File size: 36,658 Bytes
e411e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
""" An PyTorch implementation of Hiera

Adapted for timm from originals at https://github.com/facebookresearch/hiera
"""

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
#
# Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
#
# Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan,
# Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed,
# Judy Hoffman, Jitendra Malik, Yanghao Li, Christoph Feichtenhofer.
#
# Paper: https://arxiv.org/abs/2306.00989/
#
# References:
# slowfast: https://github.com/facebookresearch/SlowFast
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# --------------------------------------------------------
import math
from functools import partial
from typing import Callable, Dict, List, Optional, Tuple, Type, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, Mlp, LayerScale, ClNormMlpClassifierHead, use_fused_attn, \
    _assert, get_norm_layer, to_2tuple, init_weight_vit, init_weight_jax

from ._registry import generate_default_cfgs, register_model
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._features_fx import register_notrace_function
from ._manipulate import named_apply


__all__ = ['Hiera']


def conv_nd(n: int) -> Type[nn.Module]:
    """
    Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
    If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
    """
    return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n]


@register_notrace_function
def get_resized_mask(target_size: List[int], mask: torch.Tensor) -> torch.Tensor:
    # target_size: [(T), (H), W]
    # (spatial) mask: [B, C, (t), (h), w]
    if mask is None:
        return mask

    _assert(len(mask.shape[2:]) == len(target_size), "mask spatial shape and target_size must match.")
    if mask.shape[2:] != target_size:
        return F.interpolate(mask.float(), size=target_size)
    return mask


def undo_windowing(
        x: torch.Tensor,
        shape: List[int],
        mu_shape: List[int],
) -> torch.Tensor:
    """
    Restore spatial organization by undoing windowed organization of mask units.

    Args:
        x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C]
        shape: current spatial shape, if it were not organized into mask unit
            windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C].
        mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx]
    Returns:
        x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C]
    """
    D = len(shape)
    B, C = x.shape[0], x.shape[-1]
    # [B, #MUy*#MUx, MUy, MUx, C] -> [B, #MUy, #MUx, MUy, MUx, C]
    num_MUs = [s // mu for s, mu in zip(shape, mu_shape)]
    x = x.view(B, *num_MUs, *mu_shape, C)

    # [B, #MUy, #MUx, MUy, MUx, C] -> [B, #MUy*MUy, #MUx*MUx, C]
    permute = (
        [0]
        + sum([list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))], [])
        + [len(x.shape) - 1]
    )
    x = x.permute(permute).reshape(B, *shape, C)

    return x


class Unroll(nn.Module):
    """
    Reorders the tokens such that patches are contiguous in memory.
    E.g., given [B, (H, W), C] and stride of (Sy, Sx), this will re-order the tokens as
                           [B, (Sy, Sx, H // Sy, W // Sx), C]

    This allows operations like Max2d to be computed as x.view(B, Sx*Sy, -1, C).max(dim=1).
    Not only is this faster, but it also makes it easy to support inputs of arbitrary
    dimensions in addition to patch-wise sparsity.

    Performing this operation multiple times in sequence puts entire windows as contiguous
    in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of
    size 8x8 would be contiguous in memory, allowing operations like mask unit attention
    computed easily and efficiently, while also allowing max to be applied sequentially.

    Note: This means that intermediate values of the model are not in HxW order, so they
    need to be re-rolled if you want to use the intermediate values as a HxW feature map.
    The last block of the network is fine though, since by then the strides are all consumed.
    """

    def __init__(
            self,
            input_size: Tuple[int, ...],
            patch_stride: Tuple[int, ...],
            unroll_schedule: List[Tuple[int, ...]],
    ):
        super().__init__()
        self.size = [i // s for i, s in zip(input_size, patch_stride)]
        self.schedule = unroll_schedule

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Input: Flattened patch embeddings [B, N, C]
        Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd
        """
        B, _, C = x.shape
        cur_size = self.size
        x = x.view(*([B] + cur_size + [C]))

        for strides in self.schedule:
            # Move patches with the given strides to the batch dimension

            # Create a view of the tensor with the patch stride as separate dims
            # For example in 2d: [B, H // Sy, Sy, W // Sx, Sx, C]
            cur_size = [i // s for i, s in zip(cur_size, strides)]
            new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C]
            x = x.view(new_shape)

            # Move the patch stride into the batch dimension
            # For example in 2d: [B, Sy, Sx, H // Sy, W // Sx, C]
            L = len(new_shape)
            permute = [0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1]
            x = x.permute(permute)

            # Now finally flatten the relevant dims into the batch dimension
            x = x.flatten(0, len(strides))
            B *= math.prod(strides)

        x = x.reshape(-1, math.prod(self.size), C)
        return x


class Reroll(nn.Module):
    """
    Undos the "unroll" operation so that you can use intermediate features.
    """

    def __init__(
            self,
            input_size: Tuple[int, ...],
            patch_stride: Tuple[int, ...],
            unroll_schedule: List[Tuple[int, ...]],
            stage_ends: List[int],
            q_pool: int,
    ):
        super().__init__()
        self.size = [i // s for i, s in zip(input_size, patch_stride)]

        # The first stage has to reverse everything
        # The next stage has to reverse all but the first unroll, etc.
        self.schedule = {}
        size = self.size
        for i in range(stage_ends[-1] + 1):
            self.schedule[i] = unroll_schedule, size
            # schedule unchanged if no pooling at a stage end
            if i in stage_ends[:q_pool]:
                if len(unroll_schedule) > 0:
                    size = [n // s for n, s in zip(size, unroll_schedule[0])]
                unroll_schedule = unroll_schedule[1:]

    def forward(
            self,
            x: torch.Tensor,
            block_idx: int,
            mask: torch.Tensor = None
    ) -> torch.Tensor:
        """
        Roll the given tensor back up to spatial order assuming it's from the given block.

        If no mask is provided:
            - Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc.
        If a mask is provided:
            - Returns [B, #MUs, MUy, MUx, C] for 2d, etc.
        """
        schedule, size = self.schedule[block_idx]
        B, N, C = x.shape

        D = len(size)
        cur_mu_shape = [1] * D

        for strides in schedule:
            # Extract the current patch from N
            x = x.view(B, *strides, N // math.prod(strides), *cur_mu_shape, C)

            # Move that patch into the current MU
            # Example in 2d: [B, Sy, Sx, N//(Sy*Sx), MUy, MUx, C] -> [B, N//(Sy*Sx), Sy, MUy, Sx, MUx, C]
            L = len(x.shape)
            permute = (
                [0, 1 + D]
                + sum([list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))], [])
                + [L - 1]
            )
            x = x.permute(permute)

            # Reshape to [B, N//(Sy*Sx), *MU, C]
            for i in range(D):
                cur_mu_shape[i] *= strides[i]
            x = x.reshape(B, -1, *cur_mu_shape, C)
            N = x.shape[1]

        # Current shape (e.g., 2d: [B, #MUy*#MUx, MUy, MUx, C])
        x = x.view(B, N, *cur_mu_shape, C)

        # If masked, return [B, #MUs, MUy, MUx, C]
        if mask is not None:
            return x

        # If not masked, we can return [B, H, W, C]
        x = undo_windowing(x, size, cur_mu_shape)

        return x


class MaskUnitAttention(nn.Module):
    """
    Computes either Mask Unit or Global Attention. Also is able to perform q pooling.

    Note: this assumes the tokens have already been flattened and unrolled into mask units.
    See `Unroll` for more details.
    """
    fused_attn: torch.jit.Final[bool]

    def __init__(
            self,
            dim: int,
            dim_out: int,
            heads: int,
            q_stride: int = 1,
            window_size: int = 0,
            use_mask_unit_attn: bool = False,
    ):
        """
        Args:
        - dim, dim_out: The input and output feature dimensions.
        - heads: The number of attention heads.
        - q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4).
        - window_size: The current (flattened) size of a mask unit *after* pooling (if any).
        - use_mask_unit_attn: Use Mask Unit or Global Attention.
        """
        super().__init__()

        self.dim = dim
        self.dim_out = dim_out
        self.heads = heads
        self.q_stride = q_stride
        self.head_dim = dim_out // heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        self.qkv = nn.Linear(dim, 3 * dim_out)
        self.proj = nn.Linear(dim_out, dim_out)

        self.window_size = window_size
        self.use_mask_unit_attn = use_mask_unit_attn

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """ Input should be of shape [batch, tokens, channels]. """
        B, N, _ = x.shape
        num_windows = (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1
        qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5)
        q, k, v = qkv.unbind(0)

        if self.q_stride > 1:
            # Refer to Unroll to see how this performs a maxpool-Nd
            q = q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim).amax(dim=3)

        if self.fused_attn:
            # Note: the original paper did *not* use SDPA, it's a free boost!
            x = F.scaled_dot_product_attention(q, k, v)
        else:
            attn = (q * self.scale) @ k.transpose(-1, -2)
            attn = attn.softmax(dim=-1)
            x = attn @ v

        x = x.transpose(1, 3).reshape(B, -1, self.dim_out)
        x = self.proj(x)
        return x


class HieraBlock(nn.Module):
    def __init__(
            self,
            dim: int,
            dim_out: int,
            heads: int,
            mlp_ratio: float = 4.0,
            drop_path: float = 0.0,
            init_values: Optional[float] = None,
            norm_layer: nn.Module = nn.LayerNorm,
            act_layer: nn.Module = nn.GELU,
            q_stride: int = 1,
            window_size: int = 0,
            use_expand_proj: bool = True,
            use_mask_unit_attn: bool = False,
    ):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out

        self.norm1 = norm_layer(dim)
        if dim != dim_out:
            self.do_expand = True
            if use_expand_proj:
                self.proj = nn.Linear(dim, dim_out)
            else:
                assert dim_out == dim * 2
                self.proj = None
        else:
            self.do_expand = False
            self.proj = None
        self.attn = MaskUnitAttention(
            dim,
            dim_out,
            heads,
            q_stride,
            window_size,
            use_mask_unit_attn
        )
        self.ls1 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
        self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity()

        self.norm2 = norm_layer(dim_out)
        self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer)
        self.ls2 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # Attention + Q Pooling
        x_norm = self.norm1(x)
        if self.do_expand:
            if self.proj is not None:
                x = self.proj(x_norm)
                x = x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1)  # max-pool
            else:
                x = torch.cat([
                    x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1),  # max-pool
                    x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).mean(dim=1),  # avg-pool
                    ],
                    dim=-1,
                )
        x = x + self.drop_path1(self.ls1(self.attn(x_norm)))

        # MLP
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


class PatchEmbed(nn.Module):
    """Patch embed that supports any number of spatial dimensions (1d, 2d, 3d)."""

    def __init__(
            self,
            dim_in: int,
            dim_out: int,
            kernel: Tuple[int, ...],
            stride: Tuple[int, ...],
            padding: Tuple[int, ...],
            reshape: bool = True,
    ):
        super().__init__()

        # Support any number of spatial dimensions
        self.spatial_dims = len(kernel)
        self.reshape = reshape
        self.proj = conv_nd(self.spatial_dims)(
            dim_in,
            dim_out,
            kernel_size=kernel,
            stride=stride,
            padding=padding,
        )

    def forward(
            self,
            x: torch.Tensor,
            mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if mask is not None:
            mask = get_resized_mask(target_size=x.shape[2:], mask=mask)
            x = self.proj(x * mask.to(torch.bool))
        else:
            x = self.proj(x)
        if self.reshape:
            x = x.reshape(x.shape[0], x.shape[1], -1).transpose(2, 1)
        return x


class Hiera(nn.Module):

    def __init__(
            self,
            img_size: Tuple[int, ...] = (224, 224),
            in_chans: int = 3,
            embed_dim: int = 96,  # initial embed dim
            num_heads: int = 1,  # initial number of heads
            num_classes: int = 1000,
            global_pool: str = 'avg',
            stages: Tuple[int, ...] = (2, 3, 16, 3),
            q_pool: int = 3,  # number of q_pool stages
            q_stride: Tuple[int, ...] = (2, 2),
            mask_unit_size: Tuple[int, ...] = (8, 8),  # must divide q_stride ** (#stages-1)
            # mask_unit_attn: which stages use mask unit attention?
            mask_unit_attn: Tuple[bool, ...] = (True, True, False, False),
            use_expand_proj: bool = True,
            dim_mul: float = 2.0,
            head_mul: float = 2.0,
            patch_kernel: Tuple[int, ...] = (7, 7),
            patch_stride: Tuple[int, ...] = (4, 4),
            patch_padding: Tuple[int, ...] = (3, 3),
            mlp_ratio: float = 4.0,
            drop_path_rate: float = 0.0,
            init_values: Optional[float] = None,
            fix_init: bool = True,
            weight_init: str = '',
            norm_layer: Union[str, nn.Module] = "LayerNorm",
            drop_rate: float = 0.0,
            patch_drop_rate: float = 0.0,
            head_init_scale: float = 0.001,
            sep_pos_embed: bool = False,
            abs_win_pos_embed: bool = False,
            global_pos_size: Tuple[int, int] = (14, 14),
    ):
        super().__init__()
        self.num_classes = num_classes
        self.grad_checkpointing = False
        norm_layer = get_norm_layer(norm_layer)
        if isinstance(img_size, int):
            img_size = to_2tuple(img_size)

        self.patch_stride = patch_stride
        self.tokens_spatial_shape = [i // s for i, s in zip(img_size, patch_stride)]
        num_tokens = math.prod(self.tokens_spatial_shape)
        flat_mu_size = math.prod(mask_unit_size)
        flat_q_stride = math.prod(q_stride)
        assert q_pool < len(stages)
        self.q_pool, self.q_stride = q_pool, q_stride
        self.mu_size, self.mask_unit_size = flat_mu_size, mask_unit_size
        self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, self.mask_unit_size)]
        self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
        self.patch_drop_rate = patch_drop_rate

        self.patch_embed = PatchEmbed(
            in_chans,
            embed_dim,
            patch_kernel,
            patch_stride,
            patch_padding,
        )

        self.pos_embed: Optional[nn.Parameter] = None
        self.pos_embed_win: Optional[nn.Parameter] = None
        self.pos_embed_spatial: Optional[nn.Parameter] = None
        self.pos_embed_temporal: Optional[nn.Parameter] = None
        if sep_pos_embed:
            self.pos_embed_spatial = nn.Parameter(
                torch.zeros(1, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], embed_dim)
            )
            self.pos_embed_temporal = nn.Parameter(
                torch.zeros(1, self.tokens_spatial_shape[0], embed_dim)
            )
        else:
            if abs_win_pos_embed:
                # absolute win, params NCHW to make tile & interpolate more natural before add & reshape
                self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *global_pos_size))
                self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size))
            else:
                self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim))

        # Setup roll and reroll modules
        self.unroll = Unroll(
            img_size,
            patch_stride,
            [q_stride] * len(self.stage_ends[:-1])
        )
        self.reroll = Reroll(
            img_size,
            patch_stride,
            [q_stride] * len(self.stage_ends[:-1]),
            self.stage_ends,
            q_pool,
        )
        # q_pool locations
        q_pool_blocks = [x + 1 for x in self.stage_ends[:q_pool]]

        # Transformer blocks
        cur_stage = 0
        depth = sum(stages)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList()
        self.feature_info = []
        for i in range(depth):
            dim_out = embed_dim
            # Mask unit or global attention.
            # Lag by 1 block, so that global attention,
            # applied post pooling on lower resolution
            use_mask_unit_attn = mask_unit_attn[cur_stage]

            if i - 1 in self.stage_ends:
                dim_out = int(embed_dim * dim_mul)
                num_heads = int(num_heads * head_mul)
                cur_stage += 1
                if i in q_pool_blocks:
                    flat_mu_size //= flat_q_stride

            block = HieraBlock(
                dim=embed_dim,
                dim_out=dim_out,
                heads=num_heads,
                mlp_ratio=mlp_ratio,
                drop_path=dpr[i],
                init_values=init_values,
                norm_layer=norm_layer,
                q_stride=(flat_q_stride if i in q_pool_blocks else 1),
                window_size=flat_mu_size,
                use_expand_proj=use_expand_proj,
                use_mask_unit_attn=use_mask_unit_attn,
            )
            embed_dim = dim_out
            if i in self.stage_ends:
                self.feature_info += [
                    dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
            self.blocks.append(block)

        self.num_features = self.head_hidden_size = embed_dim
        self.head = ClNormMlpClassifierHead(
            embed_dim,
            num_classes,
            pool_type=global_pool,
            drop_rate=drop_rate,
            norm_layer=norm_layer,
            input_fmt='NLC',
        )

        # Initialize everything
        if sep_pos_embed:
            nn.init.trunc_normal_(self.pos_embed_spatial, std=0.02)
            nn.init.trunc_normal_(self.pos_embed_temporal, std=0.02)
        else:
            if self.pos_embed is not None:
                nn.init.trunc_normal_(self.pos_embed, std=0.02)
            if self.pos_embed_win is not None:
                nn.init.trunc_normal_(self.pos_embed_win, std=0.02)

        if weight_init != 'skip':
            init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
            init_fn = partial(init_fn, classifier_name='head.fc')
            named_apply(init_fn, self)
        if fix_init:
            self.fix_init_weight()
        if isinstance(self.head.fc, nn.Linear):
            self.head.fc.weight.data.mul_(head_init_scale)
            self.head.fc.bias.data.mul_(head_init_scale)

    def fix_init_weight(self):
        def rescale(param, _layer_id):
            param.div_(math.sqrt(2.0 * _layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    @torch.jit.ignore
    def no_weight_decay(self):
        if self.pos_embed is not None:
            return ["pos_embed"]
        elif self.pos_embed_abs is not None:
            return ['pos_embed_abs', 'pos_embed_win']
        else:
            return ["pos_embed_spatial", "pos_embed_temporal"]

    @torch.jit.ignore
    def group_matcher(self, coarse: bool = False) -> Dict:
        return dict(
            stem=r'^pos_embed|pos_embed_spatial|pos_embed_temporal|pos_embed_abs|pos_embed_win|patch_embed',
            blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable: bool = True) -> None:
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
        self.num_classes = num_classes
        self.head.reset(num_classes, global_pool, reset_other=reset_other)

    def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor:
        """
        Generates a random mask, mask_ratio fraction are dropped.
        1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc.
        """
        B = x.shape[0]
        # Tokens selected for masking at mask unit level
        num_windows = math.prod(self.mask_spatial_shape)  # num_mask_units
        len_keep = int(num_windows * (1 - mask_ratio))
        noise = torch.rand(B, num_windows, device=x.device)

        # Sort noise for each sample
        ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # Generate the binary mask: 1 is *keep*, 0 is *remove*
        # Note this is opposite to original MAE
        mask = torch.zeros([B, num_windows], device=x.device)
        mask[:, :len_keep] = 1
        # Unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return mask.bool()

    def _pos_embed(self, x) -> torch.Tensor:
        if self.pos_embed_win is not None:
            # absolute win position embedding, from
            # Window Attention is Bugged: How not to Interpolate Position Embeddings (https://arxiv.org/abs/2311.05613)
            pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape)
            pos_embed = F.interpolate(
                self.pos_embed,
                size=pos_embed_win.shape[-2:],
                mode='bicubic',
                antialias=True,
            )
            pos_embed = pos_embed + pos_embed_win
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
        elif self.pos_embed is not None:
            pos_embed = self.pos_embed
        else:
            pos_embed = (
                self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1)
                +
                torch.repeat_interleave(
                    self.pos_embed_temporal,
                    self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
                    dim=1,
                )
            )
        x = x + pos_embed
        return x

    def forward_intermediates(
            self,
            x: torch.Tensor,
            mask: Optional[torch.Tensor] = None,
            indices: Optional[Union[int, List[int]]] = None,
            norm: bool = False,
            stop_early: bool = True,
            output_fmt: str = 'NCHW',
            intermediates_only: bool = False,
            coarse: bool = True,
    ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
        """ Forward features that returns intermediates.

        Args:
            x: Input image tensor
            indices: Take last n blocks if int, all if None, select matching indices if sequence
            norm: Apply norm layer to all intermediates
            stop_early: Stop iterating over blocks when last desired intermediate hit
            output_fmt: Shape of intermediate feature outputs
            intermediates_only: Only return intermediate features
        Returns:

        """
        assert not norm, 'normalization of features not supported'
        assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
        if coarse:
            take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
            take_indices = [self.stage_ends[i] for i in take_indices]
            max_index = self.stage_ends[max_index]
        else:
            take_indices, max_index = feature_take_indices(len(self.blocks), indices)

        if mask is not None:
            patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape)  # B, C, *mask_spatial_shape
        else:
            patch_mask = None
        x = self.patch_embed(x, mask=patch_mask)
        x = self._pos_embed(x)
        x = self.unroll(x)

        # Discard masked tokens
        if mask is not None:
            x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1])

        intermediates = []
        if torch.jit.is_scripting() or not stop_early:  # can't slice blocks in torchscript
            blocks = self.blocks
        else:
            blocks = self.blocks[:max_index + 1]
        for i, blk in enumerate(blocks):
            x = blk(x)
            if i in take_indices:
                x_int = self.reroll(x, i, mask=mask)
                intermediates.append(x_int.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x_int)

        if intermediates_only:
            return intermediates

        return x, intermediates

    def prune_intermediate_layers(
            self,
            indices: Union[int, List[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
            coarse: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        if coarse:
            take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
            max_index = self.stage_ends[max_index]
        else:
            take_indices, max_index = feature_take_indices(len(self.blocks), indices)
        self.blocks = self.blocks[:max_index + 1]  # truncate blocks
        if prune_head:
            self.head.reset(0, reset_other=True)
        return take_indices

    def forward_features(
            self,
            x: torch.Tensor,
            mask: Optional[torch.Tensor] = None,
            return_intermediates: bool = False,
    ) -> torch.Tensor:
        """
        mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim.
        Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch.
        """
        if self.training and self.patch_drop_rate > 0:
            # using mask for something like 'patch dropout' via mask-units in supervised train / fine-tune
            assert mask is None
            mask = self.get_random_mask(x, mask_ratio=self.patch_drop_rate)

        if mask is not None:
            patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape)  # B, C, *mask_spatial_shape
        else:
            patch_mask = None
        x = self.patch_embed(x, mask=patch_mask)
        x = self._pos_embed(x)
        x = self.unroll(x)

        # Discard masked tokens
        if mask is not None:
            x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1])

        intermediates = []
        for i, blk in enumerate(self.blocks):
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(blk, x)
            else:
                x = blk(x)
            if return_intermediates and i in self.stage_ends:
                intermediates.append(self.reroll(x, i, mask=mask))

        # x may not always be in spatial order here.
        # e.g. if q_pool = 2, mask_unit_size = (8, 8), and
        # q_stride = (2, 2), not all unrolls were consumed,
        # intermediates[-1] is x in spatial order
        if return_intermediates:
            return x, intermediates

        return x

    def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
        x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
        return x

    def forward(
            self,
            x: torch.Tensor,
            mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        x = self.forward_features(x, mask=mask)
        if mask is None:
            x = self.forward_head(x)
        return x


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    "hiera_tiny_224.mae_in1k_ft_in1k": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
    ),
    "hiera_tiny_224.mae": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
        num_classes=0,
    ),

    "hiera_small_224.mae_in1k_ft_in1k": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
    ),
    "hiera_small_224.mae": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
        num_classes=0,
    ),

    "hiera_base_224.mae_in1k_ft_in1k": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
    ),
    "hiera_base_224.mae": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
        num_classes=0,
    ),

    "hiera_base_plus_224.mae_in1k_ft_in1k": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
    ),
    "hiera_base_plus_224.mae": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
        num_classes=0,
    ),

    "hiera_large_224.mae_in1k_ft_in1k": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
    ),
    "hiera_large_224.mae": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
        num_classes=0,
    ),

    "hiera_huge_224.mae_in1k_ft_in1k": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
    ),
    "hiera_huge_224.mae": _cfg(
        hf_hub_id='timm/',
        license='cc-by-nc-4.0',
        num_classes=0,
    ),

    "hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k": _cfg(
        hf_hub_id='timm/',
        input_size=(3, 256, 256), crop_pct=0.95,
    ),
    "hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k": _cfg(
        hf_hub_id='timm/',
        input_size=(3, 256, 256), crop_pct=0.95,
    ),
    "hiera_small_abswin_256.sbb2_e200_in12k": _cfg(
        hf_hub_id='timm/',
        num_classes=11821,
        input_size=(3, 256, 256), crop_pct=0.95,
    ),
    "hiera_small_abswin_256.sbb2_pd_e200_in12k": _cfg(
        hf_hub_id='timm/',
        num_classes=11821,
        input_size=(3, 256, 256), crop_pct=0.95,
    ),
    "hiera_base_abswin_256.untrained": _cfg(
        # hf_hub_id='timm/',
        input_size=(3, 256, 256), crop_pct=0.95,
    ),
})


def checkpoint_filter_fn(state_dict, model=None):
    state_dict = state_dict.get('model_state', state_dict)
    output = {}
    for k, v in state_dict.items():
        # if k == 'pos_embed' and  v.shape[1] != model.pos_embed.shape[1]:
        #     # To resize pos embedding when using model at different size from pretrained weights
        #     from timm.layers import resample_abs_pos_embed
        #     v = resample_abs_pos_embed(
        #         v,
        #         new_size=(64, 64),
        #         num_prefix_tokens=0,
        #         verbose=True,
        #     )
        if 'head.projection.' in k:
            k = k.replace('head.projection.', 'head.fc.')
        if k.startswith('encoder_norm.'):
            k = k.replace('encoder_norm.', 'head.norm.')
        elif k.startswith('norm.'):
            k = k.replace('norm.', 'head.norm.')
        if k == 'pos_embed_abs':
            k = 'pos_embed'
        output[k] = v
    return output


def _create_hiera(variant: str, pretrained: bool = False, **kwargs) -> Hiera:
    out_indices = kwargs.pop('out_indices', 4)

    return build_model_with_cfg(
        Hiera,
        variant,
        pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
        **kwargs,
    )


@register_model
def hiera_tiny_224(pretrained=False, **kwargs):
    model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2))
    return _create_hiera('hiera_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def hiera_small_224(pretrained=False, **kwargs):
    model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2))
    return _create_hiera('hiera_small_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def hiera_base_224(pretrained=False, **kwargs):
    model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
    return _create_hiera('hiera_base_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def hiera_base_plus_224(pretrained=False, **kwargs):
    model_args = dict(embed_dim=112, num_heads=2, stages=(2, 3, 16, 3))
    return _create_hiera('hiera_base_plus_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def hiera_large_224(pretrained=False, **kwargs):
    model_args = dict(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4))
    return _create_hiera('hiera_large_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def hiera_huge_224(pretrained=False, **kwargs):
    model_args = dict(embed_dim=256, num_heads=4, stages=(2, 6, 36, 4))
    return _create_hiera('hiera_huge_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def hiera_small_abswin_256(pretrained=False, **kwargs):
    model_args = dict(
        embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, global_pos_size=(16, 16),
        init_values=1e-5, weight_init='jax', use_expand_proj=False,
    )
    return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def hiera_base_abswin_256(pretrained=False, **kwargs):
    model_args = dict(
        embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, init_values=1e-5, weight_init='jax')
    return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))