Dataset Preview
The table displays a preview with only the first rows.
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 2 new columns ({'LapNo_2', 'LapNo_1'})

This happened while the csv dataset builder was generating data using

hf://datasets/dasgringuen/assettoCorsaGym/data_sets/ks_barcelona-layout_gp/dallara_f317/20240311_SAC/eval/best/ks_barcelona-layout_gp/dallara_f317/eval_summary.csv (at revision ad1df12c49cce10f159ba31967744750bb9edd8b)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              ep_count: int64
              ep_steps: int64
              total_steps: int64
              packages_lost: int64
              ep_reward: double
              speed_mean: double
              speed_max: double
              BestLap: double
              LapNo_0: double
              LapNo_1: double
              LapNo_2: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1546
              to
              {'ep_count': Value(dtype='int64', id=None), 'ep_steps': Value(dtype='int64', id=None), 'total_steps': Value(dtype='int64', id=None), 'packages_lost': Value(dtype='int64', id=None), 'ep_reward': Value(dtype='float64', id=None), 'speed_mean': Value(dtype='float64', id=None), 'speed_max': Value(dtype='float64', id=None), 'BestLap': Value(dtype='float64', id=None), 'LapNo_0': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 2 new columns ({'LapNo_2', 'LapNo_1'})
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/dasgringuen/assettoCorsaGym/data_sets/ks_barcelona-layout_gp/dallara_f317/20240311_SAC/eval/best/ks_barcelona-layout_gp/dallara_f317/eval_summary.csv (at revision ad1df12c49cce10f159ba31967744750bb9edd8b)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

ep_count
int64
ep_steps
int64
total_steps
int64
packages_lost
int64
ep_reward
float64
speed_mean
float64
speed_max
float64
BestLap
float64
LapNo_0
float64
LapNo_1
float64
LapNo_2
float64
steps
int64
currentTime
float64
done
int64
speed
float64
reward
float64
gap
float64
world_position_y
float64
world_position_x
float64
RPM
float64
steerAngle
float64
brakeStatus
float64
accStatus
float64
actualGear
int64
packetId
int64
velocity_x
float64
velocity_y
float64
velocity_z
float64
yaw
float64
roll
float64
angular_velocity_y
float64
angular_velocity_x
float64
LapCount
int64
LapDist
float64
going_backwards
float64
current_action_abs_0
float64
current_action_abs_1
float64
current_action_abs_2
float64
actions_0
float64
actions_1
float64
actions_2
float64
rl_point
int64
out_of_track
float64
1
1
3
0
0.000337
0.028054
0.028054
97.699
97.699
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
1
5,715
5,717
35
3,058.533497
45.729529
67.838165
97.725
0
99.215
97.725
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
4
60.813
0
0.003566
0.000043
-0.0001
170.158142
-541.397827
1,453.881592
0
0
0
1
5,739
0.000028
0.001778
-0.000695
2.219089
-0.021686
0.00359
0.000444
0
3,901.489418
0
0
-1
-1
0
-1
-1
2,535
0
null
null
null
null
null
null
null
null
null
null
null
5
60.852
0
0.001754
0.000021
-0.0001
170.158142
-541.397827
1,500.434448
0
0
0
1
5,743
-0.000012
0.001678
-0.000194
2.21908
-0.021249
0.000256
-0.000055
0
3,901.489418
0
0.12093
-0.520154
-1
0.906978
0.999678
-0.998802
2,535
0
null
null
null
null
null
null
null
null
null
null
null
6
60.894
0
0.001876
0.000023
-0.000149
170.158142
-541.397888
1,550.568237
0
0
0
1
5,747
-0.000214
0.001572
-0.000701
2.219074
-0.020963
0.000876
-0.00021
0
3,901.489418
0
0.242206
-0.040309
-1
0.909565
0.999679
-0.998804
2,535
0
null
null
null
null
null
null
null
null
null
null
null
7
60.933
0
0.001602
0.000019
-0.000149
170.158142
-541.397888
1,597.121094
0
0
0
1
5,751
0.001483
0.001003
0.002841
2.219079
-0.020719
0.002792
-0.000339
0
3,901.489418
0
0.363252
0.439538
-1
0.907844
0.999681
-0.998754
2,535
0
null
null
null
null
null
null
null
null
null
null
null
8
60.972
0
0.002539
0.00003
-0.000149
170.158142
-541.397888
1,643.674072
0
0
0
1
5,755
0.000593
0.001347
0.000686
2.219055
-0.020509
-0.004764
-0.000391
0
3,901.489418
0
0.410445
0.916991
-1
0.353946
0.994693
-0.972549
2,535
0
null
null
null
null
null
null
null
null
null
null
null
9
61.014
0
0.002418
0.000029
-0.000149
170.158142
-541.397888
1,693.807861
0
0
0
1
5,759
0.002661
0.001197
0.003077
2.219064
-0.020361
0.002926
-0.000814
0
3,901.489418
0
0.456661
1
-1
0.346625
0.99488
-0.972659
2,535
0
null
null
null
null
null
null
null
null
null
null
null
10
61.053
0
0.002408
0.000029
-0.000149
170.158142
-541.397888
1,700.919189
0
0
0
1
5,763
0.00347
0.000837
0.004513
2.219056
-0.020222
-0.000381
-0.000303
0
3,901.489418
0
0.502426
1
-1
0.343232
0.994762
-0.972356
2,535
0
null
null
null
null
null
null
null
null
null
null
null
11
61.092
0
0.00418
0.00005
-0.000149
170.158142
-541.397888
1,700.863037
0
0
0
1
5,767
-0.000012
0.001224
0.000488
2.219049
-0.020102
-0.004896
-0.000456
0
3,901.489418
0
0.546774
1
-1
0.332613
0.994617
-0.971985
2,535
0
null
null
null
null
null
null
null
null
null
null
null
12
61.134
0
0.002301
0.000028
-0.000149
170.158142
-541.397888
1,700.806152
0
0
0
1
5,771
-0.001042
0.000954
-0.001919
2.219058
-0.019999
0.000221
-0.000015
0
3,901.489418
0
0.591012
1
-1
0.331788
0.994589
-0.9719
2,535
0
null
null
null
null
null
null
null
null
null
null
null
13
61.173
0
0.003411
0.000041
-0.000149
170.158142
-541.397888
1,700.756836
0
0
0
1
5,775
0.000383
0.000956
0.000046
2.219046
-0.019903
-0.004025
-0.00025
0
3,901.489418
0
0.635
1
-1
0.329908
0.994424
-0.971909
2,535
0
null
null
null
null
null
null
null
null
null
null
null
14
61.212
0
0.002379
0.000029
-0.000149
170.158142
-541.397888
1,700.710205
0
0
0
1
5,779
0.001742
0.000459
0.00232
2.219044
-0.019819
0.00346
-0.000178
0
3,901.489418
0
0.677889
1
-1
0.321668
0.994317
-0.972169
2,535
0
null
null
null
null
null
null
null
null
null
null
null
15
61.254
0
0.003317
0.00004
-0.000149
170.158142
-541.397888
1,700.663574
0
0
0
1
5,783
-0.000289
0.00086
-0.000072
2.219037
-0.019756
-0.004573
-0.000133
0
3,901.489418
0
0.719816
1
-1
0.31445
0.994248
-0.972013
2,535
0
null
null
null
null
null
null
null
null
null
null
null
16
61.293
0
0.001503
0.000018
-0.000158
170.158127
-541.397888
1,700.622803
0
0
0
1
5,787
-0.00379
0.000458
-0.006133
2.219043
-0.0197
-0.002706
-0.000024
0
3,901.489418
0
0.760672
1
-1
0.306425
0.994227
-0.972318
2,535
0
null
null
null
null
null
null
null
null
null
null
null
17
61.332
0
0.002694
0.000032
-0.000149
170.158142
-541.397888
1,700.584717
0
0
0
1
5,791
0.002723
0.000334
0.00409
2.219037
-0.019644
-0.0005
-0.000215
0
3,901.489418
0
0.802271
1
-1
0.311993
0.994114
-0.97238
2,535
0
null
null
null
null
null
null
null
null
null
null
null
18
61.374
0
0.001525
0.000018
-0.000149
170.158142
-541.397888
1,700.546265
0
0
0
1
5,795
-0.002414
0.000418
-0.003742
2.219035
-0.019597
-0.0078
-0.000144
0
3,901.489418
0
0.841719
1
-1
0.295858
0.993932
-0.972486
2,535
0
null
null
null
null
null
null
null
null
null
null
null
19
61.413
0
0.004453
0.000053
-0.000149
170.158142
-541.397888
1,700.512695
0
0
0
1
5,799
0.001281
0.000156
0.001554
2.219045
-0.01956
0.00358
0.000181
0
3,901.489418
0
0.879182
1
-1
0.280974
0.993969
-0.972554
2,535
0
null
null
null
null
null
null
null
null
null
null
null
20
61.452
0
0.001404
0.000017
-0.00014
170.158157
-541.397888
1,700.481201
0
0
0
1
5,803
0.002269
0.000256
0.003827
2.219041
-0.019521
0.000429
-0.000005
0
3,901.489418
0
0.916868
1
-1
0.28264
0.993965
-0.972621
2,535
0
null
null
null
null
null
null
null
null
null
null
null
21
61.494
0
0.000798
0.00001
-0.000149
170.158142
-541.397888
1,700.449707
0
0
0
1
5,807
-0.000582
0.000497
-0.000471
2.219035
-0.01949
-0.004164
0.000216
0
3,901.489418
0
0.952951
1
-1
0.270626
0.993809
-0.972524
2,535
0
null
null
null
null
null
null
null
null
null
null
null
22
61.533
0
0.004095
0.000049
-0.000149
170.158142
-541.397888
1,700.422119
0
0
0
1
5,811
0.001592
0.000053
0.001663
2.219041
-0.01947
0.003806
0.000286
0
3,901.489418
0
0.988615
1
-1
0.26748
0.993856
-0.972459
2,535
0
null
null
null
null
null
null
null
null
null
null
null
23
61.572
0
0.005659
0.000068
-0.000149
170.158142
-541.397888
1,700.396118
0
0
0
1
5,815
0.000511
0.000156
0.000748
2.219051
-0.019443
0.004022
0.000261
0
3,901.489418
0
1
1
-1
0.276634
0.993648
-0.972146
2,535
0
null
null
null
null
null
null
null
null
null
null
null
24
61.614
0
0.001978
0.000024
-0.00014
170.158157
-541.397888
1,700.369995
0
0
0
1
5,819
0.002002
0.000147
0.003513
2.219047
-0.01942
-0.000263
0.000011
0
3,901.489418
0
1
1
-1
0.274019
0.99363
-0.971875
2,535
0
null
null
null
null
null
null
null
null
null
null
null
25
61.653
0
0.000727
0.000009
-0.000149
170.158142
-541.397888
1,700.347412
0
0
0
1
5,823
0.001369
-0.000027
0.001637
2.219051
-0.019406
0.004313
0.000381
0
3,901.489418
0
1
1
-1
0.260319
0.99361
-0.971867
2,535
0
null
null
null
null
null
null
null
null
null
null
null
60
63.054
0
0.024213
0.000291
-0.000584
170.15863
-541.397339
1,992.643677
205.37999
0
1
1
5,963
0.012127
-0.000346
0.024455
2.218334
-0.018481
-0.024894
0.001413
0
3,901.489418
0
1
1
-1
0.267425
0.993501
-0.971904
2,535
0
null
null
null
null
null
null
null
null
null
null
null
61
63.093
0
0.008327
0.0001
-0.001227
170.15889
-541.396729
2,362.335938
233.999985
0
1
1
5,967
0.009769
-0.003365
0.020037
2.217668
-0.017931
-0.002657
0.007252
0
3,901.489418
0
0.866677
1
-1
-0.999919
0.761891
-0.890302
2,535
0
null
null
null
null
null
null
null
null
null
null
null
62
63.132
0
0.009799
0.000118
-0.001407
170.159027
-541.396606
2,812.121582
198.044983
0
0.94105
1
5,971
0.006667
0.000726
-0.000909
2.217372
-0.01793
0.001826
0.00012
0
3,901.489418
0
0.733357
0.882119
-1
-0.999906
-0.245585
-0.897362
2,535
0
null
null
null
null
null
null
null
null
null
null
null
63
63.174
0
0.003341
0.00004
-0.001462
170.159119
-541.396606
3,461.87915
162.720001
0
1
1
5,975
0.002442
-0.000205
-0.000861
2.217317
-0.018331
-0.003058
0.002323
0
3,901.489418
0
0.602671
1
-1
-0.980143
0.974064
-0.984868
2,535
0
null
null
null
null
null
null
null
null
null
null
null
64
63.213
0
0.002027
0.000024
-0.001432
170.159149
-541.396667
4,306.040527
134.459991
0
1
1
5,979
0.001563
-0.001368
-0.000844
2.217357
-0.018612
-0.000554
0.002975
0
3,901.489418
0
0.497875
1
-1
-0.785967
0.968224
-0.988726
2,535
0
null
null
null
null
null
null
null
null
null
null
null
65
63.252
0
0.003545
0.000043
-0.001365
170.159119
-541.396729
5,264.425781
166.63501
0
1
1
5,983
-0.00248
0.001858
0.001039
2.217394
-0.018612
0.000586
-0.00043
0
3,901.489418
0
0.617194
1
-1
0.89489
0.990599
-0.990574
2,535
0
null
null
null
null
null
null
null
null
null
null
null
66
63.294
0
0.007284
0.000087
-0.001481
170.159149
-541.396606
6,258.543457
193.725006
0
1
1
5,987
-0.000038
0.002342
0.007549
2.21733
-0.018596
0.002911
-0.001373
0
3,901.489418
0
0.71748
1
-1
0.752142
0.968591
-0.994815
2,535
0
null
null
null
null
null
null
null
null
null
null
null
67
63.333
0
0.003854
0.000046
-0.001472
170.159134
-541.396606
6,304.491211
195.389999
0
0
1
5,991
0.004923
0.002189
0.003758
2.217352
-0.018642
0.001248
-0.00217
0
3,901.489418
0
0.723624
1
-1
0.046084
0.979102
-0.996258
2,535
0
null
null
null
null
null
null
null
null
null
null
null
68
63.372
0
0.003932
0.000047
-0.001395
170.159088
-541.396667
6,022.245117
203.669998
0
0
1
5,995
-0.001123
0.001626
0.001405
2.217387
-0.018514
0.002594
-0.000863
0
3,901.489418
0
0.754316
1
-1
0.230187
0.999871
-0.997422
2,535
0
null
null
null
null
null
null
null
null
null
null
null
69
63.414
0
0.012239
0.000147
-0.001545
170.159256
-541.396606
4,201.243652
190.259979
0
1
2
5,999
0.024204
-0.001654
-0.020669
2.217274
-0.018743
0.004378
-0.006551
0
3,901.489418
0
0.704669
1
-1
-0.37235
0.999647
-0.99646
2,535
0
null
null
null
null
null
null
null
null
null
null
null
70
63.453
0
0.288125
0.003457
0.002731
170.165573
-541.399902
4,520.90332
198.809998
0
1
2
6,003
0.269496
-0.010772
-0.155552
2.216235
-0.018876
-0.03223
-0.037468
0
3,901.49544
0
0.736253
1
-1
0.236878
0.885764
-0.99385
2,535
0
null
null
null
null
null
null
null
null
null
null
null
71
63.492
0
0.593756
0.007122
0.005357
170.181854
-541.408936
4,816.581055
210.059998
0
1
2
6,007
0.543653
-0.025697
-0.289761
2.213744
-0.018589
-0.087868
-0.011904
0
3,901.513504
0
0.778026
1
-1
0.313302
0.279628
-0.996667
2,535
0
null
null
null
null
null
null
null
null
null
null
null
72
63.534
0
0.919492
0.011025
0.010056
170.210922
-541.425049
5,148.187012
214.829987
0
1
2
6,011
0.826595
-0.026425
-0.4508
2.209957
-0.018351
-0.114708
0.012017
0
3,901.544979
0
0.795691
1
-1
0.132486
0.139643
-0.998502
2,535
0
null
null
null
null
null
null
null
null
null
null
null
73
63.573
0
1.19703
0.014344
0.016757
170.248627
-541.44519
5,478.681641
223.065002
0
0.97425
2
6,015
1.086809
-0.018426
-0.550765
2.204363
-0.017985
-0.192759
0.009696
0
3,901.586855
0
0.826097
0.94854
-1
0.228045
-0.107208
-0.999186
2,535
0
null
null
null
null
null
null
null
null
null
null
null
74
63.612
0
1.477434
0.017692
0.025172
170.2957
-541.470276
5,815.670898
211.634995
0
1
2
6,019
1.307092
-0.018524
-0.731032
2.196602
-0.018835
-0.163683
-0.003034
0
3,901.637763
0
0.783869
1
-1
-0.316714
0.155499
-0.999411
2,535
0
null
null
null
null
null
null
null
null
null
null
null
75
63.654
0
1.756658
0.021019
0.034797
170.356064
-541.503906
6,148.751465
195.839996
0
1
2
6,023
1.552163
-0.03147
-0.86339
2.189698
-0.018582
-0.181885
0.004532
0
3,901.708377
0
0.725238
1
-1
-0.439734
0.129743
-0.999372
2,535
0
null
null
null
null
null
null
null
null
null
null
null
76
63.693
0
2.015168
0.024091
0.045383
170.421326
-541.540039
6,420.901367
181.304993
0
1
2
6,027
1.776636
-0.041277
-0.991056
2.181943
-0.016841
-0.201064
0.004781
0
3,901.780085
0
0.67149
1
-1
-0.403107
0.216543
-0.999365
2,535
0
null
null
null
null
null
null
null
null
null
null
null
77
63.732
0
2.278206
0.027209
0.056967
170.495255
-541.581482
6,211.95459
158.580002
0
0
1
6,031
1.997789
-0.047794
-1.135566
2.17309
-0.017809
-0.200246
-0.00232
0
3,901.862469
0
0.58736
1
-1
-0.630974
0.192213
-0.999081
2,535
0
null
null
null
null
null
null
null
null
null
null
null
78
63.774
0
2.559226
0.030528
0.071229
170.585068
-541.631592
5,914.822754
168.705002
0
0
1
6,035
2.265179
-0.054495
-1.234141
2.164233
-0.017082
-0.263649
-0.004623
0
3,901.962916
0
0.624833
1
-1
0.281048
0.975221
-0.995731
2,535
0
null
null
null
null
null
null
null
null
null
null
null
79
63.813
0
2.849029
0.033941
0.086903
170.678589
-541.682739
4,101.272949
152.36998
0
1
3
6,039
2.510389
-0.059189
-1.391817
2.153548
-0.016413
-0.262428
-0.005413
0
3,902.067742
0
0.564343
1
-1
-0.453675
0.991108
-0.991237
2,535
0
null
null
null
null
null
null
null
null
null
null
null
80
63.852
0
3.133242
0.037276
0.103134
170.781418
-541.740234
4,297.451172
121.455002
0
1
3
6,043
2.741158
-0.060749
-1.560002
2.142691
-0.018067
-0.231415
0.00329
0
3,902.183242
0
0.449792
1
-1
-0.859133
0.786116
-0.994374
2,535
0
null
null
null
null
null
null
null
null
null
null
null
81
63.894
0
3.43079
0.040755
0.120905
170.902115
-541.809326
4,519.427734
93.195
0
1
3
6,047
2.98439
-0.063918
-1.733515
2.133893
-0.017168
-0.197799
0.003762
0
3,902.318175
0
0.345193
1
-1
-0.784493
0.657226
-0.989905
2,535
0
null
null
null
null
null
null
null
null
null
null
null
82
63.933
0
3.703731
0.043934
0.137947
171.023392
-541.879883
4,724.205078
77.489998
0
1
3
6,051
3.215903
-0.066907
-1.877589
2.126107
-0.016085
-0.192585
0.003546
0
3,902.460498
0
0.287027
1
-1
-0.436249
0.698805
-0.985232
2,536
0
null
null
null
null
null
null
null
null
null
null
null
83
63.975
0
3.994429
0.047302
0.158021
171.16423
-541.961792
4,952.427734
70.019997
0
1
3
6,055
3.471429
-0.07145
-2.016214
2.117615
-0.016507
-0.204889
0.002644
0
3,902.620885
0
0.259363
1
-1
-0.207479
0.841624
-0.971747
2,536
0
null
null
null
null
null
null
null
null
null
null
null
84
64.014
0
4.265529
0.050427
0.177961
171.304443
-542.043396
5,178.183105
51.389999
0
1
3
6,059
3.696485
-0.077519
-2.168578
2.109684
-0.016854
-0.181898
0.002965
0
3,902.781272
0
0.190307
1
-1
-0.517915
0.920821
-0.965442
2,536
0
null
null
null
null
null
null
null
null
null
null
null
85
64.053
0
4.535245
0.053523
0.198423
171.453384
-542.130981
5,409.426758
38.25
0
1
3
6,063
3.922158
-0.090364
-2.316276
2.102828
-0.016223
-0.161976
0.009455
0
3,902.952059
0
0.141602
1
-1
-0.365289
0.931437
-0.963585
2,536
0
null
null
null
null
null
null
null
null
null
null
null
86
64.092
0
4.802493
0.056574
0.219765
171.61116
-542.224182
5,630.355957
28.439999
0
1
3
6,067
4.149251
-0.101551
-2.456433
2.096119
-0.015532
-0.15219
0.012357
0
3,903.13051
0
0.105293
1
-1
-0.272318
0.943498
-0.96279
2,536
0
null
null
null
null
null
null
null
null
null
null
null
87
64.134
0
5.089019
0.059826
0.244107
171.791061
-542.330444
5,848.507324
22.59
0
1
3
6,071
4.398949
-0.106152
-2.597308
2.090102
-0.015545
-0.151207
0.006551
0
3,903.340437
0
0.083712
1
-1
-0.161859
0.950242
-0.963327
2,536
0
null
null
null
null
null
null
null
null
null
null
null
88
64.173
0
5.357617
0.062856
0.26785
171.967407
-542.434753
6,028.260742
6.795
0
1
3
6,075
4.622374
-0.107733
-2.747522
2.084439
-0.015601
-0.123636
0.006018
0
3,903.544068
0
0.025183
1
-1
-0.438964
0.950748
-0.959005
2,536
0
null
null
null
null
null
null
null
null
null
null
null
89
64.212
0
5.62629
0.065874
0.291833
172.152252
-542.545227
6,187.019531
-15.345
0
1
3
6,079
4.834412
-0.109257
-2.916391
2.080132
-0.015383
-0.069586
0.009336
0
3,903.757005
0
-0.056791
1
-1
-0.614808
0.963175
-0.955324
2,536
0
null
null
null
null
null
null
null
null
null
null
null
90
64.254
0
5.912859
0.069079
0.317193
172.360367
-542.671814
6,339.218262
-36.134998
0
1
3
6,083
5.054176
-0.111717
-3.105517
2.078674
-0.014859
0.001541
0.012575
0
3,903.993753
0
-0.133778
1
-1
-0.5774
0.973978
-0.965271
2,537
0
null
null
null
null
null
null
null
null
null
null
null
91
64.293
0
6.173437
0.071978
0.340751
172.56189
-542.796204
6,471.593262
-42.299999
0
1
3
6,087
5.263961
-0.115473
-3.261464
2.079607
-0.014201
0.043723
0.004584
0
3,904.23187
0
-0.156631
1
-1
-0.171399
0.970055
-0.969219
2,537
0
null
null
null
null
null
null
null
null
null
null
null
92
64.332
0
6.435721
0.074882
0.364598
172.771713
-542.926575
6,589.397949
-49.814999
0
1
3
6,091
5.477353
-0.123787
-3.415028
2.08217
-0.014403
0.079051
0.007961
0
3,904.476009
0
-0.184331
1
-1
-0.207749
0.967214
-0.967177
2,537
0
null
null
null
null
null
null
null
null
null
null
null
93
64.374
0
6.716261
0.077972
0.390502
173.006882
-543.07373
6,707.289551
-58.949997
0
1
3
6,095
5.700339
-0.139998
-3.586195
2.086159
-0.014796
0.128936
0.016506
0
3,904.748612
0
-0.218341
1
-1
-0.255079
0.965975
-0.963438
2,537
0
null
null
null
null
null
null
null
null
null
null
null
94
64.413
0
6.972765
0.080784
0.41435
173.233475
-543.216919
6,810.07959
-61.244995
0
1
3
6,099
5.90444
-0.149603
-3.743122
2.092126
-0.014582
0.173291
0.00742
0
3,905.016562
0
-0.226778
1
-1
-0.063273
0.956873
-0.961396
2,537
0
null
null
null
null
null
null
null
null
null
null
null
95
64.452
0
7.232871
0.083624
0.43829
173.468124
-543.36615
6,897.915527
-63.539993
0
1
3
6,103
6.113058
-0.146242
-3.900987
2.100336
-0.014816
0.213315
-0.007035
0
3,905.290807
0
-0.235216
1
-1
-0.06329
0.933012
-0.95494
2,537
0
null
null
null
null
null
null
null
null
null
null
null
96
64.494
0
7.519108
0.08674
0.464108
173.729996
-543.533997
6,977.523438
-67.275002
0
1
3
6,107
6.338234
-0.146029
-4.08006
2.109671
-0.015117
0.263265
-0.000363
0
3,905.602275
0
-0.249176
1
-1
-0.104698
0.923442
-0.957654
2,538
0
null
null
null
null
null
null
null
null
null
null
null
97
64.533
0
7.775651
0.089514
0.487953
173.981369
-543.696533
7,059.34082
-66.195
0
1
3
6,111
6.536536
-0.166705
-4.243775
2.120905
-0.014726
0.307197
0.001545
0
3,905.903069
0
-0.245079
1
-1
0.030729
0.870241
-0.952735
2,538
0
null
null
null
null
null
null
null
null
null
null
null
98
64.572
0
8.032146
0.092277
0.51155
174.24054
-543.865356
7,134.047363
-57.465
0
1
3
6,115
6.743198
-0.18318
-4.396901
2.134526
-0.014402
0.328245
-0.006277
0
3,906.214264
0
-0.212722
1
-1
0.242676
0.871115
-0.957655
2,538
0
null
null
null
null
null
null
null
null
null
null
null
99
64.614
0
8.317956
0.095346
0.537383
174.528961
-544.053772
7,196.288086
-46.619995
0
1
3
6,119
6.979158
-0.187621
-4.559512
2.147705
-0.014353
0.335223
-0.009519
0
3,906.549543
0
-0.172562
1
-1
0.301202
0.838548
-0.951719
2,538
0
null
null
null
null
null
null
null
null
null
null
null
100
64.653
0
8.589444
0.098246
0.562054
174.805832
-544.234802
7,241.648438
-34.919998
0
1
3
6,123
7.206374
-0.1808
-4.709264
2.160866
-0.014136
0.329155
-0.011143
0
3,906.878802
0
-0.129247
1
-1
0.324863
0.841577
-0.947809
2,538
0
null
null
null
null
null
null
null
null
null
null
null
101
64.692
0
8.864638
0.101168
0.587428
175.091644
-544.421753
7,280.101563
-25.244999
0
1
3
6,127
7.43388
-0.174974
-4.863987
2.174614
-0.014537
0.319525
-0.001621
0
3,907.219556
0
-0.093431
1
-1
0.268619
0.80486
-0.938133
2,539
0
null
null
null
null
null
null
null
null
null
null
null
102
64.734
0
9.147523
0.104146
0.614858
175.408844
-544.630127
7,335.40625
-24.75
0
1
3
6,131
7.650908
-0.190624
-5.046408
2.187358
-0.015655
0.337068
-0.000019
0
3,907.596164
0
-0.091642
1
-1
0.013414
0.575573
-0.937348
2,539
0
null
null
null
null
null
null
null
null
null
null
null
103
64.773
0
9.408281
0.106883
0.6395
175.711258
-544.830688
7,380.015625
-20.564999
0
1
3
6,135
7.845085
-0.200401
-5.226879
2.201154
-0.016232
0.364755
-0.006505
0
3,907.956076
0
-0.076108
1
-1
0.11651
0.484782
-0.942039
2,539
0
null
null
null
null
null
null
null
null
null
null
null
104
64.812
0
9.681016
0.10975
0.663403
176.021622
-545.038269
7,407.895508
-4.365
0
1
3
6,139
8.060976
-0.194173
-5.395465
2.216699
-0.015989
0.358442
-0.002273
0
3,908.334327
0
-0.016161
1
-1
0.4496
0.455958
-0.947432
2,539
0
null
null
null
null
null
null
null
null
null
null
null
105
64.854
0
9.970301
0.112774
0.688975
176.365173
-545.269104
7,441.686035
-0.225
0
1
3
6,143
8.280656
-0.193325
-5.586298
2.230683
-0.016172
0.359356
-0.003918
0
3,908.743231
0
-0.000891
1
-1
0.114527
0.375245
-0.953839
2,540
0
null
null
null
null
null
null
null
null
null
null
null
106
64.893
0
10.235268
0.115537
0.711829
176.692291
-545.490723
7,474.338867
11.385
0
1
3
6,147
8.482658
-0.19909
-5.760425
2.244842
-0.016569
0.355567
-0.007764
0
3,909.138725
0
0.04217
1
-1
0.322956
0.352198
-0.965609
2,540
0
null
null
null
null
null
null
null
null
null
null
null
107
64.932
0
10.501716
0.118313
0.733966
177.027237
-545.719238
7,498.003906
16.695
0
0.98345
3
6,151
8.67977
-0.204934
-5.945145
2.259829
-0.016179
0.35552
-0.006887
0
3,909.544619
0
0.061879
0.966904
-1
0.147817
-0.06895
-0.976201
2,540
0
null
null
null
null
null
null
null
null
null
null
null
108
64.974
0
10.793535
0.121359
0.756354
177.396484
-545.973694
6,980.604004
24.389999
0
0.9596
3
6,155
8.889362
-0.205614
-6.154887
2.273844
-0.01631
0.35526
-0.000035
0
3,909.988009
0
0.090261
0.919146
-1
0.212865
-0.099496
-0.980723
2,540
0
null
null
null
null
null
null
null
null
null
null
null
109
65.013
0
11.06002
0.12414
0.775811
177.747177
-546.217773
7,033.803223
35.594997
0
0.95325
3
6,159
9.083471
-0.212767
-6.342339
2.287595
-0.016548
0.33963
-0.007165
0
3,910.421546
0
0.131923
0.906437
-1
0.312462
-0.026477
-0.981241
2,541
0
null
null
null
null
null
null
null
null
null
null
null
110
65.052
0
11.33081
0.126968
0.794428
178.105698
-546.468933
7,064.584473
54.224998
0
0.8769
3
6,163
9.292687
-0.222283
-6.516011
2.301097
-0.016621
0.291735
-0.001553
0
3,910.844957
0
0.200708
0.753783
-1
0.515887
-0.318028
-0.984001
2,541
0
null
null
null
null
null
null
null
null
null
null
null
111
65.094
0
11.624045
0.130024
0.814257
178.501114
-546.746826
7,083.59668
68.535004
0
0.8571
3
6,167
9.523798
-0.230317
-6.696727
2.311243
-0.017398
0.2247
0.009376
0
3,911.33515
0
0.253748
0.714211
-1
0.397804
-0.082443
-0.987433
2,541
0
null
null
null
null
null
null
null
null
null
null
null
112
65.133
0
11.893819
0.132824
0.832485
178.876831
-547.011719
7,094.063477
70.379997
0
0.8357
3
6,171
9.72536
-0.226478
-6.879307
2.319037
-0.017702
0.182083
0.001854
0
3,911.793593
0
0.260575
0.671438
-1
0.051199
-0.08911
-0.992148
2,542
0
null
null
null
null
null
null
null
null
null
null
null
113
65.172
0
12.165797
0.135657
0.849335
179.260132
-547.284241
7,094.687988
72.900002
0
0.813
3
6,175
9.916336
-0.22431
-7.080537
2.326129
-0.017124
0.15834
0.00204
0
3,912.263806
0
0.269881
0.626027
-1
0.069797
-0.094607
-0.995034
2,542
0
null
null
null
null
null
null
null
null
null
null
null
114
65.214
0
12.457997
0.138714
0.865439
179.681152
-547.586609
7,095.038086
77.444992
0
0.80695
3
6,179
10.118683
-0.240807
-7.298667
2.331788
-0.016621
0.130081
0.020884
0
3,912.78
0
0.286847
0.613832
-1
0.127244
-0.025406
-0.997184
2,542
0
null
null
null
null
null
null
null
null
null
null
null
115
65.253
0
12.725932
0.14153
0.878647
180.079681
-547.875488
7,100.897461
79.784996
0
0.82105
3
6,183
10.303965
-0.254087
-7.498709
2.336317
-0.016838
0.102038
0.026219
0
3,913.270467
0
0.295448
0.642042
-1
0.064509
0.058773
-0.996993
2,543
0
null
null
null
null
null
null
null
null
null
null
null
116
65.292
0
12.986119
0.144274
0.890124
180.485229
-548.172119
7,117.833008
78.524994
0
0.82285
3
6,187
10.478073
-0.267983
-7.700449
2.340069
-0.017522
0.081479
0.008537
0
3,913.774892
0
0.290818
0.64568
-1
-0.034726
0.007579
-0.99748
2,543
0
null
null
null
null
null
null
null
null
null
null
null
117
65.334
0
13.274503
0.14735
0.899788
180.929489
-548.500732
7,124.924316
75.779991
0
0.84135
3
6,191
10.664385
-0.281489
-7.935272
2.34298
-0.018049
0.073523
0.006394
0
3,914.319277
0
0.280625
0.68262
-1
-0.076449
0.076958
-0.997455
2,543
0
null
null
null
null
null
null
null
null
null
null
null
118
65.373
0
13.553547
0.15036
0.906232
181.349182
-548.814941
7,118.262207
77.534996
0
0.8421
3
6,195
10.845542
-0.282227
-8.159169
2.345685
-0.017412
0.062648
0.02144
0
3,914.854082
0
0.287218
0.684174
-1
0.04945
0.003237
-0.998123
2,544
0
null
null
null
null
null
null
null
null
null
null
null
119
65.412
0
13.826036
0.153323
0.910525
181.775894
-549.137756
7,124.21582
75.645004
0
0.8496
3
6,199
11.020476
-0.284141
-8.37789
2.348005
-0.016889
0.050804
0.0152
0
3,915.384235
0
0.280163
0.699119
-1
-0.052915
0.031134
-0.997831
2,544
0
null
null
null
null
null
null
null
null
null
null
null
120
65.454
0
14.109177
0.15644
0.912181
182.242798
-549.494812
7,143.387695
72.180008
0
0.8526
3
6,203
11.198918
-0.301372
-8.610434
2.349832
-0.017709
0.048914
-0.005657
0
3,915.970496
0
0.267389
0.705193
-1
-0.095806
0.012654
-0.998031
2,544
0
null
null
null
null
null
null
null
null
null
null
null
121
65.493
0
14.379722
0.159451
0.911397
182.683075
-549.835327
7,148.394531
69.299995
0
0.84965
3
6,207
11.366822
-0.314182
-8.836565
2.351828
-0.017989
0.055434
-0.011014
0
3,916.525007
0
0.256681
0.69923
-1
-0.080306
-0.012423
-0.997778
2,545
0
null
null
null
null
null
null
null
null
null
null
null
122
65.532
0
14.658115
0.162589
0.907909
183.13002
-550.184753
7,139.439941
68.264992
0
0.8317
3
6,211
11.540536
-0.319834
-9.066711
2.354203
-0.018707
0.057771
-0.006395
0
3,917.08992
0
0.252836
0.663432
-1
-0.028835
-0.07458
-0.997942
2,545
0
null
null
null
null
null
null
null
null
null
null
null
123
65.574
0
14.958877
0.16603
0.900879
183.618912
-550.571167
7,130.743164
65.159996
0
0.84825
3
6,215
11.725505
-0.319208
-9.317886
2.356492
-0.018635
0.062625
-0.009646
0
3,917.712035
0
0.241264
0.696512
-1
-0.086788
0.068917
-0.998097
2,546
0
null
null
null
null
null
null
null
null
null
null
null
124
65.613
0
15.238835
0.169277
0.891739
184.079834
-550.939453
7,125.724609
65.07
0
0.85935
3
6,219
11.898584
-0.319816
-9.549992
2.358943
-0.018628
0.062094
-0.013636
0
3,918.307601
0
0.240919
0.718687
-1
-0.002593
0.046199
-0.997776
2,546
0
null
null
null
null
null
null
null
null
null
null
null
125
65.652
0
15.518972
0.172577
0.879612
184.547546
-551.316772
7,125.397461
63.494995
0
0.8724
3
6,223
12.071604
-0.326771
-9.780482
2.361458
-0.018998
0.059805
-0.012065
0
3,918.903168
0
0.23509
0.744782
-1
-0.043712
0.054365
-0.998051
2,546
0
null
null
null
null
null
null
null
null
null
null
null
126
65.694
0
15.826435
0.176243
0.864015
185.058792
-551.733215
7,116.821289
61.964993
0
0.8864
3
6,227
12.26205
-0.333344
-10.036236
2.363669
-0.019808
0.055603
-0.000086
0
3,919.557579
0
0.229503
0.772766
-1
-0.041906
0.058299
-0.997863
2,547
0
null
null
null
null
null
null
null
null
null
null
null
127
65.733
0
16.115446
0.179739
0.846782
185.540741
-552.1297
7,107.411621
60.344997
0
0.8834
3
6,231
12.436875
-0.330791
-10.276998
2.365793
-0.019642
0.054928
0.011724
0
3,920.186537
0
0.223466
0.76682
-1
-0.04528
-0.012387
-0.998232
2,547
0
null
null
null
null
null
null
null
null
null
null
null
128
65.772
0
16.398657
0.183232
0.826382
186.029236
-552.535645
7,101.906738
54.134995
0
0.8809
3
6,235
12.600086
-0.3105
-10.525499
2.368286
-0.020599
0.06826
-0.018826
0
3,920.823979
0
0.200442
0.761782
-1
-0.172677
-0.010495
-0.998645
2,548
0
null
null
null
null
null
null
null
null
null
null
null
129
65.814
0
16.709452
0.187118
0.801689
186.5625
-552.983765
7,090.711914
53.595001
0
0.87175
3
6,239
12.780737
-0.321102
-10.792974
2.371289
-0.02213
0.084247
0.002307
0
3,921.512876
0
0.198526
0.743445
-1
-0.014367
-0.038202
-0.998038
2,548
0
null
null
null
null
null
null
null
null
null
null
null
130
65.853
0
16.992002
0.190733
0.775143
187.064407
-553.409729
7,085.949219
53.595001
0
0.85495
3
6,243
12.945193
-0.360147
-11.034377
2.374776
-0.021077
0.089979
0.036946
0
3,922.167561
0
0.198392
0.70984
-1
-0.001009
-0.070012
-0.998171
2,548
0
null
null
null
null
null
null
null
null
null
null
null
131
65.892
0
17.269257
0.194327
0.747242
187.572693
-553.845032
7,078.584473
56.07
0
0.8214
3
6,247
13.110134
-0.380959
-11.267253
2.378418
-0.021053
0.079758
0.033306
0
3,922.830731
0
0.207657
0.642765
-1
0.069488
-0.13974
-0.998381
2,549
0
null
null
null
null
null
null
null
null
null
null
null
132
65.934
0
17.574955
0.198348
0.714146
188.127548
-554.323853
7,035.737793
60.299999
0
0.75295
3
6,251
13.300697
-0.387963
-11.514693
2.381052
-0.020657
0.050751
0.025615
0
3,923.565062
0
0.223328
0.505883
-1
0.117537
-0.285171
-0.998521
2,549
0
null
null
null
null
null
null
null
null
null
null
null
133
65.973
0
17.862589
0.202163
0.682345
188.649963
-554.777893
6,962.582031
56.34
0
0.69235
3
6,255
13.473526
-0.410707
-11.753767
2.38238
-0.019464
0.022779
0.044249
0
3,924.258065
0
0.208638
0.384687
-1
-0.110176
-0.252492
-0.99836
2,550
0
null
null
null
null
null
null
null
null
null
null
null
134
66.012
0
18.138327
0.205911
0.647713
189.178711
-555.241333
6,903.888672
49.544994
0
0.69035
3
6,259
13.624688
-0.447496
-11.996852
2.383087
-0.020897
0.019858
0.044102
0
3,924.954079
0
0.183421
0.380642
-1
-0.189129
-0.008426
-0.997476
2,550
0
null
null
null
null
null
null
null
null
null
null
null
135
66.054
0
18.435467
0.210021
0.607792
189.754486
-555.751221
6,871.790527
48.060001
0
0.7709
3
6,263
13.784278
-0.455702
-12.266702
2.384093
-0.020928
0.02924
0.00075
0
3,925.723991
0
0.17794
0.541809
-1
-0.041107
0.335764
-0.995767
2,551
0
End of preview.

Dataset Card for Assetto Corsa Gym

Dataset Summary

The AssettoCorsaGym dataset comprises 64 million steps, including 2.3 million steps from human drivers and the remaining from Soft Actor-Critic (SAC) policies. Data collection involved 15 drivers completing at least five laps per track and car. Participants included a professional e-sports driver, four experts, five casual drivers, and five beginners.

Supported Tasks and Leaderboards

  • Autonomous driving
  • Reinforcement learning
  • Behavior cloning
  • Imitation learning

Languages

English

Dataset Structure

See https://github.com/dasGringuen/assetto_corsa_gym/blob/main/data/paths.yml and https://github.com/dasGringuen/assetto_corsa_gym/blob/main/data/README.md

<track>
  <car>
    <human / policy>
      laps

Data Instances

Each data instance includes telemetry data at 50Hz from a racing simulator, such as speed, position, acceleration, and control inputs (steering, throttle, brake).

Data Fields

See: https://github.com/dasGringuen/assetto_corsa_gym/blob/main/assetto_corsa_gym/assetto-corsa-autonomous-racing-plugin/plugins/sensors_par/structures.py

Data Splits

We split the data in cars and tracks

Dataset Creation

Curation Rationale

The Assetto Corsa Gym dataset was curated to advance research in autonomous driving, reinforcement learning, and imitation learning. By providing a diverse dataset that includes both human driving data and data generated by Soft Actor-Critic (SAC) policies

Source Data

Initial Data Collection and Normalization

Data was collected from a racing simulator set up. Human drivers completed at least five laps per track and car, while SAC policies were trained from scratch and their replay buffers were recorded.

Who are the source language producers?

Human drivers of varying skill levels, including a professional e-sports driver, experts, casual drivers, and beginners.

Annotations

Annotation process

Data was automatically labeled during collection to differentiate between human and SAC policy data.

Who are the annotators?

The data was annotated by the research team at UC San Diego and Graz University of Technology.

Personal and Sensitive Information

The dataset does not contain any personally identifiable information. Drivers were anonymized and identified only by driver_id.

Considerations for Using the Data

Social Impact of Dataset

The dataset aims to contribute to the development of safer and more efficient autonomous driving systems by providing diverse driving data for training machine learning models.

Discussion of Biases

The dataset includes a wide range of driving skills, but there may still be biases based on the limited number of human participants and their specific driving styles. Additionally, the number of laps per track and car is unbalanced, which might affect the generalizability of models trained on this dataset. The selection of tracks and cars, as well as the specific conditions under which the data was collected, could also introduce biases that researchers should be aware of when using this dataset.

Other Known Limitations

  • Limited number of tracks and cars
  • Simulated driving environment may not fully capture real-world driving conditions

Additional Information

Dataset Curators

The dataset was curated by researchers at UC San Diego and Graz University of Technology.

Licensing Information

CC BY 4.0

Contributions

Thanks to @dasGringuen for adding this dataset.

Downloads last month
440