|
""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """ |
|
import json |
|
from itertools import chain |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
_DESCRIPTION = """[BioNLP2004 NER dataset](https://aclanthology.org/W04-1213.pdf)""" |
|
_NAME = "bionlp2" |
|
_VERSION = "1.0.0" |
|
_CITATION = """ |
|
@inproceedings{collier-kim-2004-introduction, |
|
title = "Introduction to the Bio-entity Recognition Task at {JNLPBA}", |
|
author = "Collier, Nigel and |
|
Kim, Jin-Dong", |
|
booktitle = "Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications ({NLPBA}/{B}io{NLP})", |
|
month = aug # " 28th and 29th", |
|
year = "2004", |
|
address = "Geneva, Switzerland", |
|
publisher = "COLING", |
|
url = "https://aclanthology.org/W04-1213", |
|
pages = "73--78", |
|
} |
|
https://huggingface.co/datasets/chintagunta85/bionlp/raw/main/test_bionlp.json |
|
""" |
|
|
|
_HOME_PAGE = "https://huggingface.co/datasets/chintagunta85" |
|
|
|
_URL = f'https://huggingface.co/datasets/chintagunta85/{_NAME}/raw/main' |
|
_URLS = { |
|
str(datasets.Split.TEST): [f'{_URL}/test_bionlp.json'], |
|
str(datasets.Split.TRAIN): [f'{_URL}/train_bionlp.json'], |
|
str(datasets.Split.VALIDATION): [f'{_URL}/valid_bionlp.json'], |
|
} |
|
|
|
|
|
|
|
def map_ner_tags(tlist): |
|
nlist=[] |
|
for indx in tlist: |
|
|
|
|
|
nlist.append(custom_names.index(inv_map[indx])) |
|
return nlist |
|
|
|
class BioNLP2004Config(datasets.BuilderConfig): |
|
"""BuilderConfig""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(BioNLP2004Config, self).__init__(**kwargs) |
|
|
|
|
|
class BioNLP2004(datasets.GeneratorBasedBuilder): |
|
"""Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
BioNLP2004Config(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION), |
|
] |
|
|
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_file = dl_manager.download_and_extract(_URLS) |
|
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]}) |
|
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]] |
|
|
|
def _generate_examples(self, filepaths): |
|
custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE', |
|
'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE', |
|
'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES'] |
|
|
|
pre_def = {"O": 0, "B-DNA": 1, "I-DNA": 2, "B-PROTEIN": 3, "I-PROTEIN": 4, |
|
"B-CELL_TYPE": 5, "I-CELL_TYPE": 6, "B-CELL_LINE": 7, "I-CELL_LINE": 8, |
|
"B-RNA": 9, "I-RNA": 10} |
|
inv_map = {0: 'O', 1: 'B-DNA', 2: 'I-DNA', 3: 'B-PROTEIN', 4: 'I-PROTEIN', |
|
5: 'B-CELL_TYPE', 6: 'I-CELL_TYPE', 7: 'B-CELL_LINE', 8: 'I-CELL_LINE', 9: 'B-RNA', 10: 'I-RNA'} |
|
|
|
_key = 0 |
|
for filepath in filepaths: |
|
logger.info(f"generating examples from = {filepath}") |
|
with open(filepath, encoding="utf-8") as f: |
|
_list = [i for i in f.read().split('\n') if len(i) > 0] |
|
for i in _list: |
|
data = json.loads(i) |
|
|
|
|
|
nlist = [] |
|
for indx in data['ner_tags']: |
|
nlist.append(custom_names.index(inv_map[indx])) |
|
|
|
data['ner_tags']=nlist |
|
|
|
xstr = str(_key) |
|
yield xstr,{"id":xstr,"tokens":data['tokens'], "ner_tags":data['ner_tags']} |
|
|
|
_key += 1 |
|
|
|
def _info(self): |
|
custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE', |
|
'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE', |
|
'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES'] |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=custom_names |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOME_PAGE, |
|
citation=_CITATION, |
|
) |
|
|