gabrielaltay
commited on
Commit
·
f987ba2
1
Parent(s):
35ac26d
upload hubscripts/biored_hub.py to hub from bigbio repo
Browse files
biored.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Relation Extraction corpus with multiple entity types (e.g., gene/protein,
|
18 |
+
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical),
|
19 |
+
on a set of 600 PubMed articles
|
20 |
+
"""
|
21 |
+
|
22 |
+
import itertools
|
23 |
+
import os
|
24 |
+
from typing import Dict, List, Tuple
|
25 |
+
|
26 |
+
import datasets
|
27 |
+
from bioc import pubtator
|
28 |
+
|
29 |
+
from .bigbiohub import kb_features
|
30 |
+
from .bigbiohub import BigBioConfig
|
31 |
+
from .bigbiohub import Tasks
|
32 |
+
|
33 |
+
_LANGUAGES = ['English']
|
34 |
+
_PUBMED = True
|
35 |
+
_LOCAL = False
|
36 |
+
_CITATION = """\
|
37 |
+
@article{DBLP:journals/corr/abs-2204-04263,
|
38 |
+
author = {Ling Luo and
|
39 |
+
Po{-}Ting Lai and
|
40 |
+
Chih{-}Hsuan Wei and
|
41 |
+
Cecilia N. Arighi and
|
42 |
+
Zhiyong Lu},
|
43 |
+
title = {BioRED: {A} Comprehensive Biomedical Relation Extraction Dataset},
|
44 |
+
journal = {CoRR},
|
45 |
+
volume = {abs/2204.04263},
|
46 |
+
year = {2022},
|
47 |
+
url = {https://doi.org/10.48550/arXiv.2204.04263},
|
48 |
+
doi = {10.48550/arXiv.2204.04263},
|
49 |
+
eprinttype = {arXiv},
|
50 |
+
eprint = {2204.04263},
|
51 |
+
timestamp = {Wed, 11 May 2022 15:24:37 +0200},
|
52 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2204-04263.bib},
|
53 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
54 |
+
}
|
55 |
+
"""
|
56 |
+
|
57 |
+
_DATASETNAME = "biored"
|
58 |
+
_DISPLAYNAME = "BioRED"
|
59 |
+
|
60 |
+
_DESCRIPTION = """\
|
61 |
+
Relation Extraction corpus with multiple entity types (e.g., gene/protein,
|
62 |
+
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical),
|
63 |
+
on a set of 600 PubMed articles
|
64 |
+
"""
|
65 |
+
|
66 |
+
_HOMEPAGE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/"
|
67 |
+
|
68 |
+
_LICENSE = 'License information unavailable'
|
69 |
+
|
70 |
+
_URLS = {
|
71 |
+
_DATASETNAME: "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/BIORED.zip",
|
72 |
+
}
|
73 |
+
|
74 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
75 |
+
|
76 |
+
_SOURCE_VERSION = "1.0.0"
|
77 |
+
|
78 |
+
_BIGBIO_VERSION = "1.0.0"
|
79 |
+
|
80 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
81 |
+
|
82 |
+
|
83 |
+
class BioredDataset(datasets.GeneratorBasedBuilder):
|
84 |
+
"""Relation Extraction corpus with multiple entity types (e.g., gene/protein, disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical), on a set of 600 PubMed articles"""
|
85 |
+
|
86 |
+
# For bigbio_kb, this dataset uses a naming convention as
|
87 |
+
# uid_[title/abstract/relation/entity_id]_[entity/relation_uid]
|
88 |
+
|
89 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
90 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
91 |
+
|
92 |
+
BUILDER_CONFIGS = [
|
93 |
+
BigBioConfig(
|
94 |
+
name=_DATASETNAME + "_source",
|
95 |
+
version=SOURCE_VERSION,
|
96 |
+
description=_DATASETNAME + " source schema",
|
97 |
+
schema="source",
|
98 |
+
subset_id=_DATASETNAME,
|
99 |
+
),
|
100 |
+
BigBioConfig(
|
101 |
+
name=_DATASETNAME + "_bigbio_kb",
|
102 |
+
version=BIGBIO_VERSION,
|
103 |
+
description=_DATASETNAME + " BigBio schema",
|
104 |
+
schema="bigbio_kb",
|
105 |
+
subset_id=_DATASETNAME,
|
106 |
+
),
|
107 |
+
]
|
108 |
+
|
109 |
+
DEFAULT_CONFIG_NAME = _DATASETNAME + "_source"
|
110 |
+
|
111 |
+
def _info(self) -> datasets.DatasetInfo:
|
112 |
+
|
113 |
+
if self.config.schema == "source":
|
114 |
+
|
115 |
+
features = datasets.Features(
|
116 |
+
{
|
117 |
+
"pmid": datasets.Value("string"),
|
118 |
+
"passages": [
|
119 |
+
{
|
120 |
+
"type": datasets.Value("string"),
|
121 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
122 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"entities": [
|
126 |
+
{
|
127 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
128 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
129 |
+
"concept_id": datasets.Value("string"),
|
130 |
+
"semantic_type_id": datasets.Sequence(
|
131 |
+
datasets.Value("string")
|
132 |
+
),
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"relations": [
|
136 |
+
{
|
137 |
+
"novel": datasets.Value("string"),
|
138 |
+
"type": datasets.Value("string"),
|
139 |
+
"concept_1": datasets.Value("string"),
|
140 |
+
"concept_2": datasets.Value("string"),
|
141 |
+
}
|
142 |
+
],
|
143 |
+
}
|
144 |
+
)
|
145 |
+
|
146 |
+
elif self.config.schema == "bigbio_kb":
|
147 |
+
features = kb_features
|
148 |
+
|
149 |
+
return datasets.DatasetInfo(
|
150 |
+
description=_DESCRIPTION,
|
151 |
+
features=features,
|
152 |
+
homepage=_HOMEPAGE,
|
153 |
+
license=str(_LICENSE),
|
154 |
+
citation=_CITATION,
|
155 |
+
)
|
156 |
+
|
157 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
158 |
+
"""Returns SplitGenerators."""
|
159 |
+
|
160 |
+
urls = _URLS[_DATASETNAME]
|
161 |
+
data_dir = dl_manager.download_and_extract(urls)
|
162 |
+
|
163 |
+
return [
|
164 |
+
datasets.SplitGenerator(
|
165 |
+
name=datasets.Split.TRAIN,
|
166 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
167 |
+
gen_kwargs={
|
168 |
+
"filepath": os.path.join(data_dir, "BioRED", "Train.PubTator"),
|
169 |
+
"split": "train",
|
170 |
+
},
|
171 |
+
),
|
172 |
+
datasets.SplitGenerator(
|
173 |
+
name=datasets.Split.TEST,
|
174 |
+
gen_kwargs={
|
175 |
+
"filepath": os.path.join(data_dir, "BioRED", "Test.PubTator"),
|
176 |
+
"split": "test",
|
177 |
+
},
|
178 |
+
),
|
179 |
+
datasets.SplitGenerator(
|
180 |
+
name=datasets.Split.VALIDATION,
|
181 |
+
gen_kwargs={
|
182 |
+
"filepath": os.path.join(data_dir, "BioRED", "Dev.PubTator"),
|
183 |
+
"split": "dev",
|
184 |
+
},
|
185 |
+
),
|
186 |
+
]
|
187 |
+
|
188 |
+
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
|
189 |
+
"""Yields examples as (key, example) tuples."""
|
190 |
+
|
191 |
+
if self.config.schema == "source":
|
192 |
+
with open(filepath, "r", encoding="utf8") as fstream:
|
193 |
+
for raw_document in self.generate_raw_docs(fstream):
|
194 |
+
document = self.parse_raw_doc(raw_document)
|
195 |
+
yield document["pmid"], document
|
196 |
+
|
197 |
+
elif self.config.schema == "bigbio_kb":
|
198 |
+
with open(filepath, "r", encoding="utf8") as fstream:
|
199 |
+
uid = itertools.count(0)
|
200 |
+
for raw_document in self.generate_raw_docs(fstream):
|
201 |
+
entities_in_doc = dict()
|
202 |
+
document = self.parse_raw_doc(raw_document)
|
203 |
+
pmid = document.pop("pmid")
|
204 |
+
document["id"] = str(next(uid))
|
205 |
+
document["document_id"] = pmid
|
206 |
+
entities_ = []
|
207 |
+
relations_ = []
|
208 |
+
for entity in document["entities"]:
|
209 |
+
temp_id = document["id"] + "_" + str(entity["concept_id"])
|
210 |
+
curr_entity_count = entities_in_doc.get(temp_id, 0)
|
211 |
+
entities_.append(
|
212 |
+
{
|
213 |
+
"id": temp_id + "_" + str(curr_entity_count),
|
214 |
+
"type": entity["semantic_type_id"],
|
215 |
+
"text": entity["text"],
|
216 |
+
"normalized": [],
|
217 |
+
"offsets": entity["offsets"],
|
218 |
+
}
|
219 |
+
)
|
220 |
+
entities_in_doc[temp_id] = curr_entity_count + 1
|
221 |
+
rel_uid = itertools.count(0)
|
222 |
+
for relation in document["relations"]:
|
223 |
+
relations_.append(
|
224 |
+
{
|
225 |
+
"id": document["id"]
|
226 |
+
+ "_relation_"
|
227 |
+
+ str(next(rel_uid)),
|
228 |
+
"type": relation["type"],
|
229 |
+
"arg1_id": document["id"]
|
230 |
+
+ "_"
|
231 |
+
+ str(relation["concept_1"])
|
232 |
+
+ "_0",
|
233 |
+
"arg2_id": document["id"]
|
234 |
+
+ "_"
|
235 |
+
+ str(relation["concept_2"])
|
236 |
+
+ "_0",
|
237 |
+
"normalized": [],
|
238 |
+
}
|
239 |
+
)
|
240 |
+
for passage in document["passages"]:
|
241 |
+
passage["id"] = document["id"] + "_" + passage["type"]
|
242 |
+
document["entities"] = entities_
|
243 |
+
document["relations"] = relations_
|
244 |
+
document["events"] = []
|
245 |
+
document["coreferences"] = []
|
246 |
+
yield document["document_id"], document
|
247 |
+
|
248 |
+
def generate_raw_docs(self, fstream):
|
249 |
+
"""
|
250 |
+
Given a filestream, this function yields documents from it
|
251 |
+
"""
|
252 |
+
raw_document = []
|
253 |
+
for line in fstream:
|
254 |
+
if line.strip():
|
255 |
+
raw_document.append(line.strip())
|
256 |
+
elif raw_document:
|
257 |
+
yield raw_document
|
258 |
+
raw_document = []
|
259 |
+
if raw_document:
|
260 |
+
yield raw_document
|
261 |
+
|
262 |
+
def parse_raw_doc(self, raw_doc):
|
263 |
+
pmid, _, title = raw_doc[0].split("|")
|
264 |
+
pmid = int(pmid)
|
265 |
+
_, _, abstract = raw_doc[1].split("|")
|
266 |
+
passages = [
|
267 |
+
{"type": "title", "text": [title], "offsets": [[0, len(title)]]},
|
268 |
+
{
|
269 |
+
"type": "abstract",
|
270 |
+
"text": [abstract],
|
271 |
+
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
|
272 |
+
},
|
273 |
+
]
|
274 |
+
entities = []
|
275 |
+
relations = []
|
276 |
+
for line in raw_doc[2:]:
|
277 |
+
mentions = line.split("\t")
|
278 |
+
(_pmid, _type_ind, *rest) = mentions
|
279 |
+
if _type_ind in [
|
280 |
+
"Positive_Correlation",
|
281 |
+
"Association",
|
282 |
+
"Negative_Correlation",
|
283 |
+
"Bind",
|
284 |
+
"Conversion",
|
285 |
+
"Cotreatment",
|
286 |
+
"Cause",
|
287 |
+
"Comparison",
|
288 |
+
"Drug_Interaction",
|
289 |
+
]:
|
290 |
+
# Relations handled here
|
291 |
+
relation_type = _type_ind
|
292 |
+
concept_1, concept_2, novel = rest
|
293 |
+
relation = {
|
294 |
+
"type": relation_type,
|
295 |
+
"concept_1": concept_1,
|
296 |
+
"concept_2": concept_2,
|
297 |
+
"novel": novel,
|
298 |
+
}
|
299 |
+
relations.append(relation)
|
300 |
+
elif _type_ind.isnumeric():
|
301 |
+
# Entities handled here
|
302 |
+
start_idx = _type_ind
|
303 |
+
end_idx, mention, semantic_type_id, entity_ids = rest
|
304 |
+
entity = [
|
305 |
+
{
|
306 |
+
"offsets": [[int(start_idx), int(end_idx)]],
|
307 |
+
"text": [mention],
|
308 |
+
"semantic_type_id": semantic_type_id.split(","),
|
309 |
+
"concept_id": entity_id,
|
310 |
+
}
|
311 |
+
for entity_id in entity_ids.split(",")
|
312 |
+
]
|
313 |
+
entities.extend(entity)
|
314 |
+
else:
|
315 |
+
logger.warn(
|
316 |
+
f"Skipping annotation in Document ID: {_pmid}. Unexpected format"
|
317 |
+
)
|
318 |
+
return {
|
319 |
+
"pmid": pmid,
|
320 |
+
"passages": passages,
|
321 |
+
"entities": entities,
|
322 |
+
"relations": relations,
|
323 |
+
}
|