# coding=utf-8 """KPWR version 1.27 dataset.""" import csv import datasets _DESCRIPTION = "KPWR version 1.27 dataset. Prepared for Longformer." _URLS = { "train": "https://huggingface.co/datasets/clarin-knext/kpwr-long/resolve/main/data/train.iob", "valid": "https://huggingface.co/datasets/clarin-knext/kpwr-long/resolve/main/data/valid.iob", "test": "https://huggingface.co/datasets/clarin-knext/kpwr-long/resolve/main/data/test.iob", } _HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/270" _N82_TAGS = [ 'nam_adj', 'nam_adj_city', 'nam_adj_country', 'nam_adj_person', 'nam_eve', 'nam_eve_human', 'nam_eve_human_cultural', 'nam_eve_human_holiday', 'nam_eve_human_sport', 'nam_fac_bridge', 'nam_fac_goe', 'nam_fac_goe_stop', 'nam_fac_park', 'nam_fac_road', 'nam_fac_square', 'nam_fac_system', 'nam_liv_animal', 'nam_liv_character', 'nam_liv_god', 'nam_liv_habitant', 'nam_liv_person', 'nam_loc', 'nam_loc_astronomical', 'nam_loc_country_region', 'nam_loc_gpe_admin1', 'nam_loc_gpe_admin2', 'nam_loc_gpe_admin3', 'nam_loc_gpe_city', 'nam_loc_gpe_conurbation', 'nam_loc_gpe_country', 'nam_loc_gpe_district', 'nam_loc_gpe_subdivision', 'nam_loc_historical_region', 'nam_loc_hydronym', 'nam_loc_hydronym_lake', 'nam_loc_hydronym_ocean', 'nam_loc_hydronym_river', 'nam_loc_hydronym_sea', 'nam_loc_land', 'nam_loc_land_continent', 'nam_loc_land_island', 'nam_loc_land_mountain', 'nam_loc_land_peak', 'nam_loc_land_region', 'nam_num_house', 'nam_num_phone', 'nam_org_company', 'nam_org_group', 'nam_org_group_band', 'nam_org_group_team', 'nam_org_institution', 'nam_org_nation', 'nam_org_organization', 'nam_org_organization_sub', 'nam_org_political_party', 'nam_oth', 'nam_oth_currency', 'nam_oth_data_format', 'nam_oth_license', 'nam_oth_position', 'nam_oth_tech', 'nam_oth_www', 'nam_pro', 'nam_pro_award', 'nam_pro_brand', 'nam_pro_media', 'nam_pro_media_periodic', 'nam_pro_media_radio', 'nam_pro_media_tv', 'nam_pro_media_web', 'nam_pro_model_car', 'nam_pro_software', 'nam_pro_software_game', 'nam_pro_title', 'nam_pro_title_album', 'nam_pro_title_article', 'nam_pro_title_book', 'nam_pro_title_document', 'nam_pro_title_song', 'nam_pro_title_treaty', 'nam_pro_title_tv', 'nam_pro_vehicle' ] _NER_IOB_TAGS = ['O'] for tag in _N82_TAGS: _NER_IOB_TAGS.extend([f'B-{tag}', f'I-{tag}']) class KpwrDataset(datasets.GeneratorBasedBuilder): def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tokens": datasets.Sequence(datasets.Value('string')), "lemmas": datasets.Sequence(datasets.Value('string')), "mstags": datasets.Sequence(datasets.Value('string')), "ner": datasets.Sequence(datasets.features.ClassLabel(names=_NER_IOB_TAGS)) } ), homepage=_HOMEPAGE ) def _split_generators(self, dl_manager: datasets.DownloadManager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['train']}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'filepath': downloaded_files['valid']}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'filepath': downloaded_files['test']}) ] def _generate_examples(self, filepath: str): with open(filepath, 'r', encoding='utf-8') as fin: reader = csv.reader(fin, delimiter='\t', quoting=csv.QUOTE_NONE) tokens = [] lemmas = [] mstags = [] ner = [] gid = 0 for line in reader: if not line: yield gid, { "tokens": tokens, "lemmas": lemmas, "mstags": mstags, "ner": ner } gid += 1 tokens = [] lemmas = [] mstags = [] ner = [] elif len(line) == 1: # ignore --DOCSTART lines continue else: tokens.append(line[0]) lemmas.append(line[1]) mstags.append(line[2]) ner.append(line[3])