""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """ import json from itertools import chain import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """[BioNLP2004 NER dataset](https://aclanthology.org/W04-1213.pdf)""" _NAME = "bionlp2" _VERSION = "1.0.0" _CITATION = """ @inproceedings{collier-kim-2004-introduction, title = "Introduction to the Bio-entity Recognition Task at {JNLPBA}", author = "Collier, Nigel and Kim, Jin-Dong", booktitle = "Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications ({NLPBA}/{B}io{NLP})", month = aug # " 28th and 29th", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://aclanthology.org/W04-1213", pages = "73--78", } https://huggingface.co/datasets/chintagunta85/bionlp/raw/main/test_bionlp.json """ _HOME_PAGE = "https://huggingface.co/datasets/chintagunta85" # https://huggingface.co/datasets/chintagunta85/bionlp/raw/main/train_bionlp.json _URL = f'https://huggingface.co/datasets/chintagunta85/{_NAME}/raw/main' _URLS = { str(datasets.Split.TEST): [f'{_URL}/test_bionlp.json'], str(datasets.Split.TRAIN): [f'{_URL}/train_bionlp.json'], str(datasets.Split.VALIDATION): [f'{_URL}/valid_bionlp.json'], } def map_ner_tags(tlist): nlist=[] for indx in tlist: #if(inv_map[indx]): # print(inv_map[indx], custom_names.index(inv_map[indx]), indx) nlist.append(custom_names.index(inv_map[indx])) return nlist class BioNLP2004Config(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(BioNLP2004Config, self).__init__(**kwargs) class BioNLP2004(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ BioNLP2004Config(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION), ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS) return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]}) for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]] def _generate_examples(self, filepaths): custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE', 'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE', 'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES'] pre_def = {"O": 0, "B-DNA": 1, "I-DNA": 2, "B-PROTEIN": 3, "I-PROTEIN": 4, "B-CELL_TYPE": 5, "I-CELL_TYPE": 6, "B-CELL_LINE": 7, "I-CELL_LINE": 8, "B-RNA": 9, "I-RNA": 10} inv_map = {0: 'O', 1: 'B-DNA', 2: 'I-DNA', 3: 'B-PROTEIN', 4: 'I-PROTEIN', 5: 'B-CELL_TYPE', 6: 'I-CELL_TYPE', 7: 'B-CELL_LINE', 8: 'I-CELL_LINE', 9: 'B-RNA', 10: 'I-RNA'} _key = 0 for filepath in filepaths: logger.info(f"generating examples from = {filepath}") with open(filepath, encoding="utf-8") as f: _list = [i for i in f.read().split('\n') if len(i) > 0] for i in _list: data = json.loads(i) #print(data) nlist = [] for indx in data['ner_tags']: nlist.append(custom_names.index(inv_map[indx])) #data['ner_tags'] = map_ner_tags(data['ner_tags']) data['ner_tags']=nlist #del data['tags'] xstr = str(_key) yield xstr,{"id":xstr,"tokens":data['tokens'], "ner_tags":data['ner_tags']} #yield _key,data _key += 1 def _info(self): custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE', 'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE', 'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES'] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=custom_names ) ), } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )