File size: 12,080 Bytes
f987ba2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Relation Extraction corpus with multiple entity types (e.g., gene/protein,
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical),
on a set of 600 PubMed articles
"""
import itertools
import os
from typing import Dict, List, Tuple
import datasets
from bioc import pubtator
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{DBLP:journals/corr/abs-2204-04263,
author = {Ling Luo and
Po{-}Ting Lai and
Chih{-}Hsuan Wei and
Cecilia N. Arighi and
Zhiyong Lu},
title = {BioRED: {A} Comprehensive Biomedical Relation Extraction Dataset},
journal = {CoRR},
volume = {abs/2204.04263},
year = {2022},
url = {https://doi.org/10.48550/arXiv.2204.04263},
doi = {10.48550/arXiv.2204.04263},
eprinttype = {arXiv},
eprint = {2204.04263},
timestamp = {Wed, 11 May 2022 15:24:37 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2204-04263.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DATASETNAME = "biored"
_DISPLAYNAME = "BioRED"
_DESCRIPTION = """\
Relation Extraction corpus with multiple entity types (e.g., gene/protein,
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical),
on a set of 600 PubMed articles
"""
_HOMEPAGE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/"
_LICENSE = 'License information unavailable'
_URLS = {
_DATASETNAME: "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/BIORED.zip",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
logger = datasets.utils.logging.get_logger(__name__)
class BioredDataset(datasets.GeneratorBasedBuilder):
"""Relation Extraction corpus with multiple entity types (e.g., gene/protein, disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical), on a set of 600 PubMed articles"""
# For bigbio_kb, this dataset uses a naming convention as
# uid_[title/abstract/relation/entity_id]_[entity/relation_uid]
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name=_DATASETNAME + "_source",
version=SOURCE_VERSION,
description=_DATASETNAME + " source schema",
schema="source",
subset_id=_DATASETNAME,
),
BigBioConfig(
name=_DATASETNAME + "_bigbio_kb",
version=BIGBIO_VERSION,
description=_DATASETNAME + " BigBio schema",
schema="bigbio_kb",
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = _DATASETNAME + "_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"passages": [
{
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
}
],
"entities": [
{
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"concept_id": datasets.Value("string"),
"semantic_type_id": datasets.Sequence(
datasets.Value("string")
),
}
],
"relations": [
{
"novel": datasets.Value("string"),
"type": datasets.Value("string"),
"concept_1": datasets.Value("string"),
"concept_2": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "BioRED", "Train.PubTator"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "BioRED", "Test.PubTator"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "BioRED", "Dev.PubTator"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
with open(filepath, "r", encoding="utf8") as fstream:
for raw_document in self.generate_raw_docs(fstream):
document = self.parse_raw_doc(raw_document)
yield document["pmid"], document
elif self.config.schema == "bigbio_kb":
with open(filepath, "r", encoding="utf8") as fstream:
uid = itertools.count(0)
for raw_document in self.generate_raw_docs(fstream):
entities_in_doc = dict()
document = self.parse_raw_doc(raw_document)
pmid = document.pop("pmid")
document["id"] = str(next(uid))
document["document_id"] = pmid
entities_ = []
relations_ = []
for entity in document["entities"]:
temp_id = document["id"] + "_" + str(entity["concept_id"])
curr_entity_count = entities_in_doc.get(temp_id, 0)
entities_.append(
{
"id": temp_id + "_" + str(curr_entity_count),
"type": entity["semantic_type_id"],
"text": entity["text"],
"normalized": [],
"offsets": entity["offsets"],
}
)
entities_in_doc[temp_id] = curr_entity_count + 1
rel_uid = itertools.count(0)
for relation in document["relations"]:
relations_.append(
{
"id": document["id"]
+ "_relation_"
+ str(next(rel_uid)),
"type": relation["type"],
"arg1_id": document["id"]
+ "_"
+ str(relation["concept_1"])
+ "_0",
"arg2_id": document["id"]
+ "_"
+ str(relation["concept_2"])
+ "_0",
"normalized": [],
}
)
for passage in document["passages"]:
passage["id"] = document["id"] + "_" + passage["type"]
document["entities"] = entities_
document["relations"] = relations_
document["events"] = []
document["coreferences"] = []
yield document["document_id"], document
def generate_raw_docs(self, fstream):
"""
Given a filestream, this function yields documents from it
"""
raw_document = []
for line in fstream:
if line.strip():
raw_document.append(line.strip())
elif raw_document:
yield raw_document
raw_document = []
if raw_document:
yield raw_document
def parse_raw_doc(self, raw_doc):
pmid, _, title = raw_doc[0].split("|")
pmid = int(pmid)
_, _, abstract = raw_doc[1].split("|")
passages = [
{"type": "title", "text": [title], "offsets": [[0, len(title)]]},
{
"type": "abstract",
"text": [abstract],
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
},
]
entities = []
relations = []
for line in raw_doc[2:]:
mentions = line.split("\t")
(_pmid, _type_ind, *rest) = mentions
if _type_ind in [
"Positive_Correlation",
"Association",
"Negative_Correlation",
"Bind",
"Conversion",
"Cotreatment",
"Cause",
"Comparison",
"Drug_Interaction",
]:
# Relations handled here
relation_type = _type_ind
concept_1, concept_2, novel = rest
relation = {
"type": relation_type,
"concept_1": concept_1,
"concept_2": concept_2,
"novel": novel,
}
relations.append(relation)
elif _type_ind.isnumeric():
# Entities handled here
start_idx = _type_ind
end_idx, mention, semantic_type_id, entity_ids = rest
entity = [
{
"offsets": [[int(start_idx), int(end_idx)]],
"text": [mention],
"semantic_type_id": semantic_type_id.split(","),
"concept_id": entity_id,
}
for entity_id in entity_ids.split(",")
]
entities.extend(entity)
else:
logger.warn(
f"Skipping annotation in Document ID: {_pmid}. Unexpected format"
)
return {
"pmid": pmid,
"passages": passages,
"entities": entities,
"relations": relations,
}
|