applied-ai-018's picture
Add files using upload-large-folder tool
436b925 verified
#!/bin/bash
#SBATCH --job-name=hf_ds_gpt2_perf_n16
#SBATCH --constraint=v100-32g
#SBATCH --nodes=16
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:4 # number of gpus
#SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --error=%x-%j.out # error file name (same to watch just one file)
#SBATCH --account=six@gpu
set -x -e
export PYTHONUNBUFFERED=1
source $six_ALL_CCFRWORK/start-prod
nvidia-smi
cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
DATASET="stas/openwebtext-10k"
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000
# adjust depending on the number of the nodes
NNODES=16
MICRO_BATCH_SIZE=10 # 10 is 99% gpu
# succeeded:
MSIZE=52
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
else echo "invalid MSIZE: $MSIZE"
fi
GPUS_PER_NODE=4
NHEADS=32
SEQ_LEN=1024
VOCAB_SIZE=50257
export LAUNCHER="python -u -m torch.distributed.launch \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
config_json="./ds_z3_cpu_offload.json"
cat <<EOT > $config_json
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 8,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "none"
},
"offload_param": {
"device": "none"
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e14,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_fp16_weights_on_model_save": false
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
EOT
export PYTHONPATH=src
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
export USE_TF=0
# new arg to start using
# --log_on_each_node 0 \
export CMD=" \
examples/pytorch/language-modeling/run_clm.py \
--model_type gpt2 \
--tokenizer_name gpt2 \
--config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
--dataset_name $DATASET \
--output_dir output_dir \
--overwrite_output_dir \
--do_train \
--max_train_samples 1000 \
--per_device_train_batch_size $MICRO_BATCH_SIZE \
--num_train_epochs 1 \
--warmup_steps 8 \
--fp16 \
--report_to none \
--deepspeed $config_json \
"
# clear old checkpoint as it'd mismatch while we sort things out
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
# model size
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
# make sure no zombies have been left behind from previous runs
export PKILL="pkill python"
echo $CMD
# to debug - add echo (it exits and prints what it would have launched)
clear; srun --jobid $SLURM_JOBID bash -c '$PKILL; $LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_perf_n16_bs4.out