|
--- |
|
dataset_info: |
|
features: |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 21498947 |
|
num_examples: 10000 |
|
- name: validation |
|
num_bytes: 21659922 |
|
num_examples: 10000 |
|
- name: test |
|
num_bytes: 21607334 |
|
num_examples: 10000 |
|
download_size: 39991477 |
|
dataset_size: 64766203 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
# Dataset Card for Small C4 Dataset (10k Train, 10k Validation, 10k Test) |
|
|
|
## Dataset Summary |
|
|
|
The **Small C4 Dataset** is a reduced version of the original [C4 dataset](https://huggingface.co/datasets/allenai/c4) (Colossal Clean Crawled Corpus), designed to facilitate lightweight experimentation and model training without the need to process the full C4 dataset. This dataset includes: |
|
- **10,000 examples** for training, |
|
- **10,000 examples** for validation, and |
|
- **10,000 examples** for testing. |
|
|
|
Each example consists of a single text passage, sourced from the English subset of the original C4 corpus. |
|
|
|
## Dataset Details |
|
|
|
- **Source**: [allenai/c4](https://huggingface.co/datasets/allenai/c4) |
|
- **Subset Language**: English |
|
- **Streaming Enabled**: Yes (streaming=True used to sample without downloading the entire dataset) |
|
- **Sampling Method**: |
|
- **Training Set**: First 10,000 examples from the `train` split of C4. |
|
- **Validation Set**: First 10,000 examples from the `validation` split of C4. |
|
- **Test Set**: The next 10,000 examples from the `validation` split (after the validation set). |
|
- **Dataset Size**: 30,000 examples in total. |
|
|
|
## Dataset Creation |
|
|
|
The dataset was created using Hugging Face’s `datasets` library with streaming enabled to handle the large size of the original C4 dataset efficiently. A subset of examples was sampled in parallel for each of the train, validation, and test splits. |
|
|
|
## Usage |
|
|
|
This dataset is suitable for lightweight model training, testing, and experimentation, particularly useful when: |
|
- **Computational resources** are limited, |
|
- **Prototyping** models before scaling to the full C4 dataset, or |
|
- **Evaluating** model performance on a smaller, representative sample of the full corpus. |
|
|
|
## Example Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the small C4 dataset |
|
dataset = load_dataset("brando/small-c4-dataset") |
|
|
|
# Access train, validation, and test splits |
|
train_data = dataset["train"] |
|
validation_data = dataset["validation"] |
|
test_data = dataset["test"] |
|
|
|
# Example: Display a random training example |
|
print(train_data[0]) |
|
``` |
|
|
|
|
|
License |
|
This dataset inherits the licensing of the original C4 dataset. |
|
|
|
Citation |
|
If you use this dataset in your work, please cite the original C4 dataset or my ultimate utils repo: |
|
|
|
```bibtex |
|
@misc{miranda2021ultimateutils, |
|
title={Ultimate Utils - the Ultimate Utils Library for Machine Learning and Artificial Intelligence}, |
|
author={Brando Miranda}, |
|
year={2021}, |
|
url={https://github.com/brando90/ultimate-utils}, |
|
note={Available at: \url{https://www.ideals.illinois.edu/handle/2142/112797}}, |
|
abstract={Ultimate Utils is a comprehensive library providing utility functions and tools to facilitate efficient machine learning and AI research, including efficient tensor manipulations and gradient handling with methods such as `detach()` for creating gradient-free tensors.} |
|
} |
|
``` |
|
|
|
Script that created it |
|
|
|
```python |
|
import os |
|
from huggingface_hub import login |
|
from datasets import Dataset, DatasetDict, load_dataset |
|
from concurrent.futures import ThreadPoolExecutor |
|
|
|
# Function to load the Hugging Face API token from a file |
|
def load_token(file_path: str) -> str: |
|
"""Load API token from a specified file path.""" |
|
with open(os.path.expanduser(file_path)) as f: |
|
return f.read().strip() |
|
|
|
# Function to log in to Hugging Face using a token |
|
def login_to_huggingface(token: str) -> None: |
|
"""Authenticate with Hugging Face Hub.""" |
|
login(token=token) |
|
print("Login successful") |
|
|
|
# Function to sample a specific number of examples from a dataset split |
|
def sample_from_split(split_name: str, num_samples: int) -> list: |
|
"""Sample a specified number of examples from a dataset split.""" |
|
c4_split = load_dataset("allenai/c4", "en", split=split_name, streaming=True) |
|
samples = [] |
|
for i, example in enumerate(c4_split): |
|
if i >= num_samples: |
|
break |
|
samples.append(example["text"]) |
|
return samples |
|
|
|
# Main function to create a smaller C4 dataset with three subsets and upload it |
|
def main() -> None: |
|
# Step 1: Load token and log in |
|
key_file_path: str = "/lfs/skampere1/0/brando9/keys/brandos_hf_token.txt" |
|
token: str = load_token(key_file_path) |
|
login_to_huggingface(token) |
|
|
|
# Step 2: Define sampling parameters |
|
num_samples = 10000 |
|
|
|
# Step 3: Sample subsets concurrently |
|
with ThreadPoolExecutor(max_workers=3) as executor: |
|
future_train = executor.submit(sample_from_split, "train", num_samples) |
|
future_val = executor.submit(sample_from_split, "validation", num_samples) |
|
future_test = executor.submit(sample_from_split, "validation", num_samples * 2) |
|
|
|
train_samples = future_train.result() |
|
val_samples = future_val.result() |
|
test_samples = future_test.result()[num_samples:] # Second 10k from validation for test |
|
|
|
# Step 4: Create DatasetDict |
|
small_c4_dataset = DatasetDict({ |
|
"train": Dataset.from_dict({"text": train_samples}), |
|
"validation": Dataset.from_dict({"text": val_samples}), |
|
"test": Dataset.from_dict({"text": test_samples}) |
|
}) |
|
|
|
# Step 5: Upload to Hugging Face Hub |
|
dataset_name_c4: str = "brando/small-c4-dataset" |
|
small_c4_dataset.push_to_hub(dataset_name_c4) |
|
print(f"Small C4 dataset uploaded to https://huggingface.co/datasets/{dataset_name_c4}") |
|
|
|
# Run the main function |
|
if __name__ == "__main__": |
|
main() |
|
|
|
``` |