title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Near-Optimal Evasion of Convex-Inducing Classifiers
cs.LG cs.CR
Classifiers are often used to detect miscreant activities. We study how an adversary can efficiently query a classifier to elicit information that allows the adversary to evade detection at near-minimal cost. We generalize results of Lowd and Meek (2005) to convex-inducing classifiers. We present algorithms that construct undetected instances of near-minimal cost using only polynomially many queries in the dimension of the space and without reverse engineering the decision boundary.
Blaine Nelson and Benjamin I. P. Rubinstein and Ling Huang and Anthony D. Joseph and Shing-hon Lau and Steven J. Lee and Satish Rao and Anthony Tran and J. D. Tygar
null
1003.2751
null
null
A New Heuristic for Feature Selection by Consistent Biclustering
cs.LG cs.DM math.CO
Given a set of data, biclustering aims at finding simultaneous partitions in biclusters of its samples and of the features which are used for representing the samples. Consistent biclusterings allow to obtain correct classifications of the samples from the known classification of the features, and vice versa, and they are very useful for performing supervised classifications. The problem of finding consistent biclusterings can be seen as a feature selection problem, where the features that are not relevant for classification purposes are removed from the set of data, while the total number of features is maximized in order to preserve information. This feature selection problem can be formulated as a linear fractional 0-1 optimization problem. We propose a reformulation of this problem as a bilevel optimization problem, and we present a heuristic algorithm for an efficient solution of the reformulated problem. Computational experiments show that the presented algorithm is able to find better solutions with respect to the ones obtained by employing previously presented heuristic algorithms.
Antonio Mucherino, Sonia Cafieri
null
1003.3279
null
null
A Formal Approach to Modeling the Memory of a Living Organism
cs.AI cs.DS cs.LG q-bio.NC
We consider a living organism as an observer of the evolution of its environment recording sensory information about the state space X of the environment in real time. Sensory information is sampled and then processed on two levels. On the biological level, the organism serves as an evaluation mechanism of the subjective relevance of the incoming data to the observer: the observer assigns excitation values to events in X it could recognize using its sensory equipment. On the algorithmic level, sensory input is used for updating a database, the memory of the observer whose purpose is to serve as a geometric/combinatorial model of X, whose nodes are weighted by the excitation values produced by the evaluation mechanism. These values serve as a guidance system for deciding how the database should transform as observation data mounts. We define a searching problem for the proposed model and discuss the model's flexibility and its computational efficiency, as well as the possibility of implementing it as a dynamic network of neuron-like units. We show how various easily observable properties of the human memory and thought process can be explained within the framework of this model. These include: reasoning (with efficiency bounds), errors, temporary and permanent loss of information. We are also able to define general learning problems in terms of the new model, such as the language acquisition problem.
Dan Guralnik
null
1003.3821
null
null
Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization
cs.LG cs.AI cs.DS
Solving stochastic optimization problems under partial observability, where one needs to adaptively make decisions with uncertain outcomes, is a fundamental but notoriously difficult challenge. In this paper, we introduce the concept of adaptive submodularity, generalizing submodular set functions to adaptive policies. We prove that if a problem satisfies this property, a simple adaptive greedy algorithm is guaranteed to be competitive with the optimal policy. In addition to providing performance guarantees for both stochastic maximization and coverage, adaptive submodularity can be exploited to drastically speed up the greedy algorithm by using lazy evaluations. We illustrate the usefulness of the concept by giving several examples of adaptive submodular objectives arising in diverse applications including sensor placement, viral marketing and active learning. Proving adaptive submodularity for these problems allows us to recover existing results in these applications as special cases, improve approximation guarantees and handle natural generalizations.
Daniel Golovin and Andreas Krause
null
1003.3967
null
null
Gene Expression Data Knowledge Discovery using Global and Local Clustering
cs.CE cs.LG q-bio.GN
To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. A validation technique, Figure of Merit is used to determine the quality of clustering results. Appropriate knowledge is mined from the clusters by embedding a BLAST similarity search program into the clustering and biclustering process. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. To determine the quality of clustering results, a validation technique, Figure of Merit is used. Appropriate knowledge is mined from the clusters by embedding a BLAST similarity search program into the clustering and biclustering process.
Swathi. H
null
1003.4079
null
null
Unbeatable Imitation
cs.GT cs.LG
We show that for many classes of symmetric two-player games, the simple decision rule "imitate-the-best" can hardly be beaten by any other decision rule. We provide necessary and sufficient conditions for imitation to be unbeatable and show that it can only be beaten by much in games that are of the rock-scissors-paper variety. Thus, in many interesting examples, like 2x2 games, Cournot duopoly, price competition, rent seeking, public goods games, common pool resource games, minimum effort coordination games, arms race, search, bargaining, etc., imitation cannot be beaten by much even by a very clever opponent.
Peter Duersch, Joerg Oechssler, Burkhard C. Schipper
10.1016/j.geb.2012.05.002
1003.4274
null
null
Large Margin Boltzmann Machines and Large Margin Sigmoid Belief Networks
cs.LG cs.AI cs.CV
Current statistical models for structured prediction make simplifying assumptions about the underlying output graph structure, such as assuming a low-order Markov chain, because exact inference becomes intractable as the tree-width of the underlying graph increases. Approximate inference algorithms, on the other hand, force one to trade off representational power with computational efficiency. In this paper, we propose two new types of probabilistic graphical models, large margin Boltzmann machines (LMBMs) and large margin sigmoid belief networks (LMSBNs), for structured prediction. LMSBNs in particular allow a very fast inference algorithm for arbitrary graph structures that runs in polynomial time with a high probability. This probability is data-distribution dependent and is maximized in learning. The new approach overcomes the representation-efficiency trade-off in previous models and allows fast structured prediction with complicated graph structures. We present results from applying a fully connected model to multi-label scene classification and demonstrate that the proposed approach can yield significant performance gains over current state-of-the-art methods.
Xu Miao, Rajesh P.N. Rao
null
1003.4781
null
null
Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Processes
stat.ML cs.LG
Probabilistic matrix factorization (PMF) is a powerful method for modeling data associated with pairwise relationships, finding use in collaborative filtering, computational biology, and document analysis, among other areas. In many domains, there is additional information that can assist in prediction. For example, when modeling movie ratings, we might know when the rating occurred, where the user lives, or what actors appear in the movie. It is difficult, however, to incorporate this side information into the PMF model. We propose a framework for incorporating side information by coupling together multiple PMF problems via Gaussian process priors. We replace scalar latent features with functions that vary over the space of side information. The GP priors on these functions require them to vary smoothly and share information. We successfully use this new method to predict the scores of professional basketball games, where side information about the venue and date of the game are relevant for the outcome.
Ryan Prescott Adams, George E. Dahl, Iain Murray
null
1003.4944
null
null
Spoken Language Identification Using Hybrid Feature Extraction Methods
cs.SD cs.LG
This paper introduces and motivates the use of hybrid robust feature extraction technique for spoken language identification (LID) system. The speech recognizers use a parametric form of a signal to get the most important distinguishable features of speech signal for recognition task. In this paper Mel-frequency cepstral coefficients (MFCC), Perceptual linear prediction coefficients (PLP) along with two hybrid features are used for language Identification. Two hybrid features, Bark Frequency Cepstral Coefficients (BFCC) and Revised Perceptual Linear Prediction Coefficients (RPLP) were obtained from combination of MFCC and PLP. Two different classifiers, Vector Quantization (VQ) with Dynamic Time Warping (DTW) and Gaussian Mixture Model (GMM) were used for classification. The experiment shows better identification rate using hybrid feature extraction techniques compared to conventional feature extraction methods.BFCC has shown better performance than MFCC with both classifiers. RPLP along with GMM has shown best identification performance among all feature extraction techniques.
Pawan Kumar, Astik Biswas, A .N. Mishra and Mahesh Chandra
null
1003.5623
null
null
Wavelet-Based Mel-Frequency Cepstral Coefficients for Speaker Identification using Hidden Markov Models
cs.SD cs.LG
To improve the performance of speaker identification systems, an effective and robust method is proposed to extract speech features, capable of operating in noisy environment. Based on the time-frequency multi-resolution property of wavelet transform, the input speech signal is decomposed into various frequency channels. For capturing the characteristic of the signal, the Mel-Frequency Cepstral Coefficients (MFCCs) of the wavelet channels are calculated. Hidden Markov Models (HMMs) were used for the recognition stage as they give better recognition for the speaker's features than Dynamic Time Warping (DTW). Comparison of the proposed approach with the MFCCs conventional feature extraction method shows that the proposed method not only effectively reduces the influence of noise, but also improves recognition. A recognition rate of 99.3% was obtained using the proposed feature extraction technique compared to 98.7% using the MFCCs. When the test patterns were corrupted by additive white Gaussian noise with 20 dB S/N ratio, the recognition rate was 97.3% using the proposed method compared to 93.3% using the MFCCs.
Mahmoud I. Abdalla and Hanaa S. Ali
null
1003.5627
null
null
Etiqueter un corpus oral par apprentissage automatique \`a l'aide de connaissances linguistiques
cs.LG cs.CL
Thanks to the Eslo1 ("Enqu\^ete sociolinguistique d'Orl\'eans", i.e. "Sociolinguistic Inquiery of Orl\'eans") campain, a large oral corpus has been gathered and transcribed in a textual format. The purpose of the work presented here is to associate a morpho-syntactic label to each unit of this corpus. To this aim, we have first studied the specificities of the necessary labels, and their various possible levels of description. This study has led to a new original hierarchical structuration of labels. Then, considering that our new set of labels was different from the one used in every available software, and that these softwares usually do not fit for oral data, we have built a new labeling tool by a Machine Learning approach, from data labeled by Cordial and corrected by hand. We have applied linear CRF (Conditional Random Fields) trying to take the best possible advantage of the linguistic knowledge that was used to define the set of labels. We obtain an accuracy between 85 and 90%, depending of the parameters used.
Iris Eshkol (CORAL), Isabelle Tellier (LIFO), Taalab Samer (LIFO), Sylvie Billot (LIFO)
null
1003.5749
null
null
Offline Signature Identification by Fusion of Multiple Classifiers using Statistical Learning Theory
cs.CV cs.LG
This paper uses Support Vector Machines (SVM) to fuse multiple classifiers for an offline signature system. From the signature images, global and local features are extracted and the signatures are verified with the help of Gaussian empirical rule, Euclidean and Mahalanobis distance based classifiers. SVM is used to fuse matching scores of these matchers. Finally, recognition of query signatures is done by comparing it with all signatures of the database. The proposed system is tested on a signature database contains 5400 offline signatures of 600 individuals and the results are found to be promising.
Dakshina Ranjan Kisku, Phalguni Gupta, Jamuna Kanta Sing
null
1003.5865
null
null
Unbiased Offline Evaluation of Contextual-bandit-based News Article Recommendation Algorithms
cs.LG cs.AI cs.RO stat.ML
Contextual bandit algorithms have become popular for online recommendation systems such as Digg, Yahoo! Buzz, and news recommendation in general. \emph{Offline} evaluation of the effectiveness of new algorithms in these applications is critical for protecting online user experiences but very challenging due to their "partial-label" nature. Common practice is to create a simulator which simulates the online environment for the problem at hand and then run an algorithm against this simulator. However, creating simulator itself is often difficult and modeling bias is usually unavoidably introduced. In this paper, we introduce a \emph{replay} methodology for contextual bandit algorithm evaluation. Different from simulator-based approaches, our method is completely data-driven and very easy to adapt to different applications. More importantly, our method can provide provably unbiased evaluations. Our empirical results on a large-scale news article recommendation dataset collected from Yahoo! Front Page conform well with our theoretical results. Furthermore, comparisons between our offline replay and online bucket evaluation of several contextual bandit algorithms show accuracy and effectiveness of our offline evaluation method.
Lihong Li and Wei Chu and John Langford and Xuanhui Wang
10.1145/1935826.1935878
1003.5956
null
null
Facial Expression Representation and Recognition Using 2DHLDA, Gabor Wavelets, and Ensemble Learning
cs.CV cs.LG
In this paper, a novel method for representation and recognition of the facial expressions in two-dimensional image sequences is presented. We apply a variation of two-dimensional heteroscedastic linear discriminant analysis (2DHLDA) algorithm, as an efficient dimensionality reduction technique, to Gabor representation of the input sequence. 2DHLDA is an extension of the two-dimensional linear discriminant analysis (2DLDA) approach and it removes the equal within-class covariance. By applying 2DHLDA in two directions, we eliminate the correlations between both image columns and image rows. Then, we perform a one-dimensional LDA on the new features. This combined method can alleviate the small sample size problem and instability encountered by HLDA. Also, employing both geometric and appearance features and using an ensemble learning scheme based on data fusion, we create a classifier which can efficiently classify the facial expressions. The proposed method is robust to illumination changes and it can properly represent temporal information as well as subtle changes in facial muscles. We provide experiments on Cohn-Kanade database that show the superiority of the proposed method. KEYWORDS: two-dimensional heteroscedastic linear discriminant analysis (2DHLDA), subspace learning, facial expression analysis, Gabor wavelets, ensemble learning.
Mahmoud Khademi, Mohammad H. Kiapour, Mehran Safayani, Mohammad T. Manzuri, and M. Shojaei
null
1004.0378
null
null
Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation
stat.ML cs.LG
We propose in this paper an exploratory analysis algorithm for functional data. The method partitions a set of functions into $K$ clusters and represents each cluster by a simple prototype (e.g., piecewise constant). The total number of segments in the prototypes, $P$, is chosen by the user and optimally distributed among the clusters via two dynamic programming algorithms. The practical relevance of the method is shown on two real world datasets.
Georges H\'ebrail and Bernard Hugueney and Yves Lechevallier and Fabrice Rossi
10.1016/j.neucom.2009.11.022
1004.0456
null
null
Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network
cs.CV cs.LG
Facial Action Coding System consists of 44 action units (AUs) and more than 7000 combinations. Hidden Markov models (HMMs) classifier has been used successfully to recognize facial action units (AUs) and expressions due to its ability to deal with AU dynamics. However, a separate HMM is necessary for each single AU and each AU combination. Since combinations of AU numbering in thousands, a more efficient method will be needed. In this paper an accurate real-time sequence-based system for representation and recognition of facial AUs is presented. Our system has the following characteristics: 1) employing a mixture of HMMs and neural network, we develop a novel accurate classifier, which can deal with AU dynamics, recognize subtle changes, and it is also robust to intensity variations, 2) although we use an HMM for each single AU only, by employing a neural network we can recognize each single and combination AU, and 3) using both geometric and appearance-based features, and applying efficient dimension reduction techniques, our system is robust to illumination changes and it can represent the temporal information involved in formation of the facial expressions. Extensive experiments on Cohn-Kanade database show the superiority of the proposed method, in comparison with other classifiers. Keywords: classifier design and evaluation, data fusion, facial action units (AUs), hidden Markov models (HMMs), neural network (NN).
Mahmoud Khademi, Mohammad T. Manzuri-Shalmani, Mohammad H. Kiapour, and Ali A. Kiaei
null
1004.0515
null
null
Multilinear Biased Discriminant Analysis: A Novel Method for Facial Action Unit Representation
cs.CV cs.LG
In this paper a novel efficient method for representation of facial action units by encoding an image sequence as a fourth-order tensor is presented. The multilinear tensor-based extension of the biased discriminant analysis (BDA) algorithm, called multilinear biased discriminant analysis (MBDA), is first proposed. Then, we apply the MBDA and two-dimensional BDA (2DBDA) algorithms, as the dimensionality reduction techniques, to Gabor representations and the geometric features of the input image sequence respectively. The proposed scheme can deal with the asymmetry between positive and negative samples as well as curse of dimensionality dilemma. Extensive experiments on Cohn-Kanade database show the superiority of the proposed method for representation of the subtle changes and the temporal information involved in formation of the facial expressions. As an accurate tool, this representation can be applied to many areas such as recognition of spontaneous and deliberate facial expressions, multi modal/media human computer interaction and lie detection efforts.
Mahmoud Khademi, Mehran Safayani, and Mohammad T. Manzuri-Shalmani
null
1004.0517
null
null
Using Rough Set and Support Vector Machine for Network Intrusion Detection
cs.LG cs.CR cs.NI
The main function of IDS (Intrusion Detection System) is to protect the system, analyze and predict the behaviors of users. Then these behaviors will be considered an attack or a normal behavior. Though IDS has been developed for many years, the large number of return alert messages makes managers maintain system inefficiently. In this paper, we use RST (Rough Set Theory) and SVM (Support Vector Machine) to detect intrusions. First, RST is used to preprocess the data and reduce the dimensions. Next, the features were selected by RST will be sent to SVM model to learn and test respectively. The method is effective to decrease the space density of data. The experiments will compare the results with different methods and show RST and SVM schema could improve the false positive rate and accuracy.
Rung-Ching Chen, Kai-Fan Cheng and Chia-Fen Hsieh (Chaoyang University of Technology, Taiwan)
null
1004.0567
null
null
Extended Two-Dimensional PCA for Efficient Face Representation and Recognition
cs.CV cs.LG
In this paper a novel method called Extended Two-Dimensional PCA (E2DPCA) is proposed which is an extension to the original 2DPCA. We state that the covariance matrix of 2DPCA is equivalent to the average of the main diagonal of the covariance matrix of PCA. This implies that 2DPCA eliminates some covariance information that can be useful for recognition. E2DPCA instead of just using the main diagonal considers a radius of r diagonals around it and expands the averaging so as to include the covariance information within those diagonals. The parameter r unifies PCA and 2DPCA. r = 1 produces the covariance of 2DPCA, r = n that of PCA. Hence, by controlling r it is possible to control the trade-offs between recognition accuracy and energy compression (fewer coefficients), and between training and recognition complexity. Experiments on ORL face database show improvement in both recognition accuracy and recognition time over the original 2DPCA.
Mehran Safayani, Mohammad T. Manzuri-Shalmani, Mahmoud Khademi
null
1004.0755
null
null
Message-Passing Inference on a Factor Graph for Collaborative Filtering
cs.IT cs.LG math.IT
This paper introduces a novel message-passing (MP) framework for the collaborative filtering (CF) problem associated with recommender systems. We model the movie-rating prediction problem popularized by the Netflix Prize, using a probabilistic factor graph model and study the model by deriving generalization error bounds in terms of the training error. Based on the model, we develop a new MP algorithm, termed IMP, for learning the model. To show superiority of the IMP algorithm, we compare it with the closely related expectation-maximization (EM) based algorithm and a number of other matrix completion algorithms. Our simulation results on Netflix data show that, while the methods perform similarly with large amounts of data, the IMP algorithm is superior for small amounts of data. This improves the cold-start problem of the CF systems in practice. Another advantage of the IMP algorithm is that it can be analyzed using the technique of density evolution (DE) that was originally developed for MP decoding of error-correcting codes.
Byung-Hak Kim, Arvind Yedla, and Henry D. Pfister
null
1004.1003
null
null
On Tsallis Entropy Bias and Generalized Maximum Entropy Models
cs.LG cond-mat.stat-mech cs.AI cs.IT math.IT
In density estimation task, maximum entropy model (Maxent) can effectively use reliable prior information via certain constraints, i.e., linear constraints without empirical parameters. However, reliable prior information is often insufficient, and the selection of uncertain constraints becomes necessary but poses considerable implementation complexity. Improper setting of uncertain constraints can result in overfitting or underfitting. To solve this problem, a generalization of Maxent, under Tsallis entropy framework, is proposed. The proposed method introduces a convex quadratic constraint for the correction of (expected) Tsallis entropy bias (TEB). Specifically, we demonstrate that the expected Tsallis entropy of sampling distributions is smaller than the Tsallis entropy of the underlying real distribution. This expected entropy reduction is exactly the (expected) TEB, which can be expressed by a closed-form formula and act as a consistent and unbiased correction. TEB indicates that the entropy of a specific sampling distribution should be increased accordingly. This entails a quantitative re-interpretation of the Maxent principle. By compensating TEB and meanwhile forcing the resulting distribution to be close to the sampling distribution, our generalized TEBC Maxent can be expected to alleviate the overfitting and underfitting. We also present a connection between TEB and Lidstone estimator. As a result, TEB-Lidstone estimator is developed by analytically identifying the rate of probability correction in Lidstone. Extensive empirical evaluation shows promising performance of both TEBC Maxent and TEB-Lidstone in comparison with various state-of-the-art density estimation methods.
Yuexian Hou, Tingxu Yan, Peng Zhang, Dawei Song, Wenjie Li
null
1004.1061
null
null
Ontology-supported processing of clinical text using medical knowledge integration for multi-label classification of diagnosis coding
cs.LG cs.AI
This paper discusses the knowledge integration of clinical information extracted from distributed medical ontology in order to ameliorate a machine learning-based multi-label coding assignment system. The proposed approach is implemented using a decision tree based cascade hierarchical technique on the university hospital data for patients with Coronary Heart Disease (CHD). The preliminary results obtained show a satisfactory finding.
Phanu Waraporn, Phayung Meesad, Gareth Clayton
null
1004.1230
null
null
An Analytical Study on Behavior of Clusters Using K Means, EM and K* Means Algorithm
cs.LG cs.IR
Clustering is an unsupervised learning method that constitutes a cornerstone of an intelligent data analysis process. It is used for the exploration of inter-relationships among a collection of patterns, by organizing them into homogeneous clusters. Clustering has been dynamically applied to a variety of tasks in the field of Information Retrieval (IR). Clustering has become one of the most active area of research and the development. Clustering attempts to discover the set of consequential groups where those within each group are more closely related to one another than the others assigned to different groups. The resultant clusters can provide a structure for organizing large bodies of text for efficient browsing and searching. There exists a wide variety of clustering algorithms that has been intensively studied in the clustering problem. Among the algorithms that remain the most common and effectual, the iterative optimization clustering algorithms have been demonstrated reasonable performance for clustering, e.g. the Expectation Maximization (EM) algorithm and its variants, and the well known k-means algorithm. This paper presents an analysis on how partition method clustering techniques - EM, K -means and K* Means algorithm work on heartspect dataset with below mentioned features - Purity, Entropy, CPU time, Cluster wise analysis, Mean value analysis and inter cluster distance. Thus the paper finally provides the experimental results of datasets for five clusters to strengthen the results that the quality of the behavior in clusters in EM algorithm is far better than k-means algorithm and k*means algorithm.
G. Nathiya, S. C. Punitha, M. Punithavalli
null
1004.1743
null
null
State-Space Dynamics Distance for Clustering Sequential Data
cs.LG
This paper proposes a novel similarity measure for clustering sequential data. We first construct a common state-space by training a single probabilistic model with all the sequences in order to get a unified representation for the dataset. Then, distances are obtained attending to the transition matrices induced by each sequence in that state-space. This approach solves some of the usual overfitting and scalability issues of the existing semi-parametric techniques, that rely on training a model for each sequence. Empirical studies on both synthetic and real-world datasets illustrate the advantages of the proposed similarity measure for clustering sequences.
Dar\'io Garc\'ia-Garc\'ia and Emilio Parrado-Hern\'andez and Fernando D\'iaz-de-Mar\'ia
null
1004.1982
null
null
An optimized recursive learning algorithm for three-layer feedforward neural networks for mimo nonlinear system identifications
cs.NE cs.DC cs.LG
Back-propagation with gradient method is the most popular learning algorithm for feed-forward neural networks. However, it is critical to determine a proper fixed learning rate for the algorithm. In this paper, an optimized recursive algorithm is presented for online learning based on matrix operation and optimization methods analytically, which can avoid the trouble to select a proper learning rate for the gradient method. The proof of weak convergence of the proposed algorithm also is given. Although this approach is proposed for three-layer, feed-forward neural networks, it could be extended to multiple layer feed-forward neural networks. The effectiveness of the proposed algorithms applied to the identification of behavior of a two-input and two-output non-linear dynamic system is demonstrated by simulation experiments.
Daohang Sha, Vladimir B. Bajic
null
1004.1997
null
null
Dynamic Policy Programming
cs.LG cs.AI cs.SY math.OC stat.ML
In this paper, we propose a novel policy iteration method, called dynamic policy programming (DPP), to estimate the optimal policy in the infinite-horizon Markov decision processes. We prove the finite-iteration and asymptotic l\infty-norm performance-loss bounds for DPP in the presence of approximation/estimation error. The bounds are expressed in terms of the l\infty-norm of the average accumulated error as opposed to the l\infty-norm of the error in the case of the standard approximate value iteration (AVI) and the approximate policy iteration (API). This suggests that DPP can achieve a better performance than AVI and API since it averages out the simulation noise caused by Monte-Carlo sampling throughout the learning process. We examine this theoretical results numerically by com- paring the performance of the approximate variants of DPP with existing reinforcement learning (RL) methods on different problem domains. Our results show that, in all cases, DPP-based algorithms outperform other RL methods by a wide margin.
Mohammad Gheshlaghi Azar, Vicenc Gomez and Hilbert J. Kappen
null
1004.2027
null
null
Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory
cs.LG
In regular statistical models, the leave-one-out cross-validation is asymptotically equivalent to the Akaike information criterion. However, since many learning machines are singular statistical models, the asymptotic behavior of the cross-validation remains unknown. In previous studies, we established the singular learning theory and proposed a widely applicable information criterion, the expectation value of which is asymptotically equal to the average Bayes generalization loss. In the present paper, we theoretically compare the Bayes cross-validation loss and the widely applicable information criterion and prove two theorems. First, the Bayes cross-validation loss is asymptotically equivalent to the widely applicable information criterion as a random variable. Therefore, model selection and hyperparameter optimization using these two values are asymptotically equivalent. Second, the sum of the Bayes generalization error and the Bayes cross-validation error is asymptotically equal to $2\lambda/n$, where $\lambda$ is the real log canonical threshold and $n$ is the number of training samples. Therefore the relation between the cross-validation error and the generalization error is determined by the algebraic geometrical structure of a learning machine. We also clarify that the deviance information criteria are different from the Bayes cross-validation and the widely applicable information criterion.
Sumio Watanabe
null
1004.2316
null
null
Generation and Interpretation of Temporal Decision Rules
cs.LG
We present a solution to the problem of understanding a system that produces a sequence of temporally ordered observations. Our solution is based on generating and interpreting a set of temporal decision rules. A temporal decision rule is a decision rule that can be used to predict or retrodict the value of a decision attribute, using condition attributes that are observed at times other than the decision attribute's time of observation. A rule set, consisting of a set of temporal decision rules with the same decision attribute, can be interpreted by our Temporal Investigation Method for Enregistered Record Sequences (TIMERS) to signify an instantaneous, an acausal or a possibly causal relationship between the condition attributes and the decision attribute. We show the effectiveness of our method, by describing a number of experiments with both synthetic and real temporal data.
Kamran Karimi and Howard J. Hamilton
null
1004.3334
null
null
From open quantum systems to open quantum maps
math.AP cs.LG math-ph math.DS math.MP nlin.CD
For a class of quantized open chaotic systems satisfying a natural dynamical assumption, we show that the study of the resolvent, and hence of scattering and resonances, can be reduced to the study of a family of open quantum maps, that is of finite dimensional operators obtained by quantizing the Poincar\'e map associated with the flow near the set of trapped trajectories.
St\'ephane Nonnenmacher (IPHT), Johannes Sjoestrand (IMB), Maciej Zworski (UC Berkeley Maths)
10.1007/s00220-011-1214-0
1004.3361
null
null
Bregman Distance to L1 Regularized Logistic Regression
cs.LG
In this work we investigate the relationship between Bregman distances and regularized Logistic Regression model. We present a detailed study of Bregman Distance minimization, a family of generalized entropy measures associated with convex functions. We convert the L1-regularized logistic regression into this more general framework and propose a primal-dual method based algorithm for learning the parameters. We pose L1-regularized logistic regression into Bregman distance minimization and then apply non-linear constrained optimization techniques to estimate the parameters of the logistic model.
Mithun Das Gupta, Thomas S. Huang
null
1004.3814
null
null
Settling the Polynomial Learnability of Mixtures of Gaussians
cs.LG cs.DS
Given data drawn from a mixture of multivariate Gaussians, a basic problem is to accurately estimate the mixture parameters. We give an algorithm for this problem that has a running time, and data requirement polynomial in the dimension and the inverse of the desired accuracy, with provably minimal assumptions on the Gaussians. As simple consequences of our learning algorithm, we can perform near-optimal clustering of the sample points and density estimation for mixtures of k Gaussians, efficiently. The building blocks of our algorithm are based on the work Kalai et al. [STOC 2010] that gives an efficient algorithm for learning mixtures of two Gaussians by considering a series of projections down to one dimension, and applying the method of moments to each univariate projection. A major technical hurdle in Kalai et al. is showing that one can efficiently learn univariate mixtures of two Gaussians. In contrast, because pathological scenarios can arise when considering univariate projections of mixtures of more than two Gaussians, the bulk of the work in this paper concerns how to leverage an algorithm for learning univariate mixtures (of many Gaussians) to yield an efficient algorithm for learning in high dimensions. Our algorithm employs hierarchical clustering and rescaling, together with delicate methods for backtracking and recovering from failures that can occur in our univariate algorithm. Finally, while the running time and data requirements of our algorithm depend exponentially on the number of Gaussians in the mixture, we prove that such a dependence is necessary.
Ankur Moitra and Gregory Valiant
null
1004.4223
null
null
Efficient Learning with Partially Observed Attributes
cs.LG
We describe and analyze efficient algorithms for learning a linear predictor from examples when the learner can only view a few attributes of each training example. This is the case, for instance, in medical research, where each patient participating in the experiment is only willing to go through a small number of tests. Our analysis bounds the number of additional examples sufficient to compensate for the lack of full information on each training example. We demonstrate the efficiency of our algorithms by showing that when running on digit recognition data, they obtain a high prediction accuracy even when the learner gets to see only four pixels of each image.
Nicol\`o Cesa-Bianchi, Shai Shalev-Shwartz and Ohad Shamir
null
1004.4421
null
null
Evolutionary Inference for Function-valued Traits: Gaussian Process Regression on Phylogenies
q-bio.QM cs.LG physics.data-an stat.ML
Biological data objects often have both of the following features: (i) they are functions rather than single numbers or vectors, and (ii) they are correlated due to phylogenetic relationships. In this paper we give a flexible statistical model for such data, by combining assumptions from phylogenetics with Gaussian processes. We describe its use as a nonparametric Bayesian prior distribution, both for prediction (placing posterior distributions on ancestral functions) and model selection (comparing rates of evolution across a phylogeny, or identifying the most likely phylogenies consistent with the observed data). Our work is integrative, extending the popular phylogenetic Brownian Motion and Ornstein-Uhlenbeck models to functional data and Bayesian inference, and extending Gaussian Process regression to phylogenies. We provide a brief illustration of the application of our method.
Nick S. Jones and John Moriarty
10.1098/rsif.2012.0616
1004.4668
null
null
Polynomial Learning of Distribution Families
cs.LG cs.DS
The question of polynomial learnability of probability distributions, particularly Gaussian mixture distributions, has recently received significant attention in theoretical computer science and machine learning. However, despite major progress, the general question of polynomial learnability of Gaussian mixture distributions still remained open. The current work resolves the question of polynomial learnability for Gaussian mixtures in high dimension with an arbitrary fixed number of components. The result on learning Gaussian mixtures relies on an analysis of distributions belonging to what we call "polynomial families" in low dimension. These families are characterized by their moments being polynomial in parameters and include almost all common probability distributions as well as their mixtures and products. Using tools from real algebraic geometry, we show that parameters of any distribution belonging to such a family can be learned in polynomial time and using a polynomial number of sample points. The result on learning polynomial families is quite general and is of independent interest. To estimate parameters of a Gaussian mixture distribution in high dimensions, we provide a deterministic algorithm for dimensionality reduction. This allows us to reduce learning a high-dimensional mixture to a polynomial number of parameter estimations in low dimension. Combining this reduction with the results on polynomial families yields our result on learning arbitrary Gaussian mixtures in high dimensions.
Mikhail Belkin and Kaushik Sinha
null
1004.4864
null
null
Clustering processes
cs.LG cs.IT math.IT stat.ML
The problem of clustering is considered, for the case when each data point is a sample generated by a stationary ergodic process. We propose a very natural asymptotic notion of consistency, and show that simple consistent algorithms exist, under most general non-parametric assumptions. The notion of consistency is as follows: two samples should be put into the same cluster if and only if they were generated by the same distribution. With this notion of consistency, clustering generalizes such classical statistical problems as homogeneity testing and process classification. We show that, for the case of a known number of clusters, consistency can be achieved under the only assumption that the joint distribution of the data is stationary ergodic (no parametric or Markovian assumptions, no assumptions of independence, neither between nor within the samples). If the number of clusters is unknown, consistency can be achieved under appropriate assumptions on the mixing rates of the processes. (again, no parametric or independence assumptions). In both cases we give examples of simple (at most quadratic in each argument) algorithms which are consistent.
Daniil Ryabko (INRIA Lille - Nord Europe)
null
1004.5194
null
null
Optimism in Reinforcement Learning and Kullback-Leibler Divergence
cs.LG math.ST stat.ML stat.TH
We consider model-based reinforcement learning in finite Markov De- cision Processes (MDPs), focussing on so-called optimistic strategies. In MDPs, optimism can be implemented by carrying out extended value it- erations under a constraint of consistency with the estimated model tran- sition probabilities. The UCRL2 algorithm by Auer, Jaksch and Ortner (2009), which follows this strategy, has recently been shown to guarantee near-optimal regret bounds. In this paper, we strongly argue in favor of using the Kullback-Leibler (KL) divergence for this purpose. By studying the linear maximization problem under KL constraints, we provide an ef- ficient algorithm, termed KL-UCRL, for solving KL-optimistic extended value iteration. Using recent deviation bounds on the KL divergence, we prove that KL-UCRL provides the same guarantees as UCRL2 in terms of regret. However, numerical experiments on classical benchmarks show a significantly improved behavior, particularly when the MDP has reduced connectivity. To support this observation, we provide elements of com- parison between the two algorithms based on geometric considerations.
Sarah Filippi (LTCI), Olivier Capp\'e (LTCI), Aur\'elien Garivier (LTCI)
10.1109/ALLERTON.2010.5706896
1004.5229
null
null
Designing neural networks that process mean values of random variables
cond-mat.dis-nn cs.AI cs.LG
We introduce a class of neural networks derived from probabilistic models in the form of Bayesian networks. By imposing additional assumptions about the nature of the probabilistic models represented in the networks, we derive neural networks with standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the random variables, that can pool multiple sources of evidence, and that deal cleanly and consistently with inconsistent or contradictory evidence. The presented neural networks capture many properties of Bayesian networks, providing distributed versions of probabilistic models.
Michael J. Barber and John W. Clark
null
1004.5326
null
null
Learning from Multiple Outlooks
cs.LG
We propose a novel problem formulation of learning a single task when the data are provided in different feature spaces. Each such space is called an outlook, and is assumed to contain both labeled and unlabeled data. The objective is to take advantage of the data from all the outlooks to better classify each of the outlooks. We devise an algorithm that computes optimal affine mappings from different outlooks to a target outlook by matching moments of the empirical distributions. We further derive a probabilistic interpretation of the resulting algorithm and a sample complexity bound indicating how many samples are needed to adequately find the mapping. We report the results of extensive experiments on activity recognition tasks that show the value of the proposed approach in boosting performance.
Maayan Harel and Shie Mannor
null
1005.0027
null
null
A Geometric View of Conjugate Priors
cs.LG
In Bayesian machine learning, conjugate priors are popular, mostly due to mathematical convenience. In this paper, we show that there are deeper reasons for choosing a conjugate prior. Specifically, we formulate the conjugate prior in the form of Bregman divergence and show that it is the inherent geometry of conjugate priors that makes them appropriate and intuitive. This geometric interpretation allows one to view the hyperparameters of conjugate priors as the {\it effective} sample points, thus providing additional intuition. We use this geometric understanding of conjugate priors to derive the hyperparameters and expression of the prior used to couple the generative and discriminative components of a hybrid model for semi-supervised learning.
Arvind Agarwal and Hal Daume III
null
1005.0047
null
null
Large Margin Multiclass Gaussian Classification with Differential Privacy
stat.ML cs.CR cs.LG
As increasing amounts of sensitive personal information is aggregated into data repositories, it has become important to develop mechanisms for processing the data without revealing information about individual data instances. The differential privacy model provides a framework for the development and theoretical analysis of such mechanisms. In this paper, we propose an algorithm for learning a discriminatively trained multi-class Gaussian classifier that satisfies differential privacy using a large margin loss function with a perturbed regularization term. We present a theoretical upper bound on the excess risk of the classifier introduced by the perturbation.
Manas A. Pathak and Bhiksha Raj
null
1005.0063
null
null
Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation
cs.LG
In this paper, we consider the distributive queue-aware power and subband allocation design for a delay-optimal OFDMA uplink system with one base station, $K$ users and $N_F$ independent subbands. Each mobile has an uplink queue with heterogeneous packet arrivals and delay requirements. We model the problem as an infinite horizon average reward Markov Decision Problem (MDP) where the control actions are functions of the instantaneous Channel State Information (CSI) as well as the joint Queue State Information (QSI). To address the distributive requirement and the issue of exponential memory requirement and computational complexity, we approximate the subband allocation Q-factor by the sum of the per-user subband allocation Q-factor and derive a distributive online stochastic learning algorithm to estimate the per-user Q-factor and the Lagrange multipliers (LM) simultaneously and determine the control actions using an auction mechanism. We show that under the proposed auction mechanism, the distributive online learning converges almost surely (with probability 1). For illustration, we apply the proposed distributive stochastic learning framework to an application example with exponential packet size distribution. We show that the delay-optimal power control has the {\em multi-level water-filling} structure where the CSI determines the instantaneous power allocation and the QSI determines the water-level. The proposed algorithm has linear signaling overhead and computational complexity $\mathcal O(KN)$, which is desirable from an implementation perspective.
Ying Cui and Vincent K.N.Lau
10.1109/TSP.2010.2050062
1005.0075
null
null
Adaptive Bases for Reinforcement Learning
cs.LG cs.AI
We consider the problem of reinforcement learning using function approximation, where the approximating basis can change dynamically while interacting with the environment. A motivation for such an approach is maximizing the value function fitness to the problem faced. Three errors are considered: approximation square error, Bellman residual, and projected Bellman residual. Algorithms under the actor-critic framework are presented, and shown to converge. The advantage of such an adaptive basis is demonstrated in simulations.
Dotan Di Castro and Shie Mannor
null
1005.0125
null
null
Generative and Latent Mean Map Kernels
cs.LG stat.ML
We introduce two kernels that extend the mean map, which embeds probability measures in Hilbert spaces. The generative mean map kernel (GMMK) is a smooth similarity measure between probabilistic models. The latent mean map kernel (LMMK) generalizes the non-iid formulation of Hilbert space embeddings of empirical distributions in order to incorporate latent variable models. When comparing certain classes of distributions, the GMMK exhibits beneficial regularization and generalization properties not shown for previous generative kernels. We present experiments comparing support vector machine performance using the GMMK and LMMK between hidden Markov models to the performance of other methods on discrete and continuous observation sequence data. The results suggest that, in many cases, the GMMK has generalization error competitive with or better than other methods.
Nishant A. Mehta and Alexander G. Gray
null
1005.0188
null
null
Statistical Learning in Automated Troubleshooting: Application to LTE Interference Mitigation
cs.LG
This paper presents a method for automated healing as part of off-line automated troubleshooting. The method combines statistical learning with constraint optimization. The automated healing aims at locally optimizing radio resource management (RRM) or system parameters of cells with poor performance in an iterative manner. The statistical learning processes the data using Logistic Regression (LR) to extract closed form (functional) relations between Key Performance Indicators (KPIs) and Radio Resource Management (RRM) parameters. These functional relations are then processed by an optimization engine which proposes new parameter values. The advantage of the proposed formulation is the small number of iterations required by the automated healing method to converge, making it suitable for off-line implementation. The proposed method is applied to heal an Inter-Cell Interference Coordination (ICIC) process in a 3G Long Term Evolution (LTE) network which is based on soft-frequency reuse scheme. Numerical simulations illustrate the benefits of the proposed approach.
Moazzam Islam Tiwana, Berna Sayrac and Zwi Altman
10.1109/TVT.2010.2050081
1005.0340
null
null
Machine Learning for Galaxy Morphology Classification
astro-ph.GA cs.LG
In this work, decision tree learning algorithms and fuzzy inferencing systems are applied for galaxy morphology classification. In particular, the CART, the C4.5, the Random Forest and fuzzy logic algorithms are studied and reliable classifiers are developed to distinguish between spiral galaxies, elliptical galaxies or star/unknown galactic objects. Morphology information for the training and testing datasets is obtained from the Galaxy Zoo project while the corresponding photometric and spectra parameters are downloaded from the SDSS DR7 catalogue.
Adam Gauci, Kristian Zarb Adami, John Abela
null
1005.0390
null
null
A Unifying View of Multiple Kernel Learning
stat.ML cs.LG
Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.
Marius Kloft, Ulrich R\"uckert and Peter L. Bartlett
null
1005.0437
null
null
Feature Selection with Conjunctions of Decision Stumps and Learning from Microarray Data
cs.LG cs.AI stat.ML
One of the objectives of designing feature selection learning algorithms is to obtain classifiers that depend on a small number of attributes and have verifiable future performance guarantees. There are few, if any, approaches that successfully address the two goals simultaneously. Performance guarantees become crucial for tasks such as microarray data analysis due to very small sample sizes resulting in limited empirical evaluation. To the best of our knowledge, such algorithms that give theoretical bounds on the future performance have not been proposed so far in the context of the classification of gene expression data. In this work, we investigate the premise of learning a conjunction (or disjunction) of decision stumps in Occam's Razor, Sample Compression, and PAC-Bayes learning settings for identifying a small subset of attributes that can be used to perform reliable classification tasks. We apply the proposed approaches for gene identification from DNA microarray data and compare our results to those of well known successful approaches proposed for the task. We show that our algorithm not only finds hypotheses with much smaller number of genes while giving competitive classification accuracy but also have tight risk guarantees on future performance unlike other approaches. The proposed approaches are general and extensible in terms of both designing novel algorithms and application to other domains.
Mohak Shah, Mario Marchand and Jacques Corbeil
null
1005.0530
null
null
Active Learning for Hidden Attributes in Networks
stat.ML cond-mat.stat-mech cs.IT cs.LG math.IT physics.soc-ph
In many networks, vertices have hidden attributes, or types, that are correlated with the networks topology. If the topology is known but these attributes are not, and if learning the attributes is costly, we need a method for choosing which vertex to query in order to learn as much as possible about the attributes of the other vertices. We assume the network is generated by a stochastic block model, but we make no assumptions about its assortativity or disassortativity. We choose which vertex to query using two methods: 1) maximizing the mutual information between its attributes and those of the others (a well-known approach in active learning) and 2) maximizing the average agreement between two independent samples of the conditional Gibbs distribution. Experimental results show that both these methods do much better than simple heuristics. They also consistently identify certain vertices as important by querying them early on.
Xiaoran Yan, Yaojia Zhu, Jean-Baptiste Rouquier, and Cristopher Moore
null
1005.0794
null
null
The Complex Gaussian Kernel LMS algorithm
cs.LG
Although the real reproducing kernels are used in an increasing number of machine learning problems, complex kernels have not, yet, been used, in spite of their potential interest in applications such as communications. In this work, we focus our attention on the complex gaussian kernel and its possible application in the complex Kernel LMS algorithm. In order to derive the gradients needed to develop the complex kernel LMS (CKLMS), we employ the powerful tool of Wirtinger's Calculus, which has recently attracted much attention in the signal processing community. Writinger's calculus simplifies computations and offers an elegant tool for treating complex signals. To this end, the notion of Writinger's calculus is extended to include complex RKHSs. Experiments verify that the CKLMS offers significant performance improvements over the traditional complex LMS or Widely Linear complex LMS (WL-LMS) algorithms, when dealing with nonlinearities.
Pantelis Bouboulis and Sergios Theodoridis
null
1005.0897
null
null
Extension of Wirtinger Calculus in RKH Spaces and the Complex Kernel LMS
cs.LG
Over the last decade, kernel methods for nonlinear processing have successfully been used in the machine learning community. However, so far, the emphasis has been on batch techniques. It is only recently, that online adaptive techniques have been considered in the context of signal processing tasks. To the best of our knowledge, no kernel-based strategy has been developed, so far, that is able to deal with complex valued signals. In this paper, we take advantage of a technique called complexification of real RKHSs to attack this problem. In order to derive gradients and subgradients of operators that need to be defined on the associated complex RKHSs, we employ the powerful tool ofWirtinger's Calculus, which has recently attracted much attention in the signal processing community. Writinger's calculus simplifies computations and offers an elegant tool for treating complex signals. To this end, in this paper, the notion of Writinger's calculus is extended, for the first time, to include complex RKHSs and use it to derive the Complex Kernel Least-Mean-Square (CKLMS) algorithm. Experiments verify that the CKLMS can be used to derive nonlinear stable algorithms, which offer significant performance improvements over the traditional complex LMS orWidely Linear complex LMS (WL-LMS) algorithms, when dealing with nonlinearities.
Pantelis Bouboulis, Sergios Theodoridis
null
1005.0902
null
null
Estimating small moments of data stream in nearly optimal space-time
cs.DS cs.LG
For each $p \in (0,2]$, we present a randomized algorithm that returns an $\epsilon$-approximation of the $p$th frequency moment of a data stream $F_p = \sum_{i = 1}^n \abs{f_i}^p$. The algorithm requires space $O(\epsilon^{-2} \log (mM)(\log n))$ and processes each stream update using time $O((\log n) (\log \epsilon^{-1}))$. It is nearly optimal in terms of space (lower bound $O(\epsilon^{-2} \log (mM))$ as well as time and is the first algorithm with these properties. The technique separates heavy hitters from the remaining items in the stream using an appropriate threshold and estimates the contribution of the heavy hitters and the light elements to $F_p$ separately. A key component is the design of an unbiased estimator for $\abs{f_i}^p$ whose data structure has low update time and low variance.
Sumit Ganguly
null
1005.1120
null
null
Improving Semi-Supervised Support Vector Machines Through Unlabeled Instances Selection
cs.LG
Semi-supervised support vector machines (S3VMs) are a kind of popular approaches which try to improve learning performance by exploiting unlabeled data. Though S3VMs have been found helpful in many situations, they may degenerate performance and the resultant generalization ability may be even worse than using the labeled data only. In this paper, we try to reduce the chance of performance degeneration of S3VMs. Our basic idea is that, rather than exploiting all unlabeled data, the unlabeled instances should be selected such that only the ones which are very likely to be helpful are exploited, while some highly risky unlabeled instances are avoided. We propose the S3VM-\emph{us} method by using hierarchical clustering to select the unlabeled instances. Experiments on a broad range of data sets over eighty-eight different settings show that the chance of performance degeneration of S3VM-\emph{us} is much smaller than that of existing S3VMs.
Yu-Feng Li, Zhi-Hua Zhou
null
1005.1545
null
null
Prediction with Expert Advice under Discounted Loss
cs.LG
We study prediction with expert advice in the setting where the losses are accumulated with some discounting---the impact of old losses may gradually vanish. We generalize the Aggregating Algorithm and the Aggregating Algorithm for Regression to this case, propose a suitable new variant of exponential weights algorithm, and prove respective loss bounds.
Alexey Chernov and Fedor Zhdanov
null
1005.1918
null
null
On the Finite Time Convergence of Cyclic Coordinate Descent Methods
cs.LG cs.NA
Cyclic coordinate descent is a classic optimization method that has witnessed a resurgence of interest in machine learning. Reasons for this include its simplicity, speed and stability, as well as its competitive performance on $\ell_1$ regularized smooth optimization problems. Surprisingly, very little is known about its finite time convergence behavior on these problems. Most existing results either just prove convergence or provide asymptotic rates. We fill this gap in the literature by proving $O(1/k)$ convergence rates (where $k$ is the iteration counter) for two variants of cyclic coordinate descent under an isotonicity assumption. Our analysis proceeds by comparing the objective values attained by the two variants with each other, as well as with the gradient descent algorithm. We show that the iterates generated by the cyclic coordinate descent methods remain better than those of gradient descent uniformly over time.
Ankan Saha and Ambuj Tewari
null
1005.2146
null
null
Detecting Blackholes and Volcanoes in Directed Networks
cs.LG
In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to further exploit the pruning results from the first pruning scheme. Indeed, a target directed graphs can be divided into several disconnected subgraphs by the first pruning scheme, and thus the blackhole finding can be conducted in each disconnected subgraph rather than in a large graph. Based on these two pruning schemes, we also develop an iBlackhole-DC algorithm. Finally, experimental results on real-world data show that the iBlackhole-DC algorithm can be several orders of magnitude faster than the iBlackhole algorithm, which has a huge computational advantage over a brute-force method.
Zhongmou Li, Hui Xiong, Yanchi Liu
null
1005.2179
null
null
Robustness and Generalization
cs.LG
We derive generalization bounds for learning algorithms based on their robustness: the property that if a testing sample is "similar" to a training sample, then the testing error is close to the training error. This provides a novel approach, different from the complexity or stability arguments, to study generalization of learning algorithms. We further show that a weak notion of robustness is both sufficient and necessary for generalizability, which implies that robustness is a fundamental property for learning algorithms to work.
Huan Xu, Shie Mannor
null
1005.2243
null
null
Context models on sequences of covers
stat.ML cs.LG
We present a class of models that, via a simple construction, enables exact, incremental, non-parametric, polynomial-time, Bayesian inference of conditional measures. The approach relies upon creating a sequence of covers on the conditioning variable and maintaining a different model for each set within a cover. Inference remains tractable by specifying the probabilistic model in terms of a random walk within the sequence of covers. We demonstrate the approach on problems of conditional density estimation, which, to our knowledge is the first closed-form, non-parametric Bayesian approach to this problem.
Christos Dimitrakakis
null
1005.2263
null
null
Online Learning of Noisy Data with Kernels
cs.LG
We study online learning when individual instances are corrupted by adversarially chosen random noise. We assume the noise distribution is unknown, and may change over time with no restriction other than having zero mean and bounded variance. Our technique relies on a family of unbiased estimators for non-linear functions, which may be of independent interest. We show that a variant of online gradient descent can learn functions in any dot-product (e.g., polynomial) or Gaussian kernel space with any analytic convex loss function. Our variant uses randomized estimates that need to query a random number of noisy copies of each instance, where with high probability this number is upper bounded by a constant. Allowing such multiple queries cannot be avoided: Indeed, we show that online learning is in general impossible when only one noisy copy of each instance can be accessed.
Nicol\`o Cesa-Bianchi, Shai Shalev-Shwartz and Ohad Shamir
null
1005.2296
null
null
A Short Introduction to Model Selection, Kolmogorov Complexity and Minimum Description Length (MDL)
cs.LG cs.CC
The concept of overfitting in model selection is explained and demonstrated with an example. After providing some background information on information theory and Kolmogorov complexity, we provide a short explanation of Minimum Description Length and error minimization. We conclude with a discussion of the typical features of overfitting in model selection.
Volker Nannen
null
1005.2364
null
null
Eigenvectors for clustering: Unipartite, bipartite, and directed graph cases
cs.LG math.SP
This paper presents a concise tutorial on spectral clustering for broad spectrum graphs which include unipartite (undirected) graph, bipartite graph, and directed graph. We show how to transform bipartite graph and directed graph into corresponding unipartite graph, therefore allowing a unified treatment to all cases. In bipartite graph, we show that the relaxed solution to the $K$-way co-clustering can be found by computing the left and right eigenvectors of the data matrix. This gives a theoretical basis for $K$-way spectral co-clustering algorithms proposed in the literatures. We also show that solving row and column co-clustering is equivalent to solving row and column clustering separately, thus giving a theoretical support for the claim: ``column clustering implies row clustering and vice versa''. And in the last part, we generalize the Ky Fan theorem---which is the central theorem for explaining spectral clustering---to rectangular complex matrix motivated by the results from bipartite graph analysis.
Andri Mirzal and Masashi Furukawa
null
1005.2603
null
null
Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets
stat.ML cs.CV cs.LG
Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. "Structure" can be understood as symmetry and a range of symmetries are expressed by hierarchy. Such symmetries directly point to invariants, that pinpoint intrinsic properties of the data and of the background empirical domain of interest. We review many aspects of hierarchy here, including ultrametric topology, generalized ultrametric, linkages with lattices and other discrete algebraic structures and with p-adic number representations. By focusing on symmetries in data we have a powerful means of structuring and analyzing massive, high dimensional data stores. We illustrate the powerfulness of hierarchical clustering in case studies in chemistry and finance, and we provide pointers to other published case studies.
Fionn Murtagh and Pedro Contreras
null
1005.2638
null
null
Structural Drift: The Population Dynamics of Sequential Learning
q-bio.PE cs.LG
We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream teacher and then pass samples from the model to their downstream student. It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory.
James P. Crutchfield and Sean Whalen
null
1005.2714
null
null
Evolution with Drifting Targets
cs.LG
We consider the question of the stability of evolutionary algorithms to gradual changes, or drift, in the target concept. We define an algorithm to be resistant to drift if, for some inverse polynomial drift rate in the target function, it converges to accuracy 1 -- \epsilon , with polynomial resources, and then stays within that accuracy indefinitely, except with probability \epsilon , at any one time. We show that every evolution algorithm, in the sense of Valiant (2007; 2009), can be converted using the Correlational Query technique of Feldman (2008), into such a drift resistant algorithm. For certain evolutionary algorithms, such as for Boolean conjunctions, we give bounds on the rates of drift that they can resist. We develop some new evolution algorithms that are resistant to significant drift. In particular, we give an algorithm for evolving linear separators over the spherically symmetric distribution that is resistant to a drift rate of O(\epsilon /n), and another algorithm over the more general product normal distributions that resists a smaller drift rate. The above translation result can be also interpreted as one on the robustness of the notion of evolvability itself under changes of definition. As a second result in that direction we show that every evolution algorithm can be converted to a quasi-monotonic one that can evolve from any starting point without the performance ever dipping significantly below that of the starting point. This permits the somewhat unnatural feature of arbitrary performance degradations to be removed from several known robustness translations.
Varun Kanade, Leslie G. Valiant and Jennifer Wortman Vaughan
null
1005.3566
null
null
Learning Kernel-Based Halfspaces with the Zero-One Loss
cs.LG
We describe and analyze a new algorithm for agnostically learning kernel-based halfspaces with respect to the \emph{zero-one} loss function. Unlike most previous formulations which rely on surrogate convex loss functions (e.g. hinge-loss in SVM and log-loss in logistic regression), we provide finite time/sample guarantees with respect to the more natural zero-one loss function. The proposed algorithm can learn kernel-based halfspaces in worst-case time $\poly(\exp(L\log(L/\epsilon)))$, for $\emph{any}$ distribution, where $L$ is a Lipschitz constant (which can be thought of as the reciprocal of the margin), and the learned classifier is worse than the optimal halfspace by at most $\epsilon$. We also prove a hardness result, showing that under a certain cryptographic assumption, no algorithm can learn kernel-based halfspaces in time polynomial in $L$.
Shai Shalev-Shwartz, Ohad Shamir and Karthik Sridharan
null
1005.3681
null
null
Distantly Labeling Data for Large Scale Cross-Document Coreference
cs.AI cs.IR cs.LG
Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.
Sameer Singh and Michael Wick and Andrew McCallum
null
1005.4298
null
null
Smoothing proximal gradient method for general structured sparse regression
stat.ML cs.LG math.OC stat.AP stat.CO
We study the problem of estimating high-dimensional regression models regularized by a structured sparsity-inducing penalty that encodes prior structural information on either the input or output variables. We consider two widely adopted types of penalties of this kind as motivating examples: (1) the general overlapping-group-lasso penalty, generalized from the group-lasso penalty; and (2) the graph-guided-fused-lasso penalty, generalized from the fused-lasso penalty. For both types of penalties, due to their nonseparability and nonsmoothness, developing an efficient optimization method remains a challenging problem. In this paper we propose a general optimization approach, the smoothing proximal gradient (SPG) method, which can solve structured sparse regression problems with any smooth convex loss under a wide spectrum of structured sparsity-inducing penalties. Our approach combines a smoothing technique with an effective proximal gradient method. It achieves a convergence rate significantly faster than the standard first-order methods, subgradient methods, and is much more scalable than the most widely used interior-point methods. The efficiency and scalability of our method are demonstrated on both simulation experiments and real genetic data sets.
Xi Chen, Qihang Lin, Seyoung Kim, Jaime G. Carbonell, Eric P. Xing
10.1214/11-AOAS514
1005.4717
null
null
On Recursive Edit Distance Kernels with Application to Time Series Classification
cs.LG cs.IR
This paper proposes some extensions to the work on kernels dedicated to string or time series global alignment based on the aggregation of scores obtained by local alignments. The extensions we propose allow to construct, from classical recursive definition of elastic distances, recursive edit distance (or time-warp) kernels that are positive definite if some sufficient conditions are satisfied. The sufficient conditions we end-up with are original and weaker than those proposed in earlier works, although a recursive regularizing term is required to get the proof of the positive definiteness as a direct consequence of the Haussler's convolution theorem. The classification experiment we conducted on three classical time warp distances (two of which being metrics), using Support Vector Machine classifier, leads to conclude that, when the pairwise distance matrix obtained from the training data is \textit{far} from definiteness, the positive definite recursive elastic kernels outperform in general the distance substituting kernels for the classical elastic distances we have tested.
Pierre-Fran\c{c}ois Marteau (IRISA), Sylvie Gibet (IRISA)
10.1109/TNNLS.2014.2333876
1005.5141
null
null
Wirtinger's Calculus in general Hilbert Spaces
cs.LG math.CV
The present report, has been inspired by the need of the author and its colleagues to understand the underlying theory of Wirtinger's Calculus and to further extend it to include the kernel case. The aim of the present manuscript is twofold: a) it endeavors to provide a more rigorous presentation of the related material, focusing on aspects that the author finds more insightful and b) it extends the notions of Wirtinger's calculus on general Hilbert spaces (such as Reproducing Hilbert Kernel Spaces).
P. Bouboulis
null
1005.5170
null
null
Ranked bandits in metric spaces: learning optimally diverse rankings over large document collections
cs.LG cs.DS
Most learning to rank research has assumed that the utility of different documents is independent, which results in learned ranking functions that return redundant results. The few approaches that avoid this have rather unsatisfyingly lacked theoretical foundations, or do not scale. We present a learning-to-rank formulation that optimizes the fraction of satisfied users, with several scalable algorithms that explicitly takes document similarity and ranking context into account. Our formulation is a non-trivial common generalization of two multi-armed bandit models from the literature: "ranked bandits" (Radlinski et al., ICML 2008) and "Lipschitz bandits" (Kleinberg et al., STOC 2008). We present theoretical justifications for this approach, as well as a near-optimal algorithm. Our evaluation adds optimizations that improve empirical performance, and shows that our algorithms learn orders of magnitude more quickly than previous approaches.
Aleksandrs Slivkins, Filip Radlinski and Sreenivas Gollapudi
null
1005.5197
null
null
Using Soft Constraints To Learn Semantic Models Of Descriptions Of Shapes
cs.CL cs.AI cs.HC cs.LG
The contribution of this paper is to provide a semantic model (using soft constraints) of the words used by web-users to describe objects in a language game; a game in which one user describes a selected object of those composing the scene, and another user has to guess which object has been described. The given description needs to be non ambiguous and accurate enough to allow other users to guess the described shape correctly. To build these semantic models the descriptions need to be analyzed to extract the syntax and words' classes used. We have modeled the meaning of these descriptions using soft constraints as a way for grounding the meaning. The descriptions generated by the system took into account the context of the object to avoid ambiguous descriptions, and allowed users to guess the described object correctly 72% of the times.
Sergio Guadarrama (1) and David P. Pancho (1) ((1) European Centre for Soft Computing)
null
1005.5253
null
null
Using a Kernel Adatron for Object Classification with RCS Data
cs.LG stat.ML
Rapid identification of object from radar cross section (RCS) signals is important for many space and military applications. This identification is a problem in pattern recognition which either neural networks or support vector machines should prove to be high-speed. Bayesian networks would also provide value but require significant preprocessing of the signals. In this paper, we describe the use of a support vector machine for object identification from synthesized RCS data. Our best results are from data fusion of X-band and S-band signals, where we obtained 99.4%, 95.3%, 100% and 95.6% correct identification for cylinders, frusta, spheres, and polygons, respectively. We also compare our results with a Bayesian approach and show that the SVM is three orders of magnitude faster, as measured by the number of floating point operations.
Marten F. Byl, James T. Demers, and Edward A. Rietman
null
1005.5337
null
null
On the clustering aspect of nonnegative matrix factorization
cs.LG
This paper provides a theoretical explanation on the clustering aspect of nonnegative matrix factorization (NMF). We prove that even without imposing orthogonality nor sparsity constraint on the basis and/or coefficient matrix, NMF still can give clustering results, thus providing a theoretical support for many works, e.g., Xu et al. [1] and Kim et al. [2], that show the superiority of the standard NMF as a clustering method.
Andri Mirzal and Masashi Furukawa
null
1005.5462
null
null
Empirical learning aided by weak domain knowledge in the form of feature importance
cs.LG cs.AI cs.NE
Standard hybrid learners that use domain knowledge require stronger knowledge that is hard and expensive to acquire. However, weaker domain knowledge can benefit from prior knowledge while being cost effective. Weak knowledge in the form of feature relative importance (FRI) is presented and explained. Feature relative importance is a real valued approximation of a feature's importance provided by experts. Advantage of using this knowledge is demonstrated by IANN, a modified multilayer neural network algorithm. IANN is a very simple modification of standard neural network algorithm but attains significant performance gains. Experimental results in the field of molecular biology show higher performance over other empirical learning algorithms including standard backpropagation and support vector machines. IANN performance is even comparable to a theory refinement system KBANN that uses stronger domain knowledge. This shows Feature relative importance can improve performance of existing empirical learning algorithms significantly with minimal effort.
Ridwan Al Iqbal
null
1005.5556
null
null
Multi-View Active Learning in the Non-Realizable Case
cs.LG
The sample complexity of active learning under the realizability assumption has been well-studied. The realizability assumption, however, rarely holds in practice. In this paper, we theoretically characterize the sample complexity of active learning in the non-realizable case under multi-view setting. We prove that, with unbounded Tsybakov noise, the sample complexity of multi-view active learning can be $\widetilde{O}(\log\frac{1}{\epsilon})$, contrasting to single-view setting where the polynomial improvement is the best possible achievement. We also prove that in general multi-view setting the sample complexity of active learning with unbounded Tsybakov noise is $\widetilde{O}(\frac{1}{\epsilon})$, where the order of $1/\epsilon$ is independent of the parameter in Tsybakov noise, contrasting to previous polynomial bounds where the order of $1/\epsilon$ is related to the parameter in Tsybakov noise.
Wei Wang, Zhi-Hua Zhou
null
1005.5581
null
null
On the Relation between Realizable and Nonrealizable Cases of the Sequence Prediction Problem
cs.LG cs.IT math.IT math.ST stat.TH
A sequence $x_1,\dots,x_n,\dots$ of discrete-valued observations is generated according to some unknown probabilistic law (measure) $\mu$. After observing each outcome, one is required to give conditional probabilities of the next observation. The realizable case is when the measure $\mu$ belongs to an arbitrary but known class $\mathcal C$ of process measures. The non-realizable case is when $\mu$ is completely arbitrary, but the prediction performance is measured with respect to a given set $\mathcal C$ of process measures. We are interested in the relations between these problems and between their solutions, as well as in characterizing the cases when a solution exists and finding these solutions. We show that if the quality of prediction is measured using the total variation distance, then these problems coincide, while if it is measured using the expected average KL divergence, then they are different. For some of the formalizations we also show that when a solution exists, it can be obtained as a Bayes mixture over a countable subset of $\mathcal C$. We also obtain several characterization of those sets $\mathcal C$ for which solutions to the considered problems exist. As an illustration to the general results obtained, we show that a solution to the non-realizable case of the sequence prediction problem exists for the set of all finite-memory processes, but does not exist for the set of all stationary processes. It should be emphasized that the framework is completely general: the processes measures considered are not required to be i.i.d., mixing, stationary, or to belong to any parametric family.
Daniil Ryabko (INRIA Lille)
null
1005.5603
null
null
Information theoretic model validation for clustering
cs.IT cs.LG math.IT stat.ML
Model selection in clustering requires (i) to specify a suitable clustering principle and (ii) to control the model order complexity by choosing an appropriate number of clusters depending on the noise level in the data. We advocate an information theoretic perspective where the uncertainty in the measurements quantizes the set of data partitionings and, thereby, induces uncertainty in the solution space of clusterings. A clustering model, which can tolerate a higher level of fluctuations in the measurements than alternative models, is considered to be superior provided that the clustering solution is equally informative. This tradeoff between \emph{informativeness} and \emph{robustness} is used as a model selection criterion. The requirement that data partitionings should generalize from one data set to an equally probable second data set gives rise to a new notion of structure induced information.
Joachim M. Buhmann
null
1006.0375
null
null
Prediction with Advice of Unknown Number of Experts
cs.LG
In the framework of prediction with expert advice, we consider a recently introduced kind of regret bounds: the bounds that depend on the effective instead of nominal number of experts. In contrast to the NormalHedge bound, which mainly depends on the effective number of experts and also weakly depends on the nominal one, we obtain a bound that does not contain the nominal number of experts at all. We use the defensive forecasting method and introduce an application of defensive forecasting to multivalued supermartingales.
Alexey Chernov and Vladimir Vovk
null
1006.0475
null
null
Predictive PAC learnability: a paradigm for learning from exchangeable input data
cs.LG
Exchangeable random variables form an important and well-studied generalization of i.i.d. variables, however simple examples show that no nontrivial concept or function classes are PAC learnable under general exchangeable data inputs $X_1,X_2,\ldots$. Inspired by the work of Berti and Rigo on a Glivenko--Cantelli theorem for exchangeable inputs, we propose a new paradigm, adequate for learning from exchangeable data: predictive PAC learnability. A learning rule $\mathcal L$ for a function class $\mathscr F$ is predictive PAC if for every $\e,\delta>0$ and each function $f\in {\mathscr F}$, whenever $\abs{\sigma}\geq s(\delta,\e)$, we have with confidence $1-\delta$ that the expected difference between $f(X_{n+1})$ and the image of $f\vert\sigma$ under $\mathcal L$ does not exceed $\e$ conditionally on $X_1,X_2,\ldots,X_n$. Thus, instead of learning the function $f$ as such, we are learning to a given accuracy $\e$ the predictive behaviour of $f$ at the future points $X_i(\omega)$, $i>n$ of the sample path. Using de Finetti's theorem, we show that if a universally separable function class $\mathscr F$ is distribution-free PAC learnable under i.i.d. inputs, then it is distribution-free predictive PAC learnable under exchangeable inputs, with a slightly worse sample complexity.
Vladimir Pestov
10.1109/GrC.2010.102
1006.1129
null
null
Online Learning via Sequential Complexities
cs.LG stat.ML
We consider the problem of sequential prediction and provide tools to study the minimax value of the associated game. Classical statistical learning theory provides several useful complexity measures to study learning with i.i.d. data. Our proposed sequential complexities can be seen as extensions of these measures to the sequential setting. The developed theory is shown to yield precise learning guarantees for the problem of sequential prediction. In particular, we show necessary and sufficient conditions for online learnability in the setting of supervised learning. Several examples show the utility of our framework: we can establish learnability without having to exhibit an explicit online learning algorithm.
Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari
null
1006.1138
null
null
Regression on fixed-rank positive semidefinite matrices: a Riemannian approach
cs.LG
The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixed-rank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks.
Gilles Meyer, Silvere Bonnabel, Rodolphe Sepulchre
null
1006.1288
null
null
Uncovering the Riffled Independence Structure of Rankings
cs.LG cs.AI stat.AP stat.ML
Representing distributions over permutations can be a daunting task due to the fact that the number of permutations of $n$ objects scales factorially in $n$. One recent way that has been used to reduce storage complexity has been to exploit probabilistic independence, but as we argue, full independence assumptions impose strong sparsity constraints on distributions and are unsuitable for modeling rankings. We identify a novel class of independence structures, called \emph{riffled independence}, encompassing a more expressive family of distributions while retaining many of the properties necessary for performing efficient inference and reducing sample complexity. In riffled independence, one draws two permutations independently, then performs the \emph{riffle shuffle}, common in card games, to combine the two permutations to form a single permutation. Within the context of ranking, riffled independence corresponds to ranking disjoint sets of objects independently, then interleaving those rankings. In this paper, we provide a formal introduction to riffled independence and present algorithms for using riffled independence within Fourier-theoretic frameworks which have been explored by a number of recent papers. Additionally, we propose an automated method for discovering sets of items which are riffle independent from a training set of rankings. We show that our clustering-like algorithms can be used to discover meaningful latent coalitions from real preference ranking datasets and to learn the structure of hierarchically decomposable models based on riffled independence.
Jonathan Huang and Carlos Guestrin
null
1006.1328
null
null
Calibration and Internal no-Regret with Partial Monitoring
cs.GT cs.LG stat.ML
Calibrated strategies can be obtained by performing strategies that have no internal regret in some auxiliary game. Such strategies can be constructed explicitly with the use of Blackwell's approachability theorem, in an other auxiliary game. We establish the converse: a strategy that approaches a convex $B$-set can be derived from the construction of a calibrated strategy. We develop these tools in the framework of a game with partial monitoring, where players do not observe the actions of their opponents but receive random signals, to define a notion of internal regret and construct strategies that have no such regret.
Vianney Perchet (EC)
null
1006.1746
null
null
Dyadic Prediction Using a Latent Feature Log-Linear Model
cs.LG
In dyadic prediction, labels must be predicted for pairs (dyads) whose members possess unique identifiers and, sometimes, additional features called side-information. Special cases of this problem include collaborative filtering and link prediction. We present the first model for dyadic prediction that satisfies several important desiderata: (i) labels may be ordinal or nominal, (ii) side-information can be easily exploited if present, (iii) with or without side-information, latent features are inferred for dyad members, (iv) it is resistant to sample-selection bias, (v) it can learn well-calibrated probabilities, and (vi) it can scale to very large datasets. To our knowledge, no existing method satisfies all the above criteria. In particular, many methods assume that the labels are ordinal and ignore side-information when it is present. Experimental results show that the new method is competitive with state-of-the-art methods for the special cases of collaborative filtering and link prediction, and that it makes accurate predictions on nominal data.
Aditya Krishna Menon and Charles Elkan
null
1006.2156
null
null
On the Achievability of Cram\'er-Rao Bound In Noisy Compressed Sensing
cs.IT cs.LG math.IT
Recently, it has been proved in Babadi et al. that in noisy compressed sensing, a joint typical estimator can asymptotically achieve the Cramer-Rao lower bound of the problem.To prove this result, this paper used a lemma,which is provided in Akcakaya et al,that comprises the main building block of the proof. This lemma is based on the assumption of Gaussianity of the measurement matrix and its randomness in the domain of noise. In this correspondence, we generalize the results obtained in Babadi et al by dropping the Gaussianity assumption on the measurement matrix. In fact, by considering the measurement matrix as a deterministic matrix in our analysis, we find a theorem similar to the main theorem of Babadi et al for a family of randomly generated (but deterministic in the noise domain) measurement matrices that satisfy a generalized condition known as The Concentration of Measures Inequality. By this, we finally show that under our generalized assumptions, the Cramer-Rao bound of the estimation is achievable by using the typical estimator introduced in Babadi et al.
Rad Niazadeh, Masoud Babaie-Zadeh and Christian Jutten
10.1109/TSP.2011.2171953
1006.2513
null
null
Agnostic Active Learning Without Constraints
cs.LG
We present and analyze an agnostic active learning algorithm that works without keeping a version space. This is unlike all previous approaches where a restricted set of candidate hypotheses is maintained throughout learning, and only hypotheses from this set are ever returned. By avoiding this version space approach, our algorithm sheds the computational burden and brittleness associated with maintaining version spaces, yet still allows for substantial improvements over supervised learning for classification.
Alina Beygelzimer, Daniel Hsu, John Langford, Tong Zhang
null
1006.2588
null
null
Outlier Detection Using Nonconvex Penalized Regression
stat.ME cs.LG stat.CO
This paper studies the outlier detection problem from the point of view of penalized regressions. Our regression model adds one mean shift parameter for each of the $n$ data points. We then apply a regularization favoring a sparse vector of mean shift parameters. The usual $L_1$ penalty yields a convex criterion, but we find that it fails to deliver a robust estimator. The $L_1$ penalty corresponds to soft thresholding. We introduce a thresholding (denoted by $\Theta$) based iterative procedure for outlier detection ($\Theta$-IPOD). A version based on hard thresholding correctly identifies outliers on some hard test problems. We find that $\Theta$-IPOD is much faster than iteratively reweighted least squares for large data because each iteration costs at most $O(np)$ (and sometimes much less) avoiding an $O(np^2)$ least squares estimate. We describe the connection between $\Theta$-IPOD and $M$-estimators. Our proposed method has one tuning parameter with which to both identify outliers and estimate regression coefficients. A data-dependent choice can be made based on BIC. The tuned $\Theta$-IPOD shows outstanding performance in identifying outliers in various situations in comparison to other existing approaches. This methodology extends to high-dimensional modeling with $p\gg n$, if both the coefficient vector and the outlier pattern are sparse.
Yiyuan She and Art B. Owen
null
1006.2592
null
null
Approximated Structured Prediction for Learning Large Scale Graphical Models
cs.LG cs.AI
This manuscripts contains the proofs for "A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction".
Tamir Hazan, Raquel Urtasun
null
1006.2899
null
null
Extension of Wirtinger's Calculus to Reproducing Kernel Hilbert Spaces and the Complex Kernel LMS
cs.LG
Over the last decade, kernel methods for nonlinear processing have successfully been used in the machine learning community. The primary mathematical tool employed in these methods is the notion of the Reproducing Kernel Hilbert Space. However, so far, the emphasis has been on batch techniques. It is only recently, that online techniques have been considered in the context of adaptive signal processing tasks. Moreover, these efforts have only been focussed on real valued data sequences. To the best of our knowledge, no adaptive kernel-based strategy has been developed, so far, for complex valued signals. Furthermore, although the real reproducing kernels are used in an increasing number of machine learning problems, complex kernels have not, yet, been used, in spite of their potential interest in applications that deal with complex signals, with Communications being a typical example. In this paper, we present a general framework to attack the problem of adaptive filtering of complex signals, using either real reproducing kernels, taking advantage of a technique called \textit{complexification} of real RKHSs, or complex reproducing kernels, highlighting the use of the complex gaussian kernel. In order to derive gradients of operators that need to be defined on the associated complex RKHSs, we employ the powerful tool of Wirtinger's Calculus, which has recently attracted attention in the signal processing community. To this end, in this paper, the notion of Wirtinger's calculus is extended, for the first time, to include complex RKHSs and use it to derive several realizations of the Complex Kernel Least-Mean-Square (CKLMS) algorithm. Experiments verify that the CKLMS offers significant performance improvements over several linear and nonlinear algorithms, when dealing with nonlinearities.
Pantelis Bouboulis and Sergios Theodoridis
10.1109/TSP.2010.2096420
1006.3033
null
null
Fictitious Play with Time-Invariant Frequency Update for Network Security
cs.GT cs.CR cs.LG
We study two-player security games which can be viewed as sequences of nonzero-sum matrix games played by an Attacker and a Defender. The evolution of the game is based on a stochastic fictitious play process, where players do not have access to each other's payoff matrix. Each has to observe the other's actions up to present and plays the action generated based on the best response to these observations. In a regular fictitious play process, each player makes a maximum likelihood estimate of her opponent's mixed strategy, which results in a time-varying update based on the previous estimate and current action. In this paper, we explore an alternative scheme for frequency update, whose mean dynamic is instead time-invariant. We examine convergence properties of the mean dynamic of the fictitious play process with such an update scheme, and establish local stability of the equilibrium point when both players are restricted to two actions. We also propose an adaptive algorithm based on this time-invariant frequency update.
Kien C. Nguyen, Tansu Alpcan, Tamer Ba\c{s}ar
10.1109/CCA.2010.5611248
1006.3417
null
null
Segmentation of Natural Images by Texture and Boundary Compression
cs.CV cs.IT cs.LG math.IT
We present a novel algorithm for segmentation of natural images that harnesses the principle of minimum description length (MDL). Our method is based on observations that a homogeneously textured region of a natural image can be well modeled by a Gaussian distribution and the region boundary can be effectively coded by an adaptive chain code. The optimal segmentation of an image is the one that gives the shortest coding length for encoding all textures and boundaries in the image, and is obtained via an agglomerative clustering process applied to a hierarchy of decreasing window sizes as multi-scale texture features. The optimal segmentation also provides an accurate estimate of the overall coding length and hence the true entropy of the image. We test our algorithm on the publicly available Berkeley Segmentation Dataset. It achieves state-of-the-art segmentation results compared to other existing methods.
Hossein Mobahi, Shankar R. Rao, Allen Y. Yang, Shankar S. Sastry and Yi Ma
null
1006.3679
null
null
Least Squares Superposition Codes of Moderate Dictionary Size, Reliable at Rates up to Capacity
cs.IT cs.LG math.IT math.ST stat.TH
For the additive white Gaussian noise channel with average codeword power constraint, new coding methods are devised in which the codewords are sparse superpositions, that is, linear combinations of subsets of vectors from a given design, with the possible messages indexed by the choice of subset. Decoding is by least squares, tailored to the assumed form of linear combination. Communication is shown to be reliable with error probability exponentially small for all rates up to the Shannon capacity.
Andrew R. Barron, Antony Joseph
null
1006.3780
null
null
Toward Fast Reliable Communication at Rates Near Capacity with Gaussian Noise
cs.IT cs.LG math.IT math.ST stat.TH
For the additive Gaussian noise channel with average codeword power constraint, sparse superposition codes and adaptive successive decoding is developed. Codewords are linear combinations of subsets of vectors, with the message indexed by the choice of subset. A feasible decoding algorithm is presented. Communication is reliable with error probability exponentially small for all rates below the Shannon capacity.
Andrew R Barron, Antony Joseph
null
1006.3870
null
null
Distributed Autonomous Online Learning: Regrets and Intrinsic Privacy-Preserving Properties
cs.LG cs.AI
Online learning has become increasingly popular on handling massive data. The sequential nature of online learning, however, requires a centralized learner to store data and update parameters. In this paper, we consider online learning with {\em distributed} data sources. The autonomous learners update local parameters based on local data sources and periodically exchange information with a small subset of neighbors in a communication network. We derive the regret bound for strongly convex functions that generalizes the work by Ram et al. (2010) for convex functions. Most importantly, we show that our algorithm has \emph{intrinsic} privacy-preserving properties, and we prove the sufficient and necessary conditions for privacy preservation in the network. These conditions imply that for networks with greater-than-one connectivity, a malicious learner cannot reconstruct the subgradients (and sensitive raw data) of other learners, which makes our algorithm appealing in privacy sensitive applications.
Feng Yan, Shreyas Sundaram, S. V. N. Vishwanathan, Yuan Qi
null
1006.4039
null
null
On the Implementation of the Probabilistic Logic Programming Language ProbLog
cs.PL cs.LG cs.LO
The past few years have seen a surge of interest in the field of probabilistic logic learning and statistical relational learning. In this endeavor, many probabilistic logics have been developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of large biological networks. In ProbLog, facts can be labeled with probabilities. These facts are treated as mutually independent random variables that indicate whether these facts belong to a randomly sampled program. Different kinds of queries can be posed to ProbLog programs. We introduce algorithms that allow the efficient execution of these queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their performance in the context of large networks of biological entities.
Angelika Kimmig, Bart Demoen, Luc De Raedt, V\'itor Santos Costa and Ricardo Rocha
10.1017/S1471068410000566
1006.4442
null
null
A Novel Rough Set Reduct Algorithm for Medical Domain Based on Bee Colony Optimization
cs.LG cs.AI cs.NE
Feature selection refers to the problem of selecting relevant features which produce the most predictive outcome. In particular, feature selection task is involved in datasets containing huge number of features. Rough set theory has been one of the most successful methods used for feature selection. However, this method is still not able to find optimal subsets. This paper proposes a new feature selection method based on Rough set theory hybrid with Bee Colony Optimization (BCO) in an attempt to combat this. This proposed work is applied in the medical domain to find the minimal reducts and experimentally compared with the Quick Reduct, Entropy Based Reduct, and other hybrid Rough Set methods such as Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO).
N. Suguna and K. Thanushkodi
null
1006.4540
null
null
MINLIP for the Identification of Monotone Wiener Systems
cs.LG
This paper studies the MINLIP estimator for the identification of Wiener systems consisting of a sequence of a linear FIR dynamical model, and a monotonically increasing (or decreasing) static function. Given $T$ observations, this algorithm boils down to solving a convex quadratic program with $O(T)$ variables and inequality constraints, implementing an inference technique which is based entirely on model complexity control. The resulting estimates of the linear submodel are found to be almost consistent when no noise is present in the data, under a condition of smoothness of the true nonlinearity and local Persistency of Excitation (local PE) of the data. This result is novel as it does not rely on classical tools as a 'linearization' using a Taylor decomposition, nor exploits stochastic properties of the data. It is indicated how to extend the method to cope with noisy data, and empirical evidence contrasts performance of the estimator against other recently proposed techniques.
Kristiaan Pelckmans
null
1006.4832
null
null
GraphLab: A New Framework for Parallel Machine Learning
cs.LG cs.DC
Designing and implementing efficient, provably correct parallel machine learning (ML) algorithms is challenging. Existing high-level parallel abstractions like MapReduce are insufficiently expressive while low-level tools like MPI and Pthreads leave ML experts repeatedly solving the same design challenges. By targeting common patterns in ML, we developed GraphLab, which improves upon abstractions like MapReduce by compactly expressing asynchronous iterative algorithms with sparse computational dependencies while ensuring data consistency and achieving a high degree of parallel performance. We demonstrate the expressiveness of the GraphLab framework by designing and implementing parallel versions of belief propagation, Gibbs sampling, Co-EM, Lasso and Compressed Sensing. We show that using GraphLab we can achieve excellent parallel performance on large scale real-world problems.
Yucheng Low and Joseph Gonzalez and Aapo Kyrola and Danny Bickson and Carlos Guestrin and Joseph M. Hellerstein
null
1006.4990
null
null
Fast ABC-Boost for Multi-Class Classification
cs.LG stat.ML
Abc-boost is a new line of boosting algorithms for multi-class classification, by utilizing the commonly used sum-to-zero constraint. To implement abc-boost, a base class must be identified at each boosting step. Prior studies used a very expensive procedure based on exhaustive search for determining the base class at each boosting step. Good testing performances of abc-boost (implemented as abc-mart and abc-logitboost) on a variety of datasets were reported. For large datasets, however, the exhaustive search strategy adopted in prior abc-boost algorithms can be too prohibitive. To overcome this serious limitation, this paper suggests a heuristic by introducing Gaps when computing the base class during training. That is, we update the choice of the base class only for every $G$ boosting steps (i.e., G=1 in prior studies). We test this idea on large datasets (Covertype and Poker) as well as datasets of moderate sizes. Our preliminary results are very encouraging. On the large datasets, even with G=100 (or larger), there is essentially no loss of test accuracy. On the moderate datasets, no obvious loss of test accuracy is observed when G<= 20~50. Therefore, aided by this heuristic, it is promising that abc-boost will be a practical tool for accurate multi-class classification.
Ping Li
null
1006.5051
null
null
Learning sparse gradients for variable selection and dimension reduction
stat.ML cs.LG stat.ME
Variable selection and dimension reduction are two commonly adopted approaches for high-dimensional data analysis, but have traditionally been treated separately. Here we propose an integrated approach, called sparse gradient learning (SGL), for variable selection and dimension reduction via learning the gradients of the prediction function directly from samples. By imposing a sparsity constraint on the gradients, variable selection is achieved by selecting variables corresponding to non-zero partial derivatives, and effective dimensions are extracted based on the eigenvectors of the derived sparse empirical gradient covariance matrix. An error analysis is given for the convergence of the estimated gradients to the true ones in both the Euclidean and the manifold setting. We also develop an efficient forward-backward splitting algorithm to solve the SGL problem, making the framework practically scalable for medium or large datasets. The utility of SGL for variable selection and feature extraction is explicitly given and illustrated on artificial data as well as real-world examples. The main advantages of our method include variable selection for both linear and nonlinear predictions, effective dimension reduction with sparse loadings, and an efficient algorithm for large p, small n problems.
Gui-Bo Ye and Xiaohui Xie
null
1006.5060
null
null
Split Bregman method for large scale fused Lasso
stat.CO cs.LG math.OC
rdering of regression or classification coefficients occurs in many real-world applications. Fused Lasso exploits this ordering by explicitly regularizing the differences between neighboring coefficients through an $\ell_1$ norm regularizer. However, due to nonseparability and nonsmoothness of the regularization term, solving the fused Lasso problem is computationally demanding. Existing solvers can only deal with problems of small or medium size, or a special case of the fused Lasso problem in which the predictor matrix is identity matrix. In this paper, we propose an iterative algorithm based on split Bregman method to solve a class of large-scale fused Lasso problems, including a generalized fused Lasso and a fused Lasso support vector classifier. We derive our algorithm using augmented Lagrangian method and prove its convergence properties. The performance of our method is tested on both artificial data and real-world applications including proteomic data from mass spectrometry and genomic data from array CGH. We demonstrate that our method is many times faster than the existing solvers, and show that it is especially efficient for large p, small n problems.
Gui-Bo Ye and Xiaohui Xie
null
1006.5086
null
null