|
""" Transforms Factory |
|
Factory methods for building image transforms for use with TIMM (PyTorch Image Models) |
|
|
|
Hacked together by / Copyright 2019, Ross Wightman |
|
""" |
|
import math |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
from torchvision import transforms |
|
|
|
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT |
|
from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform |
|
from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, \ |
|
ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy, MaybeToTensor, MaybePILToTensor |
|
from timm.data.random_erasing import RandomErasing |
|
|
|
|
|
def transforms_noaug_train( |
|
img_size: Union[int, Tuple[int, int]] = 224, |
|
interpolation: str = 'bilinear', |
|
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, |
|
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, |
|
use_prefetcher: bool = False, |
|
normalize: bool = True, |
|
): |
|
""" No-augmentation image transforms for training. |
|
|
|
Args: |
|
img_size: Target image size. |
|
interpolation: Image interpolation mode. |
|
mean: Image normalization mean. |
|
std: Image normalization standard deviation. |
|
use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. |
|
normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used). |
|
|
|
Returns: |
|
|
|
""" |
|
if interpolation == 'random': |
|
|
|
interpolation = 'bilinear' |
|
tfl = [ |
|
transforms.Resize(img_size, interpolation=str_to_interp_mode(interpolation)), |
|
transforms.CenterCrop(img_size) |
|
] |
|
if use_prefetcher: |
|
|
|
tfl += [ToNumpy()] |
|
elif not normalize: |
|
|
|
tfl += [MaybePILToTensor()] |
|
else: |
|
tfl += [ |
|
MaybeToTensor(), |
|
transforms.Normalize( |
|
mean=torch.tensor(mean), |
|
std=torch.tensor(std) |
|
) |
|
] |
|
return transforms.Compose(tfl) |
|
|
|
|
|
def transforms_imagenet_train( |
|
img_size: Union[int, Tuple[int, int]] = 224, |
|
scale: Optional[Tuple[float, float]] = None, |
|
ratio: Optional[Tuple[float, float]] = None, |
|
train_crop_mode: Optional[str] = None, |
|
hflip: float = 0.5, |
|
vflip: float = 0., |
|
color_jitter: Union[float, Tuple[float, ...]] = 0.4, |
|
color_jitter_prob: Optional[float] = None, |
|
force_color_jitter: bool = False, |
|
grayscale_prob: float = 0., |
|
gaussian_blur_prob: float = 0., |
|
auto_augment: Optional[str] = None, |
|
interpolation: str = 'random', |
|
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, |
|
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, |
|
re_prob: float = 0., |
|
re_mode: str = 'const', |
|
re_count: int = 1, |
|
re_num_splits: int = 0, |
|
use_prefetcher: bool = False, |
|
normalize: bool = True, |
|
separate: bool = False, |
|
): |
|
""" ImageNet-oriented image transforms for training. |
|
|
|
Args: |
|
img_size: Target image size. |
|
train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr'). |
|
scale: Random resize scale range (crop area, < 1.0 => zoom in). |
|
ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). |
|
hflip: Horizontal flip probability. |
|
vflip: Vertical flip probability. |
|
color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). |
|
Scalar is applied as (scalar,) * 3 (no hue). |
|
color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug). |
|
force_color_jitter: Force color jitter where it is normally disabled (ie with RandAugment on). |
|
grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). |
|
gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). |
|
auto_augment: Auto augment configuration string (see auto_augment.py). |
|
interpolation: Image interpolation mode. |
|
mean: Image normalization mean. |
|
std: Image normalization standard deviation. |
|
re_prob: Random erasing probability. |
|
re_mode: Random erasing fill mode. |
|
re_count: Number of random erasing regions. |
|
re_num_splits: Control split of random erasing across batch size. |
|
use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. |
|
normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used). |
|
separate: Output transforms in 3-stage tuple. |
|
|
|
Returns: |
|
If separate==True, the transforms are returned as a tuple of 3 separate transforms |
|
for use in a mixing dataset that passes |
|
* all data through the first (primary) transform, called the 'clean' data |
|
* a portion of the data through the secondary transform |
|
* normalizes and converts the branches above with the third, final transform |
|
""" |
|
train_crop_mode = train_crop_mode or 'rrc' |
|
assert train_crop_mode in {'rrc', 'rkrc', 'rkrr'} |
|
if train_crop_mode in ('rkrc', 'rkrr'): |
|
|
|
scale = tuple(scale or (0.8, 1.00)) |
|
ratio = tuple(ratio or (0.9, 1/.9)) |
|
primary_tfl = [ |
|
ResizeKeepRatio( |
|
img_size, |
|
interpolation=interpolation, |
|
random_scale_prob=0.5, |
|
random_scale_range=scale, |
|
random_scale_area=True, |
|
random_aspect_prob=0.5, |
|
random_aspect_range=ratio, |
|
), |
|
CenterCropOrPad(img_size, padding_mode='reflect') |
|
if train_crop_mode == 'rkrc' else |
|
RandomCropOrPad(img_size, padding_mode='reflect') |
|
] |
|
else: |
|
scale = tuple(scale or (0.08, 1.0)) |
|
ratio = tuple(ratio or (3. / 4., 4. / 3.)) |
|
primary_tfl = [ |
|
RandomResizedCropAndInterpolation( |
|
img_size, |
|
scale=scale, |
|
ratio=ratio, |
|
interpolation=interpolation, |
|
) |
|
] |
|
if hflip > 0.: |
|
primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)] |
|
if vflip > 0.: |
|
primary_tfl += [transforms.RandomVerticalFlip(p=vflip)] |
|
|
|
secondary_tfl = [] |
|
disable_color_jitter = False |
|
if auto_augment: |
|
assert isinstance(auto_augment, str) |
|
|
|
|
|
disable_color_jitter = not (force_color_jitter or '3a' in auto_augment) |
|
if isinstance(img_size, (tuple, list)): |
|
img_size_min = min(img_size) |
|
else: |
|
img_size_min = img_size |
|
aa_params = dict( |
|
translate_const=int(img_size_min * 0.45), |
|
img_mean=tuple([min(255, round(255 * x)) for x in mean]), |
|
) |
|
if interpolation and interpolation != 'random': |
|
aa_params['interpolation'] = str_to_pil_interp(interpolation) |
|
if auto_augment.startswith('rand'): |
|
secondary_tfl += [rand_augment_transform(auto_augment, aa_params)] |
|
elif auto_augment.startswith('augmix'): |
|
aa_params['translate_pct'] = 0.3 |
|
secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)] |
|
else: |
|
secondary_tfl += [auto_augment_transform(auto_augment, aa_params)] |
|
|
|
if color_jitter is not None and not disable_color_jitter: |
|
|
|
if isinstance(color_jitter, (list, tuple)): |
|
|
|
|
|
assert len(color_jitter) in (3, 4) |
|
else: |
|
|
|
color_jitter = (float(color_jitter),) * 3 |
|
if color_jitter_prob is not None: |
|
secondary_tfl += [ |
|
transforms.RandomApply([ |
|
transforms.ColorJitter(*color_jitter), |
|
], |
|
p=color_jitter_prob |
|
) |
|
] |
|
else: |
|
secondary_tfl += [transforms.ColorJitter(*color_jitter)] |
|
|
|
if grayscale_prob: |
|
secondary_tfl += [transforms.RandomGrayscale(p=grayscale_prob)] |
|
|
|
if gaussian_blur_prob: |
|
secondary_tfl += [ |
|
transforms.RandomApply([ |
|
transforms.GaussianBlur(kernel_size=23), |
|
], |
|
p=gaussian_blur_prob, |
|
) |
|
] |
|
|
|
final_tfl = [] |
|
if use_prefetcher: |
|
|
|
final_tfl += [ToNumpy()] |
|
elif not normalize: |
|
|
|
final_tfl += [MaybePILToTensor()] |
|
else: |
|
final_tfl += [ |
|
MaybeToTensor(), |
|
transforms.Normalize( |
|
mean=torch.tensor(mean), |
|
std=torch.tensor(std), |
|
), |
|
] |
|
if re_prob > 0.: |
|
final_tfl += [ |
|
RandomErasing( |
|
re_prob, |
|
mode=re_mode, |
|
max_count=re_count, |
|
num_splits=re_num_splits, |
|
device='cpu', |
|
) |
|
] |
|
|
|
if separate: |
|
return transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl) |
|
else: |
|
return transforms.Compose(primary_tfl + secondary_tfl + final_tfl) |
|
|
|
|
|
def transforms_imagenet_eval( |
|
img_size: Union[int, Tuple[int, int]] = 224, |
|
crop_pct: Optional[float] = None, |
|
crop_mode: Optional[str] = None, |
|
crop_border_pixels: Optional[int] = None, |
|
interpolation: str = 'bilinear', |
|
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, |
|
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, |
|
use_prefetcher: bool = False, |
|
normalize: bool = True, |
|
): |
|
""" ImageNet-oriented image transform for evaluation and inference. |
|
|
|
Args: |
|
img_size: Target image size. |
|
crop_pct: Crop percentage. Defaults to 0.875 when None. |
|
crop_mode: Crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. |
|
crop_border_pixels: Trim a border of specified # pixels around edge of original image. |
|
interpolation: Image interpolation mode. |
|
mean: Image normalization mean. |
|
std: Image normalization standard deviation. |
|
use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. |
|
normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used). |
|
|
|
Returns: |
|
Composed transform pipeline |
|
""" |
|
crop_pct = crop_pct or DEFAULT_CROP_PCT |
|
|
|
if isinstance(img_size, (tuple, list)): |
|
assert len(img_size) == 2 |
|
scale_size = tuple([math.floor(x / crop_pct) for x in img_size]) |
|
else: |
|
scale_size = math.floor(img_size / crop_pct) |
|
scale_size = (scale_size, scale_size) |
|
|
|
tfl = [] |
|
|
|
if crop_border_pixels: |
|
tfl += [TrimBorder(crop_border_pixels)] |
|
|
|
if crop_mode == 'squash': |
|
|
|
|
|
tfl += [ |
|
transforms.Resize(scale_size, interpolation=str_to_interp_mode(interpolation)), |
|
transforms.CenterCrop(img_size), |
|
] |
|
elif crop_mode == 'border': |
|
|
|
|
|
fill = [round(255 * v) for v in mean] |
|
tfl += [ |
|
ResizeKeepRatio(scale_size, interpolation=interpolation, longest=1.0), |
|
CenterCropOrPad(img_size, fill=fill), |
|
] |
|
else: |
|
|
|
|
|
if scale_size[0] == scale_size[1]: |
|
|
|
tfl += [ |
|
transforms.Resize(scale_size[0], interpolation=str_to_interp_mode(interpolation)) |
|
] |
|
else: |
|
|
|
tfl += [ResizeKeepRatio(scale_size)] |
|
tfl += [transforms.CenterCrop(img_size)] |
|
|
|
if use_prefetcher: |
|
|
|
tfl += [ToNumpy()] |
|
elif not normalize: |
|
|
|
tfl += [MaybePILToTensor()] |
|
else: |
|
tfl += [ |
|
MaybeToTensor(), |
|
transforms.Normalize( |
|
mean=torch.tensor(mean), |
|
std=torch.tensor(std), |
|
), |
|
] |
|
|
|
return transforms.Compose(tfl) |
|
|
|
|
|
def create_transform( |
|
input_size: Union[int, Tuple[int, int], Tuple[int, int, int]] = 224, |
|
is_training: bool = False, |
|
no_aug: bool = False, |
|
train_crop_mode: Optional[str] = None, |
|
scale: Optional[Tuple[float, float]] = None, |
|
ratio: Optional[Tuple[float, float]] = None, |
|
hflip: float = 0.5, |
|
vflip: float = 0., |
|
color_jitter: Union[float, Tuple[float, ...]] = 0.4, |
|
color_jitter_prob: Optional[float] = None, |
|
grayscale_prob: float = 0., |
|
gaussian_blur_prob: float = 0., |
|
auto_augment: Optional[str] = None, |
|
interpolation: str = 'bilinear', |
|
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, |
|
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, |
|
re_prob: float = 0., |
|
re_mode: str = 'const', |
|
re_count: int = 1, |
|
re_num_splits: int = 0, |
|
crop_pct: Optional[float] = None, |
|
crop_mode: Optional[str] = None, |
|
crop_border_pixels: Optional[int] = None, |
|
tf_preprocessing: bool = False, |
|
use_prefetcher: bool = False, |
|
normalize: bool = True, |
|
separate: bool = False, |
|
): |
|
""" |
|
|
|
Args: |
|
input_size: Target input size (channels, height, width) tuple or size scalar. |
|
is_training: Return training (random) transforms. |
|
no_aug: Disable augmentation for training (useful for debug). |
|
train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr'). |
|
scale: Random resize scale range (crop area, < 1.0 => zoom in). |
|
ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). |
|
hflip: Horizontal flip probability. |
|
vflip: Vertical flip probability. |
|
color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). |
|
Scalar is applied as (scalar,) * 3 (no hue). |
|
color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug). |
|
grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). |
|
gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). |
|
auto_augment: Auto augment configuration string (see auto_augment.py). |
|
interpolation: Image interpolation mode. |
|
mean: Image normalization mean. |
|
std: Image normalization standard deviation. |
|
re_prob: Random erasing probability. |
|
re_mode: Random erasing fill mode. |
|
re_count: Number of random erasing regions. |
|
re_num_splits: Control split of random erasing across batch size. |
|
crop_pct: Inference crop percentage (output size / resize size). |
|
crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. |
|
crop_border_pixels: Inference crop border of specified # pixels around edge of original image. |
|
tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports |
|
use_prefetcher: Pre-fetcher enabled. Do not convert image to tensor or normalize. |
|
normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used). |
|
separate: Output transforms in 3-stage tuple. |
|
|
|
Returns: |
|
Composed transforms or tuple thereof |
|
""" |
|
if isinstance(input_size, (tuple, list)): |
|
img_size = input_size[-2:] |
|
else: |
|
img_size = input_size |
|
|
|
if tf_preprocessing and use_prefetcher: |
|
assert not separate, "Separate transforms not supported for TF preprocessing" |
|
from timm.data.tf_preprocessing import TfPreprocessTransform |
|
transform = TfPreprocessTransform( |
|
is_training=is_training, |
|
size=img_size, |
|
interpolation=interpolation, |
|
) |
|
else: |
|
if is_training and no_aug: |
|
assert not separate, "Cannot perform split augmentation with no_aug" |
|
transform = transforms_noaug_train( |
|
img_size, |
|
interpolation=interpolation, |
|
mean=mean, |
|
std=std, |
|
use_prefetcher=use_prefetcher, |
|
normalize=normalize, |
|
) |
|
elif is_training: |
|
transform = transforms_imagenet_train( |
|
img_size, |
|
train_crop_mode=train_crop_mode, |
|
scale=scale, |
|
ratio=ratio, |
|
hflip=hflip, |
|
vflip=vflip, |
|
color_jitter=color_jitter, |
|
color_jitter_prob=color_jitter_prob, |
|
grayscale_prob=grayscale_prob, |
|
gaussian_blur_prob=gaussian_blur_prob, |
|
auto_augment=auto_augment, |
|
interpolation=interpolation, |
|
mean=mean, |
|
std=std, |
|
re_prob=re_prob, |
|
re_mode=re_mode, |
|
re_count=re_count, |
|
re_num_splits=re_num_splits, |
|
use_prefetcher=use_prefetcher, |
|
normalize=normalize, |
|
separate=separate, |
|
) |
|
else: |
|
assert not separate, "Separate transforms not supported for validation preprocessing" |
|
transform = transforms_imagenet_eval( |
|
img_size, |
|
interpolation=interpolation, |
|
mean=mean, |
|
std=std, |
|
crop_pct=crop_pct, |
|
crop_mode=crop_mode, |
|
crop_border_pixels=crop_border_pixels, |
|
use_prefetcher=use_prefetcher, |
|
normalize=normalize, |
|
) |
|
|
|
return transform |
|
|