info/mini_imagenet_indices.txt ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 12
2
+ 15
3
+ 51
4
+ 64
5
+ 70
6
+ 96
7
+ 99
8
+ 107
9
+ 111
10
+ 121
11
+ 149
12
+ 166
13
+ 173
14
+ 176
15
+ 207
16
+ 214
17
+ 228
18
+ 242
19
+ 244
20
+ 245
21
+ 249
22
+ 251
23
+ 256
24
+ 266
25
+ 270
26
+ 275
27
+ 279
28
+ 291
29
+ 299
30
+ 301
31
+ 306
32
+ 310
33
+ 359
34
+ 364
35
+ 392
36
+ 403
37
+ 412
38
+ 427
39
+ 440
40
+ 454
41
+ 471
42
+ 476
43
+ 478
44
+ 484
45
+ 494
46
+ 502
47
+ 503
48
+ 507
49
+ 519
50
+ 524
51
+ 533
52
+ 538
53
+ 546
54
+ 553
55
+ 556
56
+ 567
57
+ 569
58
+ 584
59
+ 597
60
+ 602
61
+ 604
62
+ 605
63
+ 629
64
+ 655
65
+ 657
66
+ 659
67
+ 683
68
+ 687
69
+ 702
70
+ 709
71
+ 713
72
+ 735
73
+ 741
74
+ 758
75
+ 779
76
+ 781
77
+ 800
78
+ 801
79
+ 807
80
+ 815
81
+ 819
82
+ 847
83
+ 854
84
+ 858
85
+ 860
86
+ 880
87
+ 881
88
+ 883
89
+ 909
90
+ 912
91
+ 914
92
+ 919
93
+ 925
94
+ 927
95
+ 934
96
+ 950
97
+ 972
98
+ 973
99
+ 997
100
+ 998
pytorch-image-models/timm/data/_info/mini_imagenet_synsets.txt ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ n01532829
2
+ n01558993
3
+ n01704323
4
+ n01749939
5
+ n01770081
6
+ n01843383
7
+ n01855672
8
+ n01910747
9
+ n01930112
10
+ n01981276
11
+ n02074367
12
+ n02089867
13
+ n02091244
14
+ n02091831
15
+ n02099601
16
+ n02101006
17
+ n02105505
18
+ n02108089
19
+ n02108551
20
+ n02108915
21
+ n02110063
22
+ n02110341
23
+ n02111277
24
+ n02113712
25
+ n02114548
26
+ n02116738
27
+ n02120079
28
+ n02129165
29
+ n02138441
30
+ n02165456
31
+ n02174001
32
+ n02219486
33
+ n02443484
34
+ n02457408
35
+ n02606052
36
+ n02687172
37
+ n02747177
38
+ n02795169
39
+ n02823428
40
+ n02871525
41
+ n02950826
42
+ n02966193
43
+ n02971356
44
+ n02981792
45
+ n03017168
46
+ n03047690
47
+ n03062245
48
+ n03075370
49
+ n03127925
50
+ n03146219
51
+ n03207743
52
+ n03220513
53
+ n03272010
54
+ n03337140
55
+ n03347037
56
+ n03400231
57
+ n03417042
58
+ n03476684
59
+ n03527444
60
+ n03535780
61
+ n03544143
62
+ n03584254
63
+ n03676483
64
+ n03770439
65
+ n03773504
66
+ n03775546
67
+ n03838899
68
+ n03854065
69
+ n03888605
70
+ n03908618
71
+ n03924679
72
+ n03980874
73
+ n03998194
74
+ n04067472
75
+ n04146614
76
+ n04149813
77
+ n04243546
78
+ n04251144
79
+ n04258138
80
+ n04275548
81
+ n04296562
82
+ n04389033
83
+ n04418357
84
+ n04435653
85
+ n04443257
86
+ n04509417
87
+ n04515003
88
+ n04522168
89
+ n04596742
90
+ n04604644
91
+ n04612504
92
+ n06794110
93
+ n07584110
94
+ n07613480
95
+ n07697537
96
+ n07747607
97
+ n09246464
98
+ n09256479
99
+ n13054560
100
+ n13133613
pytorch-image-models/timm/data/auto_augment.py ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ AutoAugment, RandAugment, AugMix, and 3-Augment for PyTorch
2
+
3
+ This code implements the searched ImageNet policies with various tweaks and improvements and
4
+ does not include any of the search code.
5
+
6
+ AA and RA Implementation adapted from:
7
+ https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py
8
+
9
+ AugMix adapted from:
10
+ https://github.com/google-research/augmix
11
+
12
+ 3-Augment based on: https://github.com/facebookresearch/deit/blob/main/README_revenge.md
13
+
14
+ Papers:
15
+ AutoAugment: Learning Augmentation Policies from Data - https://arxiv.org/abs/1805.09501
16
+ Learning Data Augmentation Strategies for Object Detection - https://arxiv.org/abs/1906.11172
17
+ RandAugment: Practical automated data augmentation... - https://arxiv.org/abs/1909.13719
18
+ AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - https://arxiv.org/abs/1912.02781
19
+ 3-Augment: DeiT III: Revenge of the ViT - https://arxiv.org/abs/2204.07118
20
+
21
+ Hacked together by / Copyright 2019, Ross Wightman
22
+ """
23
+ import random
24
+ import math
25
+ import re
26
+ from functools import partial
27
+ from typing import Dict, List, Optional, Union
28
+
29
+ from PIL import Image, ImageOps, ImageEnhance, ImageChops, ImageFilter
30
+ import PIL
31
+ import numpy as np
32
+
33
+
34
+ _PIL_VER = tuple([int(x) for x in PIL.__version__.split('.')[:2]])
35
+
36
+ _FILL = (128, 128, 128)
37
+
38
+ _LEVEL_DENOM = 10. # denominator for conversion from 'Mx' magnitude scale to fractional aug level for op arguments
39
+
40
+ _HPARAMS_DEFAULT = dict(
41
+ translate_const=250,
42
+ img_mean=_FILL,
43
+ )
44
+
45
+ if hasattr(Image, "Resampling"):
46
+ _RANDOM_INTERPOLATION = (Image.Resampling.BILINEAR, Image.Resampling.BICUBIC)
47
+ _DEFAULT_INTERPOLATION = Image.Resampling.BICUBIC
48
+ else:
49
+ _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)
50
+ _DEFAULT_INTERPOLATION = Image.BICUBIC
51
+
52
+
53
+ def _interpolation(kwargs):
54
+ interpolation = kwargs.pop('resample', _DEFAULT_INTERPOLATION)
55
+ if isinstance(interpolation, (list, tuple)):
56
+ return random.choice(interpolation)
57
+ return interpolation
58
+
59
+
60
+ def _check_args_tf(kwargs):
61
+ if 'fillcolor' in kwargs and _PIL_VER < (5, 0):
62
+ kwargs.pop('fillcolor')
63
+ kwargs['resample'] = _interpolation(kwargs)
64
+
65
+
66
+ def shear_x(img, factor, **kwargs):
67
+ _check_args_tf(kwargs)
68
+ return img.transform(img.size, Image.AFFINE, (1, factor, 0, 0, 1, 0), **kwargs)
69
+
70
+
71
+ def shear_y(img, factor, **kwargs):
72
+ _check_args_tf(kwargs)
73
+ return img.transform(img.size, Image.AFFINE, (1, 0, 0, factor, 1, 0), **kwargs)
74
+
75
+
76
+ def translate_x_rel(img, pct, **kwargs):
77
+ pixels = pct * img.size[0]
78
+ _check_args_tf(kwargs)
79
+ return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs)
80
+
81
+
82
+ def translate_y_rel(img, pct, **kwargs):
83
+ pixels = pct * img.size[1]
84
+ _check_args_tf(kwargs)
85
+ return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs)
86
+
87
+
88
+ def translate_x_abs(img, pixels, **kwargs):
89
+ _check_args_tf(kwargs)
90
+ return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs)
91
+
92
+
93
+ def translate_y_abs(img, pixels, **kwargs):
94
+ _check_args_tf(kwargs)
95
+ return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs)
96
+
97
+
98
+ def rotate(img, degrees, **kwargs):
99
+ _check_args_tf(kwargs)
100
+ if _PIL_VER >= (5, 2):
101
+ return img.rotate(degrees, **kwargs)
102
+ if _PIL_VER >= (5, 0):
103
+ w, h = img.size
104
+ post_trans = (0, 0)
105
+ rotn_center = (w / 2.0, h / 2.0)
106
+ angle = -math.radians(degrees)
107
+ matrix = [
108
+ round(math.cos(angle), 15),
109
+ round(math.sin(angle), 15),
110
+ 0.0,
111
+ round(-math.sin(angle), 15),
112
+ round(math.cos(angle), 15),
113
+ 0.0,
114
+ ]
115
+
116
+ def transform(x, y, matrix):
117
+ (a, b, c, d, e, f) = matrix
118
+ return a * x + b * y + c, d * x + e * y + f
119
+
120
+ matrix[2], matrix[5] = transform(
121
+ -rotn_center[0] - post_trans[0], -rotn_center[1] - post_trans[1], matrix
122
+ )
123
+ matrix[2] += rotn_center[0]
124
+ matrix[5] += rotn_center[1]
125
+ return img.transform(img.size, Image.AFFINE, matrix, **kwargs)
126
+ return img.rotate(degrees, resample=kwargs['resample'])
127
+
128
+
129
+ def auto_contrast(img, **__):
130
+ return ImageOps.autocontrast(img)
131
+
132
+
133
+ def invert(img, **__):
134
+ return ImageOps.invert(img)
135
+
136
+
137
+ def equalize(img, **__):
138
+ return ImageOps.equalize(img)
139
+
140
+
141
+ def solarize(img, thresh, **__):
142
+ return ImageOps.solarize(img, thresh)
143
+
144
+
145
+ def solarize_add(img, add, thresh=128, **__):
146
+ lut = []
147
+ for i in range(256):
148
+ if i < thresh:
149
+ lut.append(min(255, i + add))
150
+ else:
151
+ lut.append(i)
152
+
153
+ if img.mode in ("L", "RGB"):
154
+ if img.mode == "RGB" and len(lut) == 256:
155
+ lut = lut + lut + lut
156
+ return img.point(lut)
157
+
158
+ return img
159
+
160
+
161
+ def posterize(img, bits_to_keep, **__):
162
+ if bits_to_keep >= 8:
163
+ return img
164
+ return ImageOps.posterize(img, bits_to_keep)
165
+
166
+
167
+ def contrast(img, factor, **__):
168
+ return ImageEnhance.Contrast(img).enhance(factor)
169
+
170
+
171
+ def color(img, factor, **__):
172
+ return ImageEnhance.Color(img).enhance(factor)
173
+
174
+
175
+ def brightness(img, factor, **__):
176
+ return ImageEnhance.Brightness(img).enhance(factor)
177
+
178
+
179
+ def sharpness(img, factor, **__):
180
+ return ImageEnhance.Sharpness(img).enhance(factor)
181
+
182
+
183
+ def gaussian_blur(img, factor, **__):
184
+ img = img.filter(ImageFilter.GaussianBlur(radius=factor))
185
+ return img
186
+
187
+
188
+ def gaussian_blur_rand(img, factor, **__):
189
+ radius_min = 0.1
190
+ radius_max = 2.0
191
+ img = img.filter(ImageFilter.GaussianBlur(radius=random.uniform(radius_min, radius_max * factor)))
192
+ return img
193
+
194
+
195
+ def desaturate(img, factor, **_):
196
+ factor = min(1., max(0., 1. - factor))
197
+ # enhance factor 0 = grayscale, 1.0 = no-change
198
+ return ImageEnhance.Color(img).enhance(factor)
199
+
200
+
201
+ def _randomly_negate(v):
202
+ """With 50% prob, negate the value"""
203
+ return -v if random.random() > 0.5 else v
204
+
205
+
206
+ def _rotate_level_to_arg(level, _hparams):
207
+ # range [-30, 30]
208
+ level = (level / _LEVEL_DENOM) * 30.
209
+ level = _randomly_negate(level)
210
+ return level,
211
+
212
+
213
+ def _enhance_level_to_arg(level, _hparams):
214
+ # range [0.1, 1.9]
215
+ return (level / _LEVEL_DENOM) * 1.8 + 0.1,
216
+
217
+
218
+ def _enhance_increasing_level_to_arg(level, _hparams):
219
+ # the 'no change' level is 1.0, moving away from that towards 0. or 2.0 increases the enhancement blend
220
+ # range [0.1, 1.9] if level <= _LEVEL_DENOM
221
+ level = (level / _LEVEL_DENOM) * .9
222
+ level = max(0.1, 1.0 + _randomly_negate(level)) # keep it >= 0.1
223
+ return level,
224
+
225
+
226
+ def _minmax_level_to_arg(level, _hparams, min_val=0., max_val=1.0, clamp=True):
227
+ level = (level / _LEVEL_DENOM)
228
+ level = min_val + (max_val - min_val) * level
229
+ if clamp:
230
+ level = max(min_val, min(max_val, level))
231
+ return level,
232
+
233
+
234
+ def _shear_level_to_arg(level, _hparams):
235
+ # range [-0.3, 0.3]
236
+ level = (level / _LEVEL_DENOM) * 0.3
237
+ level = _randomly_negate(level)
238
+ return level,
239
+
240
+
241
+ def _translate_abs_level_to_arg(level, hparams):
242
+ translate_const = hparams['translate_const']
243
+ level = (level / _LEVEL_DENOM) * float(translate_const)
244
+ level = _randomly_negate(level)
245
+ return level,
246
+
247
+
248
+ def _translate_rel_level_to_arg(level, hparams):
249
+ # default range [-0.45, 0.45]
250
+ translate_pct = hparams.get('translate_pct', 0.45)
251
+ level = (level / _LEVEL_DENOM) * translate_pct
252
+ level = _randomly_negate(level)
253
+ return level,
254
+
255
+
256
+ def _posterize_level_to_arg(level, _hparams):
257
+ # As per Tensorflow TPU EfficientNet impl
258
+ # range [0, 4], 'keep 0 up to 4 MSB of original image'
259
+ # intensity/severity of augmentation decreases with level
260
+ return int((level / _LEVEL_DENOM) * 4),
261
+
262
+
263
+ def _posterize_increasing_level_to_arg(level, hparams):
264
+ # As per Tensorflow models research and UDA impl
265
+ # range [4, 0], 'keep 4 down to 0 MSB of original image',
266
+ # intensity/severity of augmentation increases with level
267
+ return 4 - _posterize_level_to_arg(level, hparams)[0],
268
+
269
+
270
+ def _posterize_original_level_to_arg(level, _hparams):
271
+ # As per original AutoAugment paper description
272
+ # range [4, 8], 'keep 4 up to 8 MSB of image'
273
+ # intensity/severity of augmentation decreases with level
274
+ return int((level / _LEVEL_DENOM) * 4) + 4,
275
+
276
+
277
+ def _solarize_level_to_arg(level, _hparams):
278
+ # range [0, 256]
279
+ # intensity/severity of augmentation decreases with level
280
+ return min(256, int((level / _LEVEL_DENOM) * 256)),
281
+
282
+
283
+ def _solarize_increasing_level_to_arg(level, _hparams):
284
+ # range [0, 256]
285
+ # intensity/severity of augmentation increases with level
286
+ return 256 - _solarize_level_to_arg(level, _hparams)[0],
287
+
288
+
289
+ def _solarize_add_level_to_arg(level, _hparams):
290
+ # range [0, 110]
291
+ return min(128, int((level / _LEVEL_DENOM) * 110)),
292
+
293
+
294
+ LEVEL_TO_ARG = {
295
+ 'AutoContrast': None,
296
+ 'Equalize': None,
297
+ 'Invert': None,
298
+ 'Rotate': _rotate_level_to_arg,
299
+ # There are several variations of the posterize level scaling in various Tensorflow/Google repositories/papers
300
+ 'Posterize': _posterize_level_to_arg,
301
+ 'PosterizeIncreasing': _posterize_increasing_level_to_arg,
302
+ 'PosterizeOriginal': _posterize_original_level_to_arg,
303
+ 'Solarize': _solarize_level_to_arg,
304
+ 'SolarizeIncreasing': _solarize_increasing_level_to_arg,
305
+ 'SolarizeAdd': _solarize_add_level_to_arg,
306
+ 'Color': _enhance_level_to_arg,
307
+ 'ColorIncreasing': _enhance_increasing_level_to_arg,
308
+ 'Contrast': _enhance_level_to_arg,
309
+ 'ContrastIncreasing': _enhance_increasing_level_to_arg,
310
+ 'Brightness': _enhance_level_to_arg,
311
+ 'BrightnessIncreasing': _enhance_increasing_level_to_arg,
312
+ 'Sharpness': _enhance_level_to_arg,
313
+ 'SharpnessIncreasing': _enhance_increasing_level_to_arg,
314
+ 'ShearX': _shear_level_to_arg,
315
+ 'ShearY': _shear_level_to_arg,
316
+ 'TranslateX': _translate_abs_level_to_arg,
317
+ 'TranslateY': _translate_abs_level_to_arg,
318
+ 'TranslateXRel': _translate_rel_level_to_arg,
319
+ 'TranslateYRel': _translate_rel_level_to_arg,
320
+ 'Desaturate': partial(_minmax_level_to_arg, min_val=0.5, max_val=1.0),
321
+ 'GaussianBlur': partial(_minmax_level_to_arg, min_val=0.1, max_val=2.0),
322
+ 'GaussianBlurRand': _minmax_level_to_arg,
323
+ }
324
+
325
+
326
+ NAME_TO_OP = {
327
+ 'AutoContrast': auto_contrast,
328
+ 'Equalize': equalize,
329
+ 'Invert': invert,
330
+ 'Rotate': rotate,
331
+ 'Posterize': posterize,
332
+ 'PosterizeIncreasing': posterize,
333
+ 'PosterizeOriginal': posterize,
334
+ 'Solarize': solarize,
335
+ 'SolarizeIncreasing': solarize,
336
+ 'SolarizeAdd': solarize_add,
337
+ 'Color': color,
338
+ 'ColorIncreasing': color,
339
+ 'Contrast': contrast,
340
+ 'ContrastIncreasing': contrast,
341
+ 'Brightness': brightness,
342
+ 'BrightnessIncreasing': brightness,
343
+ 'Sharpness': sharpness,
344
+ 'SharpnessIncreasing': sharpness,
345
+ 'ShearX': shear_x,
346
+ 'ShearY': shear_y,
347
+ 'TranslateX': translate_x_abs,
348
+ 'TranslateY': translate_y_abs,
349
+ 'TranslateXRel': translate_x_rel,
350
+ 'TranslateYRel': translate_y_rel,
351
+ 'Desaturate': desaturate,
352
+ 'GaussianBlur': gaussian_blur,
353
+ 'GaussianBlurRand': gaussian_blur_rand,
354
+ }
355
+
356
+
357
+ class AugmentOp:
358
+
359
+ def __init__(self, name, prob=0.5, magnitude=10, hparams=None):
360
+ hparams = hparams or _HPARAMS_DEFAULT
361
+ self.name = name
362
+ self.aug_fn = NAME_TO_OP[name]
363
+ self.level_fn = LEVEL_TO_ARG[name]
364
+ self.prob = prob
365
+ self.magnitude = magnitude
366
+ self.hparams = hparams.copy()
367
+ self.kwargs = dict(
368
+ fillcolor=hparams['img_mean'] if 'img_mean' in hparams else _FILL,
369
+ resample=hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION,
370
+ )
371
+
372
+ # If magnitude_std is > 0, we introduce some randomness
373
+ # in the usually fixed policy and sample magnitude from a normal distribution
374
+ # with mean `magnitude` and std-dev of `magnitude_std`.
375
+ # NOTE This is my own hack, being tested, not in papers or reference impls.
376
+ # If magnitude_std is inf, we sample magnitude from a uniform distribution
377
+ self.magnitude_std = self.hparams.get('magnitude_std', 0)
378
+ self.magnitude_max = self.hparams.get('magnitude_max', None)
379
+
380
+ def __call__(self, img):
381
+ if self.prob < 1.0 and random.random() > self.prob:
382
+ return img
383
+ magnitude = self.magnitude
384
+ if self.magnitude_std > 0:
385
+ # magnitude randomization enabled
386
+ if self.magnitude_std == float('inf'):
387
+ # inf == uniform sampling
388
+ magnitude = random.uniform(0, magnitude)
389
+ elif self.magnitude_std > 0:
390
+ magnitude = random.gauss(magnitude, self.magnitude_std)
391
+ # default upper_bound for the timm RA impl is _LEVEL_DENOM (10)
392
+ # setting magnitude_max overrides this to allow M > 10 (behaviour closer to Google TF RA impl)
393
+ upper_bound = self.magnitude_max or _LEVEL_DENOM
394
+ magnitude = max(0., min(magnitude, upper_bound))
395
+ level_args = self.level_fn(magnitude, self.hparams) if self.level_fn is not None else tuple()
396
+ return self.aug_fn(img, *level_args, **self.kwargs)
397
+
398
+ def __repr__(self):
399
+ fs = self.__class__.__name__ + f'(name={self.name}, p={self.prob}'
400
+ fs += f', m={self.magnitude}, mstd={self.magnitude_std}'
401
+ if self.magnitude_max is not None:
402
+ fs += f', mmax={self.magnitude_max}'
403
+ fs += ')'
404
+ return fs
405
+
406
+
407
+ def auto_augment_policy_v0(hparams):
408
+ # ImageNet v0 policy from TPU EfficientNet impl, cannot find a paper reference.
409
+ policy = [
410
+ [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
411
+ [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
412
+ [('Color', 0.4, 1), ('Rotate', 0.6, 8)],
413
+ [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
414
+ [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
415
+ [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
416
+ [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
417
+ [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
418
+ [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
419
+ [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
420
+ [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
421
+ [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
422
+ [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
423
+ [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
424
+ [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
425
+ [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
426
+ [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
427
+ [('ShearY', 0.8, 0), ('Color', 0.6, 4)],
428
+ [('Color', 1.0, 0), ('Rotate', 0.6, 2)],
429
+ [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
430
+ [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
431
+ [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
432
+ [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)], # This results in black image with Tpu posterize
433
+ [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
434
+ [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
435
+ ]
436
+ pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
437
+ return pc
438
+
439
+
440
+ def auto_augment_policy_v0r(hparams):
441
+ # ImageNet v0 policy from TPU EfficientNet impl, with variation of Posterize used
442
+ # in Google research implementation (number of bits discarded increases with magnitude)
443
+ policy = [
444
+ [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
445
+ [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
446
+ [('Color', 0.4, 1), ('Rotate', 0.6, 8)],
447
+ [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
448
+ [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
449
+ [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
450
+ [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
451
+ [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
452
+ [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
453
+ [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
454
+ [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
455
+ [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
456
+ [('PosterizeIncreasing', 0.4, 6), ('AutoContrast', 0.4, 7)],
457
+ [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
458
+ [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
459
+ [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
460
+ [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
461
+ [('ShearY', 0.8, 0), ('Color', 0.6, 4)],
462
+ [('Color', 1.0, 0), ('Rotate', 0.6, 2)],
463
+ [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
464
+ [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
465
+ [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
466
+ [('PosterizeIncreasing', 0.8, 2), ('Solarize', 0.6, 10)],
467
+ [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
468
+ [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
469
+ ]
470
+ pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
471
+ return pc
472
+
473
+
474
+ def auto_augment_policy_original(hparams):
475
+ # ImageNet policy from https://arxiv.org/abs/1805.09501
476
+ policy = [
477
+ [('PosterizeOriginal', 0.4, 8), ('Rotate', 0.6, 9)],
478
+ [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
479
+ [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
480
+ [('PosterizeOriginal', 0.6, 7), ('PosterizeOriginal', 0.6, 6)],
481
+ [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
482
+ [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
483
+ [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
484
+ [('PosterizeOriginal', 0.8, 5), ('Equalize', 1.0, 2)],
485
+ [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
486
+ [('Equalize', 0.6, 8), ('PosterizeOriginal', 0.4, 6)],
487
+ [('Rotate', 0.8, 8), ('Color', 0.4, 0)],
488
+ [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
489
+ [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
490
+ [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
491
+ [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
492
+ [('Rotate', 0.8, 8), ('Color', 1.0, 2)],
493
+ [('Color', 0.8, 8), ('Solarize', 0.8, 7)],
494
+ [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
495
+ [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
496
+ [('Color', 0.4, 0), ('Equalize', 0.6, 3)],
497
+ [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
498
+ [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
499
+ [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
500
+ [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
501
+ [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
502
+ ]
503
+ pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
504
+ return pc
505
+
506
+
507
+ def auto_augment_policy_originalr(hparams):
508
+ # ImageNet policy from https://arxiv.org/abs/1805.09501 with research posterize variation
509
+ policy = [
510
+ [('PosterizeIncreasing', 0.4, 8), ('Rotate', 0.6, 9)],
511
+ [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
512
+ [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
513
+ [('PosterizeIncreasing', 0.6, 7), ('PosterizeIncreasing', 0.6, 6)],
514
+ [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
515
+ [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
516
+ [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
517
+ [('PosterizeIncreasing', 0.8, 5), ('Equalize', 1.0, 2)],
518
+ [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
519
+ [('Equalize', 0.6, 8), ('PosterizeIncreasing', 0.4, 6)],
520
+ [('Rotate', 0.8, 8), ('Color', 0.4, 0)],
521
+ [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
522
+ [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
523
+ [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
524
+ [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
525
+ [('Rotate', 0.8, 8), ('Color', 1.0, 2)],
526
+ [('Color', 0.8, 8), ('Solarize', 0.8, 7)],
527
+ [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
528
+ [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
529
+ [('Color', 0.4, 0), ('Equalize', 0.6, 3)],
530
+ [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
531
+ [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
532
+ [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
533
+ [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
534
+ [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
535
+ ]
536
+ pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
537
+ return pc
538
+
539
+
540
+ def auto_augment_policy_3a(hparams):
541
+ policy = [
542
+ [('Solarize', 1.0, 5)], # 128 solarize threshold @ 5 magnitude
543
+ [('Desaturate', 1.0, 10)], # grayscale at 10 magnitude
544
+ [('GaussianBlurRand', 1.0, 10)],
545
+ ]
546
+ pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
547
+ return pc
548
+
549
+
550
+ def auto_augment_policy(name='v0', hparams=None):
551
+ hparams = hparams or _HPARAMS_DEFAULT
552
+ if name == 'original':
553
+ return auto_augment_policy_original(hparams)
554
+ if name == 'originalr':
555
+ return auto_augment_policy_originalr(hparams)
556
+ if name == 'v0':
557
+ return auto_augment_policy_v0(hparams)
558
+ if name == 'v0r':
559
+ return auto_augment_policy_v0r(hparams)
560
+ if name == '3a':
561
+ return auto_augment_policy_3a(hparams)
562
+ assert False, f'Unknown AA policy {name}'
563
+
564
+
565
+ class AutoAugment:
566
+
567
+ def __init__(self, policy):
568
+ self.policy = policy
569
+
570
+ def __call__(self, img):
571
+ sub_policy = random.choice(self.policy)
572
+ for op in sub_policy:
573
+ img = op(img)
574
+ return img
575
+
576
+ def __repr__(self):
577
+ fs = self.__class__.__name__ + '(policy='
578
+ for p in self.policy:
579
+ fs += '\n\t['
580
+ fs += ', '.join([str(op) for op in p])
581
+ fs += ']'
582
+ fs += ')'
583
+ return fs
584
+
585
+
586
+ def auto_augment_transform(config_str: str, hparams: Optional[Dict] = None):
587
+ """ Create a AutoAugment transform
588
+
589
+ Args:
590
+ config_str: String defining configuration of auto augmentation. Consists of multiple sections separated by
591
+ dashes ('-').
592
+ The first section defines the AutoAugment policy (one of 'v0', 'v0r', 'original', 'originalr').
593
+ While the remaining sections define other arguments
594
+ * 'mstd' - float std deviation of magnitude noise applied
595
+ hparams: Other hparams (kwargs) for the AutoAugmentation scheme
596
+
597
+ Returns:
598
+ A PyTorch compatible Transform
599
+
600
+ Examples::
601
+
602
+ 'original-mstd0.5' results in AutoAugment with original policy, magnitude_std 0.5
603
+ """
604
+ config = config_str.split('-')
605
+ policy_name = config[0]
606
+ config = config[1:]
607
+ for c in config:
608
+ cs = re.split(r'(\d.*)', c)
609
+ if len(cs) < 2:
610
+ continue
611
+ key, val = cs[:2]
612
+ if key == 'mstd':
613
+ # noise param injected via hparams for now
614
+ hparams.setdefault('magnitude_std', float(val))
615
+ else:
616
+ assert False, 'Unknown AutoAugment config section'
617
+ aa_policy = auto_augment_policy(policy_name, hparams=hparams)
618
+ return AutoAugment(aa_policy)
619
+
620
+
621
+ _RAND_TRANSFORMS = [
622
+ 'AutoContrast',
623
+ 'Equalize',
624
+ 'Invert',
625
+ 'Rotate',
626
+ 'Posterize',
627
+ 'Solarize',
628
+ 'SolarizeAdd',
629
+ 'Color',
630
+ 'Contrast',
631
+ 'Brightness',
632
+ 'Sharpness',
633
+ 'ShearX',
634
+ 'ShearY',
635
+ 'TranslateXRel',
636
+ 'TranslateYRel',
637
+ # 'Cutout' # NOTE I've implement this as random erasing separately
638
+ ]
639
+
640
+
641
+ _RAND_INCREASING_TRANSFORMS = [
642
+ 'AutoContrast',
643
+ 'Equalize',
644
+ 'Invert',
645
+ 'Rotate',
646
+ 'PosterizeIncreasing',
647
+ 'SolarizeIncreasing',
648
+ 'SolarizeAdd',
649
+ 'ColorIncreasing',
650
+ 'ContrastIncreasing',
651
+ 'BrightnessIncreasing',
652
+ 'SharpnessIncreasing',
653
+ 'ShearX',
654
+ 'ShearY',
655
+ 'TranslateXRel',
656
+ 'TranslateYRel',
657
+ # 'Cutout' # NOTE I've implement this as random erasing separately
658
+ ]
659
+
660
+
661
+ _RAND_3A = [
662
+ 'SolarizeIncreasing',
663
+ 'Desaturate',
664
+ 'GaussianBlur',
665
+ ]
666
+
667
+
668
+ _RAND_WEIGHTED_3A = {
669
+ 'SolarizeIncreasing': 6,
670
+ 'Desaturate': 6,
671
+ 'GaussianBlur': 6,
672
+ 'Rotate': 3,
673
+ 'ShearX': 2,
674
+ 'ShearY': 2,
675
+ 'PosterizeIncreasing': 1,
676
+ 'AutoContrast': 1,
677
+ 'ColorIncreasing': 1,
678
+ 'SharpnessIncreasing': 1,
679
+ 'ContrastIncreasing': 1,
680
+ 'BrightnessIncreasing': 1,
681
+ 'Equalize': 1,
682
+ 'Invert': 1,
683
+ }
684
+
685
+
686
+ # These experimental weights are based loosely on the relative improvements mentioned in paper.
687
+ # They may not result in increased performance, but could likely be tuned to so.
688
+ _RAND_WEIGHTED_0 = {
689
+ 'Rotate': 3,
690
+ 'ShearX': 2,
691
+ 'ShearY': 2,
692
+ 'TranslateXRel': 1,
693
+ 'TranslateYRel': 1,
694
+ 'ColorIncreasing': .25,
695
+ 'SharpnessIncreasing': 0.25,
696
+ 'AutoContrast': 0.25,
697
+ 'SolarizeIncreasing': .05,
698
+ 'SolarizeAdd': .05,
699
+ 'ContrastIncreasing': .05,
700
+ 'BrightnessIncreasing': .05,
701
+ 'Equalize': .05,
702
+ 'PosterizeIncreasing': 0.05,
703
+ 'Invert': 0.05,
704
+ }
705
+
706
+
707
+ def _get_weighted_transforms(transforms: Dict):
708
+ transforms, probs = list(zip(*transforms.items()))
709
+ probs = np.array(probs)
710
+ probs = probs / np.sum(probs)
711
+ return transforms, probs
712
+
713
+
714
+ def rand_augment_choices(name: str, increasing=True):
715
+ if name == 'weights':
716
+ return _RAND_WEIGHTED_0
717
+ if name == '3aw':
718
+ return _RAND_WEIGHTED_3A
719
+ if name == '3a':
720
+ return _RAND_3A
721
+ return _RAND_INCREASING_TRANSFORMS if increasing else _RAND_TRANSFORMS
722
+
723
+
724
+ def rand_augment_ops(
725
+ magnitude: Union[int, float] = 10,
726
+ prob: float = 0.5,
727
+ hparams: Optional[Dict] = None,
728
+ transforms: Optional[Union[Dict, List]] = None,
729
+ ):
730
+ hparams = hparams or _HPARAMS_DEFAULT
731
+ transforms = transforms or _RAND_TRANSFORMS
732
+ return [AugmentOp(
733
+ name, prob=prob, magnitude=magnitude, hparams=hparams) for name in transforms]
734
+
735
+
736
+ class RandAugment:
737
+ def __init__(self, ops, num_layers=2, choice_weights=None):
738
+ self.ops = ops
739
+ self.num_layers = num_layers
740
+ self.choice_weights = choice_weights
741
+
742
+ def __call__(self, img):
743
+ # no replacement when using weighted choice
744
+ ops = np.random.choice(
745
+ self.ops,
746
+ self.num_layers,
747
+ replace=self.choice_weights is None,
748
+ p=self.choice_weights,
749
+ )
750
+ for op in ops:
751
+ img = op(img)
752
+ return img
753
+
754
+ def __repr__(self):
755
+ fs = self.__class__.__name__ + f'(n={self.num_layers}, ops='
756
+ for op in self.ops:
757
+ fs += f'\n\t{op}'
758
+ fs += ')'
759
+ return fs
760
+
761
+
762
+ def rand_augment_transform(
763
+ config_str: str,
764
+ hparams: Optional[Dict] = None,
765
+ transforms: Optional[Union[str, Dict, List]] = None,
766
+ ):
767
+ """ Create a RandAugment transform
768
+
769
+ Args:
770
+ config_str (str): String defining configuration of random augmentation. Consists of multiple sections separated
771
+ by dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand').
772
+ The remaining sections, not order specific determine
773
+ * 'm' - integer magnitude of rand augment
774
+ * 'n' - integer num layers (number of transform ops selected per image)
775
+ * 'p' - float probability of applying each layer (default 0.5)
776
+ * 'mstd' - float std deviation of magnitude noise applied, or uniform sampling if infinity (or > 100)
777
+ * 'mmax' - set upper bound for magnitude to something other than default of _LEVEL_DENOM (10)
778
+ * 'inc' - integer (bool), use augmentations that increase in severity with magnitude (default: 0)
779
+ * 't' - str name of transform set to use
780
+ hparams (dict): Other hparams (kwargs) for the RandAugmentation scheme
781
+
782
+ Returns:
783
+ A PyTorch compatible Transform
784
+
785
+ Examples::
786
+
787
+ 'rand-m9-n3-mstd0.5' results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5
788
+
789
+ 'rand-mstd1-tweights' results in mag std 1.0, weighted transforms, default mag of 10 and num_layers 2
790
+
791
+ """
792
+ magnitude = _LEVEL_DENOM # default to _LEVEL_DENOM for magnitude (currently 10)
793
+ num_layers = 2 # default to 2 ops per image
794
+ increasing = False
795
+ prob = 0.5
796
+ config = config_str.split('-')
797
+ assert config[0] == 'rand'
798
+ config = config[1:]
799
+ for c in config:
800
+ if c.startswith('t'):
801
+ # NOTE old 'w' key was removed, 'w0' is not equivalent to 'tweights'
802
+ val = str(c[1:])
803
+ if transforms is None:
804
+ transforms = val
805
+ else:
806
+ # numeric options
807
+ cs = re.split(r'(\d.*)', c)
808
+ if len(cs) < 2:
809
+ continue
810
+ key, val = cs[:2]
811
+ if key == 'mstd':
812
+ # noise param / randomization of magnitude values
813
+ mstd = float(val)
814
+ if mstd > 100:
815
+ # use uniform sampling in 0 to magnitude if mstd is > 100
816
+ mstd = float('inf')
817
+ hparams.setdefault('magnitude_std', mstd)
818
+ elif key == 'mmax':
819
+ # clip magnitude between [0, mmax] instead of default [0, _LEVEL_DENOM]
820
+ hparams.setdefault('magnitude_max', int(val))
821
+ elif key == 'inc':
822
+ if bool(val):
823
+ increasing = True
824
+ elif key == 'm':
825
+ magnitude = int(val)
826
+ elif key == 'n':
827
+ num_layers = int(val)
828
+ elif key == 'p':
829
+ prob = float(val)
830
+ else:
831
+ assert False, 'Unknown RandAugment config section'
832
+
833
+ if isinstance(transforms, str):
834
+ transforms = rand_augment_choices(transforms, increasing=increasing)
835
+ elif transforms is None:
836
+ transforms = _RAND_INCREASING_TRANSFORMS if increasing else _RAND_TRANSFORMS
837
+
838
+ choice_weights = None
839
+ if isinstance(transforms, Dict):
840
+ transforms, choice_weights = _get_weighted_transforms(transforms)
841
+
842
+ ra_ops = rand_augment_ops(magnitude=magnitude, prob=prob, hparams=hparams, transforms=transforms)
843
+ return RandAugment(ra_ops, num_layers, choice_weights=choice_weights)
844
+
845
+
846
+ _AUGMIX_TRANSFORMS = [
847
+ 'AutoContrast',
848
+ 'ColorIncreasing', # not in paper
849
+ 'ContrastIncreasing', # not in paper
850
+ 'BrightnessIncreasing', # not in paper
851
+ 'SharpnessIncreasing', # not in paper
852
+ 'Equalize',
853
+ 'Rotate',
854
+ 'PosterizeIncreasing',
855
+ 'SolarizeIncreasing',
856
+ 'ShearX',
857
+ 'ShearY',
858
+ 'TranslateXRel',
859
+ 'TranslateYRel',
860
+ ]
861
+
862
+
863
+ def augmix_ops(
864
+ magnitude: Union[int, float] = 10,
865
+ hparams: Optional[Dict] = None,
866
+ transforms: Optional[Union[str, Dict, List]] = None,
867
+ ):
868
+ hparams = hparams or _HPARAMS_DEFAULT
869
+ transforms = transforms or _AUGMIX_TRANSFORMS
870
+ return [AugmentOp(
871
+ name,
872
+ prob=1.0,
873
+ magnitude=magnitude,
874
+ hparams=hparams
875
+ ) for name in transforms]
876
+
877
+
878
+ class AugMixAugment:
879
+ """ AugMix Transform
880
+ Adapted and improved from impl here: https://github.com/google-research/augmix/blob/master/imagenet.py
881
+ From paper: 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty -
882
+ https://arxiv.org/abs/1912.02781
883
+ """
884
+ def __init__(self, ops, alpha=1., width=3, depth=-1, blended=False):
885
+ self.ops = ops
886
+ self.alpha = alpha
887
+ self.width = width
888
+ self.depth = depth
889
+ self.blended = blended # blended mode is faster but not well tested
890
+
891
+ def _calc_blended_weights(self, ws, m):
892
+ ws = ws * m
893
+ cump = 1.
894
+ rws = []
895
+ for w in ws[::-1]:
896
+ alpha = w / cump
897
+ cump *= (1 - alpha)
898
+ rws.append(alpha)
899
+ return np.array(rws[::-1], dtype=np.float32)
900
+
901
+ def _apply_blended(self, img, mixing_weights, m):
902
+ # This is my first crack and implementing a slightly faster mixed augmentation. Instead
903
+ # of accumulating the mix for each chain in a Numpy array and then blending with original,
904
+ # it recomputes the blending coefficients and applies one PIL image blend per chain.
905
+ # TODO the results appear in the right ballpark but they differ by more than rounding.
906
+ img_orig = img.copy()
907
+ ws = self._calc_blended_weights(mixing_weights, m)
908
+ for w in ws:
909
+ depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
910
+ ops = np.random.choice(self.ops, depth, replace=True)
911
+ img_aug = img_orig # no ops are in-place, deep copy not necessary
912
+ for op in ops:
913
+ img_aug = op(img_aug)
914
+ img = Image.blend(img, img_aug, w)
915
+ return img
916
+
917
+ def _apply_basic(self, img, mixing_weights, m):
918
+ # This is a literal adaptation of the paper/official implementation without normalizations and
919
+ # PIL <-> Numpy conversions between every op. It is still quite CPU compute heavy compared to the
920
+ # typical augmentation transforms, could use a GPU / Kornia implementation.
921
+ img_shape = img.size[0], img.size[1], len(img.getbands())
922
+ mixed = np.zeros(img_shape, dtype=np.float32)
923
+ for mw in mixing_weights:
924
+ depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
925
+ ops = np.random.choice(self.ops, depth, replace=True)
926
+ img_aug = img # no ops are in-place, deep copy not necessary
927
+ for op in ops:
928
+ img_aug = op(img_aug)
929
+ mixed += mw * np.asarray(img_aug, dtype=np.float32)
930
+ np.clip(mixed, 0, 255., out=mixed)
931
+ mixed = Image.fromarray(mixed.astype(np.uint8))
932
+ return Image.blend(img, mixed, m)
933
+
934
+ def __call__(self, img):
935
+ mixing_weights = np.float32(np.random.dirichlet([self.alpha] * self.width))
936
+ m = np.float32(np.random.beta(self.alpha, self.alpha))
937
+ if self.blended:
938
+ mixed = self._apply_blended(img, mixing_weights, m)
939
+ else:
940
+ mixed = self._apply_basic(img, mixing_weights, m)
941
+ return mixed
942
+
943
+ def __repr__(self):
944
+ fs = self.__class__.__name__ + f'(alpha={self.alpha}, width={self.width}, depth={self.depth}, ops='
945
+ for op in self.ops:
946
+ fs += f'\n\t{op}'
947
+ fs += ')'
948
+ return fs
949
+
950
+
951
+ def augment_and_mix_transform(config_str: str, hparams: Optional[Dict] = None):
952
+ """ Create AugMix PyTorch transform
953
+
954
+ Args:
955
+ config_str (str): String defining configuration of random augmentation. Consists of multiple sections separated
956
+ by dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand').
957
+ The remaining sections, not order sepecific determine
958
+ 'm' - integer magnitude (severity) of augmentation mix (default: 3)
959
+ 'w' - integer width of augmentation chain (default: 3)
960
+ 'd' - integer depth of augmentation chain (-1 is random [1, 3], default: -1)
961
+ 'b' - integer (bool), blend each branch of chain into end result without a final blend, less CPU (default: 0)
962
+ 'mstd' - float std deviation of magnitude noise applied (default: 0)
963
+ Ex 'augmix-m5-w4-d2' results in AugMix with severity 5, chain width 4, chain depth 2
964
+
965
+ hparams: Other hparams (kwargs) for the Augmentation transforms
966
+
967
+ Returns:
968
+ A PyTorch compatible Transform
969
+ """
970
+ magnitude = 3
971
+ width = 3
972
+ depth = -1
973
+ alpha = 1.
974
+ blended = False
975
+ config = config_str.split('-')
976
+ assert config[0] == 'augmix'
977
+ config = config[1:]
978
+ for c in config:
979
+ cs = re.split(r'(\d.*)', c)
980
+ if len(cs) < 2:
981
+ continue
982
+ key, val = cs[:2]
983
+ if key == 'mstd':
984
+ # noise param injected via hparams for now
985
+ hparams.setdefault('magnitude_std', float(val))
986
+ elif key == 'm':
987
+ magnitude = int(val)
988
+ elif key == 'w':
989
+ width = int(val)
990
+ elif key == 'd':
991
+ depth = int(val)
992
+ elif key == 'a':
993
+ alpha = float(val)
994
+ elif key == 'b':
995
+ blended = bool(val)
996
+ else:
997
+ assert False, 'Unknown AugMix config section'
998
+ hparams.setdefault('magnitude_std', float('inf')) # default to uniform sampling (if not set via mstd arg)
999
+ ops = augmix_ops(magnitude=magnitude, hparams=hparams)
1000
+ return AugMixAugment(ops, alpha=alpha, width=width, depth=depth, blended=blended)
pytorch-image-models/timm/data/config.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from .constants import *
3
+
4
+
5
+ _logger = logging.getLogger(__name__)
6
+
7
+
8
+ def resolve_data_config(
9
+ args=None,
10
+ pretrained_cfg=None,
11
+ model=None,
12
+ use_test_size=False,
13
+ verbose=False
14
+ ):
15
+ assert model or args or pretrained_cfg, "At least one of model, args, or pretrained_cfg required for data config."
16
+ args = args or {}
17
+ pretrained_cfg = pretrained_cfg or {}
18
+ if not pretrained_cfg and model is not None and hasattr(model, 'pretrained_cfg'):
19
+ pretrained_cfg = model.pretrained_cfg
20
+ data_config = {}
21
+
22
+ # Resolve input/image size
23
+ in_chans = 3
24
+ if args.get('in_chans', None) is not None:
25
+ in_chans = args['in_chans']
26
+ elif args.get('chans', None) is not None:
27
+ in_chans = args['chans']
28
+
29
+ input_size = (in_chans, 224, 224)
30
+ if args.get('input_size', None) is not None:
31
+ assert isinstance(args['input_size'], (tuple, list))
32
+ assert len(args['input_size']) == 3
33
+ input_size = tuple(args['input_size'])
34
+ in_chans = input_size[0] # input_size overrides in_chans
35
+ elif args.get('img_size', None) is not None:
36
+ assert isinstance(args['img_size'], int)
37
+ input_size = (in_chans, args['img_size'], args['img_size'])
38
+ else:
39
+ if use_test_size and pretrained_cfg.get('test_input_size', None) is not None:
40
+ input_size = pretrained_cfg['test_input_size']
41
+ elif pretrained_cfg.get('input_size', None) is not None:
42
+ input_size = pretrained_cfg['input_size']
43
+ data_config['input_size'] = input_size
44
+
45
+ # resolve interpolation method
46
+ data_config['interpolation'] = 'bicubic'
47
+ if args.get('interpolation', None):
48
+ data_config['interpolation'] = args['interpolation']
49
+ elif pretrained_cfg.get('interpolation', None):
50
+ data_config['interpolation'] = pretrained_cfg['interpolation']
51
+
52
+ # resolve dataset + model mean for normalization
53
+ data_config['mean'] = IMAGENET_DEFAULT_MEAN
54
+ if args.get('mean', None) is not None:
55
+ mean = tuple(args['mean'])
56
+ if len(mean) == 1:
57
+ mean = tuple(list(mean) * in_chans)
58
+ else:
59
+ assert len(mean) == in_chans
60
+ data_config['mean'] = mean
61
+ elif pretrained_cfg.get('mean', None):
62
+ data_config['mean'] = pretrained_cfg['mean']
63
+
64
+ # resolve dataset + model std deviation for normalization
65
+ data_config['std'] = IMAGENET_DEFAULT_STD
66
+ if args.get('std', None) is not None:
67
+ std = tuple(args['std'])
68
+ if len(std) == 1:
69
+ std = tuple(list(std) * in_chans)
70
+ else:
71
+ assert len(std) == in_chans
72
+ data_config['std'] = std
73
+ elif pretrained_cfg.get('std', None):
74
+ data_config['std'] = pretrained_cfg['std']
75
+
76
+ # resolve default inference crop
77
+ crop_pct = DEFAULT_CROP_PCT
78
+ if args.get('crop_pct', None):
79
+ crop_pct = args['crop_pct']
80
+ else:
81
+ if use_test_size and pretrained_cfg.get('test_crop_pct', None):
82
+ crop_pct = pretrained_cfg['test_crop_pct']
83
+ elif pretrained_cfg.get('crop_pct', None):
84
+ crop_pct = pretrained_cfg['crop_pct']
85
+ data_config['crop_pct'] = crop_pct
86
+
87
+ # resolve default crop percentage
88
+ crop_mode = DEFAULT_CROP_MODE
89
+ if args.get('crop_mode', None):
90
+ crop_mode = args['crop_mode']
91
+ elif pretrained_cfg.get('crop_mode', None):
92
+ crop_mode = pretrained_cfg['crop_mode']
93
+ data_config['crop_mode'] = crop_mode
94
+
95
+ if verbose:
96
+ _logger.info('Data processing configuration for current model + dataset:')
97
+ for n, v in data_config.items():
98
+ _logger.info('\t%s: %s' % (n, str(v)))
99
+
100
+ return data_config
101
+
102
+
103
+ def resolve_model_data_config(
104
+ model,
105
+ args=None,
106
+ pretrained_cfg=None,
107
+ use_test_size=False,
108
+ verbose=False,
109
+ ):
110
+ """ Resolve Model Data Config
111
+ This is equivalent to resolve_data_config() but with arguments re-ordered to put model first.
112
+
113
+ Args:
114
+ model (nn.Module): the model instance
115
+ args (dict): command line arguments / configuration in dict form (overrides pretrained_cfg)
116
+ pretrained_cfg (dict): pretrained model config (overrides pretrained_cfg attached to model)
117
+ use_test_size (bool): use the test time input resolution (if one exists) instead of default train resolution
118
+ verbose (bool): enable extra logging of resolved values
119
+
120
+ Returns:
121
+ dictionary of config
122
+ """
123
+ return resolve_data_config(
124
+ args=args,
125
+ pretrained_cfg=pretrained_cfg,
126
+ model=model,
127
+ use_test_size=use_test_size,
128
+ verbose=verbose,
129
+ )
pytorch-image-models/timm/data/constants.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ DEFAULT_CROP_PCT = 0.875
2
+ DEFAULT_CROP_MODE = 'center'
3
+ IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
4
+ IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
5
+ IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
6
+ IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
7
+ IMAGENET_DPN_MEAN = (124 / 255, 117 / 255, 104 / 255)
8
+ IMAGENET_DPN_STD = tuple([1 / (.0167 * 255)] * 3)
9
+ OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073)
10
+ OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
pytorch-image-models/timm/data/dataset.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Quick n Simple Image Folder, Tarfile based DataSet
2
+
3
+ Hacked together by / Copyright 2019, Ross Wightman
4
+ """
5
+ import io
6
+ import logging
7
+ from typing import Optional
8
+
9
+ import torch
10
+ import torch.utils.data as data
11
+ from PIL import Image
12
+
13
+ from .readers import create_reader
14
+
15
+ _logger = logging.getLogger(__name__)
16
+
17
+
18
+ _ERROR_RETRY = 50
19
+
20
+
21
+ class ImageDataset(data.Dataset):
22
+
23
+ def __init__(
24
+ self,
25
+ root,
26
+ reader=None,
27
+ split='train',
28
+ class_map=None,
29
+ load_bytes=False,
30
+ input_img_mode='RGB',
31
+ transform=None,
32
+ target_transform=None,
33
+ **kwargs,
34
+ ):
35
+ if reader is None or isinstance(reader, str):
36
+ reader = create_reader(
37
+ reader or '',
38
+ root=root,
39
+ split=split,
40
+ class_map=class_map,
41
+ **kwargs,
42
+ )
43
+ self.reader = reader
44
+ self.load_bytes = load_bytes
45
+ self.input_img_mode = input_img_mode
46
+ self.transform = transform
47
+ self.target_transform = target_transform
48
+ self._consecutive_errors = 0
49
+
50
+ def __getitem__(self, index):
51
+ img, target = self.reader[index]
52
+
53
+ try:
54
+ img = img.read() if self.load_bytes else Image.open(img)
55
+ except Exception as e:
56
+ _logger.warning(f'Skipped sample (index {index}, file {self.reader.filename(index)}). {str(e)}')
57
+ self._consecutive_errors += 1
58
+ if self._consecutive_errors < _ERROR_RETRY:
59
+ return self.__getitem__((index + 1) % len(self.reader))
60
+ else:
61
+ raise e
62
+ self._consecutive_errors = 0
63
+
64
+ if self.input_img_mode and not self.load_bytes:
65
+ img = img.convert(self.input_img_mode)
66
+ if self.transform is not None:
67
+ img = self.transform(img)
68
+
69
+ if target is None:
70
+ target = -1
71
+ elif self.target_transform is not None:
72
+ target = self.target_transform(target)
73
+
74
+ return img, target
75
+
76
+ def __len__(self):
77
+ return len(self.reader)
78
+
79
+ def filename(self, index, basename=False, absolute=False):
80
+ return self.reader.filename(index, basename, absolute)
81
+
82
+ def filenames(self, basename=False, absolute=False):
83
+ return self.reader.filenames(basename, absolute)
84
+
85
+
86
+ class IterableImageDataset(data.IterableDataset):
87
+
88
+ def __init__(
89
+ self,
90
+ root,
91
+ reader=None,
92
+ split='train',
93
+ class_map=None,
94
+ is_training=False,
95
+ batch_size=1,
96
+ num_samples=None,
97
+ seed=42,
98
+ repeats=0,
99
+ download=False,
100
+ input_img_mode='RGB',
101
+ input_key=None,
102
+ target_key=None,
103
+ transform=None,
104
+ target_transform=None,
105
+ max_steps=None,
106
+ **kwargs,
107
+ ):
108
+ assert reader is not None
109
+ if isinstance(reader, str):
110
+ self.reader = create_reader(
111
+ reader,
112
+ root=root,
113
+ split=split,
114
+ class_map=class_map,
115
+ is_training=is_training,
116
+ batch_size=batch_size,
117
+ num_samples=num_samples,
118
+ seed=seed,
119
+ repeats=repeats,
120
+ download=download,
121
+ input_img_mode=input_img_mode,
122
+ input_key=input_key,
123
+ target_key=target_key,
124
+ max_steps=max_steps,
125
+ **kwargs,
126
+ )
127
+ else:
128
+ self.reader = reader
129
+ self.transform = transform
130
+ self.target_transform = target_transform
131
+ self._consecutive_errors = 0
132
+
133
+ def __iter__(self):
134
+ for img, target in self.reader:
135
+ if self.transform is not None:
136
+ img = self.transform(img)
137
+ if self.target_transform is not None:
138
+ target = self.target_transform(target)
139
+ yield img, target
140
+
141
+ def __len__(self):
142
+ if hasattr(self.reader, '__len__'):
143
+ return len(self.reader)
144
+ else:
145
+ return 0
146
+
147
+ def set_epoch(self, count):
148
+ # TFDS and WDS need external epoch count for deterministic cross process shuffle
149
+ if hasattr(self.reader, 'set_epoch'):
150
+ self.reader.set_epoch(count)
151
+
152
+ def set_loader_cfg(
153
+ self,
154
+ num_workers: Optional[int] = None,
155
+ ):
156
+ # TFDS and WDS readers need # workers for correct # samples estimate before loader processes created
157
+ if hasattr(self.reader, 'set_loader_cfg'):
158
+ self.reader.set_loader_cfg(num_workers=num_workers)
159
+
160
+ def filename(self, index, basename=False, absolute=False):
161
+ assert False, 'Filename lookup by index not supported, use filenames().'
162
+
163
+ def filenames(self, basename=False, absolute=False):
164
+ return self.reader.filenames(basename, absolute)
165
+
166
+
167
+ class AugMixDataset(torch.utils.data.Dataset):
168
+ """Dataset wrapper to perform AugMix or other clean/augmentation mixes"""
169
+
170
+ def __init__(self, dataset, num_splits=2):
171
+ self.augmentation = None
172
+ self.normalize = None
173
+ self.dataset = dataset
174
+ if self.dataset.transform is not None:
175
+ self._set_transforms(self.dataset.transform)
176
+ self.num_splits = num_splits
177
+
178
+ def _set_transforms(self, x):
179
+ assert isinstance(x, (list, tuple)) and len(x) == 3, 'Expecting a tuple/list of 3 transforms'
180
+ self.dataset.transform = x[0]
181
+ self.augmentation = x[1]
182
+ self.normalize = x[2]
183
+
184
+ @property
185
+ def transform(self):
186
+ return self.dataset.transform
187
+
188
+ @transform.setter
189
+ def transform(self, x):
190
+ self._set_transforms(x)
191
+
192
+ def _normalize(self, x):
193
+ return x if self.normalize is None else self.normalize(x)
194
+
195
+ def __getitem__(self, i):
196
+ x, y = self.dataset[i] # all splits share the same dataset base transform
197
+ x_list = [self._normalize(x)] # first split only normalizes (this is the 'clean' split)
198
+ # run the full augmentation on the remaining splits
199
+ for _ in range(self.num_splits - 1):
200
+ x_list.append(self._normalize(self.augmentation(x)))
201
+ return tuple(x_list), y
202
+
203
+ def __len__(self):
204
+ return len(self.dataset)
pytorch-image-models/timm/data/dataset_factory.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Dataset Factory
2
+
3
+ Hacked together by / Copyright 2021, Ross Wightman
4
+ """
5
+ import os
6
+ from typing import Optional
7
+
8
+ from torchvision.datasets import CIFAR100, CIFAR10, MNIST, KMNIST, FashionMNIST, ImageFolder
9
+ try:
10
+ from torchvision.datasets import Places365
11
+ has_places365 = True
12
+ except ImportError:
13
+ has_places365 = False
14
+ try:
15
+ from torchvision.datasets import INaturalist
16
+ has_inaturalist = True
17
+ except ImportError:
18
+ has_inaturalist = False
19
+ try:
20
+ from torchvision.datasets import QMNIST
21
+ has_qmnist = True
22
+ except ImportError:
23
+ has_qmnist = False
24
+ try:
25
+ from torchvision.datasets import ImageNet
26
+ has_imagenet = True
27
+ except ImportError:
28
+ has_imagenet = False
29
+
30
+ from .dataset import IterableImageDataset, ImageDataset
31
+
32
+ _TORCH_BASIC_DS = dict(
33
+ cifar10=CIFAR10,
34
+ cifar100=CIFAR100,
35
+ mnist=MNIST,
36
+ kmnist=KMNIST,
37
+ fashion_mnist=FashionMNIST,
38
+ )
39
+ _TRAIN_SYNONYM = dict(train=None, training=None)
40
+ _EVAL_SYNONYM = dict(val=None, valid=None, validation=None, eval=None, evaluation=None)
41
+
42
+
43
+ def _search_split(root, split):
44
+ # look for sub-folder with name of split in root and use that if it exists
45
+ split_name = split.split('[')[0]
46
+ try_root = os.path.join(root, split_name)
47
+ if os.path.exists(try_root):
48
+ return try_root
49
+
50
+ def _try(syn):
51
+ for s in syn:
52
+ try_root = os.path.join(root, s)
53
+ if os.path.exists(try_root):
54
+ return try_root
55
+ return root
56
+ if split_name in _TRAIN_SYNONYM:
57
+ root = _try(_TRAIN_SYNONYM)
58
+ elif split_name in _EVAL_SYNONYM:
59
+ root = _try(_EVAL_SYNONYM)
60
+ return root
61
+
62
+
63
+ def create_dataset(
64
+ name: str,
65
+ root: Optional[str] = None,
66
+ split: str = 'validation',
67
+ search_split: bool = True,
68
+ class_map: dict = None,
69
+ load_bytes: bool = False,
70
+ is_training: bool = False,
71
+ download: bool = False,
72
+ batch_size: int = 1,
73
+ num_samples: Optional[int] = None,
74
+ seed: int = 42,
75
+ repeats: int = 0,
76
+ input_img_mode: str = 'RGB',
77
+ trust_remote_code: bool = False,
78
+ **kwargs,
79
+ ):
80
+ """ Dataset factory method
81
+
82
+ In parentheses after each arg are the type of dataset supported for each arg, one of:
83
+ * Folder - default, timm folder (or tar) based ImageDataset
84
+ * Torch - torchvision based datasets
85
+ * HFDS - Hugging Face Datasets
86
+ * HFIDS - Hugging Face Datasets Iterable (streaming mode, with IterableDataset)
87
+ * TFDS - Tensorflow-datasets wrapper in IterabeDataset interface via IterableImageDataset
88
+ * WDS - Webdataset
89
+ * All - any of the above
90
+
91
+ Args:
92
+ name: Dataset name, empty is okay for folder based datasets
93
+ root: Root folder of dataset (All)
94
+ split: Dataset split (All)
95
+ search_split: Search for split specific child fold from root so one can specify
96
+ `imagenet/` instead of `/imagenet/val`, etc on cmd line / config. (Folder, Torch)
97
+ class_map: Specify class -> index mapping via text file or dict (Folder)
98
+ load_bytes: Load data, return images as undecoded bytes (Folder)
99
+ download: Download dataset if not present and supported (HFIDS, TFDS, Torch)
100
+ is_training: Create dataset in train mode, this is different from the split.
101
+ For Iterable / TDFS it enables shuffle, ignored for other datasets. (TFDS, WDS, HFIDS)
102
+ batch_size: Batch size hint for iterable datasets (TFDS, WDS, HFIDS)
103
+ seed: Seed for iterable datasets (TFDS, WDS, HFIDS)
104
+ repeats: Dataset repeats per iteration i.e. epoch (TFDS, WDS, HFIDS)
105
+ input_img_mode: Input image color conversion mode e.g. 'RGB', 'L' (folder, TFDS, WDS, HFDS, HFIDS)
106
+ trust_remote_code: Trust remote code in Hugging Face Datasets if True (HFDS, HFIDS)
107
+ **kwargs: Other args to pass through to underlying Dataset and/or Reader classes
108
+
109
+ Returns:
110
+ Dataset object
111
+ """
112
+ kwargs = {k: v for k, v in kwargs.items() if v is not None}
113
+ name = name.lower()
114
+ if name.startswith('torch/'):
115
+ name = name.split('/', 2)[-1]
116
+ torch_kwargs = dict(root=root, download=download, **kwargs)
117
+ if name in _TORCH_BASIC_DS:
118
+ ds_class = _TORCH_BASIC_DS[name]
119
+ use_train = split in _TRAIN_SYNONYM
120
+ ds = ds_class(train=use_train, **torch_kwargs)
121
+ elif name == 'inaturalist' or name == 'inat':
122
+ assert has_inaturalist, 'Please update to PyTorch 1.10, torchvision 0.11+ for Inaturalist'
123
+ target_type = 'full'
124
+ split_split = split.split('/')
125
+ if len(split_split) > 1:
126
+ target_type = split_split[0].split('_')
127
+ if len(target_type) == 1:
128
+ target_type = target_type[0]
129
+ split = split_split[-1]
130
+ if split in _TRAIN_SYNONYM:
131
+ split = '2021_train'
132
+ elif split in _EVAL_SYNONYM:
133
+ split = '2021_valid'
134
+ ds = INaturalist(version=split, target_type=target_type, **torch_kwargs)
135
+ elif name == 'places365':
136
+ assert has_places365, 'Please update to a newer PyTorch and torchvision for Places365 dataset.'
137
+ if split in _TRAIN_SYNONYM:
138
+ split = 'train-standard'
139
+ elif split in _EVAL_SYNONYM:
140
+ split = 'val'
141
+ ds = Places365(split=split, **torch_kwargs)
142
+ elif name == 'qmnist':
143
+ assert has_qmnist, 'Please update to a newer PyTorch and torchvision for QMNIST dataset.'
144
+ use_train = split in _TRAIN_SYNONYM
145
+ ds = QMNIST(train=use_train, **torch_kwargs)
146
+ elif name == 'imagenet':
147
+ assert has_imagenet, 'Please update to a newer PyTorch and torchvision for ImageNet dataset.'
148
+ if split in _EVAL_SYNONYM:
149
+ split = 'val'
150
+ ds = ImageNet(split=split, **torch_kwargs)
151
+ elif name == 'image_folder' or name == 'folder':
152
+ # in case torchvision ImageFolder is preferred over timm ImageDataset for some reason
153
+ if search_split and os.path.isdir(root):
154
+ # look for split specific sub-folder in root
155
+ root = _search_split(root, split)
156
+ ds = ImageFolder(root, **kwargs)
157
+ else:
158
+ assert False, f"Unknown torchvision dataset {name}"
159
+ elif name.startswith('hfds/'):
160
+ # NOTE right now, HF datasets default arrow format is a random-access Dataset,
161
+ # There will be a IterableDataset variant too, TBD
162
+ ds = ImageDataset(
163
+ root,
164
+ reader=name,
165
+ split=split,
166
+ class_map=class_map,
167
+ input_img_mode=input_img_mode,
168
+ trust_remote_code=trust_remote_code,
169
+ **kwargs,
170
+ )
171
+ elif name.startswith('hfids/'):
172
+ ds = IterableImageDataset(
173
+ root,
174
+ reader=name,
175
+ split=split,
176
+ class_map=class_map,
177
+ is_training=is_training,
178
+ download=download,
179
+ batch_size=batch_size,
180
+ num_samples=num_samples,
181
+ repeats=repeats,
182
+ seed=seed,
183
+ input_img_mode=input_img_mode,
184
+ trust_remote_code=trust_remote_code,
185
+ **kwargs,
186
+ )
187
+ elif name.startswith('tfds/'):
188
+ ds = IterableImageDataset(
189
+ root,
190
+ reader=name,
191
+ split=split,
192
+ class_map=class_map,
193
+ is_training=is_training,
194
+ download=download,
195
+ batch_size=batch_size,
196
+ num_samples=num_samples,
197
+ repeats=repeats,
198
+ seed=seed,
199
+ input_img_mode=input_img_mode,
200
+ **kwargs
201
+ )
202
+ elif name.startswith('wds/'):
203
+ ds = IterableImageDataset(
204
+ root,
205
+ reader=name,
206
+ split=split,
207
+ class_map=class_map,
208
+ is_training=is_training,
209
+ batch_size=batch_size,
210
+ num_samples=num_samples,
211
+ repeats=repeats,
212
+ seed=seed,
213
+ input_img_mode=input_img_mode,
214
+ **kwargs
215
+ )
216
+ else:
217
+ # FIXME support more advance split cfg for ImageFolder/Tar datasets in the future
218
+ if search_split and os.path.isdir(root):
219
+ # look for split specific sub-folder in root
220
+ root = _search_split(root, split)
221
+ ds = ImageDataset(
222
+ root,
223
+ reader=name,
224
+ class_map=class_map,
225
+ load_bytes=load_bytes,
226
+ input_img_mode=input_img_mode,
227
+ **kwargs,
228
+ )
229
+ return ds
pytorch-image-models/timm/data/dataset_info.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+ from typing import Dict, List, Optional, Union
3
+
4
+
5
+ class DatasetInfo(ABC):
6
+
7
+ def __init__(self):
8
+ pass
9
+
10
+ @abstractmethod
11
+ def num_classes(self):
12
+ pass
13
+
14
+ @abstractmethod
15
+ def label_names(self):
16
+ pass
17
+
18
+ @abstractmethod
19
+ def label_descriptions(self, detailed: bool = False, as_dict: bool = False) -> Union[List[str], Dict[str, str]]:
20
+ pass
21
+
22
+ @abstractmethod
23
+ def index_to_label_name(self, index) -> str:
24
+ pass
25
+
26
+ @abstractmethod
27
+ def index_to_description(self, index: int, detailed: bool = False) -> str:
28
+ pass
29
+
30
+ @abstractmethod
31
+ def label_name_to_description(self, label: str, detailed: bool = False) -> str:
32
+ pass
33
+
34
+
35
+ class CustomDatasetInfo(DatasetInfo):
36
+ """ DatasetInfo that wraps passed values for custom datasets."""
37
+
38
+ def __init__(
39
+ self,
40
+ label_names: Union[List[str], Dict[int, str]],
41
+ label_descriptions: Optional[Dict[str, str]] = None
42
+ ):
43
+ super().__init__()
44
+ assert len(label_names) > 0
45
+ self._label_names = label_names # label index => label name mapping
46
+ self._label_descriptions = label_descriptions # label name => label description mapping
47
+ if self._label_descriptions is not None:
48
+ # validate descriptions (label names required)
49
+ assert isinstance(self._label_descriptions, dict)
50
+ for n in self._label_names:
51
+ assert n in self._label_descriptions
52
+
53
+ def num_classes(self):
54
+ return len(self._label_names)
55
+
56
+ def label_names(self):
57
+ return self._label_names
58
+
59
+ def label_descriptions(self, detailed: bool = False, as_dict: bool = False) -> Union[List[str], Dict[str, str]]:
60
+ return self._label_descriptions
61
+
62
+ def label_name_to_description(self, label: str, detailed: bool = False) -> str:
63
+ if self._label_descriptions:
64
+ return self._label_descriptions[label]
65
+ return label # return label name itself if a descriptions is not present
66
+
67
+ def index_to_label_name(self, index) -> str:
68
+ assert 0 <= index < len(self._label_names)
69
+ return self._label_names[index]
70
+
71
+ def index_to_description(self, index: int, detailed: bool = False) -> str:
72
+ label = self.index_to_label_name(index)
73
+ return self.label_name_to_description(label, detailed=detailed)
pytorch-image-models/timm/data/distributed_sampler.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.utils.data import Sampler
4
+ import torch.distributed as dist
5
+
6
+
7
+ class OrderedDistributedSampler(Sampler):
8
+ """Sampler that restricts data loading to a subset of the dataset.
9
+ It is especially useful in conjunction with
10
+ :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
11
+ process can pass a DistributedSampler instance as a DataLoader sampler,
12
+ and load a subset of the original dataset that is exclusive to it.
13
+ .. note::
14
+ Dataset is assumed to be of constant size.
15
+ Arguments:
16
+ dataset: Dataset used for sampling.
17
+ num_replicas (optional): Number of processes participating in
18
+ distributed training.
19
+ rank (optional): Rank of the current process within num_replicas.
20
+ """
21
+
22
+ def __init__(self, dataset, num_replicas=None, rank=None):
23
+ if num_replicas is None:
24
+ if not dist.is_available():
25
+ raise RuntimeError("Requires distributed package to be available")
26
+ num_replicas = dist.get_world_size()
27
+ if rank is None:
28
+ if not dist.is_available():
29
+ raise RuntimeError("Requires distributed package to be available")
30
+ rank = dist.get_rank()
31
+ self.dataset = dataset
32
+ self.num_replicas = num_replicas
33
+ self.rank = rank
34
+ self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
35
+ self.total_size = self.num_samples * self.num_replicas
36
+
37
+ def __iter__(self):
38
+ indices = list(range(len(self.dataset)))
39
+
40
+ # add extra samples to make it evenly divisible
41
+ indices += indices[:(self.total_size - len(indices))]
42
+ assert len(indices) == self.total_size
43
+
44
+ # subsample
45
+ indices = indices[self.rank:self.total_size:self.num_replicas]
46
+ assert len(indices) == self.num_samples
47
+
48
+ return iter(indices)
49
+
50
+ def __len__(self):
51
+ return self.num_samples
52
+
53
+
54
+ class RepeatAugSampler(Sampler):
55
+ """Sampler that restricts data loading to a subset of the dataset for distributed,
56
+ with repeated augmentation.
57
+ It ensures that different each augmented version of a sample will be visible to a
58
+ different process (GPU). Heavily based on torch.utils.data.DistributedSampler
59
+
60
+ This sampler was taken from https://github.com/facebookresearch/deit/blob/0c4b8f60/samplers.py
61
+ Used in
62
+ Copyright (c) 2015-present, Facebook, Inc.
63
+ """
64
+
65
+ def __init__(
66
+ self,
67
+ dataset,
68
+ num_replicas=None,
69
+ rank=None,
70
+ shuffle=True,
71
+ num_repeats=3,
72
+ selected_round=256,
73
+ selected_ratio=0,
74
+ ):
75
+ if num_replicas is None:
76
+ if not dist.is_available():
77
+ raise RuntimeError("Requires distributed package to be available")
78
+ num_replicas = dist.get_world_size()
79
+ if rank is None:
80
+ if not dist.is_available():
81
+ raise RuntimeError("Requires distributed package to be available")
82
+ rank = dist.get_rank()
83
+ self.dataset = dataset
84
+ self.num_replicas = num_replicas
85
+ self.rank = rank
86
+ self.shuffle = shuffle
87
+ self.num_repeats = num_repeats
88
+ self.epoch = 0
89
+ self.num_samples = int(math.ceil(len(self.dataset) * num_repeats / self.num_replicas))
90
+ self.total_size = self.num_samples * self.num_replicas
91
+ # Determine the number of samples to select per epoch for each rank.
92
+ # num_selected logic defaults to be the same as original RASampler impl, but this one can be tweaked
93
+ # via selected_ratio and selected_round args.
94
+ selected_ratio = selected_ratio or num_replicas # ratio to reduce selected samples by, num_replicas if 0
95
+ if selected_round:
96
+ self.num_selected_samples = int(math.floor(
97
+ len(self.dataset) // selected_round * selected_round / selected_ratio))
98
+ else:
99
+ self.num_selected_samples = int(math.ceil(len(self.dataset) / selected_ratio))
100
+
101
+ def __iter__(self):
102
+ # deterministically shuffle based on epoch
103
+ g = torch.Generator()
104
+ g.manual_seed(self.epoch)
105
+ if self.shuffle:
106
+ indices = torch.randperm(len(self.dataset), generator=g)
107
+ else:
108
+ indices = torch.arange(start=0, end=len(self.dataset))
109
+
110
+ # produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....]
111
+ if isinstance(self.num_repeats, float) and not self.num_repeats.is_integer():
112
+ # resample for repeats w/ non-integer ratio
113
+ repeat_size = math.ceil(self.num_repeats * len(self.dataset))
114
+ indices = indices[torch.tensor([int(i // self.num_repeats) for i in range(repeat_size)])]
115
+ else:
116
+ indices = torch.repeat_interleave(indices, repeats=int(self.num_repeats), dim=0)
117
+ indices = indices.tolist() # leaving as tensor thrashes dataloader memory
118
+ # add extra samples to make it evenly divisible
119
+ padding_size = self.total_size - len(indices)
120
+ if padding_size > 0:
121
+ indices += indices[:padding_size]
122
+ assert len(indices) == self.total_size
123
+
124
+ # subsample per rank
125
+ indices = indices[self.rank:self.total_size:self.num_replicas]
126
+ assert len(indices) == self.num_samples
127
+
128
+ # return up to num selected samples
129
+ return iter(indices[:self.num_selected_samples])
130
+
131
+ def __len__(self):
132
+ return self.num_selected_samples
133
+
134
+ def set_epoch(self, epoch):
135
+ self.epoch = epoch
pytorch-image-models/timm/data/imagenet_info.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+ import pkgutil
4
+ import re
5
+ from typing import Dict, List, Optional, Union
6
+
7
+ from .dataset_info import DatasetInfo
8
+
9
+
10
+ # NOTE no ambiguity wrt to mapping from # classes to ImageNet subset so far, but likely to change
11
+ _NUM_CLASSES_TO_SUBSET = {
12
+ 1000: 'imagenet-1k',
13
+ 11221: 'imagenet-21k-miil', # miil subset of fall11
14
+ 11821: 'imagenet-12k', # timm specific 12k subset of fall11
15
+ 21841: 'imagenet-22k', # as in fall11.tar
16
+ 21842: 'imagenet-22k-ms', # a Microsoft (for FocalNet) remapping of 22k w/ moves ImageNet-1k classes to first 1000
17
+ 21843: 'imagenet-21k-goog', # Google's ImageNet full has two classes not in fall11
18
+ }
19
+
20
+ _SUBSETS = {
21
+ 'imagenet1k': 'imagenet_synsets.txt',
22
+ 'imagenet12k': 'imagenet12k_synsets.txt',
23
+ 'imagenet22k': 'imagenet22k_synsets.txt',
24
+ 'imagenet21k': 'imagenet21k_goog_synsets.txt',
25
+ 'imagenet21kgoog': 'imagenet21k_goog_synsets.txt',
26
+ 'imagenet21kmiil': 'imagenet21k_miil_synsets.txt',
27
+ 'imagenet22kms': 'imagenet22k_ms_synsets.txt',
28
+ }
29
+ _LEMMA_FILE = 'imagenet_synset_to_lemma.txt'
30
+ _DEFINITION_FILE = 'imagenet_synset_to_definition.txt'
31
+
32
+
33
+ def infer_imagenet_subset(model_or_cfg) -> Optional[str]:
34
+ if isinstance(model_or_cfg, dict):
35
+ num_classes = model_or_cfg.get('num_classes', None)
36
+ else:
37
+ num_classes = getattr(model_or_cfg, 'num_classes', None)
38
+ if not num_classes:
39
+ pretrained_cfg = getattr(model_or_cfg, 'pretrained_cfg', {})
40
+ # FIXME at some point pretrained_cfg should include dataset-tag,
41
+ # which will be more robust than a guess based on num_classes
42
+ num_classes = pretrained_cfg.get('num_classes', None)
43
+ if not num_classes or num_classes not in _NUM_CLASSES_TO_SUBSET:
44
+ return None
45
+ return _NUM_CLASSES_TO_SUBSET[num_classes]
46
+
47
+
48
+ class ImageNetInfo(DatasetInfo):
49
+
50
+ def __init__(self, subset: str = 'imagenet-1k'):
51
+ super().__init__()
52
+ subset = re.sub(r'[-_\s]', '', subset.lower())
53
+ assert subset in _SUBSETS, f'Unknown imagenet subset {subset}.'
54
+
55
+ # WordNet synsets (part-of-speach + offset) are the unique class label names for ImageNet classifiers
56
+ synset_file = _SUBSETS[subset]
57
+ synset_data = pkgutil.get_data(__name__, os.path.join('_info', synset_file))
58
+ self._synsets = synset_data.decode('utf-8').splitlines()
59
+
60
+ # WordNet lemmas (canonical dictionary form of word) and definitions are used to build
61
+ # the class descriptions. If detailed=True both are used, otherwise just the lemmas.
62
+ lemma_data = pkgutil.get_data(__name__, os.path.join('_info', _LEMMA_FILE))
63
+ reader = csv.reader(lemma_data.decode('utf-8').splitlines(), delimiter='\t')
64
+ self._lemmas = dict(reader)
65
+ definition_data = pkgutil.get_data(__name__, os.path.join('_info', _DEFINITION_FILE))
66
+ reader = csv.reader(definition_data.decode('utf-8').splitlines(), delimiter='\t')
67
+ self._definitions = dict(reader)
68
+
69
+ def num_classes(self):
70
+ return len(self._synsets)
71
+
72
+ def label_names(self):
73
+ return self._synsets
74
+
75
+ def label_descriptions(self, detailed: bool = False, as_dict: bool = False) -> Union[List[str], Dict[str, str]]:
76
+ if as_dict:
77
+ return {label: self.label_name_to_description(label, detailed=detailed) for label in self._synsets}
78
+ else:
79
+ return [self.label_name_to_description(label, detailed=detailed) for label in self._synsets]
80
+
81
+ def index_to_label_name(self, index) -> str:
82
+ assert 0 <= index < len(self._synsets), \
83
+ f'Index ({index}) out of range for dataset with {len(self._synsets)} classes.'
84
+ return self._synsets[index]
85
+
86
+ def index_to_description(self, index: int, detailed: bool = False) -> str:
87
+ label = self.index_to_label_name(index)
88
+ return self.label_name_to_description(label, detailed=detailed)
89
+
90
+ def label_name_to_description(self, label: str, detailed: bool = False) -> str:
91
+ if detailed:
92
+ description = f'{self._lemmas[label]}: {self._definitions[label]}'
93
+ else:
94
+ description = f'{self._lemmas[label]}'
95
+ return description
pytorch-image-models/timm/data/loader.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Loader Factory, Fast Collate, CUDA Prefetcher
2
+
3
+ Prefetcher and Fast Collate inspired by NVIDIA APEX example at
4
+ https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf
5
+
6
+ Hacked together by / Copyright 2019, Ross Wightman
7
+ """
8
+ import logging
9
+ import random
10
+ from contextlib import suppress
11
+ from functools import partial
12
+ from itertools import repeat
13
+ from typing import Callable, Optional, Tuple, Union
14
+
15
+ import torch
16
+ import torch.utils.data
17
+ import numpy as np
18
+
19
+ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
20
+ from .dataset import IterableImageDataset, ImageDataset
21
+ from .distributed_sampler import OrderedDistributedSampler, RepeatAugSampler
22
+ from .random_erasing import RandomErasing
23
+ from .mixup import FastCollateMixup
24
+ from .transforms_factory import create_transform
25
+
26
+ _logger = logging.getLogger(__name__)
27
+
28
+
29
+ def fast_collate(batch):
30
+ """ A fast collation function optimized for uint8 images (np array or torch) and int64 targets (labels)"""
31
+ assert isinstance(batch[0], tuple)
32
+ batch_size = len(batch)
33
+ if isinstance(batch[0][0], tuple):
34
+ # This branch 'deinterleaves' and flattens tuples of input tensors into one tensor ordered by position
35
+ # such that all tuple of position n will end up in a torch.split(tensor, batch_size) in nth position
36
+ inner_tuple_size = len(batch[0][0])
37
+ flattened_batch_size = batch_size * inner_tuple_size
38
+ targets = torch.zeros(flattened_batch_size, dtype=torch.int64)
39
+ tensor = torch.zeros((flattened_batch_size, *batch[0][0][0].shape), dtype=torch.uint8)
40
+ for i in range(batch_size):
41
+ assert len(batch[i][0]) == inner_tuple_size # all input tensor tuples must be same length
42
+ for j in range(inner_tuple_size):
43
+ targets[i + j * batch_size] = batch[i][1]
44
+ tensor[i + j * batch_size] += torch.from_numpy(batch[i][0][j])
45
+ return tensor, targets
46
+ elif isinstance(batch[0][0], np.ndarray):
47
+ targets = torch.tensor([b[1] for b in batch], dtype=torch.int64)
48
+ assert len(targets) == batch_size
49
+ tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
50
+ for i in range(batch_size):
51
+ tensor[i] += torch.from_numpy(batch[i][0])
52
+ return tensor, targets
53
+ elif isinstance(batch[0][0], torch.Tensor):
54
+ targets = torch.tensor([b[1] for b in batch], dtype=torch.int64)
55
+ assert len(targets) == batch_size
56
+ tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
57
+ for i in range(batch_size):
58
+ tensor[i].copy_(batch[i][0])
59
+ return tensor, targets
60
+ else:
61
+ assert False
62
+
63
+
64
+ def adapt_to_chs(x, n):
65
+ if not isinstance(x, (tuple, list)):
66
+ x = tuple(repeat(x, n))
67
+ elif len(x) != n:
68
+ x_mean = np.mean(x).item()
69
+ x = (x_mean,) * n
70
+ _logger.warning(f'Pretrained mean/std different shape than model, using avg value {x}.')
71
+ else:
72
+ assert len(x) == n, 'normalization stats must match image channels'
73
+ return x
74
+
75
+
76
+ class PrefetchLoader:
77
+
78
+ def __init__(
79
+ self,
80
+ loader,
81
+ mean=IMAGENET_DEFAULT_MEAN,
82
+ std=IMAGENET_DEFAULT_STD,
83
+ channels=3,
84
+ device=torch.device('cuda'),
85
+ img_dtype=torch.float32,
86
+ fp16=False,
87
+ re_prob=0.,
88
+ re_mode='const',
89
+ re_count=1,
90
+ re_num_splits=0):
91
+
92
+ mean = adapt_to_chs(mean, channels)
93
+ std = adapt_to_chs(std, channels)
94
+ normalization_shape = (1, channels, 1, 1)
95
+
96
+ self.loader = loader
97
+ self.device = device
98
+ if fp16:
99
+ # fp16 arg is deprecated, but will override dtype arg if set for bwd compat
100
+ img_dtype = torch.float16
101
+ self.img_dtype = img_dtype
102
+ self.mean = torch.tensor(
103
+ [x * 255 for x in mean], device=device, dtype=img_dtype).view(normalization_shape)
104
+ self.std = torch.tensor(
105
+ [x * 255 for x in std], device=device, dtype=img_dtype).view(normalization_shape)
106
+ if re_prob > 0.:
107
+ self.random_erasing = RandomErasing(
108
+ probability=re_prob,
109
+ mode=re_mode,
110
+ max_count=re_count,
111
+ num_splits=re_num_splits,
112
+ device=device,
113
+ )
114
+ else:
115
+ self.random_erasing = None
116
+ self.is_cuda = device.type == 'cuda' and torch.cuda.is_available()
117
+ self.is_npu = device.type == 'npu' and torch.npu.is_available()
118
+
119
+ def __iter__(self):
120
+ first = True
121
+ if self.is_cuda:
122
+ stream = torch.cuda.Stream()
123
+ stream_context = partial(torch.cuda.stream, stream=stream)
124
+ elif self.is_npu:
125
+ stream = torch.npu.Stream()
126
+ stream_context = partial(torch.npu.stream, stream=stream)
127
+ else:
128
+ stream = None
129
+ stream_context = suppress
130
+
131
+ for next_input, next_target in self.loader:
132
+
133
+ with stream_context():
134
+ next_input = next_input.to(device=self.device, non_blocking=True)
135
+ next_target = next_target.to(device=self.device, non_blocking=True)
136
+ next_input = next_input.to(self.img_dtype).sub_(self.mean).div_(self.std)
137
+ if self.random_erasing is not None:
138
+ next_input = self.random_erasing(next_input)
139
+
140
+ if not first:
141
+ yield input, target
142
+ else:
143
+ first = False
144
+
145
+ if stream is not None:
146
+ if self.is_cuda:
147
+ torch.cuda.current_stream().wait_stream(stream)
148
+ elif self.is_npu:
149
+ torch.npu.current_stream().wait_stream(stream)
150
+
151
+ input = next_input
152
+ target = next_target
153
+
154
+ yield input, target
155
+
156
+ def __len__(self):
157
+ return len(self.loader)
158
+
159
+ @property
160
+ def sampler(self):
161
+ return self.loader.sampler
162
+
163
+ @property
164
+ def dataset(self):
165
+ return self.loader.dataset
166
+
167
+ @property
168
+ def mixup_enabled(self):
169
+ if isinstance(self.loader.collate_fn, FastCollateMixup):
170
+ return self.loader.collate_fn.mixup_enabled
171
+ else:
172
+ return False
173
+
174
+ @mixup_enabled.setter
175
+ def mixup_enabled(self, x):
176
+ if isinstance(self.loader.collate_fn, FastCollateMixup):
177
+ self.loader.collate_fn.mixup_enabled = x
178
+
179
+
180
+ def _worker_init(worker_id, worker_seeding='all'):
181
+ worker_info = torch.utils.data.get_worker_info()
182
+ assert worker_info.id == worker_id
183
+ if isinstance(worker_seeding, Callable):
184
+ seed = worker_seeding(worker_info)
185
+ random.seed(seed)
186
+ torch.manual_seed(seed)
187
+ np.random.seed(seed % (2 ** 32 - 1))
188
+ else:
189
+ assert worker_seeding in ('all', 'part')
190
+ # random / torch seed already called in dataloader iter class w/ worker_info.seed
191
+ # to reproduce some old results (same seed + hparam combo), partial seeding is required (skip numpy re-seed)
192
+ if worker_seeding == 'all':
193
+ np.random.seed(worker_info.seed % (2 ** 32 - 1))
194
+
195
+
196
+ def create_loader(
197
+ dataset: Union[ImageDataset, IterableImageDataset],
198
+ input_size: Union[int, Tuple[int, int], Tuple[int, int, int]],
199
+ batch_size: int,
200
+ is_training: bool = False,
201
+ no_aug: bool = False,
202
+ re_prob: float = 0.,
203
+ re_mode: str = 'const',
204
+ re_count: int = 1,
205
+ re_split: bool = False,
206
+ train_crop_mode: Optional[str] = None,
207
+ scale: Optional[Tuple[float, float]] = None,
208
+ ratio: Optional[Tuple[float, float]] = None,
209
+ hflip: float = 0.5,
210
+ vflip: float = 0.,
211
+ color_jitter: float = 0.4,
212
+ color_jitter_prob: Optional[float] = None,
213
+ grayscale_prob: float = 0.,
214
+ gaussian_blur_prob: float = 0.,
215
+ auto_augment: Optional[str] = None,
216
+ num_aug_repeats: int = 0,
217
+ num_aug_splits: int = 0,
218
+ interpolation: str = 'bilinear',
219
+ mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN,
220
+ std: Tuple[float, ...] = IMAGENET_DEFAULT_STD,
221
+ num_workers: int = 1,
222
+ distributed: bool = False,
223
+ crop_pct: Optional[float] = None,
224
+ crop_mode: Optional[str] = None,
225
+ crop_border_pixels: Optional[int] = None,
226
+ collate_fn: Optional[Callable] = None,
227
+ pin_memory: bool = False,
228
+ fp16: bool = False, # deprecated, use img_dtype
229
+ img_dtype: torch.dtype = torch.float32,
230
+ device: torch.device = torch.device('cuda'),
231
+ use_prefetcher: bool = True,
232
+ use_multi_epochs_loader: bool = False,
233
+ persistent_workers: bool = True,
234
+ worker_seeding: str = 'all',
235
+ tf_preprocessing: bool = False,
236
+ ):
237
+ """
238
+
239
+ Args:
240
+ dataset: The image dataset to load.
241
+ input_size: Target input size (channels, height, width) tuple or size scalar.
242
+ batch_size: Number of samples in a batch.
243
+ is_training: Return training (random) transforms.
244
+ no_aug: Disable augmentation for training (useful for debug).
245
+ re_prob: Random erasing probability.
246
+ re_mode: Random erasing fill mode.
247
+ re_count: Number of random erasing regions.
248
+ re_split: Control split of random erasing across batch size.
249
+ scale: Random resize scale range (crop area, < 1.0 => zoom in).
250
+ ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR).
251
+ hflip: Horizontal flip probability.
252
+ vflip: Vertical flip probability.
253
+ color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue).
254
+ Scalar is applied as (scalar,) * 3 (no hue).
255
+ color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug
256
+ grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug).
257
+ gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug).
258
+ auto_augment: Auto augment configuration string (see auto_augment.py).
259
+ num_aug_repeats: Enable special sampler to repeat same augmentation across distributed GPUs.
260
+ num_aug_splits: Enable mode where augmentations can be split across the batch.
261
+ interpolation: Image interpolation mode.
262
+ mean: Image normalization mean.
263
+ std: Image normalization standard deviation.
264
+ num_workers: Num worker processes per DataLoader.
265
+ distributed: Enable dataloading for distributed training.
266
+ crop_pct: Inference crop percentage (output size / resize size).
267
+ crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None.
268
+ crop_border_pixels: Inference crop border of specified # pixels around edge of original image.
269
+ collate_fn: Override default collate_fn.
270
+ pin_memory: Pin memory for device transfer.
271
+ fp16: Deprecated argument for half-precision input dtype. Use img_dtype.
272
+ img_dtype: Data type for input image.
273
+ device: Device to transfer inputs and targets to.
274
+ use_prefetcher: Use efficient pre-fetcher to load samples onto device.
275
+ use_multi_epochs_loader:
276
+ persistent_workers: Enable persistent worker processes.
277
+ worker_seeding: Control worker random seeding at init.
278
+ tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports.
279
+
280
+ Returns:
281
+ DataLoader
282
+ """
283
+ re_num_splits = 0
284
+ if re_split:
285
+ # apply RE to second half of batch if no aug split otherwise line up with aug split
286
+ re_num_splits = num_aug_splits or 2
287
+ dataset.transform = create_transform(
288
+ input_size,
289
+ is_training=is_training,
290
+ no_aug=no_aug,
291
+ train_crop_mode=train_crop_mode,
292
+ scale=scale,
293
+ ratio=ratio,
294
+ hflip=hflip,
295
+ vflip=vflip,
296
+ color_jitter=color_jitter,
297
+ color_jitter_prob=color_jitter_prob,
298
+ grayscale_prob=grayscale_prob,
299
+ gaussian_blur_prob=gaussian_blur_prob,
300
+ auto_augment=auto_augment,
301
+ interpolation=interpolation,
302
+ mean=mean,
303
+ std=std,
304
+ crop_pct=crop_pct,
305
+ crop_mode=crop_mode,
306
+ crop_border_pixels=crop_border_pixels,
307
+ re_prob=re_prob,
308
+ re_mode=re_mode,
309
+ re_count=re_count,
310
+ re_num_splits=re_num_splits,
311
+ tf_preprocessing=tf_preprocessing,
312
+ use_prefetcher=use_prefetcher,
313
+ separate=num_aug_splits > 0,
314
+ )
315
+
316
+ if isinstance(dataset, IterableImageDataset):
317
+ # give Iterable datasets early knowledge of num_workers so that sample estimates
318
+ # are correct before worker processes are launched
319
+ dataset.set_loader_cfg(num_workers=num_workers)
320
+
321
+ sampler = None
322
+ if distributed and not isinstance(dataset, torch.utils.data.IterableDataset):
323
+ if is_training:
324
+ if num_aug_repeats:
325
+ sampler = RepeatAugSampler(dataset, num_repeats=num_aug_repeats)
326
+ else:
327
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset)
328
+ else:
329
+ # This will add extra duplicate entries to result in equal num
330
+ # of samples per-process, will slightly alter validation results
331
+ sampler = OrderedDistributedSampler(dataset)
332
+ else:
333
+ assert num_aug_repeats == 0, "RepeatAugment not currently supported in non-distributed or IterableDataset use"
334
+
335
+ if collate_fn is None:
336
+ collate_fn = fast_collate if use_prefetcher else torch.utils.data.dataloader.default_collate
337
+
338
+ loader_class = torch.utils.data.DataLoader
339
+ if use_multi_epochs_loader:
340
+ loader_class = MultiEpochsDataLoader
341
+
342
+ loader_args = dict(
343
+ batch_size=batch_size,
344
+ shuffle=not isinstance(dataset, torch.utils.data.IterableDataset) and sampler is None and is_training,
345
+ num_workers=num_workers,
346
+ sampler=sampler,
347
+ collate_fn=collate_fn,
348
+ pin_memory=pin_memory,
349
+ drop_last=is_training,
350
+ worker_init_fn=partial(_worker_init, worker_seeding=worker_seeding),
351
+ persistent_workers=persistent_workers
352
+ )
353
+ try:
354
+ loader = loader_class(dataset, **loader_args)
355
+ except TypeError as e:
356
+ loader_args.pop('persistent_workers') # only in Pytorch 1.7+
357
+ loader = loader_class(dataset, **loader_args)
358
+ if use_prefetcher:
359
+ prefetch_re_prob = re_prob if is_training and not no_aug else 0.
360
+ loader = PrefetchLoader(
361
+ loader,
362
+ mean=mean,
363
+ std=std,
364
+ channels=input_size[0],
365
+ device=device,
366
+ fp16=fp16, # deprecated, use img_dtype
367
+ img_dtype=img_dtype,
368
+ re_prob=prefetch_re_prob,
369
+ re_mode=re_mode,
370
+ re_count=re_count,
371
+ re_num_splits=re_num_splits
372
+ )
373
+
374
+ return loader
375
+
376
+
377
+ class MultiEpochsDataLoader(torch.utils.data.DataLoader):
378
+
379
+ def __init__(self, *args, **kwargs):
380
+ super().__init__(*args, **kwargs)
381
+ self._DataLoader__initialized = False
382
+ if self.batch_sampler is None:
383
+ self.sampler = _RepeatSampler(self.sampler)
384
+ else:
385
+ self.batch_sampler = _RepeatSampler(self.batch_sampler)
386
+ self._DataLoader__initialized = True
387
+ self.iterator = super().__iter__()
388
+
389
+ def __len__(self):
390
+ return len(self.sampler) if self.batch_sampler is None else len(self.batch_sampler.sampler)
391
+
392
+ def __iter__(self):
393
+ for i in range(len(self)):
394
+ yield next(self.iterator)
395
+
396
+
397
+ class _RepeatSampler(object):
398
+ """ Sampler that repeats forever.
399
+
400
+ Args:
401
+ sampler (Sampler)
402
+ """
403
+
404
+ def __init__(self, sampler):
405
+ self.sampler = sampler
406
+
407
+ def __iter__(self):
408
+ while True:
409
+ yield from iter(self.sampler)