|
""" Dataset reader that wraps Hugging Face datasets |
|
|
|
Hacked together by / Copyright 2022 Ross Wightman |
|
""" |
|
import io |
|
import math |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from PIL import Image |
|
|
|
try: |
|
import datasets |
|
except ImportError as e: |
|
print("Please install Hugging Face datasets package `pip install datasets`.") |
|
raise e |
|
from .class_map import load_class_map |
|
from .reader import Reader |
|
|
|
|
|
def get_class_labels(info, label_key='label'): |
|
if 'label' not in info.features: |
|
return {} |
|
class_label = info.features[label_key] |
|
class_to_idx = {n: class_label.str2int(n) for n in class_label.names} |
|
return class_to_idx |
|
|
|
|
|
class ReaderHfds(Reader): |
|
|
|
def __init__( |
|
self, |
|
name: str, |
|
root: Optional[str] = None, |
|
split: str = 'train', |
|
class_map: dict = None, |
|
input_key: str = 'image', |
|
target_key: str = 'label', |
|
download: bool = False, |
|
trust_remote_code: bool = False |
|
): |
|
""" |
|
""" |
|
super().__init__() |
|
self.root = root |
|
self.split = split |
|
self.dataset = datasets.load_dataset( |
|
name, |
|
split=split, |
|
cache_dir=self.root, |
|
trust_remote_code=trust_remote_code |
|
) |
|
|
|
self.dataset = self.dataset.cast_column(input_key, datasets.Image(decode=False)) |
|
|
|
self.image_key = input_key |
|
self.label_key = target_key |
|
self.remap_class = False |
|
if class_map: |
|
self.class_to_idx = load_class_map(class_map) |
|
self.remap_class = True |
|
else: |
|
self.class_to_idx = get_class_labels(self.dataset.info, self.label_key) |
|
self.split_info = self.dataset.info.splits[split] |
|
self.num_samples = self.split_info.num_examples |
|
|
|
def __getitem__(self, index): |
|
item = self.dataset[index] |
|
image = item[self.image_key] |
|
if 'bytes' in image and image['bytes']: |
|
image = io.BytesIO(image['bytes']) |
|
else: |
|
assert 'path' in image and image['path'] |
|
image = open(image['path'], 'rb') |
|
label = item[self.label_key] |
|
if self.remap_class: |
|
label = self.class_to_idx[label] |
|
return image, label |
|
|
|
def __len__(self): |
|
return len(self.dataset) |
|
|
|
def _filename(self, index, basename=False, absolute=False): |
|
item = self.dataset[index] |
|
return item[self.image_key]['path'] |
|
|