File size: 36,658 Bytes
e411e4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
""" An PyTorch implementation of Hiera
Adapted for timm from originals at https://github.com/facebookresearch/hiera
"""
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
#
# Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
#
# Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan,
# Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed,
# Judy Hoffman, Jitendra Malik, Yanghao Li, Christoph Feichtenhofer.
#
# Paper: https://arxiv.org/abs/2306.00989/
#
# References:
# slowfast: https://github.com/facebookresearch/SlowFast
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# --------------------------------------------------------
import math
from functools import partial
from typing import Callable, Dict, List, Optional, Tuple, Type, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, Mlp, LayerScale, ClNormMlpClassifierHead, use_fused_attn, \
_assert, get_norm_layer, to_2tuple, init_weight_vit, init_weight_jax
from ._registry import generate_default_cfgs, register_model
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._features_fx import register_notrace_function
from ._manipulate import named_apply
__all__ = ['Hiera']
def conv_nd(n: int) -> Type[nn.Module]:
"""
Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
"""
return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n]
@register_notrace_function
def get_resized_mask(target_size: List[int], mask: torch.Tensor) -> torch.Tensor:
# target_size: [(T), (H), W]
# (spatial) mask: [B, C, (t), (h), w]
if mask is None:
return mask
_assert(len(mask.shape[2:]) == len(target_size), "mask spatial shape and target_size must match.")
if mask.shape[2:] != target_size:
return F.interpolate(mask.float(), size=target_size)
return mask
def undo_windowing(
x: torch.Tensor,
shape: List[int],
mu_shape: List[int],
) -> torch.Tensor:
"""
Restore spatial organization by undoing windowed organization of mask units.
Args:
x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C]
shape: current spatial shape, if it were not organized into mask unit
windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C].
mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx]
Returns:
x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C]
"""
D = len(shape)
B, C = x.shape[0], x.shape[-1]
# [B, #MUy*#MUx, MUy, MUx, C] -> [B, #MUy, #MUx, MUy, MUx, C]
num_MUs = [s // mu for s, mu in zip(shape, mu_shape)]
x = x.view(B, *num_MUs, *mu_shape, C)
# [B, #MUy, #MUx, MUy, MUx, C] -> [B, #MUy*MUy, #MUx*MUx, C]
permute = (
[0]
+ sum([list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))], [])
+ [len(x.shape) - 1]
)
x = x.permute(permute).reshape(B, *shape, C)
return x
class Unroll(nn.Module):
"""
Reorders the tokens such that patches are contiguous in memory.
E.g., given [B, (H, W), C] and stride of (Sy, Sx), this will re-order the tokens as
[B, (Sy, Sx, H // Sy, W // Sx), C]
This allows operations like Max2d to be computed as x.view(B, Sx*Sy, -1, C).max(dim=1).
Not only is this faster, but it also makes it easy to support inputs of arbitrary
dimensions in addition to patch-wise sparsity.
Performing this operation multiple times in sequence puts entire windows as contiguous
in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of
size 8x8 would be contiguous in memory, allowing operations like mask unit attention
computed easily and efficiently, while also allowing max to be applied sequentially.
Note: This means that intermediate values of the model are not in HxW order, so they
need to be re-rolled if you want to use the intermediate values as a HxW feature map.
The last block of the network is fine though, since by then the strides are all consumed.
"""
def __init__(
self,
input_size: Tuple[int, ...],
patch_stride: Tuple[int, ...],
unroll_schedule: List[Tuple[int, ...]],
):
super().__init__()
self.size = [i // s for i, s in zip(input_size, patch_stride)]
self.schedule = unroll_schedule
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Input: Flattened patch embeddings [B, N, C]
Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd
"""
B, _, C = x.shape
cur_size = self.size
x = x.view(*([B] + cur_size + [C]))
for strides in self.schedule:
# Move patches with the given strides to the batch dimension
# Create a view of the tensor with the patch stride as separate dims
# For example in 2d: [B, H // Sy, Sy, W // Sx, Sx, C]
cur_size = [i // s for i, s in zip(cur_size, strides)]
new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C]
x = x.view(new_shape)
# Move the patch stride into the batch dimension
# For example in 2d: [B, Sy, Sx, H // Sy, W // Sx, C]
L = len(new_shape)
permute = [0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1]
x = x.permute(permute)
# Now finally flatten the relevant dims into the batch dimension
x = x.flatten(0, len(strides))
B *= math.prod(strides)
x = x.reshape(-1, math.prod(self.size), C)
return x
class Reroll(nn.Module):
"""
Undos the "unroll" operation so that you can use intermediate features.
"""
def __init__(
self,
input_size: Tuple[int, ...],
patch_stride: Tuple[int, ...],
unroll_schedule: List[Tuple[int, ...]],
stage_ends: List[int],
q_pool: int,
):
super().__init__()
self.size = [i // s for i, s in zip(input_size, patch_stride)]
# The first stage has to reverse everything
# The next stage has to reverse all but the first unroll, etc.
self.schedule = {}
size = self.size
for i in range(stage_ends[-1] + 1):
self.schedule[i] = unroll_schedule, size
# schedule unchanged if no pooling at a stage end
if i in stage_ends[:q_pool]:
if len(unroll_schedule) > 0:
size = [n // s for n, s in zip(size, unroll_schedule[0])]
unroll_schedule = unroll_schedule[1:]
def forward(
self,
x: torch.Tensor,
block_idx: int,
mask: torch.Tensor = None
) -> torch.Tensor:
"""
Roll the given tensor back up to spatial order assuming it's from the given block.
If no mask is provided:
- Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc.
If a mask is provided:
- Returns [B, #MUs, MUy, MUx, C] for 2d, etc.
"""
schedule, size = self.schedule[block_idx]
B, N, C = x.shape
D = len(size)
cur_mu_shape = [1] * D
for strides in schedule:
# Extract the current patch from N
x = x.view(B, *strides, N // math.prod(strides), *cur_mu_shape, C)
# Move that patch into the current MU
# Example in 2d: [B, Sy, Sx, N//(Sy*Sx), MUy, MUx, C] -> [B, N//(Sy*Sx), Sy, MUy, Sx, MUx, C]
L = len(x.shape)
permute = (
[0, 1 + D]
+ sum([list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))], [])
+ [L - 1]
)
x = x.permute(permute)
# Reshape to [B, N//(Sy*Sx), *MU, C]
for i in range(D):
cur_mu_shape[i] *= strides[i]
x = x.reshape(B, -1, *cur_mu_shape, C)
N = x.shape[1]
# Current shape (e.g., 2d: [B, #MUy*#MUx, MUy, MUx, C])
x = x.view(B, N, *cur_mu_shape, C)
# If masked, return [B, #MUs, MUy, MUx, C]
if mask is not None:
return x
# If not masked, we can return [B, H, W, C]
x = undo_windowing(x, size, cur_mu_shape)
return x
class MaskUnitAttention(nn.Module):
"""
Computes either Mask Unit or Global Attention. Also is able to perform q pooling.
Note: this assumes the tokens have already been flattened and unrolled into mask units.
See `Unroll` for more details.
"""
fused_attn: torch.jit.Final[bool]
def __init__(
self,
dim: int,
dim_out: int,
heads: int,
q_stride: int = 1,
window_size: int = 0,
use_mask_unit_attn: bool = False,
):
"""
Args:
- dim, dim_out: The input and output feature dimensions.
- heads: The number of attention heads.
- q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4).
- window_size: The current (flattened) size of a mask unit *after* pooling (if any).
- use_mask_unit_attn: Use Mask Unit or Global Attention.
"""
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.heads = heads
self.q_stride = q_stride
self.head_dim = dim_out // heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, 3 * dim_out)
self.proj = nn.Linear(dim_out, dim_out)
self.window_size = window_size
self.use_mask_unit_attn = use_mask_unit_attn
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Input should be of shape [batch, tokens, channels]. """
B, N, _ = x.shape
num_windows = (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1
qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5)
q, k, v = qkv.unbind(0)
if self.q_stride > 1:
# Refer to Unroll to see how this performs a maxpool-Nd
q = q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim).amax(dim=3)
if self.fused_attn:
# Note: the original paper did *not* use SDPA, it's a free boost!
x = F.scaled_dot_product_attention(q, k, v)
else:
attn = (q * self.scale) @ k.transpose(-1, -2)
attn = attn.softmax(dim=-1)
x = attn @ v
x = x.transpose(1, 3).reshape(B, -1, self.dim_out)
x = self.proj(x)
return x
class HieraBlock(nn.Module):
def __init__(
self,
dim: int,
dim_out: int,
heads: int,
mlp_ratio: float = 4.0,
drop_path: float = 0.0,
init_values: Optional[float] = None,
norm_layer: nn.Module = nn.LayerNorm,
act_layer: nn.Module = nn.GELU,
q_stride: int = 1,
window_size: int = 0,
use_expand_proj: bool = True,
use_mask_unit_attn: bool = False,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.norm1 = norm_layer(dim)
if dim != dim_out:
self.do_expand = True
if use_expand_proj:
self.proj = nn.Linear(dim, dim_out)
else:
assert dim_out == dim * 2
self.proj = None
else:
self.do_expand = False
self.proj = None
self.attn = MaskUnitAttention(
dim,
dim_out,
heads,
q_stride,
window_size,
use_mask_unit_attn
)
self.ls1 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer)
self.ls2 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Attention + Q Pooling
x_norm = self.norm1(x)
if self.do_expand:
if self.proj is not None:
x = self.proj(x_norm)
x = x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1) # max-pool
else:
x = torch.cat([
x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1), # max-pool
x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).mean(dim=1), # avg-pool
],
dim=-1,
)
x = x + self.drop_path1(self.ls1(self.attn(x_norm)))
# MLP
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class PatchEmbed(nn.Module):
"""Patch embed that supports any number of spatial dimensions (1d, 2d, 3d)."""
def __init__(
self,
dim_in: int,
dim_out: int,
kernel: Tuple[int, ...],
stride: Tuple[int, ...],
padding: Tuple[int, ...],
reshape: bool = True,
):
super().__init__()
# Support any number of spatial dimensions
self.spatial_dims = len(kernel)
self.reshape = reshape
self.proj = conv_nd(self.spatial_dims)(
dim_in,
dim_out,
kernel_size=kernel,
stride=stride,
padding=padding,
)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if mask is not None:
mask = get_resized_mask(target_size=x.shape[2:], mask=mask)
x = self.proj(x * mask.to(torch.bool))
else:
x = self.proj(x)
if self.reshape:
x = x.reshape(x.shape[0], x.shape[1], -1).transpose(2, 1)
return x
class Hiera(nn.Module):
def __init__(
self,
img_size: Tuple[int, ...] = (224, 224),
in_chans: int = 3,
embed_dim: int = 96, # initial embed dim
num_heads: int = 1, # initial number of heads
num_classes: int = 1000,
global_pool: str = 'avg',
stages: Tuple[int, ...] = (2, 3, 16, 3),
q_pool: int = 3, # number of q_pool stages
q_stride: Tuple[int, ...] = (2, 2),
mask_unit_size: Tuple[int, ...] = (8, 8), # must divide q_stride ** (#stages-1)
# mask_unit_attn: which stages use mask unit attention?
mask_unit_attn: Tuple[bool, ...] = (True, True, False, False),
use_expand_proj: bool = True,
dim_mul: float = 2.0,
head_mul: float = 2.0,
patch_kernel: Tuple[int, ...] = (7, 7),
patch_stride: Tuple[int, ...] = (4, 4),
patch_padding: Tuple[int, ...] = (3, 3),
mlp_ratio: float = 4.0,
drop_path_rate: float = 0.0,
init_values: Optional[float] = None,
fix_init: bool = True,
weight_init: str = '',
norm_layer: Union[str, nn.Module] = "LayerNorm",
drop_rate: float = 0.0,
patch_drop_rate: float = 0.0,
head_init_scale: float = 0.001,
sep_pos_embed: bool = False,
abs_win_pos_embed: bool = False,
global_pos_size: Tuple[int, int] = (14, 14),
):
super().__init__()
self.num_classes = num_classes
self.grad_checkpointing = False
norm_layer = get_norm_layer(norm_layer)
if isinstance(img_size, int):
img_size = to_2tuple(img_size)
self.patch_stride = patch_stride
self.tokens_spatial_shape = [i // s for i, s in zip(img_size, patch_stride)]
num_tokens = math.prod(self.tokens_spatial_shape)
flat_mu_size = math.prod(mask_unit_size)
flat_q_stride = math.prod(q_stride)
assert q_pool < len(stages)
self.q_pool, self.q_stride = q_pool, q_stride
self.mu_size, self.mask_unit_size = flat_mu_size, mask_unit_size
self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, self.mask_unit_size)]
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
self.patch_drop_rate = patch_drop_rate
self.patch_embed = PatchEmbed(
in_chans,
embed_dim,
patch_kernel,
patch_stride,
patch_padding,
)
self.pos_embed: Optional[nn.Parameter] = None
self.pos_embed_win: Optional[nn.Parameter] = None
self.pos_embed_spatial: Optional[nn.Parameter] = None
self.pos_embed_temporal: Optional[nn.Parameter] = None
if sep_pos_embed:
self.pos_embed_spatial = nn.Parameter(
torch.zeros(1, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], embed_dim)
)
self.pos_embed_temporal = nn.Parameter(
torch.zeros(1, self.tokens_spatial_shape[0], embed_dim)
)
else:
if abs_win_pos_embed:
# absolute win, params NCHW to make tile & interpolate more natural before add & reshape
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *global_pos_size))
self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size))
else:
self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim))
# Setup roll and reroll modules
self.unroll = Unroll(
img_size,
patch_stride,
[q_stride] * len(self.stage_ends[:-1])
)
self.reroll = Reroll(
img_size,
patch_stride,
[q_stride] * len(self.stage_ends[:-1]),
self.stage_ends,
q_pool,
)
# q_pool locations
q_pool_blocks = [x + 1 for x in self.stage_ends[:q_pool]]
# Transformer blocks
cur_stage = 0
depth = sum(stages)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList()
self.feature_info = []
for i in range(depth):
dim_out = embed_dim
# Mask unit or global attention.
# Lag by 1 block, so that global attention,
# applied post pooling on lower resolution
use_mask_unit_attn = mask_unit_attn[cur_stage]
if i - 1 in self.stage_ends:
dim_out = int(embed_dim * dim_mul)
num_heads = int(num_heads * head_mul)
cur_stage += 1
if i in q_pool_blocks:
flat_mu_size //= flat_q_stride
block = HieraBlock(
dim=embed_dim,
dim_out=dim_out,
heads=num_heads,
mlp_ratio=mlp_ratio,
drop_path=dpr[i],
init_values=init_values,
norm_layer=norm_layer,
q_stride=(flat_q_stride if i in q_pool_blocks else 1),
window_size=flat_mu_size,
use_expand_proj=use_expand_proj,
use_mask_unit_attn=use_mask_unit_attn,
)
embed_dim = dim_out
if i in self.stage_ends:
self.feature_info += [
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
self.blocks.append(block)
self.num_features = self.head_hidden_size = embed_dim
self.head = ClNormMlpClassifierHead(
embed_dim,
num_classes,
pool_type=global_pool,
drop_rate=drop_rate,
norm_layer=norm_layer,
input_fmt='NLC',
)
# Initialize everything
if sep_pos_embed:
nn.init.trunc_normal_(self.pos_embed_spatial, std=0.02)
nn.init.trunc_normal_(self.pos_embed_temporal, std=0.02)
else:
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
if self.pos_embed_win is not None:
nn.init.trunc_normal_(self.pos_embed_win, std=0.02)
if weight_init != 'skip':
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
init_fn = partial(init_fn, classifier_name='head.fc')
named_apply(init_fn, self)
if fix_init:
self.fix_init_weight()
if isinstance(self.head.fc, nn.Linear):
self.head.fc.weight.data.mul_(head_init_scale)
self.head.fc.bias.data.mul_(head_init_scale)
def fix_init_weight(self):
def rescale(param, _layer_id):
param.div_(math.sqrt(2.0 * _layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
@torch.jit.ignore
def no_weight_decay(self):
if self.pos_embed is not None:
return ["pos_embed"]
elif self.pos_embed_abs is not None:
return ['pos_embed_abs', 'pos_embed_win']
else:
return ["pos_embed_spatial", "pos_embed_temporal"]
@torch.jit.ignore
def group_matcher(self, coarse: bool = False) -> Dict:
return dict(
stem=r'^pos_embed|pos_embed_spatial|pos_embed_temporal|pos_embed_abs|pos_embed_win|patch_embed',
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable: bool = True) -> None:
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
self.num_classes = num_classes
self.head.reset(num_classes, global_pool, reset_other=reset_other)
def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor:
"""
Generates a random mask, mask_ratio fraction are dropped.
1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc.
"""
B = x.shape[0]
# Tokens selected for masking at mask unit level
num_windows = math.prod(self.mask_spatial_shape) # num_mask_units
len_keep = int(num_windows * (1 - mask_ratio))
noise = torch.rand(B, num_windows, device=x.device)
# Sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# Generate the binary mask: 1 is *keep*, 0 is *remove*
# Note this is opposite to original MAE
mask = torch.zeros([B, num_windows], device=x.device)
mask[:, :len_keep] = 1
# Unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return mask.bool()
def _pos_embed(self, x) -> torch.Tensor:
if self.pos_embed_win is not None:
# absolute win position embedding, from
# Window Attention is Bugged: How not to Interpolate Position Embeddings (https://arxiv.org/abs/2311.05613)
pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape)
pos_embed = F.interpolate(
self.pos_embed,
size=pos_embed_win.shape[-2:],
mode='bicubic',
antialias=True,
)
pos_embed = pos_embed + pos_embed_win
pos_embed = pos_embed.flatten(2).transpose(1, 2)
elif self.pos_embed is not None:
pos_embed = self.pos_embed
else:
pos_embed = (
self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1)
+
torch.repeat_interleave(
self.pos_embed_temporal,
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
dim=1,
)
)
x = x + pos_embed
return x
def forward_intermediates(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
indices: Optional[Union[int, List[int]]] = None,
norm: bool = False,
stop_early: bool = True,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
coarse: bool = True,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
Returns:
"""
assert not norm, 'normalization of features not supported'
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
if mask is not None:
patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape
else:
patch_mask = None
x = self.patch_embed(x, mask=patch_mask)
x = self._pos_embed(x)
x = self.unroll(x)
# Discard masked tokens
if mask is not None:
x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1])
intermediates = []
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x)
if i in take_indices:
x_int = self.reroll(x, i, mask=mask)
intermediates.append(x_int.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x_int)
if intermediates_only:
return intermediates
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
coarse: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_head:
self.head.reset(0, reset_other=True)
return take_indices
def forward_features(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
return_intermediates: bool = False,
) -> torch.Tensor:
"""
mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim.
Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch.
"""
if self.training and self.patch_drop_rate > 0:
# using mask for something like 'patch dropout' via mask-units in supervised train / fine-tune
assert mask is None
mask = self.get_random_mask(x, mask_ratio=self.patch_drop_rate)
if mask is not None:
patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape
else:
patch_mask = None
x = self.patch_embed(x, mask=patch_mask)
x = self._pos_embed(x)
x = self.unroll(x)
# Discard masked tokens
if mask is not None:
x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1])
intermediates = []
for i, blk in enumerate(self.blocks):
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(blk, x)
else:
x = blk(x)
if return_intermediates and i in self.stage_ends:
intermediates.append(self.reroll(x, i, mask=mask))
# x may not always be in spatial order here.
# e.g. if q_pool = 2, mask_unit_size = (8, 8), and
# q_stride = (2, 2), not all unrolls were consumed,
# intermediates[-1] is x in spatial order
if return_intermediates:
return x, intermediates
return x
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
return x
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
x = self.forward_features(x, mask=mask)
if mask is None:
x = self.forward_head(x)
return x
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
"hiera_tiny_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_tiny_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_small_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_small_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_base_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_base_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_base_plus_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_base_plus_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_large_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_large_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_huge_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_huge_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k": _cfg(
hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k": _cfg(
hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_small_abswin_256.sbb2_e200_in12k": _cfg(
hf_hub_id='timm/',
num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_small_abswin_256.sbb2_pd_e200_in12k": _cfg(
hf_hub_id='timm/',
num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_base_abswin_256.untrained": _cfg(
# hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95,
),
})
def checkpoint_filter_fn(state_dict, model=None):
state_dict = state_dict.get('model_state', state_dict)
output = {}
for k, v in state_dict.items():
# if k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
# # To resize pos embedding when using model at different size from pretrained weights
# from timm.layers import resample_abs_pos_embed
# v = resample_abs_pos_embed(
# v,
# new_size=(64, 64),
# num_prefix_tokens=0,
# verbose=True,
# )
if 'head.projection.' in k:
k = k.replace('head.projection.', 'head.fc.')
if k.startswith('encoder_norm.'):
k = k.replace('encoder_norm.', 'head.norm.')
elif k.startswith('norm.'):
k = k.replace('norm.', 'head.norm.')
if k == 'pos_embed_abs':
k = 'pos_embed'
output[k] = v
return output
def _create_hiera(variant: str, pretrained: bool = False, **kwargs) -> Hiera:
out_indices = kwargs.pop('out_indices', 4)
return build_model_with_cfg(
Hiera,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
@register_model
def hiera_tiny_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2))
return _create_hiera('hiera_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_small_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2))
return _create_hiera('hiera_small_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_base_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
return _create_hiera('hiera_base_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_base_plus_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=112, num_heads=2, stages=(2, 3, 16, 3))
return _create_hiera('hiera_base_plus_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_large_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4))
return _create_hiera('hiera_large_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_huge_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=256, num_heads=4, stages=(2, 6, 36, 4))
return _create_hiera('hiera_huge_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_small_abswin_256(pretrained=False, **kwargs):
model_args = dict(
embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, global_pos_size=(16, 16),
init_values=1e-5, weight_init='jax', use_expand_proj=False,
)
return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_base_abswin_256(pretrained=False, **kwargs):
model_args = dict(
embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, init_values=1e-5, weight_init='jax')
return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))
|