_id
stringlengths 24
24
| id
stringlengths 5
121
| author
stringlengths 2
42
| cardData
stringlengths 2
1.07M
β | disabled
bool 2
classes | gated
null | lastModified
timestamp[ns] | likes
int64 0
6.71k
| trendingScore
float64 0
123
| private
bool 1
class | sha
stringlengths 40
40
| description
stringlengths 0
6.67k
β | downloads
int64 0
2.98M
| tags
sequencelengths 1
7.92k
| createdAt
timestamp[ns] | key
stringclasses 1
value | paperswithcode_id
stringclasses 642
values | citation
stringlengths 0
10.7k
β |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6763e94724dee5a47c7c77f7 | agibot-world/AgiBotWorld-Alpha | agibot-world | {"pretty_name": "AgiBot World", "size_categories": ["n>1T"], "task_categories": ["other"], "language": ["en"], "tags": ["real-world", "dual-arm", "Robotics manipulation"], "extra_gated_prompt": "### AgiBot World COMMUNITY LICENSE AGREEMENT\nAgiBot World Alpha Release Date: December 30, 2024 All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/).", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Email": "text", "Country": "country", "Affiliation": "text", "Phone": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "Research interest": "text", "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the AgiBot Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the AgiBot Privacy Policy.", "extra_gated_button_content": "Submit"} | false | null | 2025-01-03T06:51:02 | 123 | 123 | false | 958989ee5a97e932bdb4bb64ca5d4610b1838293 |
Key Features π
1 million+ trajectories from 100 robots.
100+ real-world scenarios across 5 target domains.
Cutting-edge hardware: visual tactile sensors / 6-DoF dexterous hand / mobile dual-arm robots
Tasks involving:
Contact-rich manipulation
Long-horizon planning
Multi-robot collaboration
Your browser does not support the video tag.
Your browser does not support the video tag.β¦ See the full description on the dataset page: https://huggingface.co/datasets/agibot-world/AgiBotWorld-Alpha. | 2,291 | [
"task_categories:other",
"language:en",
"size_categories:10M<n<100M",
"format:webdataset",
"modality:text",
"library:datasets",
"library:webdataset",
"library:mlcroissant",
"region:us",
"real-world",
"dual-arm",
"Robotics manipulation"
] | 2024-12-19T09:37:11 | null | null |
|
63990f21cc50af73d29ecfa3 | fka/awesome-chatgpt-prompts | fka | {"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]} | false | null | 2024-09-03T21:28:41 | 6,706 | 69 | false | 459a66186f8f83020117b8acc5ff5af69fc95b45 | π§ Awesome ChatGPT Prompts [CSV dataset]
This is a Dataset Repository of Awesome ChatGPT Prompts
View All Prompts on GitHub
License
CC-0
| 5,845 | [
"task_categories:question-answering",
"license:cc0-1.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"ChatGPT"
] | 2022-12-13T23:47:45 | null | null |
|
6758176e04e2f15d7bfacd54 | PowerInfer/QWQ-LONGCOT-500K | PowerInfer | {"license": "apache-2.0", "language": ["en"]} | false | null | 2024-12-26T10:19:19 | 53 | 52 | false | 10a787d967281599e9be6761717147817c018424 | This repository contains approximately 500,000 instances of responses generated using QwQ-32B-Preview language model. The dataset combines prompts from multiple high-quality sources to create diverse and comprehensive training data.
The dataset is available under the Apache 2.0 license.
Over 75% of the responses exceed 8,000 tokens in length. The majority of prompts were carefully created using persona-based methods to create challenging instructions.
Bias, Risks, and Limitations⦠See the full description on the dataset page: https://huggingface.co/datasets/PowerInfer/QWQ-LONGCOT-500K. | 208 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-12-10T10:26:54 | null | null |
|
673e9e53cdad8a9744b0bf1b | O1-OPEN/OpenO1-SFT | O1-OPEN | {"license": "apache-2.0", "task_categories": ["question-answering"], "language": ["en", "zh"], "size_categories": ["10K<n<100K"]} | false | null | 2024-12-17T02:30:09 | 308 | 37 | false | 63112de109aa755e9cdfad63a13f08a92dd7df36 |
SFT Data for CoT Activation
πππThis repository contains the dataset used for fine-tuning a language model using SFT for Chain-of-Thought Activation.
πππThe dataset is designed to enhance the model's ability to generate coherent and logical reasoning sequences.
βββBy using this dataset, the model can learn to produce detailed and structured reasoning steps, enhancing its performance on complex reasoning tasks.
Statistics
1οΈβ£Total Records: 77,685β¦ See the full description on the dataset page: https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT. | 2,431 | [
"task_categories:question-answering",
"language:en",
"language:zh",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-11-21T02:43:31 | null | null |
|
67449661149efb6edaa63b98 | HuggingFaceTB/finemath | HuggingFaceTB | {"license": "odc-by", "dataset_info": [{"config_name": "finemath-3plus", "features": [{"name": "url", "dtype": "string"}, {"name": "fetch_time", "dtype": "int64"}, {"name": "content_mime_type", "dtype": "string"}, {"name": "warc_filename", "dtype": "string"}, {"name": "warc_record_offset", "dtype": "int32"}, {"name": "warc_record_length", "dtype": "int32"}, {"name": "text", "dtype": "string"}, {"name": "token_count", "dtype": "int32"}, {"name": "char_count", "dtype": "int32"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "crawl", "dtype": "string"}, {"name": "snapshot_type", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 137764105388.93857, "num_examples": 21405610}], "download_size": 65039196945, "dataset_size": 137764105388.93857}, {"config_name": "finemath-4plus", "features": [{"name": "url", "dtype": "string"}, {"name": "fetch_time", "dtype": "int64"}, {"name": "content_mime_type", "dtype": "string"}, {"name": "warc_filename", "dtype": "string"}, {"name": "warc_record_offset", "dtype": "int32"}, {"name": "warc_record_length", "dtype": "int32"}, {"name": "text", "dtype": "string"}, {"name": "token_count", "dtype": "int32"}, {"name": "char_count", "dtype": "int32"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "crawl", "dtype": "string"}, {"name": "snapshot_type", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 39101488149.09091, "num_examples": 6699493}], "download_size": 18365184633, "dataset_size": 39101488149.09091}, {"config_name": "infiwebmath-3plus", "features": [{"name": "url", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "token_count", "dtype": "int64"}, {"name": "char_count", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 96485696853.10182, "num_examples": 13882669}], "download_size": 46808660851, "dataset_size": 96485696853.10182}, {"config_name": "infiwebmath-4plus", "features": [{"name": "url", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "token_count", "dtype": "int64"}, {"name": "char_count", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 40002719500.1551, "num_examples": 6296212}], "download_size": 19234328998, "dataset_size": 40002719500.1551}], "configs": [{"config_name": "finemath-3plus", "data_files": [{"split": "train", "path": "finemath-3plus/train-*"}]}, {"config_name": "finemath-4plus", "data_files": [{"split": "train", "path": "finemath-4plus/train-*"}]}, {"config_name": "infiwebmath-3plus", "data_files": [{"split": "train", "path": "infiwebmath-3plus/train-*"}]}, {"config_name": "infiwebmath-4plus", "data_files": [{"split": "train", "path": "infiwebmath-4plus/train-*"}]}]} | false | null | 2024-12-23T11:19:16 | 218 | 36 | false | 8f233cf84cff0b817b3ffb26d5be7370990dd557 |
π FineMath
What is it?
π FineMath consists of 34B tokens (FineMath-3+) and 54B tokens (FineMath-3+ with InfiMM-WebMath-3+) of mathematical educational content filtered from CommonCrawl. To curate this dataset, we trained a mathematical content classifier using annotations generated by LLama-3.1-70B-Instruct. We used the classifier to retain only the most educational mathematics content, focusing on clear explanations and step-by-step problem solving rather thanβ¦ See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/finemath. | 28,245 | [
"license:odc-by",
"size_categories:10M<n<100M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"doi:10.57967/hf/3847",
"region:us"
] | 2024-11-25T15:23:13 | null | null |
|
66cbf7ef92e9f5b19fcd65aa | cfahlgren1/react-code-instructions | cfahlgren1 | {"license": "mit", "pretty_name": "React Code Instructions"} | false | null | 2025-01-04T00:28:09 | 40 | 31 | false | e8b8355ce7be41a3e1b0405be2f11934f6d5880c |
React Code Instructions
Dataset of Claude Artifact esque React Apps generated by Llama 3.1 70B, Llama 3.1 405B, and Deepseek Chat V3.
Examples
Virtual Fitness Trainer Website
LinkedIn Clone
iPhone Calculator
Chipotle Waitlist
Apple Store
| 187 | [
"license:mit",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"region:us"
] | 2024-08-26T03:35:11 | null | null |
|
66a6da71f0dc7c8df2e0f979 | OpenLeecher/lmsys_chat_1m_clean | OpenLeecher | {"language": ["en"], "size_categories": ["100K<n<1M"], "pretty_name": "Cleaned LMSYS dataset", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "category", "dtype": "string"}, {"name": "grounded", "dtype": "bool"}, {"name": "deepseek_response", "struct": [{"name": "moralization", "dtype": "int64"}, {"name": "reward", "dtype": "float64"}, {"name": "value", "dtype": "string"}]}, {"name": "phi-3-mini_response", "struct": [{"name": "moralization", "dtype": "int64"}, {"name": "reward", "dtype": "float64"}, {"name": "value", "dtype": "string"}]}, {"name": "flaw", "dtype": "string"}, {"name": "agreement", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 1673196622, "num_examples": 273402}], "download_size": 906472159, "dataset_size": 1673196622}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | false | null | 2024-12-31T22:35:13 | 30 | 30 | false | e9f2f6838a2dbba87c216bb6bc406e8d7ce0f389 |
Cleaning and Categorizing
A few weeks ago, I had the itch to do some data crunching, so I began this project - to clean and classify lmsys-chat-1m. The process was somewhat long and tedious, but here is the quick overview:
1. Removing Pure Duplicate Instructions
The first step was to eliminate pure duplicate instructions. This involved:
Removing whitespace and punctuation.
Ensuring that if two instructions matched after that, only one was retained.
This step⦠See the full description on the dataset page: https://huggingface.co/datasets/OpenLeecher/lmsys_chat_1m_clean. | 248 | [
"language:en",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-07-28T23:55:29 | null | null |
|
676f70846bf205795346d2be | FreedomIntelligence/medical-o1-reasoning-SFT | FreedomIntelligence | {"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en"], "tags": ["medical", "biology"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "medical_o1_sft.json"}]}]} | false | null | 2024-12-30T02:55:58 | 26 | 26 | false | 04c3d3370e6dc73f7773ddf373d1ac86596dded5 |
Introduction
This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o, which searches for solutions to verifiable medical problems and validates them through a medical verifier.
For details, see our paper and GitHub repository.
Citation
If you find our data useful, please consider citing our work!
@misc{chen2024huatuogpto1medicalcomplexreasoning,
title={HuatuoGPT-o1β¦ See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT. | 149 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2412.18925",
"region:us",
"medical",
"biology"
] | 2024-12-28T03:29:08 | null | null |
|
625552d2b339bb03abe3432d | openai/gsm8k | openai | {"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]} | false | null | 2024-01-04T12:05:15 | 478 | 17 | false | e53f048856ff4f594e959d75785d2c2d37b678ee |
Dataset Card for GSM8K
Dataset Summary
GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning.
These problems take between 2 and 8 steps to solve.
Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ β ΓΓ·) toβ¦ See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k. | 171,913 | [
"task_categories:text2text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"source_datasets:original",
"language:en",
"license:mit",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2110.14168",
"region:us",
"math-word-problems"
] | 2022-04-12T10:22:10 | gsm8k | null |
|
66212f29fb07c3e05ad0432e | HuggingFaceFW/fineweb | HuggingFaceFW | {"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]} | false | null | 2025-01-03T11:58:46 | 1,800 | 17 | false | e31fdfd3918d4b48e837d69d274e624a067d7091 |
π· FineWeb
15 trillion tokens of the finest data the π web has to offer
What is it?
The π· FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the π datatrove library, our large scale data processing library.
π· FineWeb was originally meant to be a fully open replication of π¦
RefinedWeb, with a release of the full⦠See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb. | 198,598 | [
"task_categories:text-generation",
"language:en",
"license:odc-by",
"size_categories:n>1T",
"arxiv:2306.01116",
"arxiv:2109.07445",
"arxiv:2406.17557",
"doi:10.57967/hf/2493",
"region:us"
] | 2024-04-18T14:33:13 | null | null |
|
67734d5c7ec2413faa8d3c85 | PowerInfer/LONGCOT-Refine-500K | PowerInfer | {"language": ["en"], "license": "apache-2.0"} | false | null | 2025-01-02T06:10:43 | 17 | 17 | false | 88bf8410db01197006e572a46c88311720a23577 | This repository contains approximately 500,000 instances of responses generated using Qwen2.5-72B-Instruct. The dataset combines prompts from multiple high-quality sources to create diverse and comprehensive training data.
The dataset is available under the Apache 2.0 license.
Bias, Risks, and Limitations
This dataset is mainly in English.
The dataset inherits the biases, errors, and omissions known to exist in data used for seed sources and models used for data generation.β¦ See the full description on the dataset page: https://huggingface.co/datasets/PowerInfer/LONGCOT-Refine-500K. | 41 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-12-31T01:48:12 | null | null |
|
67514cb8ff3dfacd1b313a33 | amphora/QwQ-LongCoT-130K | amphora | {"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "qwq", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 969051509, "num_examples": 133102}], "download_size": 420996585, "dataset_size": 969051509}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"]} | false | null | 2024-12-22T15:51:30 | 127 | 16 | false | cb5624e9a538259c5f5ed9d5869f7a2565606e38 | Also have a look on the second version here => QwQ-LongCoT-2
Figure 1: Just a cute picture generate with [Flux](https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design)
Today, Iβm excited to release QwQ-LongCoT-130K, a SFT dataset designed for training O1-like large language models (LLMs). This dataset includes about 130k instances, each with responses generated using QwQ-32B-Preview. The dataset is available under the Apache 2.0 license, so feel free to use it as you like.β¦ See the full description on the dataset page: https://huggingface.co/datasets/amphora/QwQ-LongCoT-130K. | 2,225 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-12-05T06:48:24 | null | null |
|
6765c1e881a1f37bc67ec56d | OpenGVLab/MMPR-v1.1 | OpenGVLab | {"license": "mit", "task_categories": ["visual-question-answering"], "language": ["en"], "pretty_name": "MMPR", "dataset_info": {"features": [{"name": "image", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}]}, "size_categories": ["1M<n<10M"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "annotations.zip"}]}]} | false | null | 2024-12-21T15:17:06 | 32 | 15 | false | f4f3c430f6b37a1d8406d08336a4d9bcf64ace1a |
MMPR-v1.1
[π GitHub] [π Blog] [π Paper] [π Documents]
This is a newer version of MMPR, which includes additional data sources to enhance the data diversity and improves the performance of InternVL2.5 by an average of 2 points across all scales on the OpenCompass leaderboard.
To unzip the archive of images, please first run cat images.zip_* > images.zip and then run unzip images.zip.
Introduction
MMPR is a large-scale and high-quality multimodal reasoning⦠See the full description on the dataset page: https://huggingface.co/datasets/OpenGVLab/MMPR-v1.1. | 474 | [
"task_categories:visual-question-answering",
"language:en",
"license:mit",
"size_categories:1M<n<10M",
"arxiv:2411.10442",
"arxiv:2412.05271",
"arxiv:2404.16821",
"arxiv:2312.14238",
"region:us"
] | 2024-12-20T19:13:44 | null | null |
End of preview. Expand
in Dataset Viewer.
- Downloads last month
- 1,418
Data Sourcing report
powered
by
Spawning.aiNo elements in this dataset have been identified as either opted-out, or opted-in, by their creator.