Datasets:

License:
kpwr-long / kpwr-long.py
wiktorw's picture
Rename kpwr_long.py to kpwr-long.py
f2c9d7f
# coding=utf-8
"""KPWR version 1.27 dataset."""
import csv
import datasets
_DESCRIPTION = "KPWR version 1.27 dataset. Prepared for Longformer."
_URLS = {
"train": "https://huggingface.co/datasets/clarin-knext/kpwr-long/resolve/main/data/train.iob",
"valid": "https://huggingface.co/datasets/clarin-knext/kpwr-long/resolve/main/data/valid.iob",
"test": "https://huggingface.co/datasets/clarin-knext/kpwr-long/resolve/main/data/test.iob",
}
_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/270"
_N82_TAGS = [
'nam_adj',
'nam_adj_city',
'nam_adj_country',
'nam_adj_person',
'nam_eve',
'nam_eve_human',
'nam_eve_human_cultural',
'nam_eve_human_holiday',
'nam_eve_human_sport',
'nam_fac_bridge',
'nam_fac_goe',
'nam_fac_goe_stop',
'nam_fac_park',
'nam_fac_road',
'nam_fac_square',
'nam_fac_system',
'nam_liv_animal',
'nam_liv_character',
'nam_liv_god',
'nam_liv_habitant',
'nam_liv_person',
'nam_loc',
'nam_loc_astronomical',
'nam_loc_country_region',
'nam_loc_gpe_admin1',
'nam_loc_gpe_admin2',
'nam_loc_gpe_admin3',
'nam_loc_gpe_city',
'nam_loc_gpe_conurbation',
'nam_loc_gpe_country',
'nam_loc_gpe_district',
'nam_loc_gpe_subdivision',
'nam_loc_historical_region',
'nam_loc_hydronym',
'nam_loc_hydronym_lake',
'nam_loc_hydronym_ocean',
'nam_loc_hydronym_river',
'nam_loc_hydronym_sea',
'nam_loc_land',
'nam_loc_land_continent',
'nam_loc_land_island',
'nam_loc_land_mountain',
'nam_loc_land_peak',
'nam_loc_land_region',
'nam_num_house',
'nam_num_phone',
'nam_org_company',
'nam_org_group',
'nam_org_group_band',
'nam_org_group_team',
'nam_org_institution',
'nam_org_nation',
'nam_org_organization',
'nam_org_organization_sub',
'nam_org_political_party',
'nam_oth',
'nam_oth_currency',
'nam_oth_data_format',
'nam_oth_license',
'nam_oth_position',
'nam_oth_tech',
'nam_oth_www',
'nam_pro',
'nam_pro_award',
'nam_pro_brand',
'nam_pro_media',
'nam_pro_media_periodic',
'nam_pro_media_radio',
'nam_pro_media_tv',
'nam_pro_media_web',
'nam_pro_model_car',
'nam_pro_software',
'nam_pro_software_game',
'nam_pro_title',
'nam_pro_title_album',
'nam_pro_title_article',
'nam_pro_title_book',
'nam_pro_title_document',
'nam_pro_title_song',
'nam_pro_title_treaty',
'nam_pro_title_tv',
'nam_pro_vehicle'
]
_NER_IOB_TAGS = ['O']
for tag in _N82_TAGS:
_NER_IOB_TAGS.extend([f'B-{tag}', f'I-{tag}'])
class KpwrDataset(datasets.GeneratorBasedBuilder):
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value('string')),
"lemmas": datasets.Sequence(datasets.Value('string')),
"mstags": datasets.Sequence(datasets.Value('string')),
"ner": datasets.Sequence(datasets.features.ClassLabel(names=_NER_IOB_TAGS))
}
),
homepage=_HOMEPAGE
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['train']}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'filepath': downloaded_files['valid']}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'filepath': downloaded_files['test']})
]
def _generate_examples(self, filepath: str):
with open(filepath, 'r', encoding='utf-8') as fin:
reader = csv.reader(fin, delimiter='\t', quoting=csv.QUOTE_NONE)
tokens = []
lemmas = []
mstags = []
ner = []
gid = 0
for line in reader:
if not line:
yield gid, {
"tokens": tokens,
"lemmas": lemmas,
"mstags": mstags,
"ner": ner
}
gid += 1
tokens = []
lemmas = []
mstags = []
ner = []
elif len(line) == 1: # ignore --DOCSTART lines
continue
else:
tokens.append(line[0])
lemmas.append(line[1])
mstags.append(line[2])
ner.append(line[3])