Datasets:

Languages:
English
ArXiv:
License:
File size: 12,080 Bytes
f987ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Relation Extraction corpus with multiple entity types (e.g., gene/protein,
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical),
on a set of 600 PubMed articles
"""

import itertools
import os
from typing import Dict, List, Tuple

import datasets
from bioc import pubtator

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{DBLP:journals/corr/abs-2204-04263,
  author    = {Ling Luo and
               Po{-}Ting Lai and
               Chih{-}Hsuan Wei and
               Cecilia N. Arighi and
               Zhiyong Lu},
  title     = {BioRED: {A} Comprehensive Biomedical Relation Extraction Dataset},
  journal   = {CoRR},
  volume    = {abs/2204.04263},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2204.04263},
  doi       = {10.48550/arXiv.2204.04263},
  eprinttype = {arXiv},
  eprint    = {2204.04263},
  timestamp = {Wed, 11 May 2022 15:24:37 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2204-04263.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DATASETNAME = "biored"
_DISPLAYNAME = "BioRED"

_DESCRIPTION = """\
Relation Extraction corpus with multiple entity types (e.g., gene/protein,
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical),
on a set of 600 PubMed articles
"""

_HOMEPAGE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/"

_LICENSE = 'License information unavailable'

_URLS = {
    _DATASETNAME: "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/BIORED.zip",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"

logger = datasets.utils.logging.get_logger(__name__)


class BioredDataset(datasets.GeneratorBasedBuilder):
    """Relation Extraction corpus with multiple entity types (e.g., gene/protein, disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical), on a set of 600 PubMed articles"""

    # For bigbio_kb, this dataset uses a naming convention as
    # uid_[title/abstract/relation/entity_id]_[entity/relation_uid]

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name=_DATASETNAME + "_source",
            version=SOURCE_VERSION,
            description=_DATASETNAME + " source schema",
            schema="source",
            subset_id=_DATASETNAME,
        ),
        BigBioConfig(
            name=_DATASETNAME + "_bigbio_kb",
            version=BIGBIO_VERSION,
            description=_DATASETNAME + " BigBio schema",
            schema="bigbio_kb",
            subset_id=_DATASETNAME,
        ),
    ]

    DEFAULT_CONFIG_NAME = _DATASETNAME + "_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
                {
                    "pmid": datasets.Value("string"),
                    "passages": [
                        {
                            "type": datasets.Value("string"),
                            "text": datasets.Sequence(datasets.Value("string")),
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
                        }
                    ],
                    "entities": [
                        {
                            "text": datasets.Sequence(datasets.Value("string")),
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
                            "concept_id": datasets.Value("string"),
                            "semantic_type_id": datasets.Sequence(
                                datasets.Value("string")
                            ),
                        }
                    ],
                    "relations": [
                        {
                            "novel": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "concept_1": datasets.Value("string"),
                            "concept_2": datasets.Value("string"),
                        }
                    ],
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # Whatever you put in gen_kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "BioRED", "Train.PubTator"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "BioRED", "Test.PubTator"),
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "BioRED", "Dev.PubTator"),
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        if self.config.schema == "source":
            with open(filepath, "r", encoding="utf8") as fstream:
                for raw_document in self.generate_raw_docs(fstream):
                    document = self.parse_raw_doc(raw_document)
                    yield document["pmid"], document

        elif self.config.schema == "bigbio_kb":
            with open(filepath, "r", encoding="utf8") as fstream:
                uid = itertools.count(0)
                for raw_document in self.generate_raw_docs(fstream):
                    entities_in_doc = dict()
                    document = self.parse_raw_doc(raw_document)
                    pmid = document.pop("pmid")
                    document["id"] = str(next(uid))
                    document["document_id"] = pmid
                    entities_ = []
                    relations_ = []
                    for entity in document["entities"]:
                        temp_id = document["id"] + "_" + str(entity["concept_id"])
                        curr_entity_count = entities_in_doc.get(temp_id, 0)
                        entities_.append(
                            {
                                "id": temp_id + "_" + str(curr_entity_count),
                                "type": entity["semantic_type_id"],
                                "text": entity["text"],
                                "normalized": [],
                                "offsets": entity["offsets"],
                            }
                        )
                        entities_in_doc[temp_id] = curr_entity_count + 1
                    rel_uid = itertools.count(0)
                    for relation in document["relations"]:
                        relations_.append(
                            {
                                "id": document["id"]
                                + "_relation_"
                                + str(next(rel_uid)),
                                "type": relation["type"],
                                "arg1_id": document["id"]
                                + "_"
                                + str(relation["concept_1"])
                                + "_0",
                                "arg2_id": document["id"]
                                + "_"
                                + str(relation["concept_2"])
                                + "_0",
                                "normalized": [],
                            }
                        )
                    for passage in document["passages"]:
                        passage["id"] = document["id"] + "_" + passage["type"]
                    document["entities"] = entities_
                    document["relations"] = relations_
                    document["events"] = []
                    document["coreferences"] = []
                    yield document["document_id"], document

    def generate_raw_docs(self, fstream):
        """
        Given a filestream, this function yields documents from it
        """
        raw_document = []
        for line in fstream:
            if line.strip():
                raw_document.append(line.strip())
            elif raw_document:
                yield raw_document
                raw_document = []
        if raw_document:
            yield raw_document

    def parse_raw_doc(self, raw_doc):
        pmid, _, title = raw_doc[0].split("|")
        pmid = int(pmid)
        _, _, abstract = raw_doc[1].split("|")
        passages = [
            {"type": "title", "text": [title], "offsets": [[0, len(title)]]},
            {
                "type": "abstract",
                "text": [abstract],
                "offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
            },
        ]
        entities = []
        relations = []
        for line in raw_doc[2:]:
            mentions = line.split("\t")
            (_pmid, _type_ind, *rest) = mentions
            if _type_ind in [
                "Positive_Correlation",
                "Association",
                "Negative_Correlation",
                "Bind",
                "Conversion",
                "Cotreatment",
                "Cause",
                "Comparison",
                "Drug_Interaction",
            ]:
                # Relations handled here
                relation_type = _type_ind
                concept_1, concept_2, novel = rest
                relation = {
                    "type": relation_type,
                    "concept_1": concept_1,
                    "concept_2": concept_2,
                    "novel": novel,
                }
                relations.append(relation)
            elif _type_ind.isnumeric():
                # Entities handled here
                start_idx = _type_ind
                end_idx, mention, semantic_type_id, entity_ids = rest
                entity = [
                    {
                        "offsets": [[int(start_idx), int(end_idx)]],
                        "text": [mention],
                        "semantic_type_id": semantic_type_id.split(","),
                        "concept_id": entity_id,
                    }
                    for entity_id in entity_ids.split(",")
                ]
                entities.extend(entity)
            else:
                logger.warn(
                    f"Skipping annotation in Document ID: {_pmid}. Unexpected format"
                )
        return {
            "pmid": pmid,
            "passages": passages,
            "entities": entities,
            "relations": relations,
        }