full_name
stringlengths
3
121
state
stringlengths
7
9.32k
tactic
stringlengths
3
5.35k
target_state
stringlengths
7
19k
url
stringclasses
1 value
commit
stringclasses
1 value
file_path
stringlengths
21
79
tendsto_Ioo_atBot
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Ioo a b) ⊢ Tendsto f l atBot ↔ Tendsto (fun x => ↑(f x)) l (𝓝[>] a)
rw [← <a>comap_coe_Ioo_nhdsWithin_Ioi</a>, <a>Filter.tendsto_comap_iff</a>]
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Ioo a b) ⊢ Tendsto (Subtype.val ∘ f) l (𝓝[>] a) ↔ Tendsto (fun x => ↑(f x)) l (𝓝[>] a)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Order/DenselyOrdered.lean
tendsto_Ioo_atBot
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderTopology α inst✝ : DenselyOrdered α a b : α s : Set α l : Filter β f✝ : α → β f : β → ↑(Ioo a b) ⊢ Tendsto (Subtype.val ∘ f) l (𝓝[>] a) ↔ Tendsto (fun x => ↑(f x)) l (𝓝[>] a)
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Order/DenselyOrdered.lean
LieModule.toEnd_lie
R : Type u L : Type v M : Type w inst✝⁶ : CommRing R inst✝⁵ : LieRing L inst✝⁴ : LieAlgebra R L inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : LieRingModule L M inst✝ : LieModule R L M x y : L z : M ⊢ (φ x) ⁅y, z⁆ = ⁅((ad R L) x) y, z⁆ + ⁅y, (φ x) z⁆
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/OfAssociative.lean
Set.iUnion_univ_pi
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 π : α → Type u_11 ι : α → Type u_12 t : (a : α) → ι a → Set (π a) ⊢ (⋃ x, univ.pi fun a => t a (x a)) = univ.pi fun a => ⋃ j, t a j
ext
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 π : α → Type u_11 ι : α → Type u_12 t : (a : α) → ι a → Set (π a) x✝ : (i : α) → π i ⊢ (x✝ ∈ ⋃ x, univ.pi fun a => t a (x a)) ↔ x✝ ∈ univ.pi fun a => ⋃ j, t a j
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Lattice.lean
Set.iUnion_univ_pi
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 π : α → Type u_11 ι : α → Type u_12 t : (a : α) → ι a → Set (π a) x✝ : (i : α) → π i ⊢ (x✝ ∈ ⋃ x, univ.pi fun a => t a (x a)) ↔ x✝ ∈ univ.pi fun a => ⋃ j, t a j
simp [<a>Classical.skolem</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Lattice.lean
spectrum.units_smul_resolvent_self
R : Type u A : Type v inst✝² : CommSemiring R inst✝¹ : Ring A inst✝ : Algebra R A r : Rˣ a : A ⊢ r • resolvent a ↑r = resolvent (r⁻¹ • a) 1
simpa only [<a>Units.smul_def</a>, <a>Algebra.id.smul_eq_mul</a>, <a>Units.inv_mul</a>] using @<a>spectrum.units_smul_resolvent</a> _ _ _ _ _ r r a
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Algebra/Spectrum.lean
Int.gcd_a_modEq
m n a✝ b✝ c d : ℤ a b : ℕ ⊢ ↑a * a.gcdA b ≡ ↑(a.gcd b) [ZMOD ↑b]
rw [← <a>add_zero</a> ((a : ℤ) * _), <a>Nat.gcd_eq_gcd_ab</a>]
m n a✝ b✝ c d : ℤ a b : ℕ ⊢ ↑a * a.gcdA b + 0 ≡ ↑a * a.gcdA b + ↑b * a.gcdB b [ZMOD ↑b]
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Int/ModEq.lean
Int.gcd_a_modEq
m n a✝ b✝ c d : ℤ a b : ℕ ⊢ ↑a * a.gcdA b + 0 ≡ ↑a * a.gcdA b + ↑b * a.gcdB b [ZMOD ↑b]
exact (<a>dvd_mul_right</a> _ _).zero_modEq_int.add_left _
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Int/ModEq.lean
Function.Semiconj.bijOn_range
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 π : α → Type u_5 fa : α → α fb : β → β f : α → β g : β → γ s t : Set α h : Semiconj f fa fb ha : Bijective fa hf : Injective f ⊢ BijOn fb (range f) (range f)
rw [← <a>Set.image_univ</a>]
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 π : α → Type u_5 fa : α → α fb : β → β f : α → β g : β → γ s t : Set α h : Semiconj f fa fb ha : Bijective fa hf : Injective f ⊢ BijOn fb (f '' univ) (f '' univ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Function.lean
Function.Semiconj.bijOn_range
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 π : α → Type u_5 fa : α → α fb : β → β f : α → β g : β → γ s t : Set α h : Semiconj f fa fb ha : Bijective fa hf : Injective f ⊢ BijOn fb (f '' univ) (f '' univ)
exact h.bijOn_image (<a>Set.bijective_iff_bijOn_univ</a>.1 ha) hf.injOn
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Function.lean
Matroid.emptyOn_dual_eq
α : Type u_1 M : Matroid α E B I X R J : Set α ⊢ (emptyOn α)✶ = emptyOn α
rw [← <a>Matroid.ground_eq_empty_iff</a>]
α : Type u_1 M : Matroid α E B I X R J : Set α ⊢ (emptyOn α)✶.E = ∅
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Matroid/Constructions.lean
Matroid.emptyOn_dual_eq
α : Type u_1 M : Matroid α E B I X R J : Set α ⊢ (emptyOn α)✶.E = ∅
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Matroid/Constructions.lean
Subgroup.fg_iff
M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G x✝ : ∃ S, closure S = P ∧ S.Finite S : Set G hS : closure S = P hf : S.Finite ⊢ closure ↑hf.toFinset = P
simp [hS]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/GroupTheory/Finiteness.lean
IsFractional.sup
R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) b : P hb : b ∈ I ⊔ J ⊢ IsInteger R ((aI * aJ) • b)
rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩
case intro.intro.intro.intro R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R ((aI * aJ) • (bI + bJ))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/FractionalIdeal/Basic.lean
IsFractional.sup
case intro.intro.intro.intro R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R ((aI * aJ) • (bI + bJ))
rw [<a>smul_add</a>]
case intro.intro.intro.intro R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R ((aI * aJ) • bI + (aI * aJ) • bJ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/FractionalIdeal/Basic.lean
IsFractional.sup
case intro.intro.intro.intro R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R ((aI * aJ) • bI + (aI * aJ) • bJ)
apply <a>IsLocalization.isInteger_add</a>
case intro.intro.intro.intro.ha R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R ((aI * aJ) • bI) case intro.intro.intro.intro.hb R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R ((aI * aJ) • bJ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/FractionalIdeal/Basic.lean
IsFractional.sup
case intro.intro.intro.intro.ha R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R ((aI * aJ) • bI)
rw [<a>MulAction.mul_smul</a>, <a>SMulCommClass.smul_comm</a>]
case intro.intro.intro.intro.ha R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R (aJ • aI • bI)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/FractionalIdeal/Basic.lean
IsFractional.sup
case intro.intro.intro.intro.ha R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R (aJ • aI • bI)
exact <a>IsLocalization.isInteger_smul</a> (hI bI hbI)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/FractionalIdeal/Basic.lean
IsFractional.sup
case intro.intro.intro.intro.hb R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R ((aI * aJ) • bJ)
rw [<a>MulAction.mul_smul</a>]
case intro.intro.intro.intro.hb R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R (aI • aJ • bJ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/FractionalIdeal/Basic.lean
IsFractional.sup
case intro.intro.intro.intro.hb R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P loc : IsLocalization S P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) bI : P hbI : bI ∈ I bJ : P hbJ : bJ ∈ J hb : bI + bJ ∈ I ⊔ J ⊢ IsInteger R (aI • aJ • bJ)
exact <a>IsLocalization.isInteger_smul</a> (hJ bJ hbJ)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/FractionalIdeal/Basic.lean
TensorProduct.forall_vanishesTrivially_iff_forall_rTensor_injective
R : Type u inst✝⁵ : CommRing R M : Type u inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u inst✝² : AddCommGroup N inst✝¹ : Module R N ι : Type u inst✝ : Fintype ι m : ι → M n : ι → N ⊢ (∀ {ι : Type u} [inst : Fintype ι] {m : ι → M} {n : ι → N}, ∑ i : ι, m i ⊗ₜ[R] n i = 0 → VanishesTrivially R m n) ↔ ∀ (M' : Submodule R M), Injective ⇑(rTensor N M'.subtype)
constructor
case mp R : Type u inst✝⁵ : CommRing R M : Type u inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u inst✝² : AddCommGroup N inst✝¹ : Module R N ι : Type u inst✝ : Fintype ι m : ι → M n : ι → N ⊢ (∀ {ι : Type u} [inst : Fintype ι] {m : ι → M} {n : ι → N}, ∑ i : ι, m i ⊗ₜ[R] n i = 0 → VanishesTrivially R m n) → ∀ (M' : Submodule R M), Injective ⇑(rTensor N M'.subtype) case mpr R : Type u inst✝⁵ : CommRing R M : Type u inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u inst✝² : AddCommGroup N inst✝¹ : Module R N ι : Type u inst✝ : Fintype ι m : ι → M n : ι → N ⊢ (∀ (M' : Submodule R M), Injective ⇑(rTensor N M'.subtype)) → ∀ {ι : Type u} [inst : Fintype ι] {m : ι → M} {n : ι → N}, ∑ i : ι, m i ⊗ₜ[R] n i = 0 → VanishesTrivially R m n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/TensorProduct/Vanishing.lean
TensorProduct.forall_vanishesTrivially_iff_forall_rTensor_injective
case mp R : Type u inst✝⁵ : CommRing R M : Type u inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u inst✝² : AddCommGroup N inst✝¹ : Module R N ι : Type u inst✝ : Fintype ι m : ι → M n : ι → N ⊢ (∀ {ι : Type u} [inst : Fintype ι] {m : ι → M} {n : ι → N}, ∑ i : ι, m i ⊗ₜ[R] n i = 0 → VanishesTrivially R m n) → ∀ (M' : Submodule R M), Injective ⇑(rTensor N M'.subtype)
intro h
case mp R : Type u inst✝⁵ : CommRing R M : Type u inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u inst✝² : AddCommGroup N inst✝¹ : Module R N ι : Type u inst✝ : Fintype ι m : ι → M n : ι → N h : ∀ {ι : Type u} [inst : Fintype ι] {m : ι → M} {n : ι → N}, ∑ i : ι, m i ⊗ₜ[R] n i = 0 → VanishesTrivially R m n ⊢ ∀ (M' : Submodule R M), Injective ⇑(rTensor N M'.subtype)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/TensorProduct/Vanishing.lean
TensorProduct.forall_vanishesTrivially_iff_forall_rTensor_injective
case mp R : Type u inst✝⁵ : CommRing R M : Type u inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u inst✝² : AddCommGroup N inst✝¹ : Module R N ι : Type u inst✝ : Fintype ι m : ι → M n : ι → N h : ∀ {ι : Type u} [inst : Fintype ι] {m : ι → M} {n : ι → N}, ∑ i : ι, m i ⊗ₜ[R] n i = 0 → VanishesTrivially R m n ⊢ ∀ (M' : Submodule R M), Injective ⇑(rTensor N M'.subtype)
exact <a>TensorProduct.rTensor_injective_of_forall_vanishesTrivially</a> R h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/TensorProduct/Vanishing.lean
TensorProduct.forall_vanishesTrivially_iff_forall_rTensor_injective
case mpr R : Type u inst✝⁵ : CommRing R M : Type u inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u inst✝² : AddCommGroup N inst✝¹ : Module R N ι : Type u inst✝ : Fintype ι m : ι → M n : ι → N ⊢ (∀ (M' : Submodule R M), Injective ⇑(rTensor N M'.subtype)) → ∀ {ι : Type u} [inst : Fintype ι] {m : ι → M} {n : ι → N}, ∑ i : ι, m i ⊗ₜ[R] n i = 0 → VanishesTrivially R m n
intro h ι _ m n hmn
case mpr R : Type u inst✝⁶ : CommRing R M : Type u inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M N : Type u inst✝³ : AddCommGroup N inst✝² : Module R N ι✝ : Type u inst✝¹ : Fintype ι✝ m✝ : ι✝ → M n✝ : ι✝ → N h : ∀ (M' : Submodule R M), Injective ⇑(rTensor N M'.subtype) ι : Type u inst✝ : Fintype ι m : ι → M n : ι → N hmn : ∑ i : ι, m i ⊗ₜ[R] n i = 0 ⊢ VanishesTrivially R m n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/TensorProduct/Vanishing.lean
TensorProduct.forall_vanishesTrivially_iff_forall_rTensor_injective
case mpr R : Type u inst✝⁶ : CommRing R M : Type u inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M N : Type u inst✝³ : AddCommGroup N inst✝² : Module R N ι✝ : Type u inst✝¹ : Fintype ι✝ m✝ : ι✝ → M n✝ : ι✝ → N h : ∀ (M' : Submodule R M), Injective ⇑(rTensor N M'.subtype) ι : Type u inst✝ : Fintype ι m : ι → M n : ι → N hmn : ∑ i : ι, m i ⊗ₜ[R] n i = 0 ⊢ VanishesTrivially R m n
exact <a>TensorProduct.vanishesTrivially_of_sum_tmul_eq_zero_of_rTensor_injective</a> R (h _) hmn
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/TensorProduct/Vanishing.lean
Finset.prod_powerset_cons
ι : Type u_1 κ : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β ha : a ∉ s f : Finset α → β ⊢ ∏ t ∈ (cons a s ha).powerset, f t = (∏ t ∈ s.powerset, f t) * ∏ t ∈ s.powerset.attach, f (cons a ↑t ⋯)
classical simp_rw [<a>Finset.cons_eq_insert</a>] rw [<a>Finset.prod_powerset_insert</a> ha, <a>Finset.prod_attach</a> _ fun t ↦ f (<a>Insert.insert</a> a t)]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/BigOperators/Group/Finset.lean
Finset.prod_powerset_cons
ι : Type u_1 κ : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β ha : a ∉ s f : Finset α → β ⊢ ∏ t ∈ (cons a s ha).powerset, f t = (∏ t ∈ s.powerset, f t) * ∏ t ∈ s.powerset.attach, f (cons a ↑t ⋯)
simp_rw [<a>Finset.cons_eq_insert</a>]
ι : Type u_1 κ : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β ha : a ∉ s f : Finset α → β ⊢ ∏ x ∈ (insert a s).powerset, f x = (∏ x ∈ s.powerset, f x) * ∏ x ∈ s.powerset.attach, f (insert a ↑x)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/BigOperators/Group/Finset.lean
Finset.prod_powerset_cons
ι : Type u_1 κ : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 s s₁ s₂ : Finset α a : α f✝ g : α → β inst✝ : CommMonoid β ha : a ∉ s f : Finset α → β ⊢ ∏ x ∈ (insert a s).powerset, f x = (∏ x ∈ s.powerset, f x) * ∏ x ∈ s.powerset.attach, f (insert a ↑x)
rw [<a>Finset.prod_powerset_insert</a> ha, <a>Finset.prod_attach</a> _ fun t ↦ f (<a>Insert.insert</a> a t)]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/BigOperators/Group/Finset.lean
MeasureTheory.Measure.compProd_add_left
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β μ✝ : Measure α κ✝ η : ↥(kernel α β) μ ν : Measure α inst✝² : SFinite μ inst✝¹ : SFinite ν κ : ↥(kernel α β) inst✝ : IsSFiniteKernel κ ⊢ (μ + ν) ⊗ₘ κ = μ ⊗ₘ κ + ν ⊗ₘ κ
rw [<a>MeasureTheory.Measure.compProd</a>, <a>ProbabilityTheory.kernel.const_add</a>, <a>ProbabilityTheory.kernel.compProd_add_left</a>]
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β μ✝ : Measure α κ✝ η : ↥(kernel α β) μ ν : Measure α inst✝² : SFinite μ inst✝¹ : SFinite ν κ : ↥(kernel α β) inst✝ : IsSFiniteKernel κ ⊢ (kernel.const Unit μ ⊗ₖ kernel.prodMkLeft Unit κ + kernel.const Unit ν ⊗ₖ kernel.prodMkLeft Unit κ) () = μ ⊗ₘ κ + ν ⊗ₘ κ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Kernel/MeasureCompProd.lean
MeasureTheory.Measure.compProd_add_left
α : Type u_1 β : Type u_2 mα : MeasurableSpace α mβ : MeasurableSpace β μ✝ : Measure α κ✝ η : ↥(kernel α β) μ ν : Measure α inst✝² : SFinite μ inst✝¹ : SFinite ν κ : ↥(kernel α β) inst✝ : IsSFiniteKernel κ ⊢ (kernel.const Unit μ ⊗ₖ kernel.prodMkLeft Unit κ + kernel.const Unit ν ⊗ₖ kernel.prodMkLeft Unit κ) () = μ ⊗ₘ κ + ν ⊗ₘ κ
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Kernel/MeasureCompProd.lean
DirectSum.toAddMonoid.unique
ι : Type v dec_ι : DecidableEq ι β : ι → Type w inst✝¹ : (i : ι) → AddCommMonoid (β i) γ : Type u₁ inst✝ : AddCommMonoid γ φ : (i : ι) → β i →+ γ ψ : (⨁ (i : ι), β i) →+ γ f : ⨁ (i : ι), β i ⊢ ψ f = (toAddMonoid fun i => ψ.comp (of β i)) f
congr
case e_a ι : Type v dec_ι : DecidableEq ι β : ι → Type w inst✝¹ : (i : ι) → AddCommMonoid (β i) γ : Type u₁ inst✝ : AddCommMonoid γ φ : (i : ι) → β i →+ γ ψ : (⨁ (i : ι), β i) →+ γ f : ⨁ (i : ι), β i ⊢ ψ = toAddMonoid fun i => ψ.comp (of β i)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/DirectSum/Basic.lean
DirectSum.toAddMonoid.unique
case e_a ι : Type v dec_ι : DecidableEq ι β : ι → Type w inst✝¹ : (i : ι) → AddCommMonoid (β i) γ : Type u₁ inst✝ : AddCommMonoid γ φ : (i : ι) → β i →+ γ ψ : (⨁ (i : ι), β i) →+ γ f : ⨁ (i : ι), β i ⊢ ψ = toAddMonoid fun i => ψ.comp (of β i)
apply <a>DFinsupp.addHom_ext'</a>
case e_a.H ι : Type v dec_ι : DecidableEq ι β : ι → Type w inst✝¹ : (i : ι) → AddCommMonoid (β i) γ : Type u₁ inst✝ : AddCommMonoid γ φ : (i : ι) → β i →+ γ ψ : (⨁ (i : ι), β i) →+ γ f : ⨁ (i : ι), β i ⊢ ∀ (x : ι), ψ.comp (DFinsupp.singleAddHom (fun i => β i) x) = (toAddMonoid fun i => ψ.comp (of β i)).comp (DFinsupp.singleAddHom (fun i => β i) x)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/DirectSum/Basic.lean
DirectSum.toAddMonoid.unique
case e_a.H ι : Type v dec_ι : DecidableEq ι β : ι → Type w inst✝¹ : (i : ι) → AddCommMonoid (β i) γ : Type u₁ inst✝ : AddCommMonoid γ φ : (i : ι) → β i →+ γ ψ : (⨁ (i : ι), β i) →+ γ f : ⨁ (i : ι), β i ⊢ ∀ (x : ι), ψ.comp (DFinsupp.singleAddHom (fun i => β i) x) = (toAddMonoid fun i => ψ.comp (of β i)).comp (DFinsupp.singleAddHom (fun i => β i) x)
simp [<a>DirectSum.toAddMonoid</a>, <a>DirectSum.of</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/DirectSum/Basic.lean
Fintype.card_eq_zero_iff
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : Fintype α inst✝ : Fintype β ⊢ card α = 0 ↔ IsEmpty α
rw [<a>Fintype.card</a>, <a>Finset.card_eq_zero</a>, <a>Finset.univ_eq_empty_iff</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Fintype/Card.lean
mem_vectorSpan_pair
k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : Ring k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ι : Type u_4 p₁ p₂ : P v : V ⊢ v ∈ vectorSpan k {p₁, p₂} ↔ ∃ r, r • (p₁ -ᵥ p₂) = v
rw [<a>vectorSpan_pair</a>, <a>Submodule.mem_span_singleton</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
one_lt_tprod
ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i✝ : ι hsum : Multipliable g hg : ∀ (i : ι), 1 ≤ g i i : ι hi : 1 < g i ⊢ 1 < ∏' (i : ι), g i
rw [← <a>tprod_one</a>]
ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i✝ : ι hsum : Multipliable g hg : ∀ (i : ι), 1 ≤ g i i : ι hi : 1 < g i ⊢ ∏' (x : ?m.53617), 1 < ∏' (i : ι), g i ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i✝ : ι hsum : Multipliable g hg : ∀ (i : ι), 1 ≤ g i i : ι hi : 1 < g i ⊢ Type ?u.53614
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Algebra/InfiniteSum/Order.lean
one_lt_tprod
ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i✝ : ι hsum : Multipliable g hg : ∀ (i : ι), 1 ≤ g i i : ι hi : 1 < g i ⊢ ∏' (x : ?m.53617), 1 < ∏' (i : ι), g i ι : Type u_1 κ : Type u_2 α : Type u_3 inst✝³ : OrderedCommGroup α inst✝² : TopologicalSpace α inst✝¹ : TopologicalGroup α inst✝ : OrderClosedTopology α f g : ι → α a₁ a₂ : α i✝ : ι hsum : Multipliable g hg : ∀ (i : ι), 1 ≤ g i i : ι hi : 1 < g i ⊢ Type ?u.53614
exact <a>tprod_lt_tprod</a> hg hi <a>multipliable_one</a> hsum
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Algebra/InfiniteSum/Order.lean
AlgebraicGeometry.IsAffineOpen.isQuasiSeparated
X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsQuasiSeparated ↑U
rw [<a>isQuasiSeparated_iff_quasiSeparatedSpace</a>]
X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ QuasiSeparatedSpace ↑↑U case hs X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsOpen ↑U
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/AlgebraicGeometry/Morphisms/QuasiSeparated.lean
AlgebraicGeometry.IsAffineOpen.isQuasiSeparated
X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ QuasiSeparatedSpace ↑↑U case hs X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsOpen ↑U
exacts [@<a>AlgebraicGeometry.quasiSeparatedSpace_of_isAffine</a> _ hU, U.isOpen]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/AlgebraicGeometry/Morphisms/QuasiSeparated.lean
FdRep.average_char_eq_finrank_invariants
k : Type u inst✝³ : Field k G : Type u inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) V : FdRep k G ⊢ ⅟↑(Fintype.card G) • ∑ g : G, V.character g = ↑(finrank k ↥(invariants V.ρ))
erw [← (<a>Representation.isProj_averageMap</a> V.ρ).<a>LinearMap.IsProj.trace</a>]
k : Type u inst✝³ : Field k G : Type u inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) V : FdRep k G ⊢ ⅟↑(Fintype.card G) • ∑ g : G, V.character g = (trace k (CoeSort.coe V)) (averageMap V.ρ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RepresentationTheory/Character.lean
FdRep.average_char_eq_finrank_invariants
k : Type u inst✝³ : Field k G : Type u inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) V : FdRep k G ⊢ ⅟↑(Fintype.card G) • ∑ g : G, V.character g = (trace k (CoeSort.coe V)) (averageMap V.ρ)
simp [<a>FdRep.character</a>, <a>GroupAlgebra.average</a>, <a>map_sum</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RepresentationTheory/Character.lean
symmDiff_hnot_self
ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : CoheytingAlgebra α a : α ⊢ a ∆ (¬a) = ⊤
rw [<a>symmDiff_comm</a>, <a>hnot_symmDiff_self</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/SymmDiff.lean
le_self_pow
α : Type u_1 M : Type u_2 R : Type u_3 inst✝ : OrderedSemiring R a b x y : R n m : ℕ ha : 1 ≤ a h : m ≠ 0 ⊢ a ≤ a ^ m
simpa only [<a>pow_one</a>] using <a>pow_le_pow_right</a> ha <| <a>Nat.pos_iff_ne_zero</a>.2 h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Order/Ring/Basic.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β m n : ℕ h1 : s.Results a m h2 : (f a).Results b n ⊢ (s.bind f).Results b (n + m)
have := h1.mem
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β m n : ℕ h1 : s.Results a m h2 : (f a).Results b n this : a ∈ s ⊢ (s.bind f).Results b (n + m)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β m n : ℕ h1 : s.Results a m h2 : (f a).Results b n this : a ∈ s ⊢ (s.bind f).Results b (n + m)
revert m
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s ⊢ ∀ {m : ℕ}, s.Results a m → (s.bind f).Results b (n + m)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s ⊢ ∀ {m : ℕ}, s.Results a m → (s.bind f).Results b (n + m)
apply <a>Computation.memRecOn</a> this _ fun s IH => _
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s ⊢ ∀ {m : ℕ}, (pure a).Results a m → ((pure a).bind f).Results b (n + m) α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s ⊢ ∀ (s : Computation α), (∀ {m : ℕ}, s.Results a m → (s.bind f).Results b (n + m)) → ∀ {m : ℕ}, s.think.Results a m → (s.think.bind f).Results b (n + m)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s ⊢ ∀ {m : ℕ}, (pure a).Results a m → ((pure a).bind f).Results b (n + m)
intro _ h1
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s m✝ : ℕ h1 : (pure a).Results a m✝ ⊢ ((pure a).bind f).Results b (n + m✝)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s m✝ : ℕ h1 : (pure a).Results a m✝ ⊢ ((pure a).bind f).Results b (n + m✝)
rw [<a>Computation.ret_bind</a>]
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s m✝ : ℕ h1 : (pure a).Results a m✝ ⊢ (f a).Results b (n + m✝)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s m✝ : ℕ h1 : (pure a).Results a m✝ ⊢ (f a).Results b (n + m✝)
rw [h1.len_unique (<a>Computation.results_pure</a> _)]
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s m✝ : ℕ h1 : (pure a).Results a m✝ ⊢ (f a).Results b (n + 0)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s m✝ : ℕ h1 : (pure a).Results a m✝ ⊢ (f a).Results b (n + 0)
exact h2
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s ⊢ ∀ (s : Computation α), (∀ {m : ℕ}, s.Results a m → (s.bind f).Results b (n + m)) → ∀ {m : ℕ}, s.think.Results a m → (s.think.bind f).Results b (n + m)
intro _ h3 _ h1
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1 : s✝.think.Results a m✝ ⊢ (s✝.think.bind f).Results b (n + m✝)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1 : s✝.think.Results a m✝ ⊢ (s✝.think.bind f).Results b (n + m✝)
rw [<a>Computation.think_bind</a>]
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1 : s✝.think.Results a m✝ ⊢ (s✝.bind f).think.Results b (n + m✝)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1 : s✝.think.Results a m✝ ⊢ (s✝.bind f).think.Results b (n + m✝)
cases' <a>Computation.of_results_think</a> h1 with m' h
case intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1 : s✝.think.Results a m✝ m' : ℕ h : s✝.Results a m' ∧ m✝ = m' + 1 ⊢ (s✝.bind f).think.Results b (n + m✝)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
case intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1 : s✝.think.Results a m✝ m' : ℕ h : s✝.Results a m' ∧ m✝ = m' + 1 ⊢ (s✝.bind f).think.Results b (n + m✝)
cases' h with h1 e
case intro.intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1✝ : s✝.think.Results a m✝ m' : ℕ h1 : s✝.Results a m' e : m✝ = m' + 1 ⊢ (s✝.bind f).think.Results b (n + m✝)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
case intro.intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1✝ : s✝.think.Results a m✝ m' : ℕ h1 : s✝.Results a m' e : m✝ = m' + 1 ⊢ (s✝.bind f).think.Results b (n + m✝)
rw [e]
case intro.intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1✝ : s✝.think.Results a m✝ m' : ℕ h1 : s✝.Results a m' e : m✝ = m' + 1 ⊢ (s✝.bind f).think.Results b (n + (m' + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Computation.results_bind
case intro.intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : (f a).Results b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, s✝.Results a m → (s✝.bind f).Results b (n + m) m✝ : ℕ h1✝ : s✝.think.Results a m✝ m' : ℕ h1 : s✝.Results a m' e : m✝ = m' + 1 ⊢ (s✝.bind f).think.Results b (n + (m' + 1))
exact <a>Computation.results_think</a> (h3 h1)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Seq/Computation.lean
Substring.Valid.foldr
α : Type u_1 f : Char → α → α init : α x✝ : Substring h✝ : x✝.Valid w✝² w✝¹ w✝ : List Char h : ValidFor w✝² w✝¹ w✝ x✝ ⊢ Substring.foldr f init x✝ = List.foldr f init x✝.toString.data
simp [h.foldr, h.toString]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
contDiff_succ_iff_hasFDerivAt
𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n✝ : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F n : ℕ ⊢ ContDiff 𝕜 (↑(n + 1)) f ↔ ∃ f', ContDiff 𝕜 (↑n) f' ∧ ∀ (x : E), HasFDerivAt f (f' x) x
simp only [← <a>contDiffOn_univ</a>, ← <a>hasFDerivWithinAt_univ</a>, <a>contDiffOn_succ_iff_hasFDerivWithin</a> <a>uniqueDiffOn_univ</a>, <a>Set.mem_univ</a>, <a>forall_true_left</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
Real.exp_neg_one_gt_d9
⊢ 0.36787944116 < rexp (-1)
rw [<a>Real.exp_neg</a>, <a>lt_inv</a> _ (<a>Real.exp_pos</a> _)]
⊢ rexp 1 < 0.36787944116⁻¹ ⊢ 0 < 0.36787944116
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Complex/ExponentialBounds.lean
Real.exp_neg_one_gt_d9
⊢ rexp 1 < 0.36787944116⁻¹
refine <a>lt_of_le_of_lt</a> (<a>sub_le_iff_le_add</a>.1 (<a>abs_sub_le_iff</a>.1 <a>Real.exp_one_near_10</a>).1) ?_
⊢ 1 / 10 ^ 10 + 2244083 / 825552 < 0.36787944116⁻¹
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Complex/ExponentialBounds.lean
Real.exp_neg_one_gt_d9
⊢ 1 / 10 ^ 10 + 2244083 / 825552 < 0.36787944116⁻¹
norm_num
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Complex/ExponentialBounds.lean
Real.exp_neg_one_gt_d9
⊢ 0 < 0.36787944116
norm_num
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Complex/ExponentialBounds.lean
LinearMap.adjoint_inner_left
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F ⊢ ⟪(adjoint A) y, x⟫_𝕜 = ⟪y, A x⟫_𝕜
haveI := <a>FiniteDimensional.complete</a> 𝕜 E
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F this : CompleteSpace E ⊢ ⟪(adjoint A) y, x⟫_𝕜 = ⟪y, A x⟫_𝕜
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
LinearMap.adjoint_inner_left
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F this : CompleteSpace E ⊢ ⟪(adjoint A) y, x⟫_𝕜 = ⟪y, A x⟫_𝕜
haveI := <a>FiniteDimensional.complete</a> 𝕜 F
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F this✝ : CompleteSpace E this : CompleteSpace F ⊢ ⟪(adjoint A) y, x⟫_𝕜 = ⟪y, A x⟫_𝕜
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
LinearMap.adjoint_inner_left
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F this✝ : CompleteSpace E this : CompleteSpace F ⊢ ⟪(adjoint A) y, x⟫_𝕜 = ⟪y, A x⟫_𝕜
rw [← <a>LinearMap.coe_toContinuousLinearMap</a> A, <a>LinearMap.adjoint_eq_toCLM_adjoint</a>]
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F this✝ : CompleteSpace E this : CompleteSpace F ⊢ ⟪↑(ContinuousLinearMap.adjoint (toContinuousLinearMap ↑(toContinuousLinearMap A))) y, x⟫_𝕜 = ⟪y, ↑(toContinuousLinearMap A) x⟫_𝕜
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
LinearMap.adjoint_inner_left
𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : RCLike 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F this✝ : CompleteSpace E this : CompleteSpace F ⊢ ⟪↑(ContinuousLinearMap.adjoint (toContinuousLinearMap ↑(toContinuousLinearMap A))) y, x⟫_𝕜 = ⟪y, ↑(toContinuousLinearMap A) x⟫_𝕜
exact <a>ContinuousLinearMap.adjoint_inner_left</a> _ x y
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ g ≫ β.right = α.right ≫ g'
simp [h, β.w.symm]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ π' f g w ≫ map w w' α β h = kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
apply_fun fun e => (<a>CategoryTheory.Limits.kernelSubobjectIso</a> _).<a>CategoryTheory.Iso.hom</a> ≫ e
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (fun e => (kernelSubobjectIso g).hom ≫ e) (π' f g w ≫ map w w' α β h) = (fun e => (kernelSubobjectIso g).hom ≫ e) (kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w') case inj A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ Function.Injective fun e => (kernelSubobjectIso g).hom ≫ e
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (fun e => (kernelSubobjectIso g).hom ≫ e) (π' f g w ≫ map w w' α β h) = (fun e => (kernelSubobjectIso g).hom ≫ e) (kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w') case inj A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ Function.Injective fun e => (kernelSubobjectIso g).hom ≫ e
swap
case inj A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ Function.Injective fun e => (kernelSubobjectIso g).hom ≫ e A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (fun e => (kernelSubobjectIso g).hom ≫ e) (π' f g w ≫ map w w' α β h) = (fun e => (kernelSubobjectIso g).hom ≫ e) (kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w')
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (fun e => (kernelSubobjectIso g).hom ≫ e) (π' f g w ≫ map w w' α β h) = (fun e => (kernelSubobjectIso g).hom ≫ e) (kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w')
dsimp [<a>homology'.map</a>]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (kernelSubobjectIso g).hom ≫ π' f g w ≫ cokernel.desc (imageToKernel f g w) (kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w')) ⋯ = (kernelSubobjectIso g).hom ≫ kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (kernelSubobjectIso g).hom ≫ π' f g w ≫ cokernel.desc (imageToKernel f g w) (kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w')) ⋯ = (kernelSubobjectIso g).hom ≫ kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
simp only [<a>homology'.π'_eq_π_assoc</a>]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ π f g w ≫ cokernel.desc (imageToKernel f g w) (kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w')) ⋯ = (kernelSubobjectIso g).hom ≫ kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ π f g w ≫ cokernel.desc (imageToKernel f g w) (kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w')) ⋯ = (kernelSubobjectIso g).hom ≫ kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
dsimp [<a>homology'.π</a>]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ cokernel.π (imageToKernel f g w) ≫ cokernel.desc (imageToKernel f g w) (kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w')) ⋯ = (kernelSubobjectIso g).hom ≫ kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ cokernel.π (imageToKernel f g w) ≫ cokernel.desc (imageToKernel f g w) (kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w')) ⋯ = (kernelSubobjectIso g).hom ≫ kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
simp only [<a>CategoryTheory.Limits.cokernel.π_desc</a>]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w') = (kernelSubobjectIso g).hom ≫ kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w') = (kernelSubobjectIso g).hom ≫ kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
rw [← <a>CategoryTheory.Iso.inv_comp_eq</a>, ← <a>CategoryTheory.Category.assoc</a>]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ ((kernelSubobjectIso g).inv ≫ kernelSubobjectMap β) ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ ((kernelSubobjectIso g).inv ≫ kernelSubobjectMap β) ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
have : (<a>CategoryTheory.Limits.kernelSubobjectIso</a> g).<a>CategoryTheory.Iso.inv</a> ≫ <a>CategoryTheory.Limits.kernelSubobjectMap</a> β = <a>CategoryTheory.Limits.kernel.map</a> _ _ β.left β.right β.w.symm ≫ (<a>CategoryTheory.Limits.kernelSubobjectIso</a> _).<a>CategoryTheory.Iso.inv</a> := by rw [<a>CategoryTheory.Iso.inv_comp_eq</a>, ← <a>CategoryTheory.Category.assoc</a>, <a>CategoryTheory.Iso.eq_comp_inv</a>] ext dsimp simp
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ ((kernelSubobjectIso g).inv ≫ kernelSubobjectMap β) ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ ((kernelSubobjectIso g).inv ≫ kernelSubobjectMap β) ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
rw [this]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ (kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv) ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ (kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv) ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
simp only [<a>CategoryTheory.Category.assoc</a>]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ π' f' g' w'
dsimp [<a>homology'.π'</a>, <a>homology'IsoCokernelLift</a>]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ kernel.map g g' β.left β.right ⋯ ≫ (kernelSubobjectIso g').inv ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ cokernel.π (kernel.lift g' f' w') ≫ ((cokernelIsoOfEq ⋯).inv ≫ cokernel.desc (factorThruImage f' ≫ imageToKernel' f' g' w') (cokernel.π (imageToKernel' f' g' w')) ⋯) ≫ (homology'IsoCokernelImageToKernel' f' g' w').inv
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ kernel.map g g' β.left β.right ⋯ ≫ (kernelSubobjectIso g').inv ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ cokernel.π (kernel.lift g' f' w') ≫ ((cokernelIsoOfEq ⋯).inv ≫ cokernel.desc (factorThruImage f' ≫ imageToKernel' f' g' w') (cokernel.π (imageToKernel' f' g' w')) ⋯) ≫ (homology'IsoCokernelImageToKernel' f' g' w').inv
simp only [<a>CategoryTheory.Limits.cokernelIsoOfEq_inv_comp_desc</a>, <a>CategoryTheory.Limits.cokernel.π_desc_assoc</a>]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ kernel.map g g' β.left β.right ⋯ ≫ (kernelSubobjectIso g').inv ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ cokernel.π (imageToKernel' f' g' w') ≫ (homology'IsoCokernelImageToKernel' f' g' w').inv
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ kernel.map g g' β.left β.right ⋯ ≫ (kernelSubobjectIso g').inv ≫ cokernel.π (imageToKernel f' g' w') = kernel.map g g' α.right β.right ⋯ ≫ cokernel.π (imageToKernel' f' g' w') ≫ (homology'IsoCokernelImageToKernel' f' g' w').inv
congr 1
case e_a A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ kernel.map g g' β.left β.right ⋯ = kernel.map g g' α.right β.right ⋯ case e_a A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ (kernelSubobjectIso g').inv ≫ cokernel.π (imageToKernel f' g' w') = cokernel.π (imageToKernel' f' g' w') ≫ (homology'IsoCokernelImageToKernel' f' g' w').inv
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case inj A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ Function.Injective fun e => (kernelSubobjectIso g).hom ≫ e
intro i j hh
case inj A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left i j : kernel g ⟶ homology' f' g' w' hh : (fun e => (kernelSubobjectIso g).hom ≫ e) i = (fun e => (kernelSubobjectIso g).hom ≫ e) j ⊢ i = j
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case inj A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left i j : kernel g ⟶ homology' f' g' w' hh : (fun e => (kernelSubobjectIso g).hom ≫ e) i = (fun e => (kernelSubobjectIso g).hom ≫ e) j ⊢ i = j
apply_fun fun e => (<a>CategoryTheory.Limits.kernelSubobjectIso</a> _).<a>CategoryTheory.Iso.inv</a> ≫ e at hh
case inj A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left i j : kernel g ⟶ homology' f' g' w' hh : (kernelSubobjectIso g).inv ≫ (fun e => (kernelSubobjectIso g).hom ≫ e) i = (kernelSubobjectIso g).inv ≫ (fun e => (kernelSubobjectIso g).hom ≫ e) j ⊢ i = j
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case inj A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left i j : kernel g ⟶ homology' f' g' w' hh : (kernelSubobjectIso g).inv ≫ (fun e => (kernelSubobjectIso g).hom ≫ e) i = (kernelSubobjectIso g).inv ≫ (fun e => (kernelSubobjectIso g).hom ≫ e) j ⊢ i = j
simpa using hh
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv
rw [<a>CategoryTheory.Iso.inv_comp_eq</a>, ← <a>CategoryTheory.Category.assoc</a>, <a>CategoryTheory.Iso.eq_comp_inv</a>]
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ kernelSubobjectMap β ≫ (kernelSubobjectIso (Arrow.mk g').hom).hom = (kernelSubobjectIso g).hom ≫ kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ kernelSubobjectMap β ≫ (kernelSubobjectIso (Arrow.mk g').hom).hom = (kernelSubobjectIso g).hom ≫ kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯
ext
case h A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (kernelSubobjectMap β ≫ (kernelSubobjectIso (Arrow.mk g').hom).hom) ≫ equalizer.ι (Arrow.mk g').hom 0 = ((kernelSubobjectIso g).hom ≫ kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯) ≫ equalizer.ι (Arrow.mk g').hom 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case h A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (kernelSubobjectMap β ≫ (kernelSubobjectIso (Arrow.mk g').hom).hom) ≫ equalizer.ι (Arrow.mk g').hom 0 = ((kernelSubobjectIso g).hom ≫ kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯) ≫ equalizer.ι (Arrow.mk g').hom 0
dsimp
case h A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (kernelSubobjectMap β ≫ (kernelSubobjectIso g').hom) ≫ kernel.ι g' = ((kernelSubobjectIso g).hom ≫ kernel.map g g' β.left β.right ⋯) ≫ kernel.ι g'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case h A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left ⊢ (kernelSubobjectMap β ≫ (kernelSubobjectIso g').hom) ≫ kernel.ι g' = ((kernelSubobjectIso g).hom ≫ kernel.map g g' β.left β.right ⋯) ≫ kernel.ι g'
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case e_a A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ kernel.map g g' β.left β.right ⋯ = kernel.map g g' α.right β.right ⋯
congr
case e_a.e_p A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ β.left = α.right
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case e_a.e_p A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ β.left = α.right
exact h.symm
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case e_a A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ (kernelSubobjectIso g').inv ≫ cokernel.π (imageToKernel f' g' w') = cokernel.π (imageToKernel' f' g' w') ≫ (homology'IsoCokernelImageToKernel' f' g' w').inv
rw [<a>CategoryTheory.Iso.inv_comp_eq</a>, ← <a>CategoryTheory.Category.assoc</a>, <a>CategoryTheory.Iso.eq_comp_inv</a>]
case e_a A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ cokernel.π (imageToKernel f' g' w') ≫ (homology'IsoCokernelImageToKernel' f' g' w').hom = (kernelSubobjectIso g').hom ≫ cokernel.π (imageToKernel' f' g' w')
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case e_a A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ cokernel.π (imageToKernel f' g' w') ≫ (homology'IsoCokernelImageToKernel' f' g' w').hom = (kernelSubobjectIso g').hom ≫ cokernel.π (imageToKernel' f' g' w')
dsimp [<a>homology'IsoCokernelImageToKernel'</a>]
case e_a A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ cokernel.π (imageToKernel f' g' w') ≫ cokernel.map (imageToKernel f' g' w') (imageToKernel' f' g' w') (imageSubobjectIso f').hom (kernelSubobjectIso g').hom ⋯ = (kernelSubobjectIso g').hom ≫ cokernel.π (imageToKernel' f' g' w')
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
homology'.π'_map
case e_a A : Type u inst✝¹ : Category.{v, u} A inst✝ : Abelian A X Y Z : A f : X ⟶ Y g : Y ⟶ Z w : f ≫ g = 0 X' Y' Z' : A f' : X' ⟶ Y' g' : Y' ⟶ Z' w' : f' ≫ g' = 0 α : Arrow.mk f ⟶ Arrow.mk f' β : Arrow.mk g ⟶ Arrow.mk g' h : α.right = β.left this : (kernelSubobjectIso g).inv ≫ kernelSubobjectMap β = kernel.map (Arrow.mk g).hom (Arrow.mk g').hom β.left β.right ⋯ ≫ (kernelSubobjectIso (Arrow.mk g').hom).inv ⊢ cokernel.π (imageToKernel f' g' w') ≫ cokernel.map (imageToKernel f' g' w') (imageToKernel' f' g' w') (imageSubobjectIso f').hom (kernelSubobjectIso g').hom ⋯ = (kernelSubobjectIso g').hom ≫ cokernel.π (imageToKernel' f' g' w')
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Abelian/Homology.lean
List.IsRotated.refl
α : Type u l✝ l' l : List α ⊢ l.rotate 0 = l
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/List/Rotate.lean
Finset.Ioc_eq_empty_iff
ι : Type u_1 α : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrder α a a₁ a₂ b b₁ b₂ c x : α ⊢ Ioc a b = ∅ ↔ ¬a < b
rw [← <a>Finset.coe_eq_empty</a>, <a>Finset.coe_Ioc</a>, <a>Set.Ioc_eq_empty_iff</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Basic.lean
Matrix.sum_cramer_apply
m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α b : n → α β : Type u_1 s : Finset β f : n → β → α i : n ⊢ (∑ x ∈ s, A.cramer fun j => f j x) i = A.cramer (fun j => ∑ x ∈ s, f j x) i
rw [<a>Matrix.sum_cramer</a>, <a>Matrix.cramer_apply</a>, <a>Matrix.cramer_apply</a>]
m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α b : n → α β : Type u_1 s : Finset β f : n → β → α i : n ⊢ (A.updateColumn i (∑ x ∈ s, fun j => f j x)).det = (A.updateColumn i fun j => ∑ x ∈ s, f j x).det
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Matrix.sum_cramer_apply
m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α b : n → α β : Type u_1 s : Finset β f : n → β → α i : n ⊢ (A.updateColumn i (∑ x ∈ s, fun j => f j x)).det = (A.updateColumn i fun j => ∑ x ∈ s, f j x).det
simp only [<a>Matrix.updateColumn</a>]
m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α b : n → α β : Type u_1 s : Finset β f : n → β → α i : n ⊢ (of fun i_1 => Function.update (A i_1) i ((∑ x ∈ s, fun j => f j x) i_1)).det = (of fun i_1 => Function.update (A i_1) i (∑ x ∈ s, f i_1 x)).det
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Matrix.sum_cramer_apply
m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α b : n → α β : Type u_1 s : Finset β f : n → β → α i : n ⊢ (of fun i_1 => Function.update (A i_1) i ((∑ x ∈ s, fun j => f j x) i_1)).det = (of fun i_1 => Function.update (A i_1) i (∑ x ∈ s, f i_1 x)).det
congr with j
case e_M.h.e_6.h.h.h m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α b : n → α β : Type u_1 s : Finset β f : n → β → α i j x✝ : n ⊢ Function.update (A j) i ((∑ x ∈ s, fun j => f j x) j) x✝ = Function.update (A j) i (∑ x ∈ s, f j x) x✝
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Matrix.sum_cramer_apply
case e_M.h.e_6.h.h.h m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α b : n → α β : Type u_1 s : Finset β f : n → β → α i j x✝ : n ⊢ Function.update (A j) i ((∑ x ∈ s, fun j => f j x) j) x✝ = Function.update (A j) i (∑ x ∈ s, f j x) x✝
congr
case e_M.h.e_6.h.h.h.e_v m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α b : n → α β : Type u_1 s : Finset β f : n → β → α i j x✝ : n ⊢ (∑ x ∈ s, fun j => f j x) j = ∑ x ∈ s, f j x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Matrix.sum_cramer_apply
case e_M.h.e_6.h.h.h.e_v m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α b : n → α β : Type u_1 s : Finset β f : n → β → α i j x✝ : n ⊢ (∑ x ∈ s, fun j => f j x) j = ∑ x ∈ s, f j x
apply <a>Finset.sum_apply</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Polynomial.rootSet_prod
R : Type u S : Type v k : Type y A : Type z a b : R n : ℕ inst✝³ : Field R p q : R[X] inst✝² : CommRing S inst✝¹ : IsDomain S inst✝ : Algebra R S ι : Type u_1 f : ι → R[X] s : Finset ι h : s.prod f ≠ 0 ⊢ (s.prod f).rootSet S = ⋃ i ∈ s, (f i).rootSet S
classical simp only [<a>Polynomial.rootSet</a>, <a>Polynomial.aroots</a>, ← <a>Finset.mem_coe</a>] rw [<a>Polynomial.map_prod</a>, <a>Polynomial.roots_prod</a>, <a>Finset.bind_toFinset</a>, s.val_toFinset, <a>Finset.coe_biUnion</a>] rwa [← <a>Polynomial.map_prod</a>, <a>Ne</a>, <a>Polynomial.map_eq_zero</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/FieldDivision.lean