token_dtype
stringclasses
1 value
s
int64
16
16
h
int64
16
16
w
int64
16
16
vocab_size
int64
262k
262k
hz
int64
30
30
tokenizer_ckpt
stringclasses
1 value
num_images
int64
218k
399k
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
282,241
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
312,472
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
285,401
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
233,656
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
217,965
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
398,778
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
380,849
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
368,323
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
352,934
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
246,178
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
250,753
uint32
16
16
16
262,144
30
imagenet_256_L.ckpt
288,209

CyberOrigin Dataset

Our data includes information from home services, the logistics industry, and laboratory scenarios. For more details, please refer to our Offical Data Website

contents of the dataset:

cyber_take_the_item # dataset root path
  └── data/
      ├── metadata_ID1_240808.json
      ├── segment_ids_ID1_240808.bin # for each frame segment_ids uniquely points to the segment index that frame i came from. You may want to use this to separate non-contiguous frames from different videos (transitions).
      ├── videos_ID1_240808.bin # 16x16 image patches at 30hz, each patch is vector-quantized into 2^18 possible integer values. These can be decoded into 256x256 RGB images using the provided magvit2.ckpt weights.
      ├── ...
  └── ...
{
    "task": "Take the Item",
    "total_episodes": 18779,
    "total_frames": 3617759,
    "token_dtype": "uint32",
    "vocab_size": 262144,
    "fps": 30,
    "manipulation_type": "Single Arm",
    "language_annotation": "None",
    "scene_type": "Table Top",
    "data_collect_method": "Directly Collection on Human"
}
Downloads last month
43