peacock-data-public-datasets-idc-config_toyds
/
bigscience
/experiments
/gpt2-hf-ds
/hf_ds_gpt2_perf_n16.slurm
#!/bin/bash | |
#SBATCH --job-name=hf_ds_gpt2_perf_n16 | |
#SBATCH --constraint=v100-32g | |
#SBATCH --nodes=16 | |
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! | |
#SBATCH --cpus-per-task=40 # number of cores per tasks | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --gres=gpu:4 # number of gpus | |
#SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=%x-%j.out # output file name | |
#SBATCH --error=%x-%j.out # error file name (same to watch just one file) | |
#SBATCH --account=six@gpu | |
set -x -e | |
export PYTHONUNBUFFERED=1 | |
source $six_ALL_CCFRWORK/start-prod | |
nvidia-smi | |
cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/ | |
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets | |
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules | |
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics | |
DATASET="stas/openwebtext-10k" | |
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) | |
MASTER_PORT=6000 | |
# adjust depending on the number of the nodes | |
NNODES=16 | |
MICRO_BATCH_SIZE=10 # 10 is 99% gpu | |
# succeeded: | |
MSIZE=52 | |
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36 | |
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32 | |
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40 | |
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40 | |
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48 | |
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48 | |
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64 | |
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64 | |
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64 | |
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64 | |
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64 | |
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64 | |
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64 | |
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64 | |
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64 | |
else echo "invalid MSIZE: $MSIZE" | |
fi | |
GPUS_PER_NODE=4 | |
NHEADS=32 | |
SEQ_LEN=1024 | |
VOCAB_SIZE=50257 | |
export LAUNCHER="python -u -m torch.distributed.launch \ | |
--nproc_per_node $GPUS_PER_NODE \ | |
--nnodes $NNODES \ | |
--master_addr $MASTER_ADDR \ | |
--master_port $MASTER_PORT \ | |
" | |
config_json="./ds_z3_cpu_offload.json" | |
cat <<EOT > $config_json | |
{ | |
"fp16": { | |
"enabled": "auto", | |
"loss_scale": 0, | |
"loss_scale_window": 1000, | |
"initial_scale_power": 8, | |
"hysteresis": 2, | |
"min_loss_scale": 1 | |
}, | |
"optimizer": { | |
"type": "AdamW", | |
"params": { | |
"lr": "auto", | |
"betas": "auto", | |
"eps": "auto", | |
"weight_decay": "auto" | |
} | |
}, | |
"scheduler": { | |
"type": "WarmupLR", | |
"params": { | |
"warmup_min_lr": "auto", | |
"warmup_max_lr": "auto", | |
"warmup_num_steps": "auto" | |
} | |
}, | |
"zero_optimization": { | |
"stage": 3, | |
"offload_optimizer": { | |
"device": "none" | |
}, | |
"offload_param": { | |
"device": "none" | |
}, | |
"overlap_comm": true, | |
"contiguous_gradients": true, | |
"sub_group_size": 1e14, | |
"reduce_bucket_size": "auto", | |
"stage3_prefetch_bucket_size": "auto", | |
"stage3_param_persistence_threshold": "auto", | |
"stage3_max_live_parameters": 1e9, | |
"stage3_max_reuse_distance": 1e9, | |
"stage3_gather_fp16_weights_on_model_save": false | |
}, | |
"gradient_accumulation_steps": "auto", | |
"gradient_clipping": "auto", | |
"steps_per_print": 2000, | |
"train_batch_size": "auto", | |
"train_micro_batch_size_per_gpu": "auto", | |
"wall_clock_breakdown": false | |
} | |
EOT | |
export PYTHONPATH=src | |
export HF_DATASETS_OFFLINE=1 | |
export TRANSFORMERS_OFFLINE=1 | |
export USE_TF=0 | |
# new arg to start using | |
# --log_on_each_node 0 \ | |
export CMD=" \ | |
examples/pytorch/language-modeling/run_clm.py \ | |
--model_type gpt2 \ | |
--tokenizer_name gpt2 \ | |
--config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \ | |
--dataset_name $DATASET \ | |
--output_dir output_dir \ | |
--overwrite_output_dir \ | |
--do_train \ | |
--max_train_samples 1000 \ | |
--per_device_train_batch_size $MICRO_BATCH_SIZE \ | |
--num_train_epochs 1 \ | |
--warmup_steps 8 \ | |
--fp16 \ | |
--report_to none \ | |
--deepspeed $config_json \ | |
" | |
# clear old checkpoint as it'd mismatch while we sort things out | |
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node | |
# model size | |
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')" | |
# make sure no zombies have been left behind from previous runs | |
export PKILL="pkill python" | |
echo $CMD | |
# to debug - add echo (it exits and prints what it would have launched) | |
clear; srun --jobid $SLURM_JOBID bash -c '$PKILL; $LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_perf_n16_bs4.out | |