applied-ai-018
commited on
Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- bigscience/evaluation/README.md +7 -0
- bigscience/evaluation/results/tr1/Tr1-13B-harness-eval.json +165 -0
- bigscience/evaluation/results/tr11/README.md +11 -0
- bigscience/evaluation/results/tr11/bloom1b3/bslmeval.json +2938 -0
- bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-13-19-23-37.json +701 -0
- bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-15-11-47-34.json +0 -0
- bigscience/evaluation/results/tr11/bloom1b3/humaneval_temp06.json +1 -0
- bigscience/evaluation/results/tr11/bloom1b3/humaneval_temp08.json +1 -0
- bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/concat.py +103 -0
- bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-12-23-19-06.json +0 -0
- bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-13-10-19.json +0 -0
- bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-20-09-16.json +1255 -0
- bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-evalharness-results_lm-eval_global_step337250_2022-07-13-09-55-04.json +172 -0
- bigscience/evaluation/results/tr11/bloom2b5/humaneval_temp06.json +1 -0
- bigscience/evaluation/results/tr11/bloom2b5/mdtable.txt +143 -0
- bigscience/evaluation/results/tr11/get_templates.sh +27 -0
- bigscience/evaluation/results/tr12/tr12a-1B3-oscar-en-filtered_agg.json +0 -0
- bigscience/evaluation/results/tr12/tr12b-1B3-oscar-en-filtered-dedup_agg.json +0 -0
- bigscience/evaluation/results/tr13/download_bslmeval.slurm +37 -0
- bigscience/evaluation/results/tr13/results_to_csv.py +72 -0
- bigscience/evaluation/results/tr3/README.md +1 -0
- bigscience/evaluation/results/tr3/switch_tokenizer_to_t5_for_tr3e.sh +6 -0
- bigscience/evaluation/results/tr3/tr3d-1B3-oscar-checkpoints_agg.json +0 -0
- bigscience/evaluation/utilities/download_all_models.py +47 -0
- bigscience/evaluation/utilities/download_all_models.slurm +26 -0
- bigscience/evaluation/utilities/export_results_through_training_to_wandb.py +86 -0
- bigscience/evaluation/utilities/find_checkpoints_at_token_intervals.py +27 -0
- bigscience/evaluation/utilities/plot_all_eval.py +45 -0
- bigscience/experiments/bandwidth/README.md +117 -0
- bigscience/experiments/bandwidth/all_reduce_bench-32gb-n4.slurm +20 -0
- bigscience/experiments/bandwidth/all_reduce_bench-32gb-n4.txt +850 -0
- bigscience/experiments/bandwidth/all_reduce_bench-a100-n4.slurm +24 -0
- bigscience/experiments/bandwidth/all_reduce_bench-a100-n4.txt +1424 -0
- bigscience/experiments/bandwidth/all_reduce_bench.py +66 -0
- bigscience/experiments/bandwidth/n16_32gb_all_reduce_bench.txt +0 -0
- bigscience/experiments/bandwidth/n1_16gb_all_reduce_bench.txt +264 -0
- bigscience/experiments/bandwidth/n1_32gb_all_reduce_bench.txt +264 -0
- bigscience/experiments/decoder-only-lm/gpt2_deepspeed.sh +25 -0
- bigscience/experiments/decoder-only-lm/models/__init__.py +0 -0
- bigscience/experiments/decoder-only-lm/models/decoder_only_t5/__init__.py +2 -0
- bigscience/experiments/decoder-only-lm/models/decoder_only_t5/configuration_decoder_only_t5.py +134 -0
- bigscience/experiments/decoder-only-lm/models/decoder_only_t5/modeling_decoder_only_t5.py +1517 -0
- bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n16-1832552.out +0 -0
- bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n16.slurm +169 -0
- bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n32.slurm +168 -0
- bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n4-1832555.out +0 -0
- bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n4.slurm +164 -0
- bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n8-1832573.out +0 -0
- bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n8.slurm +168 -0
- bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_perf_n16.slurm +169 -0
bigscience/evaluation/README.md
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Evaluation
|
2 |
+
|
3 |
+
This folder contains scripts and results for intermediate evaluation, mostly based on zero-shot prompting performance. Most are performed with Eleuther AI's [LM eval harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
4 |
+
|
5 |
+
Evaluated models:
|
6 |
+
- BLOOM (tr11 / The `bigscience/bloom` model in 176B / 6B3 / 2B5 / 1B3 / 750M / 350M variants)
|
7 |
+
- [13B](https://github.com/bigscience-workshop/bigscience/blob/master/evaluation/Tr1-13B-harness-eval.json)
|
bigscience/evaluation/results/tr1/Tr1-13B-harness-eval.json
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"lambada": {
|
4 |
+
"ppl": 5.020137688328123,
|
5 |
+
"ppl_stderr": 0.11575351197990837,
|
6 |
+
"acc": 0.634193673588201,
|
7 |
+
"acc_stderr": 0.006710403442216892
|
8 |
+
},
|
9 |
+
"winogrande": {
|
10 |
+
"acc": 0.6471981057616417,
|
11 |
+
"acc_stderr": 0.013429728101788954
|
12 |
+
},
|
13 |
+
"hellaswag": {
|
14 |
+
"acc": 0.5416251742680741,
|
15 |
+
"acc_stderr": 0.004972460206842306,
|
16 |
+
"acc_norm": 0.7162915753833897,
|
17 |
+
"acc_norm_stderr": 0.004498757194493409
|
18 |
+
},
|
19 |
+
"piqa": {
|
20 |
+
"acc": 0.7769314472252449,
|
21 |
+
"acc_stderr": 0.009713057213018522,
|
22 |
+
"acc_norm": 0.7878128400435256,
|
23 |
+
"acc_norm_stderr": 0.009539299828174046
|
24 |
+
},
|
25 |
+
"cola": {
|
26 |
+
"mcc": 0.05586916675965605,
|
27 |
+
"mcc_stderr": 0.034250689348891604
|
28 |
+
},
|
29 |
+
"mnli": {
|
30 |
+
"acc": 0.3959246051961284,
|
31 |
+
"acc_stderr": 0.004936609703575665
|
32 |
+
},
|
33 |
+
"mnli_mismatched": {
|
34 |
+
"acc": 0.3984947111472742,
|
35 |
+
"acc_stderr": 0.004937784794740595
|
36 |
+
},
|
37 |
+
"mrpc": {
|
38 |
+
"acc": 0.6764705882352942,
|
39 |
+
"acc_stderr": 0.023189113109403536,
|
40 |
+
"f1": 0.8058823529411765,
|
41 |
+
"f1_stderr": 0.016598529068410604
|
42 |
+
},
|
43 |
+
"rte": {
|
44 |
+
"acc": 0.5234657039711191,
|
45 |
+
"acc_stderr": 0.03006330041190266
|
46 |
+
},
|
47 |
+
"qnli": {
|
48 |
+
"acc": 0.5171151382024529,
|
49 |
+
"acc_stderr": 0.006761445834294947
|
50 |
+
},
|
51 |
+
"qqp": {
|
52 |
+
"acc": 0.36772198862231015,
|
53 |
+
"acc_stderr": 0.0023981002797098354,
|
54 |
+
"f1": 0.532523819102829,
|
55 |
+
"f1_stderr": 0.0025759259415034795
|
56 |
+
},
|
57 |
+
"sst": {
|
58 |
+
"acc": 0.5137614678899083,
|
59 |
+
"acc_stderr": 0.01693543564494107
|
60 |
+
},
|
61 |
+
"wnli": {
|
62 |
+
"acc": 0.18309859154929578,
|
63 |
+
"acc_stderr": 0.046225147349214284
|
64 |
+
},
|
65 |
+
"boolq": {
|
66 |
+
"acc": 0.5868501529051988,
|
67 |
+
"acc_stderr": 0.008612117547803569
|
68 |
+
},
|
69 |
+
"copa": {
|
70 |
+
"acc": 0.88,
|
71 |
+
"acc_stderr": 0.03265986323710906
|
72 |
+
},
|
73 |
+
"multirc": {
|
74 |
+
"acc": 0.017838405036726127,
|
75 |
+
"acc_stderr": 0.00428993794671089
|
76 |
+
},
|
77 |
+
"record": {
|
78 |
+
"f1": 0.885354285714286,
|
79 |
+
"f1_stderr": 0.00314773987203575,
|
80 |
+
"em": 0.8783,
|
81 |
+
"em_stderr": 0.003269553486028481
|
82 |
+
},
|
83 |
+
"wic": {
|
84 |
+
"acc": 0.49843260188087773,
|
85 |
+
"acc_stderr": 0.019810623954060382
|
86 |
+
},
|
87 |
+
"wsc": {
|
88 |
+
"acc": 0.5,
|
89 |
+
"acc_stderr": 0.04926646390821466
|
90 |
+
},
|
91 |
+
"prost": {
|
92 |
+
"acc": 0.28047608881298036,
|
93 |
+
"acc_stderr": 0.003282038627279345,
|
94 |
+
"acc_norm": 0.2830380017079419,
|
95 |
+
"acc_norm_stderr": 0.003291119066155946
|
96 |
+
},
|
97 |
+
"mc_taco": {
|
98 |
+
"em": 0.12612612612612611,
|
99 |
+
"f1": 0.4965489467730623
|
100 |
+
},
|
101 |
+
"pubmedqa": {
|
102 |
+
"acc": 0.615,
|
103 |
+
"acc_stderr": 0.015395194445410805
|
104 |
+
},
|
105 |
+
"sciq": {
|
106 |
+
"acc": 0.895,
|
107 |
+
"acc_stderr": 0.009698921026024957,
|
108 |
+
"acc_norm": 0.815,
|
109 |
+
"acc_norm_stderr": 0.012285191326386693
|
110 |
+
},
|
111 |
+
"triviaqa": {
|
112 |
+
"acc": 0.13294440024750287,
|
113 |
+
"acc_stderr": 0.0031921904944669202
|
114 |
+
},
|
115 |
+
"arc_easy": {
|
116 |
+
"acc": 0.6813973063973064,
|
117 |
+
"acc_stderr": 0.009560775507673364,
|
118 |
+
"acc_norm": 0.6001683501683501,
|
119 |
+
"acc_norm_stderr": 0.010051788039412911
|
120 |
+
},
|
121 |
+
"arc_challenge": {
|
122 |
+
"acc": 0.3216723549488055,
|
123 |
+
"acc_stderr": 0.013650488084494164,
|
124 |
+
"acc_norm": 0.34215017064846415,
|
125 |
+
"acc_norm_stderr": 0.013864152159177275
|
126 |
+
},
|
127 |
+
"logiqa": {
|
128 |
+
"acc": 0.23195084485407066,
|
129 |
+
"acc_stderr": 0.0165552524979259,
|
130 |
+
"acc_norm": 0.2749615975422427,
|
131 |
+
"acc_norm_stderr": 0.01751297178222522
|
132 |
+
},
|
133 |
+
"openbookqa": {
|
134 |
+
"acc": 0.294,
|
135 |
+
"acc_stderr": 0.020395095484936603,
|
136 |
+
"acc_norm": 0.412,
|
137 |
+
"acc_norm_stderr": 0.022033677993740865
|
138 |
+
},
|
139 |
+
"race": {
|
140 |
+
"acc": 0.3741626794258373,
|
141 |
+
"acc_stderr": 0.014976513181619648
|
142 |
+
},
|
143 |
+
"headqa": {
|
144 |
+
"acc": 0.22283005105762219,
|
145 |
+
"acc_stderr": 0.007948594863726302,
|
146 |
+
"acc_norm": 0.26258205689277897,
|
147 |
+
"acc_norm_stderr": 0.00840494460823324
|
148 |
+
},
|
149 |
+
"mathqa": {
|
150 |
+
"acc": 0.2375209380234506,
|
151 |
+
"acc_stderr": 0.0077905030438074,
|
152 |
+
"acc_norm": 0.23450586264656617,
|
153 |
+
"acc_norm_stderr": 0.007756188894243557
|
154 |
+
},
|
155 |
+
"webqs": {
|
156 |
+
"acc": 0.0265748031496063,
|
157 |
+
"acc_stderr": 0.003568875174120304
|
158 |
+
},
|
159 |
+
"wikitext": {
|
160 |
+
"word_perplexity": 12.921754196505068,
|
161 |
+
"byte_perplexity": 1.6136995247803747,
|
162 |
+
"bits_per_byte": 0.4785293844744369
|
163 |
+
}
|
164 |
+
}
|
165 |
+
}
|
bigscience/evaluation/results/tr11/README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BigScience BLOOM Evaluation Results
|
2 |
+
|
3 |
+
This folder contains evaluation results of the BLOOM model family.
|
4 |
+
|
5 |
+
## Evaluation Procedure
|
6 |
+
|
7 |
+
- bslmeval files were created using the below:
|
8 |
+
- https://github.com/bigscience-workshop/Megatron-DeepSpeed/pull/291
|
9 |
+
- https://github.com/bigscience-workshop/lm-evaluation-harness
|
10 |
+
- humaneval files were created using the HumanEval code dataset with the below:
|
11 |
+
- https://github.com/loubnabnl/bloom-code-evaluation
|
bigscience/evaluation/results/tr11/bloom1b3/bslmeval.json
ADDED
@@ -0,0 +1,2938 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"arc_challenge": {
|
4 |
+
"2022-07-13-11-29-13": {
|
5 |
+
"acc": 0.23464163822525597,
|
6 |
+
"acc_norm": 0.26791808873720135,
|
7 |
+
"acc_norm_stderr": 0.012942030195136423,
|
8 |
+
"acc_stderr": 0.012383873560768673
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"arc_easy": {
|
12 |
+
"2022-07-13-11-29-13": {
|
13 |
+
"acc": 0.5631313131313131,
|
14 |
+
"acc_norm": 0.4810606060606061,
|
15 |
+
"acc_norm_stderr": 0.010252420496894487,
|
16 |
+
"acc_stderr": 0.010177672928157678
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"axb+GPT-3 style": {
|
20 |
+
"2022-07-15-11-47-34": {
|
21 |
+
"acc": 0.4855072463768116,
|
22 |
+
"acc_norm": 0.5878623188405797,
|
23 |
+
"acc_norm_stderr": 0.014820785339690506,
|
24 |
+
"acc_stderr": 0.015048725939283577,
|
25 |
+
"prompt_name": "GPT-3 style",
|
26 |
+
"task_name": "axb"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"axb+MNLI crowdsource": {
|
30 |
+
"2022-07-15-11-47-34": {
|
31 |
+
"acc": 0.447463768115942,
|
32 |
+
"acc_norm": 0.4166666666666667,
|
33 |
+
"acc_norm_stderr": 0.014844481058991162,
|
34 |
+
"acc_stderr": 0.0149717153798021,
|
35 |
+
"prompt_name": "MNLI crowdsource",
|
36 |
+
"task_name": "axb"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"axb+based on the previous passage": {
|
40 |
+
"2022-07-15-11-47-34": {
|
41 |
+
"acc": 0.4846014492753623,
|
42 |
+
"acc_norm": 0.4166666666666667,
|
43 |
+
"acc_norm_stderr": 0.014844481058991162,
|
44 |
+
"acc_stderr": 0.015047910329698355,
|
45 |
+
"prompt_name": "based on the previous passage",
|
46 |
+
"task_name": "axb"
|
47 |
+
}
|
48 |
+
},
|
49 |
+
"axb+can we infer": {
|
50 |
+
"2022-07-15-11-47-34": {
|
51 |
+
"acc": 0.421195652173913,
|
52 |
+
"acc_norm": 0.4166666666666667,
|
53 |
+
"acc_norm_stderr": 0.014844481058991162,
|
54 |
+
"acc_stderr": 0.014866888213508284,
|
55 |
+
"prompt_name": "can we infer",
|
56 |
+
"task_name": "axb"
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"axb+does it follow that": {
|
60 |
+
"2022-07-15-11-47-34": {
|
61 |
+
"acc": 0.4375,
|
62 |
+
"acc_norm": 0.4166666666666667,
|
63 |
+
"acc_norm_stderr": 0.014844481058991162,
|
64 |
+
"acc_stderr": 0.014936970932375573,
|
65 |
+
"prompt_name": "does it follow that",
|
66 |
+
"task_name": "axb"
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"axb+does this imply": {
|
70 |
+
"2022-07-15-11-47-34": {
|
71 |
+
"acc": 0.5353260869565217,
|
72 |
+
"acc_norm": 0.4166666666666667,
|
73 |
+
"acc_norm_stderr": 0.014844481058991162,
|
74 |
+
"acc_stderr": 0.015017429208641943,
|
75 |
+
"prompt_name": "does this imply",
|
76 |
+
"task_name": "axb"
|
77 |
+
}
|
78 |
+
},
|
79 |
+
"axb+guaranteed true": {
|
80 |
+
"2022-07-15-11-47-34": {
|
81 |
+
"acc": 0.44655797101449274,
|
82 |
+
"acc_norm": 0.4166666666666667,
|
83 |
+
"acc_norm_stderr": 0.014844481058991162,
|
84 |
+
"acc_stderr": 0.014968808595500557,
|
85 |
+
"prompt_name": "guaranteed true",
|
86 |
+
"task_name": "axb"
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"axb+justified in saying": {
|
90 |
+
"2022-07-15-11-47-34": {
|
91 |
+
"acc": 0.4365942028985507,
|
92 |
+
"acc_norm": 0.4166666666666667,
|
93 |
+
"acc_norm_stderr": 0.014844481058991162,
|
94 |
+
"acc_stderr": 0.014933509475434285,
|
95 |
+
"prompt_name": "justified in saying",
|
96 |
+
"task_name": "axb"
|
97 |
+
}
|
98 |
+
},
|
99 |
+
"axb+must be true": {
|
100 |
+
"2022-07-15-11-47-34": {
|
101 |
+
"acc": 0.4266304347826087,
|
102 |
+
"acc_norm": 0.4166666666666667,
|
103 |
+
"acc_norm_stderr": 0.014844481058991162,
|
104 |
+
"acc_stderr": 0.014892084059444173,
|
105 |
+
"prompt_name": "must be true",
|
106 |
+
"task_name": "axb"
|
107 |
+
}
|
108 |
+
},
|
109 |
+
"axb+should assume": {
|
110 |
+
"2022-07-15-11-47-34": {
|
111 |
+
"acc": 0.5163043478260869,
|
112 |
+
"acc_norm": 0.4157608695652174,
|
113 |
+
"acc_norm_stderr": 0.014839845193003246,
|
114 |
+
"acc_stderr": 0.015047045240919796,
|
115 |
+
"prompt_name": "should assume",
|
116 |
+
"task_name": "axb"
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"axg+GPT-3 style": {
|
120 |
+
"2022-07-15-11-47-34": {
|
121 |
+
"acc": 0.4803370786516854,
|
122 |
+
"acc_norm": 0.5,
|
123 |
+
"acc_norm_stderr": 0.026537244621713762,
|
124 |
+
"acc_stderr": 0.02651671646679541,
|
125 |
+
"parity": 0.9606741573033708,
|
126 |
+
"parity_stderr": 0.01460967112412074,
|
127 |
+
"prompt_name": "GPT-3 style",
|
128 |
+
"task_name": "axg"
|
129 |
+
}
|
130 |
+
},
|
131 |
+
"axg+MNLI crowdsource": {
|
132 |
+
"2022-07-15-11-47-34": {
|
133 |
+
"acc": 0.5140449438202247,
|
134 |
+
"acc_norm": 0.5,
|
135 |
+
"acc_norm_stderr": 0.026537244621713762,
|
136 |
+
"acc_stderr": 0.026526773058212952,
|
137 |
+
"parity": 0.9719101123595506,
|
138 |
+
"parity_stderr": 0.012419422972302346,
|
139 |
+
"prompt_name": "MNLI crowdsource",
|
140 |
+
"task_name": "axg"
|
141 |
+
}
|
142 |
+
},
|
143 |
+
"axg+based on the previous passage": {
|
144 |
+
"2022-07-15-11-47-34": {
|
145 |
+
"acc": 0.5,
|
146 |
+
"acc_norm": 0.5,
|
147 |
+
"acc_norm_stderr": 0.026537244621713762,
|
148 |
+
"acc_stderr": 0.026537244621713762,
|
149 |
+
"parity": 0.9662921348314607,
|
150 |
+
"parity_stderr": 0.013565419020002358,
|
151 |
+
"prompt_name": "based on the previous passage",
|
152 |
+
"task_name": "axg"
|
153 |
+
}
|
154 |
+
},
|
155 |
+
"axg+can we infer": {
|
156 |
+
"2022-07-15-11-47-34": {
|
157 |
+
"acc": 0.5,
|
158 |
+
"acc_norm": 0.5,
|
159 |
+
"acc_norm_stderr": 0.026537244621713762,
|
160 |
+
"acc_stderr": 0.026537244621713762,
|
161 |
+
"parity": 0.9887640449438202,
|
162 |
+
"parity_stderr": 0.007922544664164389,
|
163 |
+
"prompt_name": "can we infer",
|
164 |
+
"task_name": "axg"
|
165 |
+
}
|
166 |
+
},
|
167 |
+
"axg+does it follow that": {
|
168 |
+
"2022-07-15-11-47-34": {
|
169 |
+
"acc": 0.5,
|
170 |
+
"acc_norm": 0.5,
|
171 |
+
"acc_norm_stderr": 0.026537244621713762,
|
172 |
+
"acc_stderr": 0.026537244621713762,
|
173 |
+
"parity": 1.0,
|
174 |
+
"parity_stderr": 0.0,
|
175 |
+
"prompt_name": "does it follow that",
|
176 |
+
"task_name": "axg"
|
177 |
+
}
|
178 |
+
},
|
179 |
+
"axg+does this imply": {
|
180 |
+
"2022-07-15-11-47-34": {
|
181 |
+
"acc": 0.49719101123595505,
|
182 |
+
"acc_norm": 0.5,
|
183 |
+
"acc_norm_stderr": 0.026537244621713762,
|
184 |
+
"acc_stderr": 0.026536825838510643,
|
185 |
+
"parity": 0.9831460674157303,
|
186 |
+
"parity_stderr": 0.009675491064988365,
|
187 |
+
"prompt_name": "does this imply",
|
188 |
+
"task_name": "axg"
|
189 |
+
}
|
190 |
+
},
|
191 |
+
"axg+guaranteed true": {
|
192 |
+
"2022-07-15-11-47-34": {
|
193 |
+
"acc": 0.48314606741573035,
|
194 |
+
"acc_norm": 0.5,
|
195 |
+
"acc_norm_stderr": 0.026537244621713762,
|
196 |
+
"acc_stderr": 0.026522164260489825,
|
197 |
+
"parity": 0.9887640449438202,
|
198 |
+
"parity_stderr": 0.007922544664164387,
|
199 |
+
"prompt_name": "guaranteed true",
|
200 |
+
"task_name": "axg"
|
201 |
+
}
|
202 |
+
},
|
203 |
+
"axg+justified in saying": {
|
204 |
+
"2022-07-15-11-47-34": {
|
205 |
+
"acc": 0.5,
|
206 |
+
"acc_norm": 0.5,
|
207 |
+
"acc_norm_stderr": 0.026537244621713762,
|
208 |
+
"acc_stderr": 0.026537244621713762,
|
209 |
+
"parity": 0.9887640449438202,
|
210 |
+
"parity_stderr": 0.007922544664164385,
|
211 |
+
"prompt_name": "justified in saying",
|
212 |
+
"task_name": "axg"
|
213 |
+
}
|
214 |
+
},
|
215 |
+
"axg+must be true": {
|
216 |
+
"2022-07-15-11-47-34": {
|
217 |
+
"acc": 0.4803370786516854,
|
218 |
+
"acc_norm": 0.5,
|
219 |
+
"acc_norm_stderr": 0.026537244621713762,
|
220 |
+
"acc_stderr": 0.026516716466795417,
|
221 |
+
"parity": 0.9719101123595506,
|
222 |
+
"parity_stderr": 0.012419422972302347,
|
223 |
+
"prompt_name": "must be true",
|
224 |
+
"task_name": "axg"
|
225 |
+
}
|
226 |
+
},
|
227 |
+
"axg+should assume": {
|
228 |
+
"2022-07-15-11-47-34": {
|
229 |
+
"acc": 0.49719101123595505,
|
230 |
+
"acc_norm": 0.5,
|
231 |
+
"acc_norm_stderr": 0.026537244621713762,
|
232 |
+
"acc_stderr": 0.026536825838510643,
|
233 |
+
"parity": 0.949438202247191,
|
234 |
+
"parity_stderr": 0.016468648928151884,
|
235 |
+
"prompt_name": "should assume",
|
236 |
+
"task_name": "axg"
|
237 |
+
}
|
238 |
+
},
|
239 |
+
"boolq": {
|
240 |
+
"2022-07-13-11-29-13": {
|
241 |
+
"acc": 0.617737003058104,
|
242 |
+
"acc_stderr": 0.008499149690449272
|
243 |
+
}
|
244 |
+
},
|
245 |
+
"boolq+GPT-3 Style": {
|
246 |
+
"2022-07-15-11-47-34": {
|
247 |
+
"acc": 0.5896024464831804,
|
248 |
+
"acc_norm": 0.6211009174311927,
|
249 |
+
"acc_norm_stderr": 0.008484678718565017,
|
250 |
+
"acc_stderr": 0.008603488048617526,
|
251 |
+
"prompt_name": "GPT-3 Style",
|
252 |
+
"task_name": "boolq"
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"boolq+I wonder\u2026": {
|
256 |
+
"2022-07-15-11-47-34": {
|
257 |
+
"acc": 0.563914373088685,
|
258 |
+
"acc_norm": 0.6217125382262997,
|
259 |
+
"acc_norm_stderr": 0.00848200113393099,
|
260 |
+
"acc_stderr": 0.008673312776324934,
|
261 |
+
"prompt_name": "I wonder\u2026",
|
262 |
+
"task_name": "boolq"
|
263 |
+
}
|
264 |
+
},
|
265 |
+
"boolq+after_reading": {
|
266 |
+
"2022-07-15-11-47-34": {
|
267 |
+
"acc": 0.6217125382262997,
|
268 |
+
"acc_norm": 0.3804281345565749,
|
269 |
+
"acc_norm_stderr": 0.008491310027059626,
|
270 |
+
"acc_stderr": 0.00848200113393099,
|
271 |
+
"prompt_name": "after_reading",
|
272 |
+
"task_name": "boolq"
|
273 |
+
}
|
274 |
+
},
|
275 |
+
"boolq+based on the following passage": {
|
276 |
+
"2022-07-15-11-47-34": {
|
277 |
+
"acc": 0.3798165137614679,
|
278 |
+
"acc_norm": 0.6012232415902141,
|
279 |
+
"acc_norm_stderr": 0.008563973987729906,
|
280 |
+
"acc_stderr": 0.008488668235778644,
|
281 |
+
"prompt_name": "based on the following passage",
|
282 |
+
"task_name": "boolq"
|
283 |
+
}
|
284 |
+
},
|
285 |
+
"boolq+based on the previous passage": {
|
286 |
+
"2022-07-15-11-47-34": {
|
287 |
+
"acc": 0.6146788990825688,
|
288 |
+
"acc_norm": 0.6217125382262997,
|
289 |
+
"acc_norm_stderr": 0.00848200113393099,
|
290 |
+
"acc_stderr": 0.008511930879680635,
|
291 |
+
"prompt_name": "based on the previous passage",
|
292 |
+
"task_name": "boolq"
|
293 |
+
}
|
294 |
+
},
|
295 |
+
"boolq+could you tell me\u2026": {
|
296 |
+
"2022-07-15-11-47-34": {
|
297 |
+
"acc": 0.5840978593272171,
|
298 |
+
"acc_norm": 0.6217125382262997,
|
299 |
+
"acc_norm_stderr": 0.00848200113393099,
|
300 |
+
"acc_stderr": 0.008620469604001,
|
301 |
+
"prompt_name": "could you tell me\u2026",
|
302 |
+
"task_name": "boolq"
|
303 |
+
}
|
304 |
+
},
|
305 |
+
"boolq+exam": {
|
306 |
+
"2022-07-15-11-47-34": {
|
307 |
+
"acc": 0.6220183486238532,
|
308 |
+
"acc_norm": 0.6217125382262997,
|
309 |
+
"acc_norm_stderr": 0.00848200113393099,
|
310 |
+
"acc_stderr": 0.008480656964585267,
|
311 |
+
"prompt_name": "exam",
|
312 |
+
"task_name": "boolq"
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"boolq+exercise": {
|
316 |
+
"2022-07-15-11-47-34": {
|
317 |
+
"acc": 0.6217125382262997,
|
318 |
+
"acc_norm": 0.46788990825688076,
|
319 |
+
"acc_norm_stderr": 0.0087270030269178,
|
320 |
+
"acc_stderr": 0.00848200113393099,
|
321 |
+
"prompt_name": "exercise",
|
322 |
+
"task_name": "boolq"
|
323 |
+
}
|
324 |
+
},
|
325 |
+
"boolq+valid_binary": {
|
326 |
+
"2022-07-15-11-47-34": {
|
327 |
+
"acc": 0.491131498470948,
|
328 |
+
"acc_norm": 0.37370030581039754,
|
329 |
+
"acc_norm_stderr": 0.008461461177104003,
|
330 |
+
"acc_stderr": 0.008743679265456042,
|
331 |
+
"prompt_name": "valid_binary",
|
332 |
+
"task_name": "boolq"
|
333 |
+
}
|
334 |
+
},
|
335 |
+
"boolq+yes_no_question": {
|
336 |
+
"2022-07-15-11-47-34": {
|
337 |
+
"acc": 0.5951070336391437,
|
338 |
+
"acc_norm": 0.6217125382262997,
|
339 |
+
"acc_norm_stderr": 0.00848200113393099,
|
340 |
+
"acc_stderr": 0.008585393347962319,
|
341 |
+
"prompt_name": "yes_no_question",
|
342 |
+
"task_name": "boolq"
|
343 |
+
}
|
344 |
+
},
|
345 |
+
"cb+GPT-3 style": {
|
346 |
+
"2022-07-15-11-47-34": {
|
347 |
+
"acc": 0.42857142857142855,
|
348 |
+
"acc_stderr": 0.06672848092813057,
|
349 |
+
"f1": 0.21956970232832299,
|
350 |
+
"prompt_name": "GPT-3 style",
|
351 |
+
"task_name": "cb"
|
352 |
+
}
|
353 |
+
},
|
354 |
+
"cb+MNLI crowdsource": {
|
355 |
+
"2022-07-15-11-47-34": {
|
356 |
+
"acc": 0.42857142857142855,
|
357 |
+
"acc_stderr": 0.06672848092813057,
|
358 |
+
"f1": 0.21956970232832299,
|
359 |
+
"prompt_name": "MNLI crowdsource",
|
360 |
+
"task_name": "cb"
|
361 |
+
}
|
362 |
+
},
|
363 |
+
"cb+always/sometimes/never": {
|
364 |
+
"2022-07-15-11-47-34": {
|
365 |
+
"acc": 0.08928571428571429,
|
366 |
+
"acc_stderr": 0.038450387280282494,
|
367 |
+
"f1": 0.054644808743169404,
|
368 |
+
"prompt_name": "always/sometimes/never",
|
369 |
+
"task_name": "cb"
|
370 |
+
}
|
371 |
+
},
|
372 |
+
"cb+based on the previous passage": {
|
373 |
+
"2022-07-15-11-47-34": {
|
374 |
+
"acc": 0.35714285714285715,
|
375 |
+
"acc_stderr": 0.06460957383809221,
|
376 |
+
"f1": 0.2094181249110827,
|
377 |
+
"prompt_name": "based on the previous passage",
|
378 |
+
"task_name": "cb"
|
379 |
+
}
|
380 |
+
},
|
381 |
+
"cb+can we infer": {
|
382 |
+
"2022-07-15-11-47-34": {
|
383 |
+
"acc": 0.25,
|
384 |
+
"acc_stderr": 0.058387420812114225,
|
385 |
+
"f1": 0.15483870967741933,
|
386 |
+
"prompt_name": "can we infer",
|
387 |
+
"task_name": "cb"
|
388 |
+
}
|
389 |
+
},
|
390 |
+
"cb+claim true/false/inconclusive": {
|
391 |
+
"2022-07-15-11-47-34": {
|
392 |
+
"acc": 0.42857142857142855,
|
393 |
+
"acc_stderr": 0.06672848092813057,
|
394 |
+
"f1": 0.21956970232832299,
|
395 |
+
"prompt_name": "claim true/false/inconclusive",
|
396 |
+
"task_name": "cb"
|
397 |
+
}
|
398 |
+
},
|
399 |
+
"cb+consider always/sometimes/never": {
|
400 |
+
"2022-07-15-11-47-34": {
|
401 |
+
"acc": 0.08928571428571429,
|
402 |
+
"acc_stderr": 0.038450387280282494,
|
403 |
+
"f1": 0.054644808743169404,
|
404 |
+
"prompt_name": "consider always/sometimes/never",
|
405 |
+
"task_name": "cb"
|
406 |
+
}
|
407 |
+
},
|
408 |
+
"cb+does it follow that": {
|
409 |
+
"2022-07-15-11-47-34": {
|
410 |
+
"acc": 0.30357142857142855,
|
411 |
+
"acc_stderr": 0.06199938655510754,
|
412 |
+
"f1": 0.2613574165298303,
|
413 |
+
"prompt_name": "does it follow that",
|
414 |
+
"task_name": "cb"
|
415 |
+
}
|
416 |
+
},
|
417 |
+
"cb+does this imply": {
|
418 |
+
"2022-07-15-11-47-34": {
|
419 |
+
"acc": 0.10714285714285714,
|
420 |
+
"acc_stderr": 0.0417053005800816,
|
421 |
+
"f1": 0.11222753854332802,
|
422 |
+
"prompt_name": "does this imply",
|
423 |
+
"task_name": "cb"
|
424 |
+
}
|
425 |
+
},
|
426 |
+
"cb+guaranteed true": {
|
427 |
+
"2022-07-15-11-47-34": {
|
428 |
+
"acc": 0.21428571428571427,
|
429 |
+
"acc_stderr": 0.055328333517248834,
|
430 |
+
"f1": 0.15883777239709443,
|
431 |
+
"prompt_name": "guaranteed true",
|
432 |
+
"task_name": "cb"
|
433 |
+
}
|
434 |
+
},
|
435 |
+
"cb+guaranteed/possible/impossible": {
|
436 |
+
"2022-07-15-11-47-34": {
|
437 |
+
"acc": 0.10714285714285714,
|
438 |
+
"acc_stderr": 0.0417053005800816,
|
439 |
+
"f1": 0.07871939736346516,
|
440 |
+
"prompt_name": "guaranteed/possible/impossible",
|
441 |
+
"task_name": "cb"
|
442 |
+
}
|
443 |
+
},
|
444 |
+
"cb+justified in saying": {
|
445 |
+
"2022-07-15-11-47-34": {
|
446 |
+
"acc": 0.21428571428571427,
|
447 |
+
"acc_stderr": 0.055328333517248834,
|
448 |
+
"f1": 0.1623009758602979,
|
449 |
+
"prompt_name": "justified in saying",
|
450 |
+
"task_name": "cb"
|
451 |
+
}
|
452 |
+
},
|
453 |
+
"cb+must be true": {
|
454 |
+
"2022-07-15-11-47-34": {
|
455 |
+
"acc": 0.19642857142857142,
|
456 |
+
"acc_stderr": 0.05357142857142859,
|
457 |
+
"f1": 0.1384656508954825,
|
458 |
+
"prompt_name": "must be true",
|
459 |
+
"task_name": "cb"
|
460 |
+
}
|
461 |
+
},
|
462 |
+
"cb+should assume": {
|
463 |
+
"2022-07-15-11-47-34": {
|
464 |
+
"acc": 0.19642857142857142,
|
465 |
+
"acc_stderr": 0.05357142857142858,
|
466 |
+
"f1": 0.14613935969868175,
|
467 |
+
"prompt_name": "should assume",
|
468 |
+
"task_name": "cb"
|
469 |
+
}
|
470 |
+
},
|
471 |
+
"cb+take the following as truth": {
|
472 |
+
"2022-07-15-11-47-34": {
|
473 |
+
"acc": 0.4107142857142857,
|
474 |
+
"acc_stderr": 0.06633634150359538,
|
475 |
+
"f1": 0.1940928270042194,
|
476 |
+
"prompt_name": "take the following as truth",
|
477 |
+
"task_name": "cb"
|
478 |
+
}
|
479 |
+
},
|
480 |
+
"cola+Following sentence acceptable": {
|
481 |
+
"2022-07-15-11-47-34": {
|
482 |
+
"acc": 0.6625119846596357,
|
483 |
+
"acc_norm": 0.31064237775647174,
|
484 |
+
"acc_norm_stderr": 0.014335695984672221,
|
485 |
+
"acc_stderr": 0.014648467353878477,
|
486 |
+
"prompt_name": "Following sentence acceptable",
|
487 |
+
"task_name": "cola"
|
488 |
+
}
|
489 |
+
},
|
490 |
+
"cola+Make sense yes no": {
|
491 |
+
"2022-07-15-11-47-34": {
|
492 |
+
"acc": 0.3710450623202301,
|
493 |
+
"acc_norm": 0.6903163950143816,
|
494 |
+
"acc_norm_stderr": 0.014323506235950028,
|
495 |
+
"acc_stderr": 0.01496543118537874,
|
496 |
+
"prompt_name": "Make sense yes no",
|
497 |
+
"task_name": "cola"
|
498 |
+
}
|
499 |
+
},
|
500 |
+
"cola+Previous sentence acceptable": {
|
501 |
+
"2022-07-15-11-47-34": {
|
502 |
+
"acc": 0.6864813039309684,
|
503 |
+
"acc_norm": 0.6912751677852349,
|
504 |
+
"acc_norm_stderr": 0.014311244461311299,
|
505 |
+
"acc_stderr": 0.014371834902632595,
|
506 |
+
"prompt_name": "Previous sentence acceptable",
|
507 |
+
"task_name": "cola"
|
508 |
+
}
|
509 |
+
},
|
510 |
+
"cola+editing": {
|
511 |
+
"2022-07-15-11-47-34": {
|
512 |
+
"acc": 0.46596356663470756,
|
513 |
+
"acc_norm": 0.6912751677852349,
|
514 |
+
"acc_norm_stderr": 0.014311244461311299,
|
515 |
+
"acc_stderr": 0.015453525186655532,
|
516 |
+
"prompt_name": "editing",
|
517 |
+
"task_name": "cola"
|
518 |
+
}
|
519 |
+
},
|
520 |
+
"cola+is_this_correct": {
|
521 |
+
"2022-07-15-11-47-34": {
|
522 |
+
"acc": 0.6893576222435283,
|
523 |
+
"acc_norm": 0.6912751677852349,
|
524 |
+
"acc_norm_stderr": 0.014311244461311299,
|
525 |
+
"acc_stderr": 0.014335695984672223,
|
526 |
+
"prompt_name": "is_this_correct",
|
527 |
+
"task_name": "cola"
|
528 |
+
}
|
529 |
+
},
|
530 |
+
"copa": {
|
531 |
+
"2022-07-13-11-29-13": {
|
532 |
+
"acc": 0.7,
|
533 |
+
"acc_stderr": 0.046056618647183814
|
534 |
+
}
|
535 |
+
},
|
536 |
+
"copa+C1 or C2? premise, so/because\u2026": {
|
537 |
+
"2022-07-15-11-47-34": {
|
538 |
+
"acc": 0.65,
|
539 |
+
"acc_norm": 0.57,
|
540 |
+
"acc_norm_stderr": 0.049756985195624284,
|
541 |
+
"acc_stderr": 0.047937248544110196,
|
542 |
+
"prompt_name": "C1 or C2? premise, so/because\u2026",
|
543 |
+
"task_name": "copa"
|
544 |
+
}
|
545 |
+
},
|
546 |
+
"copa+best_option": {
|
547 |
+
"2022-07-15-11-47-34": {
|
548 |
+
"acc": 0.52,
|
549 |
+
"acc_norm": 0.49,
|
550 |
+
"acc_norm_stderr": 0.05024183937956911,
|
551 |
+
"acc_stderr": 0.050211673156867795,
|
552 |
+
"prompt_name": "best_option",
|
553 |
+
"task_name": "copa"
|
554 |
+
}
|
555 |
+
},
|
556 |
+
"copa+cause_effect": {
|
557 |
+
"2022-07-15-11-47-34": {
|
558 |
+
"acc": 0.56,
|
559 |
+
"acc_norm": 0.45,
|
560 |
+
"acc_norm_stderr": 0.05,
|
561 |
+
"acc_stderr": 0.04988876515698589,
|
562 |
+
"prompt_name": "cause_effect",
|
563 |
+
"task_name": "copa"
|
564 |
+
}
|
565 |
+
},
|
566 |
+
"copa+choose": {
|
567 |
+
"2022-07-15-11-47-34": {
|
568 |
+
"acc": 0.53,
|
569 |
+
"acc_norm": 0.46,
|
570 |
+
"acc_norm_stderr": 0.05009082659620333,
|
571 |
+
"acc_stderr": 0.05016135580465919,
|
572 |
+
"prompt_name": "choose",
|
573 |
+
"task_name": "copa"
|
574 |
+
}
|
575 |
+
},
|
576 |
+
"copa+exercise": {
|
577 |
+
"2022-07-15-11-47-34": {
|
578 |
+
"acc": 0.54,
|
579 |
+
"acc_norm": 0.48,
|
580 |
+
"acc_norm_stderr": 0.050211673156867795,
|
581 |
+
"acc_stderr": 0.05009082659620332,
|
582 |
+
"prompt_name": "exercise",
|
583 |
+
"task_name": "copa"
|
584 |
+
}
|
585 |
+
},
|
586 |
+
"copa+i_am_hesitating": {
|
587 |
+
"2022-07-15-11-47-34": {
|
588 |
+
"acc": 0.56,
|
589 |
+
"acc_norm": 0.48,
|
590 |
+
"acc_norm_stderr": 0.050211673156867795,
|
591 |
+
"acc_stderr": 0.04988876515698589,
|
592 |
+
"prompt_name": "i_am_hesitating",
|
593 |
+
"task_name": "copa"
|
594 |
+
}
|
595 |
+
},
|
596 |
+
"copa+more likely": {
|
597 |
+
"2022-07-15-11-47-34": {
|
598 |
+
"acc": 0.53,
|
599 |
+
"acc_norm": 0.49,
|
600 |
+
"acc_norm_stderr": 0.05024183937956911,
|
601 |
+
"acc_stderr": 0.05016135580465919,
|
602 |
+
"prompt_name": "more likely",
|
603 |
+
"task_name": "copa"
|
604 |
+
}
|
605 |
+
},
|
606 |
+
"copa+plausible_alternatives": {
|
607 |
+
"2022-07-15-11-47-34": {
|
608 |
+
"acc": 0.56,
|
609 |
+
"acc_norm": 0.53,
|
610 |
+
"acc_norm_stderr": 0.05016135580465919,
|
611 |
+
"acc_stderr": 0.04988876515698589,
|
612 |
+
"prompt_name": "plausible_alternatives",
|
613 |
+
"task_name": "copa"
|
614 |
+
}
|
615 |
+
},
|
616 |
+
"crows_pairs_english+1": {
|
617 |
+
"2022-07-12-22-45-57": {
|
618 |
+
"acc": 0.49552772808586765,
|
619 |
+
"acc_norm": 0.49552772808586765,
|
620 |
+
"acc_norm_stderr": 0.012212810647205384,
|
621 |
+
"acc_stderr": 0.012212810647205384,
|
622 |
+
"prompt_name": "1",
|
623 |
+
"task_name": "crows_pairs_english"
|
624 |
+
}
|
625 |
+
},
|
626 |
+
"crows_pairs_english+2": {
|
627 |
+
"2022-07-12-22-45-57": {
|
628 |
+
"acc": 0.4883720930232558,
|
629 |
+
"acc_norm": 0.4883720930232558,
|
630 |
+
"acc_norm_stderr": 0.012209996095069646,
|
631 |
+
"acc_stderr": 0.012209996095069646,
|
632 |
+
"prompt_name": "2",
|
633 |
+
"task_name": "crows_pairs_english"
|
634 |
+
}
|
635 |
+
},
|
636 |
+
"crows_pairs_english+3": {
|
637 |
+
"2022-07-12-22-45-57": {
|
638 |
+
"acc": 0.5163983303518187,
|
639 |
+
"acc_norm": 0.4836016696481813,
|
640 |
+
"acc_norm_stderr": 0.012206729011137944,
|
641 |
+
"acc_stderr": 0.012206729011137944,
|
642 |
+
"prompt_name": "3",
|
643 |
+
"task_name": "crows_pairs_english"
|
644 |
+
}
|
645 |
+
},
|
646 |
+
"crows_pairs_english+4": {
|
647 |
+
"2022-07-12-22-45-57": {
|
648 |
+
"acc": 0.4919499105545617,
|
649 |
+
"acc_norm": 0.4919499105545617,
|
650 |
+
"acc_norm_stderr": 0.01221171617623539,
|
651 |
+
"acc_stderr": 0.01221171617623539,
|
652 |
+
"prompt_name": "4",
|
653 |
+
"task_name": "crows_pairs_english"
|
654 |
+
}
|
655 |
+
},
|
656 |
+
"crows_pairs_english+A_preference": {
|
657 |
+
"2022-07-12-22-45-57": {
|
658 |
+
"acc": 0.5104353011329755,
|
659 |
+
"acc_norm": 0.5104353011329755,
|
660 |
+
"acc_norm_stderr": 0.012210638982043397,
|
661 |
+
"acc_stderr": 0.012210638982043397,
|
662 |
+
"prompt_name": "A_preference",
|
663 |
+
"task_name": "crows_pairs_english"
|
664 |
+
}
|
665 |
+
},
|
666 |
+
"crows_pairs_english+A_stereotype_true": {
|
667 |
+
"2022-07-12-22-45-57": {
|
668 |
+
"acc": 0.4907573047107931,
|
669 |
+
"acc_norm": 0.5062611806797853,
|
670 |
+
"acc_norm_stderr": 0.012212341600228735,
|
671 |
+
"acc_stderr": 0.012211212339167695,
|
672 |
+
"prompt_name": "A_stereotype_true",
|
673 |
+
"task_name": "crows_pairs_english"
|
674 |
+
}
|
675 |
+
},
|
676 |
+
"crows_pairs_french+1_fr": {
|
677 |
+
"2022-07-12-22-45-57": {
|
678 |
+
"acc": 0.48598688133571855,
|
679 |
+
"acc_norm": 0.48598688133571855,
|
680 |
+
"acc_norm_stderr": 0.012208501686447066,
|
681 |
+
"acc_stderr": 0.012208501686447066,
|
682 |
+
"prompt_name": "1_fr",
|
683 |
+
"task_name": "crows_pairs_french"
|
684 |
+
}
|
685 |
+
},
|
686 |
+
"crows_pairs_french+2_fr": {
|
687 |
+
"2022-07-12-22-45-57": {
|
688 |
+
"acc": 0.49850924269528923,
|
689 |
+
"acc_norm": 0.49850924269528923,
|
690 |
+
"acc_norm_stderr": 0.01221324493389968,
|
691 |
+
"acc_stderr": 0.01221324493389968,
|
692 |
+
"prompt_name": "2_fr",
|
693 |
+
"task_name": "crows_pairs_french"
|
694 |
+
}
|
695 |
+
},
|
696 |
+
"crows_pairs_french+3_fr": {
|
697 |
+
"2022-07-12-22-45-57": {
|
698 |
+
"acc": 0.49612403100775193,
|
699 |
+
"acc_norm": 0.49612403100775193,
|
700 |
+
"acc_norm_stderr": 0.012212932249036454,
|
701 |
+
"acc_stderr": 0.012212932249036454,
|
702 |
+
"prompt_name": "3_fr",
|
703 |
+
"task_name": "crows_pairs_french"
|
704 |
+
}
|
705 |
+
},
|
706 |
+
"crows_pairs_french+4_fr": {
|
707 |
+
"2022-07-12-22-45-57": {
|
708 |
+
"acc": 0.5313059033989267,
|
709 |
+
"acc_norm": 0.5313059033989267,
|
710 |
+
"acc_norm_stderr": 0.012189336188399829,
|
711 |
+
"acc_stderr": 0.012189336188399829,
|
712 |
+
"prompt_name": "4_fr",
|
713 |
+
"task_name": "crows_pairs_french"
|
714 |
+
}
|
715 |
+
},
|
716 |
+
"crows_pairs_french+A_preference_fr": {
|
717 |
+
"2022-07-12-22-45-57": {
|
718 |
+
"acc": 0.4847942754919499,
|
719 |
+
"acc_norm": 0.4847942754919499,
|
720 |
+
"acc_norm_stderr": 0.01220765013925874,
|
721 |
+
"acc_stderr": 0.01220765013925874,
|
722 |
+
"prompt_name": "A_preference_fr",
|
723 |
+
"task_name": "crows_pairs_french"
|
724 |
+
}
|
725 |
+
},
|
726 |
+
"crows_pairs_french+A_reality_check_fr": {
|
727 |
+
"2022-07-12-22-45-57": {
|
728 |
+
"acc": 0.505664877757901,
|
729 |
+
"acc_norm": 0.505664877757901,
|
730 |
+
"acc_norm_stderr": 0.012212515323431717,
|
731 |
+
"acc_stderr": 0.012212515323431717,
|
732 |
+
"prompt_name": "A_reality_check_fr",
|
733 |
+
"task_name": "crows_pairs_french"
|
734 |
+
}
|
735 |
+
},
|
736 |
+
"crows_pairs_french+A_stereotype_true_fr": {
|
737 |
+
"2022-07-12-22-45-57": {
|
738 |
+
"acc": 0.5020870602265951,
|
739 |
+
"acc_norm": 0.5020870602265951,
|
740 |
+
"acc_norm_stderr": 0.012213192820312026,
|
741 |
+
"acc_stderr": 0.012213192820312026,
|
742 |
+
"prompt_name": "A_stereotype_true_fr",
|
743 |
+
"task_name": "crows_pairs_french"
|
744 |
+
}
|
745 |
+
},
|
746 |
+
"diabla+Is the error present? (same lang)": {
|
747 |
+
"2022-07-12-22-45-57": {
|
748 |
+
"acc": 0.07741823242867084,
|
749 |
+
"acc_norm": 0.07741823242867084,
|
750 |
+
"acc_norm_stderr": 0.0035253599064790993,
|
751 |
+
"acc_stderr": 0.0035253599064790993,
|
752 |
+
"prompt_name": "Is the error present? (same lang)",
|
753 |
+
"task_name": "diabla"
|
754 |
+
}
|
755 |
+
},
|
756 |
+
"diabla+Which is automatic?": {
|
757 |
+
"2022-07-12-22-45-57": {
|
758 |
+
"acc": 0.4966945024356298,
|
759 |
+
"acc_norm": 0.4966945024356298,
|
760 |
+
"acc_norm_stderr": 0.0065953813991735995,
|
761 |
+
"acc_stderr": 0.0065953813991735995,
|
762 |
+
"prompt_name": "Which is automatic?",
|
763 |
+
"task_name": "diabla"
|
764 |
+
}
|
765 |
+
},
|
766 |
+
"gsarti/flores_101_afr+null": {
|
767 |
+
"2022-07-14-10-03-25": {
|
768 |
+
"bits_per_byte": 2.8175051369933213,
|
769 |
+
"byte_perplexity": 7.049422805555328,
|
770 |
+
"prompt_name": "null",
|
771 |
+
"task_name": "gsarti/flores_101_afr",
|
772 |
+
"word_perplexity": 139324.0466654445
|
773 |
+
}
|
774 |
+
},
|
775 |
+
"gsarti/flores_101_amh+null": {
|
776 |
+
"2022-07-14-10-03-25": {
|
777 |
+
"bits_per_byte": 2.0608666814101815,
|
778 |
+
"byte_perplexity": 4.172368790188039,
|
779 |
+
"prompt_name": "null",
|
780 |
+
"task_name": "gsarti/flores_101_amh",
|
781 |
+
"word_perplexity": 105036774.30501972
|
782 |
+
}
|
783 |
+
},
|
784 |
+
"gsarti/flores_101_ara+null": {
|
785 |
+
"2022-07-14-10-03-25": {
|
786 |
+
"bits_per_byte": 0.8797352167688847,
|
787 |
+
"byte_perplexity": 1.8400375612633983,
|
788 |
+
"prompt_name": "null",
|
789 |
+
"task_name": "gsarti/flores_101_ara",
|
790 |
+
"word_perplexity": 674.8640314665696
|
791 |
+
}
|
792 |
+
},
|
793 |
+
"gsarti/flores_101_asm+null": {
|
794 |
+
"2022-07-14-10-03-25": {
|
795 |
+
"bits_per_byte": 2.458711333673663,
|
796 |
+
"byte_perplexity": 5.497254736157445,
|
797 |
+
"prompt_name": "null",
|
798 |
+
"task_name": "gsarti/flores_101_asm",
|
799 |
+
"word_perplexity": 6763188828222.085
|
800 |
+
}
|
801 |
+
},
|
802 |
+
"gsarti/flores_101_ast+null": {
|
803 |
+
"2022-07-14-10-03-25": {
|
804 |
+
"bits_per_byte": 2.0909386784329675,
|
805 |
+
"byte_perplexity": 4.260251728273795,
|
806 |
+
"prompt_name": "null",
|
807 |
+
"task_name": "gsarti/flores_101_ast",
|
808 |
+
"word_perplexity": 10657.272913539553
|
809 |
+
}
|
810 |
+
},
|
811 |
+
"gsarti/flores_101_azj+null": {
|
812 |
+
"2022-07-14-10-03-25": {
|
813 |
+
"bits_per_byte": 2.9432455349850195,
|
814 |
+
"byte_perplexity": 7.691396328945705,
|
815 |
+
"prompt_name": "null",
|
816 |
+
"task_name": "gsarti/flores_101_azj",
|
817 |
+
"word_perplexity": 45923924.18878753
|
818 |
+
}
|
819 |
+
},
|
820 |
+
"gsarti/flores_101_bel+null": {
|
821 |
+
"2022-07-14-10-03-25": {
|
822 |
+
"bits_per_byte": 1.914816732584341,
|
823 |
+
"byte_perplexity": 3.7706591215465943,
|
824 |
+
"prompt_name": "null",
|
825 |
+
"task_name": "gsarti/flores_101_bel",
|
826 |
+
"word_perplexity": 23935692.781315073
|
827 |
+
}
|
828 |
+
},
|
829 |
+
"gsarti/flores_101_ben+null": {
|
830 |
+
"2022-07-14-10-03-25": {
|
831 |
+
"bits_per_byte": 2.3432036318231058,
|
832 |
+
"byte_perplexity": 5.074281765515423,
|
833 |
+
"prompt_name": "null",
|
834 |
+
"task_name": "gsarti/flores_101_ben",
|
835 |
+
"word_perplexity": 2480418685142.412
|
836 |
+
}
|
837 |
+
},
|
838 |
+
"gsarti/flores_101_bos+null": {
|
839 |
+
"2022-07-14-10-03-25": {
|
840 |
+
"bits_per_byte": 2.665248069942796,
|
841 |
+
"byte_perplexity": 6.343363734045183,
|
842 |
+
"prompt_name": "null",
|
843 |
+
"task_name": "gsarti/flores_101_bos",
|
844 |
+
"word_perplexity": 229622.13691086147
|
845 |
+
}
|
846 |
+
},
|
847 |
+
"gsarti/flores_101_bul+null": {
|
848 |
+
"2022-07-14-10-03-25": {
|
849 |
+
"bits_per_byte": 1.5136770683283687,
|
850 |
+
"byte_perplexity": 2.8553687444403257,
|
851 |
+
"prompt_name": "null",
|
852 |
+
"task_name": "gsarti/flores_101_bul",
|
853 |
+
"word_perplexity": 194851.13344620814
|
854 |
+
}
|
855 |
+
},
|
856 |
+
"gsarti/flores_101_cat+null": {
|
857 |
+
"2022-07-14-10-03-25": {
|
858 |
+
"bits_per_byte": 1.2376904653775254,
|
859 |
+
"byte_perplexity": 2.358207169698056,
|
860 |
+
"prompt_name": "null",
|
861 |
+
"task_name": "gsarti/flores_101_cat",
|
862 |
+
"word_perplexity": 179.13123174533087
|
863 |
+
}
|
864 |
+
},
|
865 |
+
"gsarti/flores_101_ceb+null": {
|
866 |
+
"2022-07-14-10-03-25": {
|
867 |
+
"bits_per_byte": 2.7858604115174295,
|
868 |
+
"byte_perplexity": 6.896481056329736,
|
869 |
+
"prompt_name": "null",
|
870 |
+
"task_name": "gsarti/flores_101_ceb",
|
871 |
+
"word_perplexity": 113330.67154113152
|
872 |
+
}
|
873 |
+
},
|
874 |
+
"gsarti/flores_101_ces+null": {
|
875 |
+
"2022-07-14-10-03-25": {
|
876 |
+
"bits_per_byte": 2.6150694333085327,
|
877 |
+
"byte_perplexity": 6.126526835715164,
|
878 |
+
"prompt_name": "null",
|
879 |
+
"task_name": "gsarti/flores_101_ces",
|
880 |
+
"word_perplexity": 625101.1441414964
|
881 |
+
}
|
882 |
+
},
|
883 |
+
"gsarti/flores_101_ckb+null": {
|
884 |
+
"2022-07-14-12-00-55": {
|
885 |
+
"bits_per_byte": 1.9421776126623524,
|
886 |
+
"byte_perplexity": 3.842852526862475,
|
887 |
+
"prompt_name": "null",
|
888 |
+
"task_name": "gsarti/flores_101_ckb",
|
889 |
+
"word_perplexity": 11104497.438038943
|
890 |
+
}
|
891 |
+
},
|
892 |
+
"gsarti/flores_101_cym+null": {
|
893 |
+
"2022-07-14-12-00-55": {
|
894 |
+
"bits_per_byte": 3.8470317241534553,
|
895 |
+
"byte_perplexity": 14.390369428021707,
|
896 |
+
"prompt_name": "null",
|
897 |
+
"task_name": "gsarti/flores_101_cym",
|
898 |
+
"word_perplexity": 5900331.966242436
|
899 |
+
}
|
900 |
+
},
|
901 |
+
"gsarti/flores_101_dan+null": {
|
902 |
+
"2022-07-14-10-03-25": {
|
903 |
+
"bits_per_byte": 2.5307665257708245,
|
904 |
+
"byte_perplexity": 5.778786323448377,
|
905 |
+
"prompt_name": "null",
|
906 |
+
"task_name": "gsarti/flores_101_dan",
|
907 |
+
"word_perplexity": 71695.50336412797
|
908 |
+
}
|
909 |
+
},
|
910 |
+
"gsarti/flores_101_deu+null": {
|
911 |
+
"2022-07-14-10-03-25": {
|
912 |
+
"bits_per_byte": 1.7492158999678582,
|
913 |
+
"byte_perplexity": 3.361758059911202,
|
914 |
+
"prompt_name": "null",
|
915 |
+
"task_name": "gsarti/flores_101_deu",
|
916 |
+
"word_perplexity": 5647.282599404732
|
917 |
+
}
|
918 |
+
},
|
919 |
+
"gsarti/flores_101_ell+null": {
|
920 |
+
"2022-07-14-10-03-25": {
|
921 |
+
"bits_per_byte": 1.3862374641150543,
|
922 |
+
"byte_perplexity": 2.6139607239932805,
|
923 |
+
"prompt_name": "null",
|
924 |
+
"task_name": "gsarti/flores_101_ell",
|
925 |
+
"word_perplexity": 102751.5248402687
|
926 |
+
}
|
927 |
+
},
|
928 |
+
"gsarti/flores_101_eng+null": {
|
929 |
+
"2022-07-14-10-03-25": {
|
930 |
+
"bits_per_byte": 1.0435427545613876,
|
931 |
+
"byte_perplexity": 2.061283234268159,
|
932 |
+
"prompt_name": "null",
|
933 |
+
"task_name": "gsarti/flores_101_eng",
|
934 |
+
"word_perplexity": 75.56480997823662
|
935 |
+
}
|
936 |
+
},
|
937 |
+
"gsarti/flores_101_est+null": {
|
938 |
+
"2022-07-14-10-03-25": {
|
939 |
+
"bits_per_byte": 3.340809503762674,
|
940 |
+
"byte_perplexity": 10.131736127467489,
|
941 |
+
"prompt_name": "null",
|
942 |
+
"task_name": "gsarti/flores_101_est",
|
943 |
+
"word_perplexity": 92602633.82439691
|
944 |
+
}
|
945 |
+
},
|
946 |
+
"gsarti/flores_101_fas+null": {
|
947 |
+
"2022-07-14-12-00-55": {
|
948 |
+
"bits_per_byte": 1.6586730625582675,
|
949 |
+
"byte_perplexity": 3.1572599808371367,
|
950 |
+
"prompt_name": "null",
|
951 |
+
"task_name": "gsarti/flores_101_fas",
|
952 |
+
"word_perplexity": 59965.98383842629
|
953 |
+
}
|
954 |
+
},
|
955 |
+
"gsarti/flores_101_fin+null": {
|
956 |
+
"2022-07-14-10-03-25": {
|
957 |
+
"bits_per_byte": 2.9093822743068216,
|
958 |
+
"byte_perplexity": 7.5129644427067355,
|
959 |
+
"prompt_name": "null",
|
960 |
+
"task_name": "gsarti/flores_101_fin",
|
961 |
+
"word_perplexity": 91621886.60145952
|
962 |
+
}
|
963 |
+
},
|
964 |
+
"gsarti/flores_101_fra+null": {
|
965 |
+
"2022-07-14-10-03-25": {
|
966 |
+
"bits_per_byte": 1.0127395726746855,
|
967 |
+
"byte_perplexity": 2.0177390037335385,
|
968 |
+
"prompt_name": "null",
|
969 |
+
"task_name": "gsarti/flores_101_fra",
|
970 |
+
"word_perplexity": 89.45884576931464
|
971 |
+
}
|
972 |
+
},
|
973 |
+
"gsarti/flores_101_ful+null": {
|
974 |
+
"2022-07-14-10-03-25": {
|
975 |
+
"bits_per_byte": 3.561969238361191,
|
976 |
+
"byte_perplexity": 11.810263420287875,
|
977 |
+
"prompt_name": "null",
|
978 |
+
"task_name": "gsarti/flores_101_ful",
|
979 |
+
"word_perplexity": 908715.1423017589
|
980 |
+
}
|
981 |
+
},
|
982 |
+
"gsarti/flores_101_gle+null": {
|
983 |
+
"2022-07-14-10-03-25": {
|
984 |
+
"bits_per_byte": 3.2798070331865063,
|
985 |
+
"byte_perplexity": 9.712259930753122,
|
986 |
+
"prompt_name": "null",
|
987 |
+
"task_name": "gsarti/flores_101_gle",
|
988 |
+
"word_perplexity": 1548851.5929806433
|
989 |
+
}
|
990 |
+
},
|
991 |
+
"gsarti/flores_101_glg+null": {
|
992 |
+
"2022-07-14-10-03-25": {
|
993 |
+
"bits_per_byte": 1.6877168009728167,
|
994 |
+
"byte_perplexity": 3.2214647330840154,
|
995 |
+
"prompt_name": "null",
|
996 |
+
"task_name": "gsarti/flores_101_glg",
|
997 |
+
"word_perplexity": 1537.3193913761668
|
998 |
+
}
|
999 |
+
},
|
1000 |
+
"gsarti/flores_101_guj+null": {
|
1001 |
+
"2022-07-14-10-03-25": {
|
1002 |
+
"bits_per_byte": 2.357806609400009,
|
1003 |
+
"byte_perplexity": 5.125904532570054,
|
1004 |
+
"prompt_name": "null",
|
1005 |
+
"task_name": "gsarti/flores_101_guj",
|
1006 |
+
"word_perplexity": 133216198508.6925
|
1007 |
+
}
|
1008 |
+
},
|
1009 |
+
"gsarti/flores_101_hau+null": {
|
1010 |
+
"2022-07-14-10-03-25": {
|
1011 |
+
"bits_per_byte": 3.4659038057537184,
|
1012 |
+
"byte_perplexity": 11.049458818357667,
|
1013 |
+
"prompt_name": "null",
|
1014 |
+
"task_name": "gsarti/flores_101_hau",
|
1015 |
+
"word_perplexity": 730749.6449046461
|
1016 |
+
}
|
1017 |
+
},
|
1018 |
+
"gsarti/flores_101_heb+null": {
|
1019 |
+
"2022-07-14-10-03-25": {
|
1020 |
+
"bits_per_byte": 1.8889611054621571,
|
1021 |
+
"byte_perplexity": 3.7036842387723694,
|
1022 |
+
"prompt_name": "null",
|
1023 |
+
"task_name": "gsarti/flores_101_heb",
|
1024 |
+
"word_perplexity": 880255.4148832298
|
1025 |
+
}
|
1026 |
+
},
|
1027 |
+
"gsarti/flores_101_hin+null": {
|
1028 |
+
"2022-07-14-10-03-25": {
|
1029 |
+
"bits_per_byte": 2.195760704215568,
|
1030 |
+
"byte_perplexity": 4.581311639568996,
|
1031 |
+
"prompt_name": "null",
|
1032 |
+
"task_name": "gsarti/flores_101_hin",
|
1033 |
+
"word_perplexity": 453226793.5348556
|
1034 |
+
}
|
1035 |
+
},
|
1036 |
+
"gsarti/flores_101_hrv+null": {
|
1037 |
+
"2022-07-14-10-03-25": {
|
1038 |
+
"bits_per_byte": 2.7016816564307984,
|
1039 |
+
"byte_perplexity": 6.50559790827845,
|
1040 |
+
"prompt_name": "null",
|
1041 |
+
"task_name": "gsarti/flores_101_hrv",
|
1042 |
+
"word_perplexity": 307789.1462790266
|
1043 |
+
}
|
1044 |
+
},
|
1045 |
+
"gsarti/flores_101_hun+null": {
|
1046 |
+
"2022-07-14-10-03-25": {
|
1047 |
+
"bits_per_byte": 2.8470581600253615,
|
1048 |
+
"byte_perplexity": 7.19531655942431,
|
1049 |
+
"prompt_name": "null",
|
1050 |
+
"task_name": "gsarti/flores_101_hun",
|
1051 |
+
"word_perplexity": 8545882.19823639
|
1052 |
+
}
|
1053 |
+
},
|
1054 |
+
"gsarti/flores_101_hye+null": {
|
1055 |
+
"2022-07-14-10-03-25": {
|
1056 |
+
"bits_per_byte": 1.906169044483402,
|
1057 |
+
"byte_perplexity": 3.7481249397064547,
|
1058 |
+
"prompt_name": "null",
|
1059 |
+
"task_name": "gsarti/flores_101_hye",
|
1060 |
+
"word_perplexity": 99262887.01092263
|
1061 |
+
}
|
1062 |
+
},
|
1063 |
+
"gsarti/flores_101_ibo+null": {
|
1064 |
+
"2022-07-14-10-03-25": {
|
1065 |
+
"bits_per_byte": 2.6012385649422316,
|
1066 |
+
"byte_perplexity": 6.06807351892086,
|
1067 |
+
"prompt_name": "null",
|
1068 |
+
"task_name": "gsarti/flores_101_ibo",
|
1069 |
+
"word_perplexity": 99576.38125028457
|
1070 |
+
}
|
1071 |
+
},
|
1072 |
+
"gsarti/flores_101_ind+null": {
|
1073 |
+
"2022-07-14-10-03-25": {
|
1074 |
+
"bits_per_byte": 1.1501325666473412,
|
1075 |
+
"byte_perplexity": 2.2193428661828962,
|
1076 |
+
"prompt_name": "null",
|
1077 |
+
"task_name": "gsarti/flores_101_ind",
|
1078 |
+
"word_perplexity": 299.41864562936706
|
1079 |
+
}
|
1080 |
+
},
|
1081 |
+
"gsarti/flores_101_isl+null": {
|
1082 |
+
"2022-07-14-10-03-25": {
|
1083 |
+
"bits_per_byte": 3.1394769822824644,
|
1084 |
+
"byte_perplexity": 8.812045732299993,
|
1085 |
+
"prompt_name": "null",
|
1086 |
+
"task_name": "gsarti/flores_101_isl",
|
1087 |
+
"word_perplexity": 3947458.536983725
|
1088 |
+
}
|
1089 |
+
},
|
1090 |
+
"gsarti/flores_101_ita+null": {
|
1091 |
+
"2022-07-14-10-03-25": {
|
1092 |
+
"bits_per_byte": 1.695253347487448,
|
1093 |
+
"byte_perplexity": 3.238337491305615,
|
1094 |
+
"prompt_name": "null",
|
1095 |
+
"task_name": "gsarti/flores_101_ita",
|
1096 |
+
"word_perplexity": 1951.0663459405935
|
1097 |
+
}
|
1098 |
+
},
|
1099 |
+
"gsarti/flores_101_jav+null": {
|
1100 |
+
"2022-07-14-10-03-25": {
|
1101 |
+
"bits_per_byte": 2.899297993680408,
|
1102 |
+
"byte_perplexity": 7.460632752007581,
|
1103 |
+
"prompt_name": "null",
|
1104 |
+
"task_name": "gsarti/flores_101_jav",
|
1105 |
+
"word_perplexity": 956961.3940329206
|
1106 |
+
}
|
1107 |
+
},
|
1108 |
+
"gsarti/flores_101_jpn+null": {
|
1109 |
+
"2022-07-14-10-03-25": {
|
1110 |
+
"bits_per_byte": 1.539549942005635,
|
1111 |
+
"byte_perplexity": 2.907038023970581,
|
1112 |
+
"prompt_name": "null",
|
1113 |
+
"task_name": "gsarti/flores_101_jpn",
|
1114 |
+
"word_perplexity": 6.0024027118732196e+69
|
1115 |
+
}
|
1116 |
+
},
|
1117 |
+
"gsarti/flores_101_kam+null": {
|
1118 |
+
"2022-07-14-10-03-25": {
|
1119 |
+
"bits_per_byte": 3.515626316920499,
|
1120 |
+
"byte_perplexity": 11.436917146974627,
|
1121 |
+
"prompt_name": "null",
|
1122 |
+
"task_name": "gsarti/flores_101_kam",
|
1123 |
+
"word_perplexity": 4288601.196402131
|
1124 |
+
}
|
1125 |
+
},
|
1126 |
+
"gsarti/flores_101_kan+null": {
|
1127 |
+
"2022-07-14-10-03-25": {
|
1128 |
+
"bits_per_byte": 2.3991591199422513,
|
1129 |
+
"byte_perplexity": 5.274956219477929,
|
1130 |
+
"prompt_name": "null",
|
1131 |
+
"task_name": "gsarti/flores_101_kan",
|
1132 |
+
"word_perplexity": 5.3861539364992216e+16
|
1133 |
+
}
|
1134 |
+
},
|
1135 |
+
"gsarti/flores_101_kat+null": {
|
1136 |
+
"2022-07-14-10-03-25": {
|
1137 |
+
"bits_per_byte": 1.3325401608568794,
|
1138 |
+
"byte_perplexity": 2.5184571084900518,
|
1139 |
+
"prompt_name": "null",
|
1140 |
+
"task_name": "gsarti/flores_101_kat",
|
1141 |
+
"word_perplexity": 1133105340.614723
|
1142 |
+
}
|
1143 |
+
},
|
1144 |
+
"gsarti/flores_101_kaz+null": {
|
1145 |
+
"2022-07-14-10-03-25": {
|
1146 |
+
"bits_per_byte": 1.845791322405974,
|
1147 |
+
"byte_perplexity": 3.5945005448756477,
|
1148 |
+
"prompt_name": "null",
|
1149 |
+
"task_name": "gsarti/flores_101_kaz",
|
1150 |
+
"word_perplexity": 89537342.10068764
|
1151 |
+
}
|
1152 |
+
},
|
1153 |
+
"gsarti/flores_101_kea+null": {
|
1154 |
+
"2022-07-14-10-03-25": {
|
1155 |
+
"bits_per_byte": 3.2143692668645976,
|
1156 |
+
"byte_perplexity": 9.281572608888562,
|
1157 |
+
"prompt_name": "null",
|
1158 |
+
"task_name": "gsarti/flores_101_kea",
|
1159 |
+
"word_perplexity": 438558.0012817139
|
1160 |
+
}
|
1161 |
+
},
|
1162 |
+
"gsarti/flores_101_kir+null": {
|
1163 |
+
"2022-07-14-12-00-55": {
|
1164 |
+
"bits_per_byte": 1.9511242166700078,
|
1165 |
+
"byte_perplexity": 3.8667573034119127,
|
1166 |
+
"prompt_name": "null",
|
1167 |
+
"task_name": "gsarti/flores_101_kir",
|
1168 |
+
"word_perplexity": 235337758.18519488
|
1169 |
+
}
|
1170 |
+
},
|
1171 |
+
"gsarti/flores_101_kor+null": {
|
1172 |
+
"2022-07-14-12-00-55": {
|
1173 |
+
"bits_per_byte": 2.023500324792833,
|
1174 |
+
"byte_perplexity": 4.065690303705374,
|
1175 |
+
"prompt_name": "null",
|
1176 |
+
"task_name": "gsarti/flores_101_kor",
|
1177 |
+
"word_perplexity": 1684949.6449262113
|
1178 |
+
}
|
1179 |
+
},
|
1180 |
+
"gsarti/flores_101_lao+null": {
|
1181 |
+
"2022-07-14-12-00-55": {
|
1182 |
+
"bits_per_byte": 1.6376750107826055,
|
1183 |
+
"byte_perplexity": 3.1116396826339545,
|
1184 |
+
"prompt_name": "null",
|
1185 |
+
"task_name": "gsarti/flores_101_lao",
|
1186 |
+
"word_perplexity": 3.0817754157127624e+28
|
1187 |
+
}
|
1188 |
+
},
|
1189 |
+
"gsarti/flores_101_lav+null": {
|
1190 |
+
"2022-07-14-12-00-55": {
|
1191 |
+
"bits_per_byte": 3.075865182775687,
|
1192 |
+
"byte_perplexity": 8.431943399753028,
|
1193 |
+
"prompt_name": "null",
|
1194 |
+
"task_name": "gsarti/flores_101_lav",
|
1195 |
+
"word_perplexity": 20692036.880855087
|
1196 |
+
}
|
1197 |
+
},
|
1198 |
+
"gsarti/flores_101_lin+null": {
|
1199 |
+
"2022-07-14-12-00-55": {
|
1200 |
+
"bits_per_byte": 3.018221991102226,
|
1201 |
+
"byte_perplexity": 8.10168498947524,
|
1202 |
+
"prompt_name": "null",
|
1203 |
+
"task_name": "gsarti/flores_101_lin",
|
1204 |
+
"word_perplexity": 259077.7174090486
|
1205 |
+
}
|
1206 |
+
},
|
1207 |
+
"gsarti/flores_101_lit+null": {
|
1208 |
+
"2022-07-14-12-00-55": {
|
1209 |
+
"bits_per_byte": 3.0526165270213905,
|
1210 |
+
"byte_perplexity": 8.297153789252596,
|
1211 |
+
"prompt_name": "null",
|
1212 |
+
"task_name": "gsarti/flores_101_lit",
|
1213 |
+
"word_perplexity": 22011900.13997282
|
1214 |
+
}
|
1215 |
+
},
|
1216 |
+
"gsarti/flores_101_ltz+null": {
|
1217 |
+
"2022-07-14-12-00-55": {
|
1218 |
+
"bits_per_byte": 3.2407955989852377,
|
1219 |
+
"byte_perplexity": 9.453152958003827,
|
1220 |
+
"prompt_name": "null",
|
1221 |
+
"task_name": "gsarti/flores_101_ltz",
|
1222 |
+
"word_perplexity": 6731220.931729273
|
1223 |
+
}
|
1224 |
+
},
|
1225 |
+
"gsarti/flores_101_lug+null": {
|
1226 |
+
"2022-07-14-10-03-25": {
|
1227 |
+
"bits_per_byte": 3.2150119431528754,
|
1228 |
+
"byte_perplexity": 9.285708185212261,
|
1229 |
+
"prompt_name": "null",
|
1230 |
+
"task_name": "gsarti/flores_101_lug",
|
1231 |
+
"word_perplexity": 32046806.791237485
|
1232 |
+
}
|
1233 |
+
},
|
1234 |
+
"gsarti/flores_101_luo+null": {
|
1235 |
+
"2022-07-14-12-00-55": {
|
1236 |
+
"bits_per_byte": 3.609093857404177,
|
1237 |
+
"byte_perplexity": 12.202407052163576,
|
1238 |
+
"prompt_name": "null",
|
1239 |
+
"task_name": "gsarti/flores_101_luo",
|
1240 |
+
"word_perplexity": 1485111.1306447538
|
1241 |
+
}
|
1242 |
+
},
|
1243 |
+
"gsarti/flores_101_mal+null": {
|
1244 |
+
"2022-07-14-12-00-55": {
|
1245 |
+
"bits_per_byte": 2.1588237245178132,
|
1246 |
+
"byte_perplexity": 4.465506197375413,
|
1247 |
+
"prompt_name": "null",
|
1248 |
+
"task_name": "gsarti/flores_101_mal",
|
1249 |
+
"word_perplexity": 4.8990954217696134e+17
|
1250 |
+
}
|
1251 |
+
},
|
1252 |
+
"gsarti/flores_101_mar+null": {
|
1253 |
+
"2022-07-14-12-00-55": {
|
1254 |
+
"bits_per_byte": 2.454064685835334,
|
1255 |
+
"byte_perplexity": 5.479577601103449,
|
1256 |
+
"prompt_name": "null",
|
1257 |
+
"task_name": "gsarti/flores_101_mar",
|
1258 |
+
"word_perplexity": 53348101396468.1
|
1259 |
+
}
|
1260 |
+
},
|
1261 |
+
"gsarti/flores_101_mkd+null": {
|
1262 |
+
"2022-07-14-12-00-55": {
|
1263 |
+
"bits_per_byte": 1.6388651004482695,
|
1264 |
+
"byte_perplexity": 3.11420755589491,
|
1265 |
+
"prompt_name": "null",
|
1266 |
+
"task_name": "gsarti/flores_101_mkd",
|
1267 |
+
"word_perplexity": 513306.31562258815
|
1268 |
+
}
|
1269 |
+
},
|
1270 |
+
"gsarti/flores_101_mlt+null": {
|
1271 |
+
"2022-07-14-12-00-55": {
|
1272 |
+
"bits_per_byte": 4.014730236310589,
|
1273 |
+
"byte_perplexity": 16.164200382975334,
|
1274 |
+
"prompt_name": "null",
|
1275 |
+
"task_name": "gsarti/flores_101_mlt",
|
1276 |
+
"word_perplexity": 3271065298.9525104
|
1277 |
+
}
|
1278 |
+
},
|
1279 |
+
"gsarti/flores_101_mon+null": {
|
1280 |
+
"2022-07-14-12-00-55": {
|
1281 |
+
"bits_per_byte": 1.8368760183021453,
|
1282 |
+
"byte_perplexity": 3.5723563966116956,
|
1283 |
+
"prompt_name": "null",
|
1284 |
+
"task_name": "gsarti/flores_101_mon",
|
1285 |
+
"word_perplexity": 11967156.496346941
|
1286 |
+
}
|
1287 |
+
},
|
1288 |
+
"gsarti/flores_101_mri+null": {
|
1289 |
+
"2022-07-14-12-00-55": {
|
1290 |
+
"bits_per_byte": 3.037967287223778,
|
1291 |
+
"byte_perplexity": 8.213330128288407,
|
1292 |
+
"prompt_name": "null",
|
1293 |
+
"task_name": "gsarti/flores_101_mri",
|
1294 |
+
"word_perplexity": 42667.84366725716
|
1295 |
+
}
|
1296 |
+
},
|
1297 |
+
"gsarti/flores_101_msa+null": {
|
1298 |
+
"2022-07-14-12-00-55": {
|
1299 |
+
"bits_per_byte": 1.4109363519680242,
|
1300 |
+
"byte_perplexity": 2.659096901190639,
|
1301 |
+
"prompt_name": "null",
|
1302 |
+
"task_name": "gsarti/flores_101_msa",
|
1303 |
+
"word_perplexity": 1188.7251531670374
|
1304 |
+
}
|
1305 |
+
},
|
1306 |
+
"gsarti/flores_101_mya+null": {
|
1307 |
+
"2022-07-14-10-03-25": {
|
1308 |
+
"bits_per_byte": 1.4101030557435918,
|
1309 |
+
"byte_perplexity": 2.657561458464019,
|
1310 |
+
"prompt_name": "null",
|
1311 |
+
"task_name": "gsarti/flores_101_mya",
|
1312 |
+
"word_perplexity": 5.887577237013639e+18
|
1313 |
+
}
|
1314 |
+
},
|
1315 |
+
"gsarti/flores_101_nld+null": {
|
1316 |
+
"2022-07-14-10-03-25": {
|
1317 |
+
"bits_per_byte": 2.1813098607926804,
|
1318 |
+
"byte_perplexity": 4.535651709856251,
|
1319 |
+
"prompt_name": "null",
|
1320 |
+
"task_name": "gsarti/flores_101_nld",
|
1321 |
+
"word_perplexity": 13951.877058430618
|
1322 |
+
}
|
1323 |
+
},
|
1324 |
+
"gsarti/flores_101_nob+null": {
|
1325 |
+
"2022-07-14-12-00-55": {
|
1326 |
+
"bits_per_byte": 2.561165630453858,
|
1327 |
+
"byte_perplexity": 5.901843358131797,
|
1328 |
+
"prompt_name": "null",
|
1329 |
+
"task_name": "gsarti/flores_101_nob",
|
1330 |
+
"word_perplexity": 64134.3587194621
|
1331 |
+
}
|
1332 |
+
},
|
1333 |
+
"gsarti/flores_101_npi+null": {
|
1334 |
+
"2022-07-14-12-00-55": {
|
1335 |
+
"bits_per_byte": 2.361386302448311,
|
1336 |
+
"byte_perplexity": 5.138638996619111,
|
1337 |
+
"prompt_name": "null",
|
1338 |
+
"task_name": "gsarti/flores_101_npi",
|
1339 |
+
"word_perplexity": 7452421298650.788
|
1340 |
+
}
|
1341 |
+
},
|
1342 |
+
"gsarti/flores_101_nso+null": {
|
1343 |
+
"2022-07-14-12-00-55": {
|
1344 |
+
"bits_per_byte": 3.150046187635368,
|
1345 |
+
"byte_perplexity": 8.876839962509171,
|
1346 |
+
"prompt_name": "null",
|
1347 |
+
"task_name": "gsarti/flores_101_nso",
|
1348 |
+
"word_perplexity": 133251.3907730927
|
1349 |
+
}
|
1350 |
+
},
|
1351 |
+
"gsarti/flores_101_nya+null": {
|
1352 |
+
"2022-07-14-12-00-55": {
|
1353 |
+
"bits_per_byte": 3.166160871838487,
|
1354 |
+
"byte_perplexity": 8.97654874419086,
|
1355 |
+
"prompt_name": "null",
|
1356 |
+
"task_name": "gsarti/flores_101_nya",
|
1357 |
+
"word_perplexity": 13237249.320560299
|
1358 |
+
}
|
1359 |
+
},
|
1360 |
+
"gsarti/flores_101_oci+null": {
|
1361 |
+
"2022-07-14-12-00-55": {
|
1362 |
+
"bits_per_byte": 2.3544826611123932,
|
1363 |
+
"byte_perplexity": 5.114108118049416,
|
1364 |
+
"prompt_name": "null",
|
1365 |
+
"task_name": "gsarti/flores_101_oci",
|
1366 |
+
"word_perplexity": 29786.57326210068
|
1367 |
+
}
|
1368 |
+
},
|
1369 |
+
"gsarti/flores_101_orm+null": {
|
1370 |
+
"2022-07-14-12-00-55": {
|
1371 |
+
"bits_per_byte": 3.7457001993717243,
|
1372 |
+
"byte_perplexity": 13.414303089263644,
|
1373 |
+
"prompt_name": "null",
|
1374 |
+
"task_name": "gsarti/flores_101_orm",
|
1375 |
+
"word_perplexity": 1286222337.8393624
|
1376 |
+
}
|
1377 |
+
},
|
1378 |
+
"gsarti/flores_101_ory+null": {
|
1379 |
+
"2022-07-14-12-00-55": {
|
1380 |
+
"bits_per_byte": 2.3466784891528936,
|
1381 |
+
"byte_perplexity": 5.086518347981296,
|
1382 |
+
"prompt_name": "null",
|
1383 |
+
"task_name": "gsarti/flores_101_ory",
|
1384 |
+
"word_perplexity": 8232620282886.167
|
1385 |
+
}
|
1386 |
+
},
|
1387 |
+
"gsarti/flores_101_pan+null": {
|
1388 |
+
"2022-07-14-12-00-55": {
|
1389 |
+
"bits_per_byte": 2.3255600077385723,
|
1390 |
+
"byte_perplexity": 5.012603107956229,
|
1391 |
+
"prompt_name": "null",
|
1392 |
+
"task_name": "gsarti/flores_101_pan",
|
1393 |
+
"word_perplexity": 2003582065.835696
|
1394 |
+
}
|
1395 |
+
},
|
1396 |
+
"gsarti/flores_101_pol+null": {
|
1397 |
+
"2022-07-14-12-00-55": {
|
1398 |
+
"bits_per_byte": 2.3688414865658434,
|
1399 |
+
"byte_perplexity": 5.165261846492578,
|
1400 |
+
"prompt_name": "null",
|
1401 |
+
"task_name": "gsarti/flores_101_pol",
|
1402 |
+
"word_perplexity": 239703.75452947227
|
1403 |
+
}
|
1404 |
+
},
|
1405 |
+
"gsarti/flores_101_por+null": {
|
1406 |
+
"2022-07-14-12-00-55": {
|
1407 |
+
"bits_per_byte": 1.0087385096181816,
|
1408 |
+
"byte_perplexity": 2.012150908931838,
|
1409 |
+
"prompt_name": "null",
|
1410 |
+
"task_name": "gsarti/flores_101_por",
|
1411 |
+
"word_perplexity": 78.66129921108659
|
1412 |
+
}
|
1413 |
+
},
|
1414 |
+
"gsarti/flores_101_pus+null": {
|
1415 |
+
"2022-07-14-12-00-55": {
|
1416 |
+
"bits_per_byte": 2.2173729850313615,
|
1417 |
+
"byte_perplexity": 4.650458574106675,
|
1418 |
+
"prompt_name": "null",
|
1419 |
+
"task_name": "gsarti/flores_101_pus",
|
1420 |
+
"word_perplexity": 200303.57214724104
|
1421 |
+
}
|
1422 |
+
},
|
1423 |
+
"gsarti/flores_101_ron+null": {
|
1424 |
+
"2022-07-14-12-00-55": {
|
1425 |
+
"bits_per_byte": 2.486356022105963,
|
1426 |
+
"byte_perplexity": 5.603607947317877,
|
1427 |
+
"prompt_name": "null",
|
1428 |
+
"task_name": "gsarti/flores_101_ron",
|
1429 |
+
"word_perplexity": 80490.92705368399
|
1430 |
+
}
|
1431 |
+
},
|
1432 |
+
"gsarti/flores_101_rus+null": {
|
1433 |
+
"2022-07-14-12-00-55": {
|
1434 |
+
"bits_per_byte": 1.095728414417906,
|
1435 |
+
"byte_perplexity": 2.1372096174466697,
|
1436 |
+
"prompt_name": "null",
|
1437 |
+
"task_name": "gsarti/flores_101_rus",
|
1438 |
+
"word_perplexity": 22038.65288574451
|
1439 |
+
}
|
1440 |
+
},
|
1441 |
+
"gsarti/flores_101_slk+null": {
|
1442 |
+
"2022-07-14-12-00-55": {
|
1443 |
+
"bits_per_byte": 2.8667803584469502,
|
1444 |
+
"byte_perplexity": 7.294354718439043,
|
1445 |
+
"prompt_name": "null",
|
1446 |
+
"task_name": "gsarti/flores_101_slk",
|
1447 |
+
"word_perplexity": 1873211.2703176092
|
1448 |
+
}
|
1449 |
+
},
|
1450 |
+
"gsarti/flores_101_slv+null": {
|
1451 |
+
"2022-07-14-12-00-55": {
|
1452 |
+
"bits_per_byte": 2.894935550489075,
|
1453 |
+
"byte_perplexity": 7.438107250941839,
|
1454 |
+
"prompt_name": "null",
|
1455 |
+
"task_name": "gsarti/flores_101_slv",
|
1456 |
+
"word_perplexity": 609965.8362492598
|
1457 |
+
}
|
1458 |
+
},
|
1459 |
+
"gsarti/flores_101_sna+null": {
|
1460 |
+
"2022-07-14-12-00-55": {
|
1461 |
+
"bits_per_byte": 3.226698783453375,
|
1462 |
+
"byte_perplexity": 9.361234419948593,
|
1463 |
+
"prompt_name": "null",
|
1464 |
+
"task_name": "gsarti/flores_101_sna",
|
1465 |
+
"word_perplexity": 151658287.08006003
|
1466 |
+
}
|
1467 |
+
},
|
1468 |
+
"gsarti/flores_101_snd+null": {
|
1469 |
+
"2022-07-14-12-00-55": {
|
1470 |
+
"bits_per_byte": 2.505484320885354,
|
1471 |
+
"byte_perplexity": 5.678399375652783,
|
1472 |
+
"prompt_name": "null",
|
1473 |
+
"task_name": "gsarti/flores_101_snd",
|
1474 |
+
"word_perplexity": 2195879.0537875695
|
1475 |
+
}
|
1476 |
+
},
|
1477 |
+
"gsarti/flores_101_som+null": {
|
1478 |
+
"2022-07-14-12-00-55": {
|
1479 |
+
"bits_per_byte": 3.6579492747174616,
|
1480 |
+
"byte_perplexity": 12.622705630414286,
|
1481 |
+
"prompt_name": "null",
|
1482 |
+
"task_name": "gsarti/flores_101_som",
|
1483 |
+
"word_perplexity": 12921970.127169678
|
1484 |
+
}
|
1485 |
+
},
|
1486 |
+
"gsarti/flores_101_spa+null": {
|
1487 |
+
"2022-07-14-12-00-55": {
|
1488 |
+
"bits_per_byte": 0.9441289779054047,
|
1489 |
+
"byte_perplexity": 1.9240269109386998,
|
1490 |
+
"prompt_name": "null",
|
1491 |
+
"task_name": "gsarti/flores_101_spa",
|
1492 |
+
"word_perplexity": 55.14408503293887
|
1493 |
+
}
|
1494 |
+
},
|
1495 |
+
"gsarti/flores_101_srp+null": {
|
1496 |
+
"2022-07-14-12-00-55": {
|
1497 |
+
"bits_per_byte": 1.6091583939601046,
|
1498 |
+
"byte_perplexity": 3.050738229673983,
|
1499 |
+
"prompt_name": "null",
|
1500 |
+
"task_name": "gsarti/flores_101_srp",
|
1501 |
+
"word_perplexity": 359037.4163692842
|
1502 |
+
}
|
1503 |
+
},
|
1504 |
+
"gsarti/flores_101_swe+null": {
|
1505 |
+
"2022-07-14-12-00-55": {
|
1506 |
+
"bits_per_byte": 2.4943222333483153,
|
1507 |
+
"byte_perplexity": 5.634635291846611,
|
1508 |
+
"prompt_name": "null",
|
1509 |
+
"task_name": "gsarti/flores_101_swe",
|
1510 |
+
"word_perplexity": 104567.9891705103
|
1511 |
+
}
|
1512 |
+
},
|
1513 |
+
"gsarti/flores_101_swh+null": {
|
1514 |
+
"2022-07-14-12-00-55": {
|
1515 |
+
"bits_per_byte": 1.9721156771582438,
|
1516 |
+
"byte_perplexity": 3.923430589092355,
|
1517 |
+
"prompt_name": "null",
|
1518 |
+
"task_name": "gsarti/flores_101_swh",
|
1519 |
+
"word_perplexity": 6985.646204087442
|
1520 |
+
}
|
1521 |
+
},
|
1522 |
+
"gsarti/flores_101_tam+null": {
|
1523 |
+
"2022-07-14-12-00-55": {
|
1524 |
+
"bits_per_byte": 2.0999329236632325,
|
1525 |
+
"byte_perplexity": 4.286894531607389,
|
1526 |
+
"prompt_name": "null",
|
1527 |
+
"task_name": "gsarti/flores_101_tam",
|
1528 |
+
"word_perplexity": 4220234444737767.0
|
1529 |
+
}
|
1530 |
+
},
|
1531 |
+
"gsarti/flores_101_tel+null": {
|
1532 |
+
"2022-07-14-12-00-55": {
|
1533 |
+
"bits_per_byte": 2.549014618212334,
|
1534 |
+
"byte_perplexity": 5.852344181819556,
|
1535 |
+
"prompt_name": "null",
|
1536 |
+
"task_name": "gsarti/flores_101_tel",
|
1537 |
+
"word_perplexity": 7315913985648022.0
|
1538 |
+
}
|
1539 |
+
},
|
1540 |
+
"gsarti/flores_101_tgk+null": {
|
1541 |
+
"2022-07-14-12-00-55": {
|
1542 |
+
"bits_per_byte": 1.9399053923480125,
|
1543 |
+
"byte_perplexity": 3.836804862794101,
|
1544 |
+
"prompt_name": "null",
|
1545 |
+
"task_name": "gsarti/flores_101_tgk",
|
1546 |
+
"word_perplexity": 10003619.893239152
|
1547 |
+
}
|
1548 |
+
},
|
1549 |
+
"gsarti/flores_101_tgl+null": {
|
1550 |
+
"2022-07-14-10-03-25": {
|
1551 |
+
"bits_per_byte": 2.645461413001105,
|
1552 |
+
"byte_perplexity": 6.256957969905079,
|
1553 |
+
"prompt_name": "null",
|
1554 |
+
"task_name": "gsarti/flores_101_tgl",
|
1555 |
+
"word_perplexity": 87554.31770184237
|
1556 |
+
}
|
1557 |
+
},
|
1558 |
+
"gsarti/flores_101_tha+null": {
|
1559 |
+
"2022-07-14-12-00-55": {
|
1560 |
+
"bits_per_byte": 1.2979178211163922,
|
1561 |
+
"byte_perplexity": 2.458737675753546,
|
1562 |
+
"prompt_name": "null",
|
1563 |
+
"task_name": "gsarti/flores_101_tha",
|
1564 |
+
"word_perplexity": 6.85384626099906e+32
|
1565 |
+
}
|
1566 |
+
},
|
1567 |
+
"gsarti/flores_101_tur+null": {
|
1568 |
+
"2022-07-14-12-00-55": {
|
1569 |
+
"bits_per_byte": 2.4123830232149,
|
1570 |
+
"byte_perplexity": 5.323529328304652,
|
1571 |
+
"prompt_name": "null",
|
1572 |
+
"task_name": "gsarti/flores_101_tur",
|
1573 |
+
"word_perplexity": 1230000.8194755162
|
1574 |
+
}
|
1575 |
+
},
|
1576 |
+
"gsarti/flores_101_ukr+null": {
|
1577 |
+
"2022-07-14-12-00-55": {
|
1578 |
+
"bits_per_byte": 1.5282644195953918,
|
1579 |
+
"byte_perplexity": 2.8843863497020608,
|
1580 |
+
"prompt_name": "null",
|
1581 |
+
"task_name": "gsarti/flores_101_ukr",
|
1582 |
+
"word_perplexity": 780615.9486315987
|
1583 |
+
}
|
1584 |
+
},
|
1585 |
+
"gsarti/flores_101_umb+null": {
|
1586 |
+
"2022-07-14-12-00-55": {
|
1587 |
+
"bits_per_byte": 3.710219475046473,
|
1588 |
+
"byte_perplexity": 13.088423907901921,
|
1589 |
+
"prompt_name": "null",
|
1590 |
+
"task_name": "gsarti/flores_101_umb",
|
1591 |
+
"word_perplexity": 346118506.64866126
|
1592 |
+
}
|
1593 |
+
},
|
1594 |
+
"gsarti/flores_101_urd+null": {
|
1595 |
+
"2022-07-14-12-00-55": {
|
1596 |
+
"bits_per_byte": 1.0075988539165108,
|
1597 |
+
"byte_perplexity": 2.010562039704537,
|
1598 |
+
"prompt_name": "null",
|
1599 |
+
"task_name": "gsarti/flores_101_urd",
|
1600 |
+
"word_perplexity": 335.1943886252716
|
1601 |
+
}
|
1602 |
+
},
|
1603 |
+
"gsarti/flores_101_uzb+null": {
|
1604 |
+
"2022-07-14-12-00-55": {
|
1605 |
+
"bits_per_byte": 3.69831120498359,
|
1606 |
+
"byte_perplexity": 12.980834294137205,
|
1607 |
+
"prompt_name": "null",
|
1608 |
+
"task_name": "gsarti/flores_101_uzb",
|
1609 |
+
"word_perplexity": 1248263505.2751954
|
1610 |
+
}
|
1611 |
+
},
|
1612 |
+
"gsarti/flores_101_vie+null": {
|
1613 |
+
"2022-07-14-12-00-55": {
|
1614 |
+
"bits_per_byte": 0.8461114961807352,
|
1615 |
+
"byte_perplexity": 1.7976491760484148,
|
1616 |
+
"prompt_name": "null",
|
1617 |
+
"task_name": "gsarti/flores_101_vie",
|
1618 |
+
"word_perplexity": 33.51752264232948
|
1619 |
+
}
|
1620 |
+
},
|
1621 |
+
"gsarti/flores_101_wol+null": {
|
1622 |
+
"2022-07-14-12-00-55": {
|
1623 |
+
"bits_per_byte": 3.332383415073327,
|
1624 |
+
"byte_perplexity": 10.072733993132132,
|
1625 |
+
"prompt_name": "null",
|
1626 |
+
"task_name": "gsarti/flores_101_wol",
|
1627 |
+
"word_perplexity": 199684.7010180392
|
1628 |
+
}
|
1629 |
+
},
|
1630 |
+
"gsarti/flores_101_xho+null": {
|
1631 |
+
"2022-07-14-12-00-55": {
|
1632 |
+
"bits_per_byte": 3.0428982143908727,
|
1633 |
+
"byte_perplexity": 8.241450154294917,
|
1634 |
+
"prompt_name": "null",
|
1635 |
+
"task_name": "gsarti/flores_101_xho",
|
1636 |
+
"word_perplexity": 141017733.33017766
|
1637 |
+
}
|
1638 |
+
},
|
1639 |
+
"gsarti/flores_101_yor+null": {
|
1640 |
+
"2022-07-14-12-00-55": {
|
1641 |
+
"bits_per_byte": 2.62429549091613,
|
1642 |
+
"byte_perplexity": 6.165831615133067,
|
1643 |
+
"prompt_name": "null",
|
1644 |
+
"task_name": "gsarti/flores_101_yor",
|
1645 |
+
"word_perplexity": 171980.641422536
|
1646 |
+
}
|
1647 |
+
},
|
1648 |
+
"gsarti/flores_101_zho_simpl+null": {
|
1649 |
+
"2022-07-14-10-03-25": {
|
1650 |
+
"bits_per_byte": 1.2156521449449949,
|
1651 |
+
"byte_perplexity": 2.322457417595381,
|
1652 |
+
"prompt_name": "null",
|
1653 |
+
"task_name": "gsarti/flores_101_zho_simpl",
|
1654 |
+
"word_perplexity": 1.0554528210220222e+21
|
1655 |
+
}
|
1656 |
+
},
|
1657 |
+
"gsarti/flores_101_zho_trad+null": {
|
1658 |
+
"2022-07-14-10-03-25": {
|
1659 |
+
"bits_per_byte": 1.3622834584784203,
|
1660 |
+
"byte_perplexity": 2.5709177552415134,
|
1661 |
+
"prompt_name": "null",
|
1662 |
+
"task_name": "gsarti/flores_101_zho_trad",
|
1663 |
+
"word_perplexity": 4.787781515987923e+24
|
1664 |
+
}
|
1665 |
+
},
|
1666 |
+
"gsarti/flores_101_zul+null": {
|
1667 |
+
"2022-07-14-12-00-55": {
|
1668 |
+
"bits_per_byte": 3.2020451216662975,
|
1669 |
+
"byte_perplexity": 9.202622963132773,
|
1670 |
+
"prompt_name": "null",
|
1671 |
+
"task_name": "gsarti/flores_101_zul",
|
1672 |
+
"word_perplexity": 998742068.9481835
|
1673 |
+
}
|
1674 |
+
},
|
1675 |
+
"headqa": {
|
1676 |
+
"2022-07-13-11-29-13": {
|
1677 |
+
"acc": 0.25419401896425964,
|
1678 |
+
"acc_norm": 0.29576951130561635,
|
1679 |
+
"acc_norm_stderr": 0.008717251898361422,
|
1680 |
+
"acc_stderr": 0.008316509290190668
|
1681 |
+
}
|
1682 |
+
},
|
1683 |
+
"hellaswag": {
|
1684 |
+
"2022-07-13-11-29-13": {
|
1685 |
+
"acc": 0.37621987651862177,
|
1686 |
+
"acc_norm": 0.46564429396534557,
|
1687 |
+
"acc_norm_stderr": 0.004977988452502641,
|
1688 |
+
"acc_stderr": 0.004834461997944872
|
1689 |
+
}
|
1690 |
+
},
|
1691 |
+
"lambada": {
|
1692 |
+
"2022-07-13-11-29-13": {
|
1693 |
+
"acc": 0.46322530564719583,
|
1694 |
+
"acc_stderr": 0.006947110835634445,
|
1695 |
+
"ppl": 12.583447597222621,
|
1696 |
+
"ppl_stderr": 0.4021518609838198
|
1697 |
+
}
|
1698 |
+
},
|
1699 |
+
"logiqa": {
|
1700 |
+
"2022-07-13-11-29-13": {
|
1701 |
+
"acc": 0.21658986175115208,
|
1702 |
+
"acc_norm": 0.28110599078341014,
|
1703 |
+
"acc_norm_stderr": 0.017632374626460005,
|
1704 |
+
"acc_stderr": 0.016156860583178303
|
1705 |
+
}
|
1706 |
+
},
|
1707 |
+
"mathqa": {
|
1708 |
+
"2022-07-13-11-29-13": {
|
1709 |
+
"acc": 0.2489112227805695,
|
1710 |
+
"acc_norm": 0.2422110552763819,
|
1711 |
+
"acc_norm_stderr": 0.007842810183504986,
|
1712 |
+
"acc_stderr": 0.007915319798861361
|
1713 |
+
}
|
1714 |
+
},
|
1715 |
+
"mc_taco": {
|
1716 |
+
"2022-07-13-11-29-13": {
|
1717 |
+
"em": 0.12537537537537538,
|
1718 |
+
"f1": 0.4747075325110886
|
1719 |
+
}
|
1720 |
+
},
|
1721 |
+
"mnli+GPT-3 style": {
|
1722 |
+
"2022-07-12-22-45-57": {
|
1723 |
+
"acc": 0.3564951604686704,
|
1724 |
+
"acc_norm": 0.335303107488538,
|
1725 |
+
"acc_norm_stderr": 0.004765490263584639,
|
1726 |
+
"acc_stderr": 0.004834813222301984,
|
1727 |
+
"prompt_name": "GPT-3 style",
|
1728 |
+
"task_name": "mnli"
|
1729 |
+
}
|
1730 |
+
},
|
1731 |
+
"mnli+MNLI crowdsource": {
|
1732 |
+
"2022-07-12-22-45-57": {
|
1733 |
+
"acc": 0.3548650025471218,
|
1734 |
+
"acc_norm": 0.37982679572083544,
|
1735 |
+
"acc_norm_stderr": 0.004899212442097964,
|
1736 |
+
"acc_stderr": 0.004829852406948984,
|
1737 |
+
"prompt_name": "MNLI crowdsource",
|
1738 |
+
"task_name": "mnli"
|
1739 |
+
}
|
1740 |
+
},
|
1741 |
+
"mnli+always/sometimes/never": {
|
1742 |
+
"2022-07-12-22-45-57": {
|
1743 |
+
"acc": 0.31920529801324504,
|
1744 |
+
"acc_norm": 0.31818644931227713,
|
1745 |
+
"acc_norm_stderr": 0.004701653585969693,
|
1746 |
+
"acc_stderr": 0.004705655206722177,
|
1747 |
+
"prompt_name": "always/sometimes/never",
|
1748 |
+
"task_name": "mnli"
|
1749 |
+
}
|
1750 |
+
},
|
1751 |
+
"mnli+based on the previous passage": {
|
1752 |
+
"2022-07-12-22-45-57": {
|
1753 |
+
"acc": 0.34070300560366784,
|
1754 |
+
"acc_norm": 0.33245033112582784,
|
1755 |
+
"acc_norm_stderr": 0.004755346314564714,
|
1756 |
+
"acc_stderr": 0.004784157883834768,
|
1757 |
+
"prompt_name": "based on the previous passage",
|
1758 |
+
"task_name": "mnli"
|
1759 |
+
}
|
1760 |
+
},
|
1761 |
+
"mnli+can we infer": {
|
1762 |
+
"2022-07-12-22-45-57": {
|
1763 |
+
"acc": 0.36271013754457465,
|
1764 |
+
"acc_norm": 0.3392766174223128,
|
1765 |
+
"acc_norm_stderr": 0.004779294320017342,
|
1766 |
+
"acc_stderr": 0.004853167998709484,
|
1767 |
+
"prompt_name": "can we infer",
|
1768 |
+
"task_name": "mnli"
|
1769 |
+
}
|
1770 |
+
},
|
1771 |
+
"mnli+claim true/false/inconclusive": {
|
1772 |
+
"2022-07-12-22-45-57": {
|
1773 |
+
"acc": 0.35384615384615387,
|
1774 |
+
"acc_norm": 0.3169638308711156,
|
1775 |
+
"acc_norm_stderr": 0.004696817414398099,
|
1776 |
+
"acc_stderr": 0.004826720820135633,
|
1777 |
+
"prompt_name": "claim true/false/inconclusive",
|
1778 |
+
"task_name": "mnli"
|
1779 |
+
}
|
1780 |
+
},
|
1781 |
+
"mnli+consider always/sometimes/never": {
|
1782 |
+
"2022-07-12-22-45-57": {
|
1783 |
+
"acc": 0.3183902190524707,
|
1784 |
+
"acc_norm": 0.31818644931227713,
|
1785 |
+
"acc_norm_stderr": 0.004701653585969693,
|
1786 |
+
"acc_stderr": 0.004702455981984395,
|
1787 |
+
"prompt_name": "consider always/sometimes/never",
|
1788 |
+
"task_name": "mnli"
|
1789 |
+
}
|
1790 |
+
},
|
1791 |
+
"mnli+does it follow that": {
|
1792 |
+
"2022-07-12-22-45-57": {
|
1793 |
+
"acc": 0.3784004075394804,
|
1794 |
+
"acc_norm": 0.3499745287824758,
|
1795 |
+
"acc_norm_stderr": 0.004814601860231488,
|
1796 |
+
"acc_stderr": 0.00489562485968904,
|
1797 |
+
"prompt_name": "does it follow that",
|
1798 |
+
"task_name": "mnli"
|
1799 |
+
}
|
1800 |
+
},
|
1801 |
+
"mnli+does this imply": {
|
1802 |
+
"2022-07-12-22-45-57": {
|
1803 |
+
"acc": 0.33224656138563424,
|
1804 |
+
"acc_norm": 0.31920529801324504,
|
1805 |
+
"acc_norm_stderr": 0.004705655206722178,
|
1806 |
+
"acc_stderr": 0.004754614244749308,
|
1807 |
+
"prompt_name": "does this imply",
|
1808 |
+
"task_name": "mnli"
|
1809 |
+
}
|
1810 |
+
},
|
1811 |
+
"mnli+guaranteed true": {
|
1812 |
+
"2022-07-12-22-45-57": {
|
1813 |
+
"acc": 0.35731023942944473,
|
1814 |
+
"acc_norm": 0.3398879266428935,
|
1815 |
+
"acc_norm_stderr": 0.004781384619510542,
|
1816 |
+
"acc_stderr": 0.004837270730680468,
|
1817 |
+
"prompt_name": "guaranteed true",
|
1818 |
+
"task_name": "mnli"
|
1819 |
+
}
|
1820 |
+
},
|
1821 |
+
"mnli+guaranteed/possible/impossible": {
|
1822 |
+
"2022-07-12-22-45-57": {
|
1823 |
+
"acc": 0.32317880794701986,
|
1824 |
+
"acc_norm": 0.3390728476821192,
|
1825 |
+
"acc_norm_stderr": 0.004778595579555236,
|
1826 |
+
"acc_stderr": 0.004721015048648592,
|
1827 |
+
"prompt_name": "guaranteed/possible/impossible",
|
1828 |
+
"task_name": "mnli"
|
1829 |
+
}
|
1830 |
+
},
|
1831 |
+
"mnli+justified in saying": {
|
1832 |
+
"2022-07-12-22-45-57": {
|
1833 |
+
"acc": 0.3611818644931228,
|
1834 |
+
"acc_norm": 0.33438614365766683,
|
1835 |
+
"acc_norm_stderr": 0.004762251055102503,
|
1836 |
+
"acc_stderr": 0.0048487362318538965,
|
1837 |
+
"prompt_name": "justified in saying",
|
1838 |
+
"task_name": "mnli"
|
1839 |
+
}
|
1840 |
+
},
|
1841 |
+
"mnli+must be true": {
|
1842 |
+
"2022-07-12-22-45-57": {
|
1843 |
+
"acc": 0.3532348446255731,
|
1844 |
+
"acc_norm": 0.3400916963830871,
|
1845 |
+
"acc_norm_stderr": 0.004782079413482068,
|
1846 |
+
"acc_stderr": 0.004824830369595005,
|
1847 |
+
"prompt_name": "must be true",
|
1848 |
+
"task_name": "mnli"
|
1849 |
+
}
|
1850 |
+
},
|
1851 |
+
"mnli+should assume": {
|
1852 |
+
"2022-07-12-22-45-57": {
|
1853 |
+
"acc": 0.3532348446255731,
|
1854 |
+
"acc_norm": 0.32236372898624555,
|
1855 |
+
"acc_norm_stderr": 0.004717896188851781,
|
1856 |
+
"acc_stderr": 0.004824830369595005,
|
1857 |
+
"prompt_name": "should assume",
|
1858 |
+
"task_name": "mnli"
|
1859 |
+
}
|
1860 |
+
},
|
1861 |
+
"mnli+take the following as truth": {
|
1862 |
+
"2022-07-12-22-45-57": {
|
1863 |
+
"acc": 0.3540499235863474,
|
1864 |
+
"acc_norm": 0.32654100866021396,
|
1865 |
+
"acc_norm_stderr": 0.004733707466562015,
|
1866 |
+
"acc_stderr": 0.004827349052909375,
|
1867 |
+
"prompt_name": "take the following as truth",
|
1868 |
+
"task_name": "mnli"
|
1869 |
+
}
|
1870 |
+
},
|
1871 |
+
"mnli_mismatched+GPT-3 style": {
|
1872 |
+
"2022-07-12-22-45-57": {
|
1873 |
+
"acc": 0.3558787632221318,
|
1874 |
+
"acc_norm": 0.3365541090317331,
|
1875 |
+
"acc_norm_stderr": 0.0047657510794410825,
|
1876 |
+
"acc_stderr": 0.004828764189286043,
|
1877 |
+
"prompt_name": "GPT-3 style",
|
1878 |
+
"task_name": "mnli_mismatched"
|
1879 |
+
}
|
1880 |
+
},
|
1881 |
+
"mnli_mismatched+MNLI crowdsource": {
|
1882 |
+
"2022-07-12-22-45-57": {
|
1883 |
+
"acc": 0.3524206672091131,
|
1884 |
+
"acc_norm": 0.3876118795768918,
|
1885 |
+
"acc_norm_stderr": 0.004913750149712027,
|
1886 |
+
"acc_stderr": 0.004818127922877737,
|
1887 |
+
"prompt_name": "MNLI crowdsource",
|
1888 |
+
"task_name": "mnli_mismatched"
|
1889 |
+
}
|
1890 |
+
},
|
1891 |
+
"mnli_mismatched+always/sometimes/never": {
|
1892 |
+
"2022-07-12-22-45-57": {
|
1893 |
+
"acc": 0.3187550854353133,
|
1894 |
+
"acc_norm": 0.318246541903987,
|
1895 |
+
"acc_norm_stderr": 0.004697823254367764,
|
1896 |
+
"acc_stderr": 0.004699821349212815,
|
1897 |
+
"prompt_name": "always/sometimes/never",
|
1898 |
+
"task_name": "mnli_mismatched"
|
1899 |
+
}
|
1900 |
+
},
|
1901 |
+
"mnli_mismatched+based on the previous passage": {
|
1902 |
+
"2022-07-12-22-45-57": {
|
1903 |
+
"acc": 0.3442839707078926,
|
1904 |
+
"acc_norm": 0.3240439381611066,
|
1905 |
+
"acc_norm_stderr": 0.00472022103875238,
|
1906 |
+
"acc_stderr": 0.004792007109263922,
|
1907 |
+
"prompt_name": "based on the previous passage",
|
1908 |
+
"task_name": "mnli_mismatched"
|
1909 |
+
}
|
1910 |
+
},
|
1911 |
+
"mnli_mismatched+can we infer": {
|
1912 |
+
"2022-07-12-22-45-57": {
|
1913 |
+
"acc": 0.3628966639544345,
|
1914 |
+
"acc_norm": 0.33909682668836455,
|
1915 |
+
"acc_norm_stderr": 0.0047745443668395,
|
1916 |
+
"acc_stderr": 0.004849506876045877,
|
1917 |
+
"prompt_name": "can we infer",
|
1918 |
+
"task_name": "mnli_mismatched"
|
1919 |
+
}
|
1920 |
+
},
|
1921 |
+
"mnli_mismatched+claim true/false/inconclusive": {
|
1922 |
+
"2022-07-12-22-45-57": {
|
1923 |
+
"acc": 0.3517087062652563,
|
1924 |
+
"acc_norm": 0.31550040683482505,
|
1925 |
+
"acc_norm_stderr": 0.004686921836958016,
|
1926 |
+
"acc_stderr": 0.004815903833418159,
|
1927 |
+
"prompt_name": "claim true/false/inconclusive",
|
1928 |
+
"task_name": "mnli_mismatched"
|
1929 |
+
}
|
1930 |
+
},
|
1931 |
+
"mnli_mismatched+consider always/sometimes/never": {
|
1932 |
+
"2022-07-12-22-45-57": {
|
1933 |
+
"acc": 0.318246541903987,
|
1934 |
+
"acc_norm": 0.318246541903987,
|
1935 |
+
"acc_norm_stderr": 0.004697823254367764,
|
1936 |
+
"acc_stderr": 0.004697823254367764,
|
1937 |
+
"prompt_name": "consider always/sometimes/never",
|
1938 |
+
"task_name": "mnli_mismatched"
|
1939 |
+
}
|
1940 |
+
},
|
1941 |
+
"mnli_mismatched+does it follow that": {
|
1942 |
+
"2022-07-12-22-45-57": {
|
1943 |
+
"acc": 0.38923921887713586,
|
1944 |
+
"acc_norm": 0.34926769731489016,
|
1945 |
+
"acc_norm_stderr": 0.004808189163919754,
|
1946 |
+
"acc_stderr": 0.004917507365149974,
|
1947 |
+
"prompt_name": "does it follow that",
|
1948 |
+
"task_name": "mnli_mismatched"
|
1949 |
+
}
|
1950 |
+
},
|
1951 |
+
"mnli_mismatched+does this imply": {
|
1952 |
+
"2022-07-12-22-45-57": {
|
1953 |
+
"acc": 0.3233319772172498,
|
1954 |
+
"acc_norm": 0.3184499593165175,
|
1955 |
+
"acc_norm_stderr": 0.0046986232661144,
|
1956 |
+
"acc_stderr": 0.0047175151956513625,
|
1957 |
+
"prompt_name": "does this imply",
|
1958 |
+
"task_name": "mnli_mismatched"
|
1959 |
+
}
|
1960 |
+
},
|
1961 |
+
"mnli_mismatched+guaranteed true": {
|
1962 |
+
"2022-07-12-22-45-57": {
|
1963 |
+
"acc": 0.36208299430431246,
|
1964 |
+
"acc_norm": 0.3303498779495525,
|
1965 |
+
"acc_norm_stderr": 0.004743645253038162,
|
1966 |
+
"acc_stderr": 0.00484715944530685,
|
1967 |
+
"prompt_name": "guaranteed true",
|
1968 |
+
"task_name": "mnli_mismatched"
|
1969 |
+
}
|
1970 |
+
},
|
1971 |
+
"mnli_mismatched+guaranteed/possible/impossible": {
|
1972 |
+
"2022-07-12-22-45-57": {
|
1973 |
+
"acc": 0.32048413344182264,
|
1974 |
+
"acc_norm": 0.33848657445077296,
|
1975 |
+
"acc_norm_stderr": 0.004772448023078353,
|
1976 |
+
"acc_stderr": 0.004706566719294992,
|
1977 |
+
"prompt_name": "guaranteed/possible/impossible",
|
1978 |
+
"task_name": "mnli_mismatched"
|
1979 |
+
}
|
1980 |
+
},
|
1981 |
+
"mnli_mismatched+justified in saying": {
|
1982 |
+
"2022-07-12-22-45-57": {
|
1983 |
+
"acc": 0.371033360455655,
|
1984 |
+
"acc_norm": 0.32648494711147275,
|
1985 |
+
"acc_norm_stderr": 0.004729403696523803,
|
1986 |
+
"acc_stderr": 0.004872158826748743,
|
1987 |
+
"prompt_name": "justified in saying",
|
1988 |
+
"task_name": "mnli_mismatched"
|
1989 |
+
}
|
1990 |
+
},
|
1991 |
+
"mnli_mismatched+must be true": {
|
1992 |
+
"2022-07-12-22-45-57": {
|
1993 |
+
"acc": 0.3565907241659886,
|
1994 |
+
"acc_norm": 0.3373677786818552,
|
1995 |
+
"acc_norm_stderr": 0.004768581700693004,
|
1996 |
+
"acc_stderr": 0.004830919845456573,
|
1997 |
+
"prompt_name": "must be true",
|
1998 |
+
"task_name": "mnli_mismatched"
|
1999 |
+
}
|
2000 |
+
},
|
2001 |
+
"mnli_mismatched+should assume": {
|
2002 |
+
"2022-07-12-22-45-57": {
|
2003 |
+
"acc": 0.35740439381611067,
|
2004 |
+
"acc_norm": 0.32231489015459724,
|
2005 |
+
"acc_norm_stderr": 0.0047136280360736155,
|
2006 |
+
"acc_stderr": 0.0048333692129862065,
|
2007 |
+
"prompt_name": "should assume",
|
2008 |
+
"task_name": "mnli_mismatched"
|
2009 |
+
}
|
2010 |
+
},
|
2011 |
+
"mnli_mismatched+take the following as truth": {
|
2012 |
+
"2022-07-12-22-45-57": {
|
2013 |
+
"acc": 0.3522172497965826,
|
2014 |
+
"acc_norm": 0.3263832384052075,
|
2015 |
+
"acc_norm_stderr": 0.004729024000627127,
|
2016 |
+
"acc_stderr": 0.004817493665633715,
|
2017 |
+
"prompt_name": "take the following as truth",
|
2018 |
+
"task_name": "mnli_mismatched"
|
2019 |
+
}
|
2020 |
+
},
|
2021 |
+
"mrpc": {
|
2022 |
+
"2022-07-13-11-29-13": {
|
2023 |
+
"acc": 0.6813725490196079,
|
2024 |
+
"acc_stderr": 0.023095996571841474,
|
2025 |
+
"f1": 0.8104956268221574,
|
2026 |
+
"f1_stderr": 0.016329211455484924
|
2027 |
+
}
|
2028 |
+
},
|
2029 |
+
"multirc": {
|
2030 |
+
"2022-07-13-11-29-13": {
|
2031 |
+
"acc": 0.011542497376705142,
|
2032 |
+
"acc_stderr": 0.003461867320927179
|
2033 |
+
}
|
2034 |
+
},
|
2035 |
+
"multirc+I was going to say\u2026": {
|
2036 |
+
"2022-07-12-22-45-57": {
|
2037 |
+
"acc": 0.5082508250825083,
|
2038 |
+
"acc_norm": 0.4280115511551155,
|
2039 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2040 |
+
"acc_stderr": 0.007180825220905937,
|
2041 |
+
"prompt_name": "I was going to say\u2026",
|
2042 |
+
"task_name": "multirc"
|
2043 |
+
}
|
2044 |
+
},
|
2045 |
+
"multirc+Would it be good to answer\u2026": {
|
2046 |
+
"2022-07-12-22-45-57": {
|
2047 |
+
"acc": 0.45173267326732675,
|
2048 |
+
"acc_norm": 0.4278052805280528,
|
2049 |
+
"acc_norm_stderr": 0.007106544557507229,
|
2050 |
+
"acc_stderr": 0.007148261386088041,
|
2051 |
+
"prompt_name": "Would it be good to answer\u2026",
|
2052 |
+
"task_name": "multirc"
|
2053 |
+
}
|
2054 |
+
},
|
2055 |
+
"multirc+confirm": {
|
2056 |
+
"2022-07-12-22-45-57": {
|
2057 |
+
"acc": 0.4280115511551155,
|
2058 |
+
"acc_norm": 0.4280115511551155,
|
2059 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2060 |
+
"acc_stderr": 0.007106976252751536,
|
2061 |
+
"prompt_name": "confirm",
|
2062 |
+
"task_name": "multirc"
|
2063 |
+
}
|
2064 |
+
},
|
2065 |
+
"multirc+correct": {
|
2066 |
+
"2022-07-12-22-45-57": {
|
2067 |
+
"acc": 0.5532178217821783,
|
2068 |
+
"acc_norm": 0.4643151815181518,
|
2069 |
+
"acc_norm_stderr": 0.00716348904876326,
|
2070 |
+
"acc_stderr": 0.007141007544074806,
|
2071 |
+
"prompt_name": "correct",
|
2072 |
+
"task_name": "multirc"
|
2073 |
+
}
|
2074 |
+
},
|
2075 |
+
"multirc+decide_valid": {
|
2076 |
+
"2022-07-12-22-45-57": {
|
2077 |
+
"acc": 0.5107260726072608,
|
2078 |
+
"acc_norm": 0.4280115511551155,
|
2079 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2080 |
+
"acc_stderr": 0.007180150402551771,
|
2081 |
+
"prompt_name": "decide_valid",
|
2082 |
+
"task_name": "multirc"
|
2083 |
+
}
|
2084 |
+
},
|
2085 |
+
"multirc+found_this_answer": {
|
2086 |
+
"2022-07-12-22-45-57": {
|
2087 |
+
"acc": 0.4278052805280528,
|
2088 |
+
"acc_norm": 0.4280115511551155,
|
2089 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2090 |
+
"acc_stderr": 0.007106544557507229,
|
2091 |
+
"prompt_name": "found_this_answer",
|
2092 |
+
"task_name": "multirc"
|
2093 |
+
}
|
2094 |
+
},
|
2095 |
+
"multirc+grading": {
|
2096 |
+
"2022-07-12-22-45-57": {
|
2097 |
+
"acc": 0.429042904290429,
|
2098 |
+
"acc_norm": 0.4280115511551155,
|
2099 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2100 |
+
"acc_stderr": 0.007109115814226985,
|
2101 |
+
"prompt_name": "grading",
|
2102 |
+
"task_name": "multirc"
|
2103 |
+
}
|
2104 |
+
},
|
2105 |
+
"multirc+is the correct answer\u2026": {
|
2106 |
+
"2022-07-12-22-45-57": {
|
2107 |
+
"acc": 0.4498762376237624,
|
2108 |
+
"acc_norm": 0.4273927392739274,
|
2109 |
+
"acc_norm_stderr": 0.007105677382236137,
|
2110 |
+
"acc_stderr": 0.0071456249799065185,
|
2111 |
+
"prompt_name": "is the correct answer\u2026",
|
2112 |
+
"task_name": "multirc"
|
2113 |
+
}
|
2114 |
+
},
|
2115 |
+
"multirc+is\u2026 a correct answer?": {
|
2116 |
+
"2022-07-12-22-45-57": {
|
2117 |
+
"acc": 0.4278052805280528,
|
2118 |
+
"acc_norm": 0.4280115511551155,
|
2119 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2120 |
+
"acc_stderr": 0.007106544557507229,
|
2121 |
+
"prompt_name": "is\u2026 a correct answer?",
|
2122 |
+
"task_name": "multirc"
|
2123 |
+
}
|
2124 |
+
},
|
2125 |
+
"multirc+paragraph\u2026 question\u2026 is it\u2026 ?": {
|
2126 |
+
"2022-07-12-22-45-57": {
|
2127 |
+
"acc": 0.5030940594059405,
|
2128 |
+
"acc_norm": 0.42883663366336633,
|
2129 |
+
"acc_norm_stderr": 0.007108690423137722,
|
2130 |
+
"acc_stderr": 0.007181665598939583,
|
2131 |
+
"prompt_name": "paragraph\u2026 question\u2026 is it\u2026 ?",
|
2132 |
+
"task_name": "multirc"
|
2133 |
+
}
|
2134 |
+
},
|
2135 |
+
"openbookqa": {
|
2136 |
+
"2022-07-13-11-29-13": {
|
2137 |
+
"acc": 0.214,
|
2138 |
+
"acc_norm": 0.298,
|
2139 |
+
"acc_norm_stderr": 0.020475118092988978,
|
2140 |
+
"acc_stderr": 0.01835979750238702
|
2141 |
+
}
|
2142 |
+
},
|
2143 |
+
"piqa": {
|
2144 |
+
"2022-07-13-11-29-13": {
|
2145 |
+
"acc": 0.6871599564744287,
|
2146 |
+
"acc_norm": 0.7002176278563657,
|
2147 |
+
"acc_norm_stderr": 0.010689686967138092,
|
2148 |
+
"acc_stderr": 0.010817714425701112
|
2149 |
+
}
|
2150 |
+
},
|
2151 |
+
"prost": {
|
2152 |
+
"2022-07-13-11-29-13": {
|
2153 |
+
"acc": 0.23505550811272416,
|
2154 |
+
"acc_norm": 0.2670260461144321,
|
2155 |
+
"acc_norm_stderr": 0.0032321702981822874,
|
2156 |
+
"acc_stderr": 0.0030979423271461875
|
2157 |
+
}
|
2158 |
+
},
|
2159 |
+
"pubmedqa": {
|
2160 |
+
"2022-07-13-11-29-13": {
|
2161 |
+
"acc": 0.56,
|
2162 |
+
"acc_stderr": 0.015704987954361798
|
2163 |
+
}
|
2164 |
+
},
|
2165 |
+
"qnli": {
|
2166 |
+
"2022-07-13-11-29-13": {
|
2167 |
+
"acc": 0.4962474830679114,
|
2168 |
+
"acc_stderr": 0.006765220016415222
|
2169 |
+
}
|
2170 |
+
},
|
2171 |
+
"qqp": {
|
2172 |
+
"2022-07-13-11-29-13": {
|
2173 |
+
"acc": 0.3681424684640119,
|
2174 |
+
"acc_stderr": 0.0023986729832071816,
|
2175 |
+
"f1": 0.5381138352498734,
|
2176 |
+
"f1_stderr": 0.002555831569895799
|
2177 |
+
}
|
2178 |
+
},
|
2179 |
+
"qqp+answer": {
|
2180 |
+
"2022-07-12-22-45-57": {
|
2181 |
+
"acc": 0.40558990848379917,
|
2182 |
+
"acc_norm": 0.36816720257234725,
|
2183 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2184 |
+
"acc_stderr": 0.002441969063495092,
|
2185 |
+
"prompt_name": "answer",
|
2186 |
+
"task_name": "qqp"
|
2187 |
+
}
|
2188 |
+
},
|
2189 |
+
"qqp+duplicate": {
|
2190 |
+
"2022-07-12-22-45-57": {
|
2191 |
+
"acc": 0.3788523373732377,
|
2192 |
+
"acc_norm": 0.36816720257234725,
|
2193 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2194 |
+
"acc_stderr": 0.002412603277723025,
|
2195 |
+
"prompt_name": "duplicate",
|
2196 |
+
"task_name": "qqp"
|
2197 |
+
}
|
2198 |
+
},
|
2199 |
+
"qqp+duplicate or not": {
|
2200 |
+
"2022-07-13-19-23-37": {
|
2201 |
+
"acc": 0.5761315854563444,
|
2202 |
+
"acc_norm": 0.6318327974276527,
|
2203 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2204 |
+
"acc_stderr": 0.0024577056660753426,
|
2205 |
+
"prompt_name": "duplicate or not",
|
2206 |
+
"task_name": "qqp"
|
2207 |
+
}
|
2208 |
+
},
|
2209 |
+
"qqp+meaning": {
|
2210 |
+
"2022-07-13-19-23-37": {
|
2211 |
+
"acc": 0.3681424684640119,
|
2212 |
+
"acc_norm": 0.36816720257234725,
|
2213 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2214 |
+
"acc_stderr": 0.0023986729832071916,
|
2215 |
+
"prompt_name": "meaning",
|
2216 |
+
"task_name": "qqp"
|
2217 |
+
}
|
2218 |
+
},
|
2219 |
+
"qqp+quora": {
|
2220 |
+
"2022-07-13-19-23-37": {
|
2221 |
+
"acc": 0.36821667078901804,
|
2222 |
+
"acc_norm": 0.36816720257234725,
|
2223 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2224 |
+
"acc_stderr": 0.0023987738450886556,
|
2225 |
+
"prompt_name": "quora",
|
2226 |
+
"task_name": "qqp"
|
2227 |
+
}
|
2228 |
+
},
|
2229 |
+
"qqp+same thing": {
|
2230 |
+
"2022-07-13-19-23-37": {
|
2231 |
+
"acc": 0.5099431115508286,
|
2232 |
+
"acc_norm": 0.36816720257234725,
|
2233 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2234 |
+
"acc_stderr": 0.002486208885430481,
|
2235 |
+
"prompt_name": "same thing",
|
2236 |
+
"task_name": "qqp"
|
2237 |
+
}
|
2238 |
+
},
|
2239 |
+
"race": {
|
2240 |
+
"2022-07-13-11-29-13": {
|
2241 |
+
"acc": 0.3320574162679426,
|
2242 |
+
"acc_stderr": 0.014575582129545914
|
2243 |
+
}
|
2244 |
+
},
|
2245 |
+
"rte": {
|
2246 |
+
"2022-07-13-11-29-13": {
|
2247 |
+
"acc": 0.5342960288808665,
|
2248 |
+
"acc_stderr": 0.030025579819366426
|
2249 |
+
}
|
2250 |
+
},
|
2251 |
+
"rte+does the claim\u2026 follow the fact\u2026": {
|
2252 |
+
"2022-07-13-19-23-37": {
|
2253 |
+
"acc": 0.4729241877256318,
|
2254 |
+
"acc_norm": 0.5270758122743683,
|
2255 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2256 |
+
"acc_stderr": 0.030052303463143706,
|
2257 |
+
"prompt_name": "does the claim\u2026 follow the fact\u2026",
|
2258 |
+
"task_name": "rte"
|
2259 |
+
}
|
2260 |
+
},
|
2261 |
+
"rte+entailment explained": {
|
2262 |
+
"2022-07-13-19-23-37": {
|
2263 |
+
"acc": 0.49458483754512633,
|
2264 |
+
"acc_norm": 0.4729241877256318,
|
2265 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2266 |
+
"acc_stderr": 0.030094698123239966,
|
2267 |
+
"prompt_name": "entailment explained",
|
2268 |
+
"task_name": "rte"
|
2269 |
+
}
|
2270 |
+
},
|
2271 |
+
"rte+imply": {
|
2272 |
+
"2022-07-13-19-23-37": {
|
2273 |
+
"acc": 0.48375451263537905,
|
2274 |
+
"acc_norm": 0.5270758122743683,
|
2275 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2276 |
+
"acc_stderr": 0.030080573208738064,
|
2277 |
+
"prompt_name": "imply",
|
2278 |
+
"task_name": "rte"
|
2279 |
+
}
|
2280 |
+
},
|
2281 |
+
"rte+imply separated": {
|
2282 |
+
"2022-07-13-19-23-37": {
|
2283 |
+
"acc": 0.45126353790613716,
|
2284 |
+
"acc_norm": 0.5270758122743683,
|
2285 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2286 |
+
"acc_stderr": 0.029953149241808943,
|
2287 |
+
"prompt_name": "imply separated",
|
2288 |
+
"task_name": "rte"
|
2289 |
+
}
|
2290 |
+
},
|
2291 |
+
"rte+mean": {
|
2292 |
+
"2022-07-13-19-23-37": {
|
2293 |
+
"acc": 0.48014440433212996,
|
2294 |
+
"acc_norm": 0.5270758122743683,
|
2295 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2296 |
+
"acc_stderr": 0.030072723167317194,
|
2297 |
+
"prompt_name": "mean",
|
2298 |
+
"task_name": "rte"
|
2299 |
+
}
|
2300 |
+
},
|
2301 |
+
"sciq": {
|
2302 |
+
"2022-07-13-11-29-13": {
|
2303 |
+
"acc": 0.853,
|
2304 |
+
"acc_norm": 0.771,
|
2305 |
+
"acc_norm_stderr": 0.013294199326613609,
|
2306 |
+
"acc_stderr": 0.011203415395160335
|
2307 |
+
}
|
2308 |
+
},
|
2309 |
+
"sst": {
|
2310 |
+
"2022-07-13-11-29-13": {
|
2311 |
+
"acc": 0.6823394495412844,
|
2312 |
+
"acc_stderr": 0.015775124845202545
|
2313 |
+
}
|
2314 |
+
},
|
2315 |
+
"sst+following positive negative": {
|
2316 |
+
"2022-07-13-19-23-37": {
|
2317 |
+
"acc": 0.8061926605504587,
|
2318 |
+
"acc_norm": 0.8061926605504587,
|
2319 |
+
"acc_norm_stderr": 0.013393542261521812,
|
2320 |
+
"acc_stderr": 0.013393542261521812,
|
2321 |
+
"prompt_name": "following positive negative",
|
2322 |
+
"task_name": "sst"
|
2323 |
+
}
|
2324 |
+
},
|
2325 |
+
"sst+happy or mad": {
|
2326 |
+
"2022-07-13-19-23-37": {
|
2327 |
+
"acc": 0.5091743119266054,
|
2328 |
+
"acc_norm": 0.5091743119266054,
|
2329 |
+
"acc_norm_stderr": 0.01693900152535154,
|
2330 |
+
"acc_stderr": 0.01693900152535154,
|
2331 |
+
"prompt_name": "happy or mad",
|
2332 |
+
"task_name": "sst"
|
2333 |
+
}
|
2334 |
+
},
|
2335 |
+
"sst+positive negative after": {
|
2336 |
+
"2022-07-13-19-23-37": {
|
2337 |
+
"acc": 0.6204128440366973,
|
2338 |
+
"acc_norm": 0.6204128440366973,
|
2339 |
+
"acc_norm_stderr": 0.016443227556688766,
|
2340 |
+
"acc_stderr": 0.016443227556688766,
|
2341 |
+
"prompt_name": "positive negative after",
|
2342 |
+
"task_name": "sst"
|
2343 |
+
}
|
2344 |
+
},
|
2345 |
+
"sst+review": {
|
2346 |
+
"2022-07-13-19-23-37": {
|
2347 |
+
"acc": 0.5091743119266054,
|
2348 |
+
"acc_norm": 0.5091743119266054,
|
2349 |
+
"acc_norm_stderr": 0.01693900152535154,
|
2350 |
+
"acc_stderr": 0.01693900152535154,
|
2351 |
+
"prompt_name": "review",
|
2352 |
+
"task_name": "sst"
|
2353 |
+
}
|
2354 |
+
},
|
2355 |
+
"sst+said": {
|
2356 |
+
"2022-07-13-19-23-37": {
|
2357 |
+
"acc": 0.4908256880733945,
|
2358 |
+
"acc_norm": 0.5091743119266054,
|
2359 |
+
"acc_norm_stderr": 0.01693900152535154,
|
2360 |
+
"acc_stderr": 0.01693900152535154,
|
2361 |
+
"prompt_name": "said",
|
2362 |
+
"task_name": "sst"
|
2363 |
+
}
|
2364 |
+
},
|
2365 |
+
"triviaqa": {
|
2366 |
+
"2022-07-13-11-29-13": {
|
2367 |
+
"acc": 0.0313798285158667,
|
2368 |
+
"acc_stderr": 0.0016392014864795154
|
2369 |
+
}
|
2370 |
+
},
|
2371 |
+
"webqs": {
|
2372 |
+
"2022-07-13-11-29-13": {
|
2373 |
+
"acc": 0.012795275590551181,
|
2374 |
+
"acc_stderr": 0.0024938680596856277
|
2375 |
+
}
|
2376 |
+
},
|
2377 |
+
"wic": {
|
2378 |
+
"2022-07-13-11-29-13": {
|
2379 |
+
"acc": 0.5,
|
2380 |
+
"acc_stderr": 0.01981072129375818
|
2381 |
+
}
|
2382 |
+
},
|
2383 |
+
"wic+GPT-3-prompt": {
|
2384 |
+
"2022-07-14-10-03-25": {
|
2385 |
+
"acc": 0.5,
|
2386 |
+
"acc_norm": 0.5,
|
2387 |
+
"acc_norm_stderr": 0.01981072129375818,
|
2388 |
+
"acc_stderr": 0.01981072129375818,
|
2389 |
+
"prompt_name": "GPT-3-prompt",
|
2390 |
+
"task_name": "wic"
|
2391 |
+
}
|
2392 |
+
},
|
2393 |
+
"wic+GPT-3-prompt-with-label": {
|
2394 |
+
"2022-07-14-10-03-25": {
|
2395 |
+
"acc": 0.49216300940438873,
|
2396 |
+
"acc_norm": 0.5,
|
2397 |
+
"acc_norm_stderr": 0.01981072129375818,
|
2398 |
+
"acc_stderr": 0.019808287657813832,
|
2399 |
+
"prompt_name": "GPT-3-prompt-with-label",
|
2400 |
+
"task_name": "wic"
|
2401 |
+
}
|
2402 |
+
},
|
2403 |
+
"wic+affirmation_true_or_false": {
|
2404 |
+
"2022-07-14-10-03-25": {
|
2405 |
+
"acc": 0.5,
|
2406 |
+
"acc_norm": 0.5078369905956113,
|
2407 |
+
"acc_norm_stderr": 0.019808287657813832,
|
2408 |
+
"acc_stderr": 0.01981072129375818,
|
2409 |
+
"prompt_name": "affirmation_true_or_false",
|
2410 |
+
"task_name": "wic"
|
2411 |
+
}
|
2412 |
+
},
|
2413 |
+
"wic+grammar_homework": {
|
2414 |
+
"2022-07-14-10-03-25": {
|
2415 |
+
"acc": 0.5094043887147336,
|
2416 |
+
"acc_norm": 0.49843260188087773,
|
2417 |
+
"acc_norm_stderr": 0.019810623954060382,
|
2418 |
+
"acc_stderr": 0.019807216763271497,
|
2419 |
+
"prompt_name": "grammar_homework",
|
2420 |
+
"task_name": "wic"
|
2421 |
+
}
|
2422 |
+
},
|
2423 |
+
"wic+polysemous": {
|
2424 |
+
"2022-07-14-10-03-25": {
|
2425 |
+
"acc": 0.512539184952978,
|
2426 |
+
"acc_norm": 0.49843260188087773,
|
2427 |
+
"acc_norm_stderr": 0.019810623954060382,
|
2428 |
+
"acc_stderr": 0.019804490588592596,
|
2429 |
+
"prompt_name": "polysemous",
|
2430 |
+
"task_name": "wic"
|
2431 |
+
}
|
2432 |
+
},
|
2433 |
+
"wic+question-context": {
|
2434 |
+
"2022-07-14-10-03-25": {
|
2435 |
+
"acc": 0.5266457680250783,
|
2436 |
+
"acc_norm": 0.5031347962382445,
|
2437 |
+
"acc_norm_stderr": 0.019810331932097542,
|
2438 |
+
"acc_stderr": 0.019782570188812167,
|
2439 |
+
"prompt_name": "question-context",
|
2440 |
+
"task_name": "wic"
|
2441 |
+
}
|
2442 |
+
},
|
2443 |
+
"wic+question-context-meaning": {
|
2444 |
+
"2022-07-14-10-03-25": {
|
2445 |
+
"acc": 0.5438871473354232,
|
2446 |
+
"acc_norm": 0.5015673981191222,
|
2447 |
+
"acc_norm_stderr": 0.019810623954060382,
|
2448 |
+
"acc_stderr": 0.019734259601993404,
|
2449 |
+
"prompt_name": "question-context-meaning",
|
2450 |
+
"task_name": "wic"
|
2451 |
+
}
|
2452 |
+
},
|
2453 |
+
"wic+question-context-meaning-with-label": {
|
2454 |
+
"2022-07-14-10-03-25": {
|
2455 |
+
"acc": 0.5156739811912225,
|
2456 |
+
"acc_norm": 0.5015673981191222,
|
2457 |
+
"acc_norm_stderr": 0.019810623954060382,
|
2458 |
+
"acc_stderr": 0.019800984955347847,
|
2459 |
+
"prompt_name": "question-context-meaning-with-label",
|
2460 |
+
"task_name": "wic"
|
2461 |
+
}
|
2462 |
+
},
|
2463 |
+
"wic+same_sense": {
|
2464 |
+
"2022-07-14-10-03-25": {
|
2465 |
+
"acc": 0.5047021943573667,
|
2466 |
+
"acc_norm": 0.5,
|
2467 |
+
"acc_norm_stderr": 0.01981072129375818,
|
2468 |
+
"acc_stderr": 0.019809845219259763,
|
2469 |
+
"prompt_name": "same_sense",
|
2470 |
+
"task_name": "wic"
|
2471 |
+
}
|
2472 |
+
},
|
2473 |
+
"wic+similar-sense": {
|
2474 |
+
"2022-07-14-10-03-25": {
|
2475 |
+
"acc": 0.542319749216301,
|
2476 |
+
"acc_norm": 0.5,
|
2477 |
+
"acc_norm_stderr": 0.01981072129375818,
|
2478 |
+
"acc_stderr": 0.01973963328373276,
|
2479 |
+
"prompt_name": "similar-sense",
|
2480 |
+
"task_name": "wic"
|
2481 |
+
}
|
2482 |
+
},
|
2483 |
+
"winogrande": {
|
2484 |
+
"2022-07-13-11-29-13": {
|
2485 |
+
"acc": 0.5730071033938438,
|
2486 |
+
"acc_stderr": 0.013901878072575058
|
2487 |
+
}
|
2488 |
+
},
|
2489 |
+
"wnli": {
|
2490 |
+
"2022-07-13-11-29-13": {
|
2491 |
+
"acc": 0.43661971830985913,
|
2492 |
+
"acc_stderr": 0.0592793555841297
|
2493 |
+
}
|
2494 |
+
},
|
2495 |
+
"wnli+confident": {
|
2496 |
+
"2022-07-14-10-03-25": {
|
2497 |
+
"acc": 0.43661971830985913,
|
2498 |
+
"acc_norm": 0.43661971830985913,
|
2499 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2500 |
+
"acc_stderr": 0.0592793555841297,
|
2501 |
+
"prompt_name": "confident",
|
2502 |
+
"task_name": "wnli"
|
2503 |
+
}
|
2504 |
+
},
|
2505 |
+
"wnli+entailment explained": {
|
2506 |
+
"2022-07-14-10-03-25": {
|
2507 |
+
"acc": 0.39436619718309857,
|
2508 |
+
"acc_norm": 0.43661971830985913,
|
2509 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2510 |
+
"acc_stderr": 0.058412510854444266,
|
2511 |
+
"prompt_name": "entailment explained",
|
2512 |
+
"task_name": "wnli"
|
2513 |
+
}
|
2514 |
+
},
|
2515 |
+
"wnli+imply": {
|
2516 |
+
"2022-07-14-10-03-25": {
|
2517 |
+
"acc": 0.4225352112676056,
|
2518 |
+
"acc_norm": 0.43661971830985913,
|
2519 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2520 |
+
"acc_stderr": 0.05903984205682581,
|
2521 |
+
"prompt_name": "imply",
|
2522 |
+
"task_name": "wnli"
|
2523 |
+
}
|
2524 |
+
},
|
2525 |
+
"wnli+justified": {
|
2526 |
+
"2022-07-14-10-03-25": {
|
2527 |
+
"acc": 0.43661971830985913,
|
2528 |
+
"acc_norm": 0.43661971830985913,
|
2529 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2530 |
+
"acc_stderr": 0.0592793555841297,
|
2531 |
+
"prompt_name": "justified",
|
2532 |
+
"task_name": "wnli"
|
2533 |
+
}
|
2534 |
+
},
|
2535 |
+
"wnli+mean": {
|
2536 |
+
"2022-07-14-10-03-25": {
|
2537 |
+
"acc": 0.6619718309859155,
|
2538 |
+
"acc_norm": 0.43661971830985913,
|
2539 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2540 |
+
"acc_stderr": 0.05653887739133513,
|
2541 |
+
"prompt_name": "mean",
|
2542 |
+
"task_name": "wnli"
|
2543 |
+
}
|
2544 |
+
},
|
2545 |
+
"wsc": {
|
2546 |
+
"2022-07-13-11-29-13": {
|
2547 |
+
"acc": 0.36538461538461536,
|
2548 |
+
"acc_stderr": 0.0474473339327792
|
2549 |
+
}
|
2550 |
+
},
|
2551 |
+
"wsc+GPT-3 Style": {
|
2552 |
+
"2022-07-14-10-03-25": {
|
2553 |
+
"acc": 0.36538461538461536,
|
2554 |
+
"acc_norm": 0.36538461538461536,
|
2555 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2556 |
+
"acc_stderr": 0.0474473339327792,
|
2557 |
+
"prompt_name": "GPT-3 Style",
|
2558 |
+
"task_name": "wsc"
|
2559 |
+
}
|
2560 |
+
},
|
2561 |
+
"wsc+I think they mean": {
|
2562 |
+
"2022-07-14-10-03-25": {
|
2563 |
+
"acc": 0.36538461538461536,
|
2564 |
+
"acc_norm": 0.36538461538461536,
|
2565 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2566 |
+
"acc_stderr": 0.0474473339327792,
|
2567 |
+
"prompt_name": "I think they mean",
|
2568 |
+
"task_name": "wsc"
|
2569 |
+
}
|
2570 |
+
},
|
2571 |
+
"wsc+Who or what is/are": {
|
2572 |
+
"2022-07-14-10-03-25": {
|
2573 |
+
"acc": 0.40384615384615385,
|
2574 |
+
"acc_norm": 0.36538461538461536,
|
2575 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2576 |
+
"acc_stderr": 0.048346889526540184,
|
2577 |
+
"prompt_name": "Who or what is/are",
|
2578 |
+
"task_name": "wsc"
|
2579 |
+
}
|
2580 |
+
},
|
2581 |
+
"wsc+by p they mean": {
|
2582 |
+
"2022-07-14-10-03-25": {
|
2583 |
+
"acc": 0.36538461538461536,
|
2584 |
+
"acc_norm": 0.36538461538461536,
|
2585 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2586 |
+
"acc_stderr": 0.0474473339327792,
|
2587 |
+
"prompt_name": "by p they mean",
|
2588 |
+
"task_name": "wsc"
|
2589 |
+
}
|
2590 |
+
},
|
2591 |
+
"wsc+does p stand for": {
|
2592 |
+
"2022-07-14-10-03-25": {
|
2593 |
+
"acc": 0.375,
|
2594 |
+
"acc_norm": 0.36538461538461536,
|
2595 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2596 |
+
"acc_stderr": 0.04770204856076104,
|
2597 |
+
"prompt_name": "does p stand for",
|
2598 |
+
"task_name": "wsc"
|
2599 |
+
}
|
2600 |
+
},
|
2601 |
+
"wsc+does the pronoun refer to": {
|
2602 |
+
"2022-07-14-10-03-25": {
|
2603 |
+
"acc": 0.5480769230769231,
|
2604 |
+
"acc_norm": 0.36538461538461536,
|
2605 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2606 |
+
"acc_stderr": 0.049038186969314335,
|
2607 |
+
"prompt_name": "does the pronoun refer to",
|
2608 |
+
"task_name": "wsc"
|
2609 |
+
}
|
2610 |
+
},
|
2611 |
+
"wsc+in other words": {
|
2612 |
+
"2022-07-14-10-03-25": {
|
2613 |
+
"acc": 0.36538461538461536,
|
2614 |
+
"acc_norm": 0.5288461538461539,
|
2615 |
+
"acc_norm_stderr": 0.04918440626354964,
|
2616 |
+
"acc_stderr": 0.0474473339327792,
|
2617 |
+
"prompt_name": "in other words",
|
2618 |
+
"task_name": "wsc"
|
2619 |
+
}
|
2620 |
+
},
|
2621 |
+
"wsc+p is/are r": {
|
2622 |
+
"2022-07-14-10-03-25": {
|
2623 |
+
"acc": 0.36538461538461536,
|
2624 |
+
"acc_norm": 0.34615384615384615,
|
2625 |
+
"acc_norm_stderr": 0.04687634642174987,
|
2626 |
+
"acc_stderr": 0.0474473339327792,
|
2627 |
+
"prompt_name": "p is/are r",
|
2628 |
+
"task_name": "wsc"
|
2629 |
+
}
|
2630 |
+
},
|
2631 |
+
"wsc+replaced with": {
|
2632 |
+
"2022-07-14-10-03-25": {
|
2633 |
+
"acc": 0.6153846153846154,
|
2634 |
+
"acc_norm": 0.36538461538461536,
|
2635 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2636 |
+
"acc_stderr": 0.047936688680750406,
|
2637 |
+
"prompt_name": "replaced with",
|
2638 |
+
"task_name": "wsc"
|
2639 |
+
}
|
2640 |
+
},
|
2641 |
+
"wsc+the pronoun refers to": {
|
2642 |
+
"2022-07-14-10-03-25": {
|
2643 |
+
"acc": 0.36538461538461536,
|
2644 |
+
"acc_norm": 0.5865384615384616,
|
2645 |
+
"acc_norm_stderr": 0.04852294969729053,
|
2646 |
+
"acc_stderr": 0.0474473339327792,
|
2647 |
+
"prompt_name": "the pronoun refers to",
|
2648 |
+
"task_name": "wsc"
|
2649 |
+
}
|
2650 |
+
}
|
2651 |
+
},
|
2652 |
+
"versions": {
|
2653 |
+
"arc_challenge": 0,
|
2654 |
+
"arc_easy": 0,
|
2655 |
+
"axb+GPT-3 style": 0,
|
2656 |
+
"axb+MNLI crowdsource": 0,
|
2657 |
+
"axb+based on the previous passage": 0,
|
2658 |
+
"axb+can we infer": 0,
|
2659 |
+
"axb+does it follow that": 0,
|
2660 |
+
"axb+does this imply": 0,
|
2661 |
+
"axb+guaranteed true": 0,
|
2662 |
+
"axb+justified in saying": 0,
|
2663 |
+
"axb+must be true": 0,
|
2664 |
+
"axb+should assume": 0,
|
2665 |
+
"axg+GPT-3 style": 0,
|
2666 |
+
"axg+MNLI crowdsource": 0,
|
2667 |
+
"axg+based on the previous passage": 0,
|
2668 |
+
"axg+can we infer": 0,
|
2669 |
+
"axg+does it follow that": 0,
|
2670 |
+
"axg+does this imply": 0,
|
2671 |
+
"axg+guaranteed true": 0,
|
2672 |
+
"axg+justified in saying": 0,
|
2673 |
+
"axg+must be true": 0,
|
2674 |
+
"axg+should assume": 0,
|
2675 |
+
"boolq": 1,
|
2676 |
+
"boolq+GPT-3 Style": 0,
|
2677 |
+
"boolq+I wonder\u2026": 0,
|
2678 |
+
"boolq+after_reading": 0,
|
2679 |
+
"boolq+based on the following passage": 0,
|
2680 |
+
"boolq+based on the previous passage": 0,
|
2681 |
+
"boolq+could you tell me\u2026": 0,
|
2682 |
+
"boolq+exam": 0,
|
2683 |
+
"boolq+exercise": 0,
|
2684 |
+
"boolq+valid_binary": 0,
|
2685 |
+
"boolq+yes_no_question": 0,
|
2686 |
+
"cb+GPT-3 style": 0,
|
2687 |
+
"cb+MNLI crowdsource": 0,
|
2688 |
+
"cb+always/sometimes/never": 0,
|
2689 |
+
"cb+based on the previous passage": 0,
|
2690 |
+
"cb+can we infer": 0,
|
2691 |
+
"cb+claim true/false/inconclusive": 0,
|
2692 |
+
"cb+consider always/sometimes/never": 0,
|
2693 |
+
"cb+does it follow that": 0,
|
2694 |
+
"cb+does this imply": 0,
|
2695 |
+
"cb+guaranteed true": 0,
|
2696 |
+
"cb+guaranteed/possible/impossible": 0,
|
2697 |
+
"cb+justified in saying": 0,
|
2698 |
+
"cb+must be true": 0,
|
2699 |
+
"cb+should assume": 0,
|
2700 |
+
"cb+take the following as truth": 0,
|
2701 |
+
"cola+Following sentence acceptable": 0,
|
2702 |
+
"cola+Make sense yes no": 0,
|
2703 |
+
"cola+Previous sentence acceptable": 0,
|
2704 |
+
"cola+editing": 0,
|
2705 |
+
"cola+is_this_correct": 0,
|
2706 |
+
"copa": 0,
|
2707 |
+
"copa+C1 or C2? premise, so/because\u2026": 0,
|
2708 |
+
"copa+best_option": 0,
|
2709 |
+
"copa+cause_effect": 0,
|
2710 |
+
"copa+choose": 0,
|
2711 |
+
"copa+exercise": 0,
|
2712 |
+
"copa+i_am_hesitating": 0,
|
2713 |
+
"copa+more likely": 0,
|
2714 |
+
"copa+plausible_alternatives": 0,
|
2715 |
+
"crows_pairs_english+1": 0,
|
2716 |
+
"crows_pairs_english+2": 0,
|
2717 |
+
"crows_pairs_english+3": 0,
|
2718 |
+
"crows_pairs_english+4": 0,
|
2719 |
+
"crows_pairs_english+A_preference": 0,
|
2720 |
+
"crows_pairs_english+A_reality_check": 0,
|
2721 |
+
"crows_pairs_english+A_stereotype_true": 0,
|
2722 |
+
"crows_pairs_french+1_fr": 0,
|
2723 |
+
"crows_pairs_french+2_fr": 0,
|
2724 |
+
"crows_pairs_french+3_fr": 0,
|
2725 |
+
"crows_pairs_french+4_fr": 0,
|
2726 |
+
"crows_pairs_french+A_preference_fr": 0,
|
2727 |
+
"crows_pairs_french+A_reality_check_fr": 0,
|
2728 |
+
"crows_pairs_french+A_stereotype_true_fr": 0,
|
2729 |
+
"diabla+Is the error present? (same lang)": 0,
|
2730 |
+
"diabla+Which is automatic?": 0,
|
2731 |
+
"gsarti/flores_101_afr+null": 0,
|
2732 |
+
"gsarti/flores_101_amh+null": 0,
|
2733 |
+
"gsarti/flores_101_ara+null": 0,
|
2734 |
+
"gsarti/flores_101_asm+null": 0,
|
2735 |
+
"gsarti/flores_101_ast+null": 0,
|
2736 |
+
"gsarti/flores_101_azj+null": 0,
|
2737 |
+
"gsarti/flores_101_bel+null": 0,
|
2738 |
+
"gsarti/flores_101_ben+null": 0,
|
2739 |
+
"gsarti/flores_101_bos+null": 0,
|
2740 |
+
"gsarti/flores_101_bul+null": 0,
|
2741 |
+
"gsarti/flores_101_cat+null": 0,
|
2742 |
+
"gsarti/flores_101_ceb+null": 0,
|
2743 |
+
"gsarti/flores_101_ces+null": 0,
|
2744 |
+
"gsarti/flores_101_ckb+null": 0,
|
2745 |
+
"gsarti/flores_101_cym+null": 0,
|
2746 |
+
"gsarti/flores_101_dan+null": 0,
|
2747 |
+
"gsarti/flores_101_deu+null": 0,
|
2748 |
+
"gsarti/flores_101_ell+null": 0,
|
2749 |
+
"gsarti/flores_101_eng+null": 0,
|
2750 |
+
"gsarti/flores_101_est+null": 0,
|
2751 |
+
"gsarti/flores_101_fas+null": 0,
|
2752 |
+
"gsarti/flores_101_fin+null": 0,
|
2753 |
+
"gsarti/flores_101_fra+null": 0,
|
2754 |
+
"gsarti/flores_101_ful+null": 0,
|
2755 |
+
"gsarti/flores_101_gle+null": 0,
|
2756 |
+
"gsarti/flores_101_glg+null": 0,
|
2757 |
+
"gsarti/flores_101_guj+null": 0,
|
2758 |
+
"gsarti/flores_101_hau+null": 0,
|
2759 |
+
"gsarti/flores_101_heb+null": 0,
|
2760 |
+
"gsarti/flores_101_hin+null": 0,
|
2761 |
+
"gsarti/flores_101_hrv+null": 0,
|
2762 |
+
"gsarti/flores_101_hun+null": 0,
|
2763 |
+
"gsarti/flores_101_hye+null": 0,
|
2764 |
+
"gsarti/flores_101_ibo+null": 0,
|
2765 |
+
"gsarti/flores_101_ind+null": 0,
|
2766 |
+
"gsarti/flores_101_isl+null": 0,
|
2767 |
+
"gsarti/flores_101_ita+null": 0,
|
2768 |
+
"gsarti/flores_101_jav+null": 0,
|
2769 |
+
"gsarti/flores_101_jpn+null": 0,
|
2770 |
+
"gsarti/flores_101_kam+null": 0,
|
2771 |
+
"gsarti/flores_101_kan+null": 0,
|
2772 |
+
"gsarti/flores_101_kat+null": 0,
|
2773 |
+
"gsarti/flores_101_kaz+null": 0,
|
2774 |
+
"gsarti/flores_101_kea+null": 0,
|
2775 |
+
"gsarti/flores_101_kir+null": 0,
|
2776 |
+
"gsarti/flores_101_kor+null": 0,
|
2777 |
+
"gsarti/flores_101_lao+null": 0,
|
2778 |
+
"gsarti/flores_101_lav+null": 0,
|
2779 |
+
"gsarti/flores_101_lin+null": 0,
|
2780 |
+
"gsarti/flores_101_lit+null": 0,
|
2781 |
+
"gsarti/flores_101_ltz+null": 0,
|
2782 |
+
"gsarti/flores_101_lug+null": 0,
|
2783 |
+
"gsarti/flores_101_luo+null": 0,
|
2784 |
+
"gsarti/flores_101_mal+null": 0,
|
2785 |
+
"gsarti/flores_101_mar+null": 0,
|
2786 |
+
"gsarti/flores_101_mkd+null": 0,
|
2787 |
+
"gsarti/flores_101_mlt+null": 0,
|
2788 |
+
"gsarti/flores_101_mon+null": 0,
|
2789 |
+
"gsarti/flores_101_mri+null": 0,
|
2790 |
+
"gsarti/flores_101_msa+null": 0,
|
2791 |
+
"gsarti/flores_101_mya+null": 0,
|
2792 |
+
"gsarti/flores_101_nld+null": 0,
|
2793 |
+
"gsarti/flores_101_nob+null": 0,
|
2794 |
+
"gsarti/flores_101_npi+null": 0,
|
2795 |
+
"gsarti/flores_101_nso+null": 0,
|
2796 |
+
"gsarti/flores_101_nya+null": 0,
|
2797 |
+
"gsarti/flores_101_oci+null": 0,
|
2798 |
+
"gsarti/flores_101_orm+null": 0,
|
2799 |
+
"gsarti/flores_101_ory+null": 0,
|
2800 |
+
"gsarti/flores_101_pan+null": 0,
|
2801 |
+
"gsarti/flores_101_pol+null": 0,
|
2802 |
+
"gsarti/flores_101_por+null": 0,
|
2803 |
+
"gsarti/flores_101_pus+null": 0,
|
2804 |
+
"gsarti/flores_101_ron+null": 0,
|
2805 |
+
"gsarti/flores_101_rus+null": 0,
|
2806 |
+
"gsarti/flores_101_slk+null": 0,
|
2807 |
+
"gsarti/flores_101_slv+null": 0,
|
2808 |
+
"gsarti/flores_101_sna+null": 0,
|
2809 |
+
"gsarti/flores_101_snd+null": 0,
|
2810 |
+
"gsarti/flores_101_som+null": 0,
|
2811 |
+
"gsarti/flores_101_spa+null": 0,
|
2812 |
+
"gsarti/flores_101_srp+null": 0,
|
2813 |
+
"gsarti/flores_101_swe+null": 0,
|
2814 |
+
"gsarti/flores_101_swh+null": 0,
|
2815 |
+
"gsarti/flores_101_tam+null": 0,
|
2816 |
+
"gsarti/flores_101_tel+null": 0,
|
2817 |
+
"gsarti/flores_101_tgk+null": 0,
|
2818 |
+
"gsarti/flores_101_tgl+null": 0,
|
2819 |
+
"gsarti/flores_101_tha+null": 0,
|
2820 |
+
"gsarti/flores_101_tur+null": 0,
|
2821 |
+
"gsarti/flores_101_ukr+null": 0,
|
2822 |
+
"gsarti/flores_101_umb+null": 0,
|
2823 |
+
"gsarti/flores_101_urd+null": 0,
|
2824 |
+
"gsarti/flores_101_uzb+null": 0,
|
2825 |
+
"gsarti/flores_101_vie+null": 0,
|
2826 |
+
"gsarti/flores_101_wol+null": 0,
|
2827 |
+
"gsarti/flores_101_xho+null": 0,
|
2828 |
+
"gsarti/flores_101_yor+null": 0,
|
2829 |
+
"gsarti/flores_101_zho_simpl+null": 0,
|
2830 |
+
"gsarti/flores_101_zho_trad+null": 0,
|
2831 |
+
"gsarti/flores_101_zul+null": 0,
|
2832 |
+
"headqa": 0,
|
2833 |
+
"hellaswag": 0,
|
2834 |
+
"lambada": 0,
|
2835 |
+
"logiqa": 0,
|
2836 |
+
"mathqa": 0,
|
2837 |
+
"mc_taco": 0,
|
2838 |
+
"mnli+GPT-3 style": 0,
|
2839 |
+
"mnli+MNLI crowdsource": 0,
|
2840 |
+
"mnli+always/sometimes/never": 0,
|
2841 |
+
"mnli+based on the previous passage": 0,
|
2842 |
+
"mnli+can we infer": 0,
|
2843 |
+
"mnli+claim true/false/inconclusive": 0,
|
2844 |
+
"mnli+consider always/sometimes/never": 0,
|
2845 |
+
"mnli+does it follow that": 0,
|
2846 |
+
"mnli+does this imply": 0,
|
2847 |
+
"mnli+guaranteed true": 0,
|
2848 |
+
"mnli+guaranteed/possible/impossible": 0,
|
2849 |
+
"mnli+justified in saying": 0,
|
2850 |
+
"mnli+must be true": 0,
|
2851 |
+
"mnli+should assume": 0,
|
2852 |
+
"mnli+take the following as truth": 0,
|
2853 |
+
"mnli_mismatched+GPT-3 style": 0,
|
2854 |
+
"mnli_mismatched+MNLI crowdsource": 0,
|
2855 |
+
"mnli_mismatched+always/sometimes/never": 0,
|
2856 |
+
"mnli_mismatched+based on the previous passage": 0,
|
2857 |
+
"mnli_mismatched+can we infer": 0,
|
2858 |
+
"mnli_mismatched+claim true/false/inconclusive": 0,
|
2859 |
+
"mnli_mismatched+consider always/sometimes/never": 0,
|
2860 |
+
"mnli_mismatched+does it follow that": 0,
|
2861 |
+
"mnli_mismatched+does this imply": 0,
|
2862 |
+
"mnli_mismatched+guaranteed true": 0,
|
2863 |
+
"mnli_mismatched+guaranteed/possible/impossible": 0,
|
2864 |
+
"mnli_mismatched+justified in saying": 0,
|
2865 |
+
"mnli_mismatched+must be true": 0,
|
2866 |
+
"mnli_mismatched+should assume": 0,
|
2867 |
+
"mnli_mismatched+take the following as truth": 0,
|
2868 |
+
"mrpc": 0,
|
2869 |
+
"multirc": 1,
|
2870 |
+
"multirc+I was going to say\u2026": 0,
|
2871 |
+
"multirc+Would it be good to answer\u2026": 0,
|
2872 |
+
"multirc+confirm": 0,
|
2873 |
+
"multirc+correct": 0,
|
2874 |
+
"multirc+decide_valid": 0,
|
2875 |
+
"multirc+found_this_answer": 0,
|
2876 |
+
"multirc+grading": 0,
|
2877 |
+
"multirc+is the correct answer\u2026": 0,
|
2878 |
+
"multirc+is\u2026 a correct answer?": 0,
|
2879 |
+
"multirc+paragraph\u2026 question\u2026 is it\u2026 ?": 0,
|
2880 |
+
"openbookqa": 0,
|
2881 |
+
"piqa": 0,
|
2882 |
+
"prost": 0,
|
2883 |
+
"pubmedqa": 0,
|
2884 |
+
"qnli": 0,
|
2885 |
+
"qqp": 0,
|
2886 |
+
"qqp+answer": 0,
|
2887 |
+
"qqp+duplicate": 0,
|
2888 |
+
"qqp+duplicate or not": 0,
|
2889 |
+
"qqp+meaning": 0,
|
2890 |
+
"qqp+quora": 0,
|
2891 |
+
"qqp+same thing": 0,
|
2892 |
+
"race": 1,
|
2893 |
+
"rte": 0,
|
2894 |
+
"rte+does the claim\u2026 follow the fact\u2026": 0,
|
2895 |
+
"rte+entailment explained": 0,
|
2896 |
+
"rte+imply": 0,
|
2897 |
+
"rte+imply separated": 0,
|
2898 |
+
"rte+mean": 0,
|
2899 |
+
"sciq": 0,
|
2900 |
+
"sst": 0,
|
2901 |
+
"sst+following positive negative": 0,
|
2902 |
+
"sst+happy or mad": 0,
|
2903 |
+
"sst+positive negative after": 0,
|
2904 |
+
"sst+review": 0,
|
2905 |
+
"sst+said": 0,
|
2906 |
+
"triviaqa": 0,
|
2907 |
+
"webqs": 0,
|
2908 |
+
"wic": 0,
|
2909 |
+
"wic+GPT-3-prompt": 0,
|
2910 |
+
"wic+GPT-3-prompt-with-label": 0,
|
2911 |
+
"wic+affirmation_true_or_false": 0,
|
2912 |
+
"wic+grammar_homework": 0,
|
2913 |
+
"wic+polysemous": 0,
|
2914 |
+
"wic+question-context": 0,
|
2915 |
+
"wic+question-context-meaning": 0,
|
2916 |
+
"wic+question-context-meaning-with-label": 0,
|
2917 |
+
"wic+same_sense": 0,
|
2918 |
+
"wic+similar-sense": 0,
|
2919 |
+
"winogrande": 0,
|
2920 |
+
"wnli": 1,
|
2921 |
+
"wnli+confident": 1,
|
2922 |
+
"wnli+entailment explained": 1,
|
2923 |
+
"wnli+imply": 1,
|
2924 |
+
"wnli+justified": 1,
|
2925 |
+
"wnli+mean": 1,
|
2926 |
+
"wsc": 0,
|
2927 |
+
"wsc+GPT-3 Style": 0,
|
2928 |
+
"wsc+I think they mean": 0,
|
2929 |
+
"wsc+Who or what is/are": 0,
|
2930 |
+
"wsc+by p they mean": 0,
|
2931 |
+
"wsc+does p stand for": 0,
|
2932 |
+
"wsc+does the pronoun refer to": 0,
|
2933 |
+
"wsc+in other words": 0,
|
2934 |
+
"wsc+p is/are r": 0,
|
2935 |
+
"wsc+replaced with": 0,
|
2936 |
+
"wsc+the pronoun refers to": 0
|
2937 |
+
}
|
2938 |
+
}
|
bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-13-19-23-37.json
ADDED
@@ -0,0 +1,701 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "qqp",
|
5 |
+
"prompt_name": "answer",
|
6 |
+
"acc": 0.40558990848379917,
|
7 |
+
"fixed_answer_choice_list": [
|
8 |
+
"no",
|
9 |
+
"yes"
|
10 |
+
],
|
11 |
+
"dataset_path": "glue",
|
12 |
+
"dataset_name": "qqp",
|
13 |
+
"subset": null,
|
14 |
+
"prompt_id": "c0182cd1-c7ac-4abe-829f-4651536af951",
|
15 |
+
"prompt_jinja": "Can an answer to \"{{question1}}\" also be used to answer \"{{question2}}\"? ||| {{ answer_choices[label] }}",
|
16 |
+
"prompt_original_task": false,
|
17 |
+
"comment": "",
|
18 |
+
"acc_stderr": 0.002441969063495092
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"task_name": "qqp",
|
22 |
+
"prompt_name": "answer",
|
23 |
+
"acc_norm": 0.36816720257234725,
|
24 |
+
"fixed_answer_choice_list": [
|
25 |
+
"no",
|
26 |
+
"yes"
|
27 |
+
],
|
28 |
+
"dataset_path": "glue",
|
29 |
+
"dataset_name": "qqp",
|
30 |
+
"subset": null,
|
31 |
+
"prompt_id": "c0182cd1-c7ac-4abe-829f-4651536af951",
|
32 |
+
"prompt_jinja": "Can an answer to \"{{question1}}\" also be used to answer \"{{question2}}\"? ||| {{ answer_choices[label] }}",
|
33 |
+
"prompt_original_task": false,
|
34 |
+
"comment": "",
|
35 |
+
"acc_norm_stderr": 0.002398706610614492
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"task_name": "qqp",
|
39 |
+
"prompt_name": "duplicate",
|
40 |
+
"acc": 0.3788523373732377,
|
41 |
+
"fixed_answer_choice_list": [
|
42 |
+
"no",
|
43 |
+
"yes"
|
44 |
+
],
|
45 |
+
"dataset_path": "glue",
|
46 |
+
"dataset_name": "qqp",
|
47 |
+
"subset": null,
|
48 |
+
"prompt_id": "fd244bd3-ca3b-4e4f-9722-fd006c50e157",
|
49 |
+
"prompt_jinja": "I received the questions \"{{question1}}\" and \"{{question2}}\". Are they duplicates? ||| {{ answer_choices[label] }}",
|
50 |
+
"prompt_original_task": true,
|
51 |
+
"comment": "",
|
52 |
+
"acc_stderr": 0.002412603277723025
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"task_name": "qqp",
|
56 |
+
"prompt_name": "duplicate",
|
57 |
+
"acc_norm": 0.36816720257234725,
|
58 |
+
"fixed_answer_choice_list": [
|
59 |
+
"no",
|
60 |
+
"yes"
|
61 |
+
],
|
62 |
+
"dataset_path": "glue",
|
63 |
+
"dataset_name": "qqp",
|
64 |
+
"subset": null,
|
65 |
+
"prompt_id": "fd244bd3-ca3b-4e4f-9722-fd006c50e157",
|
66 |
+
"prompt_jinja": "I received the questions \"{{question1}}\" and \"{{question2}}\". Are they duplicates? ||| {{ answer_choices[label] }}",
|
67 |
+
"prompt_original_task": true,
|
68 |
+
"comment": "",
|
69 |
+
"acc_norm_stderr": 0.002398706610614492
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"task_name": "qqp",
|
73 |
+
"prompt_name": "duplicate or not",
|
74 |
+
"acc": 0.5761315854563444,
|
75 |
+
"fixed_answer_choice_list": [
|
76 |
+
"not duplicates",
|
77 |
+
"duplicates"
|
78 |
+
],
|
79 |
+
"dataset_path": "glue",
|
80 |
+
"dataset_name": "qqp",
|
81 |
+
"subset": null,
|
82 |
+
"prompt_id": "94972071-a726-42a3-a726-13f414b65e67",
|
83 |
+
"prompt_jinja": "{{question1}}\n{{question2}}\nPick one: These questions are \"{{\"duplicates\"}}\" or \"{{\"not duplicates\"}}\".\n|||\n{{ answer_choices[label] }}",
|
84 |
+
"prompt_original_task": true,
|
85 |
+
"comment": "",
|
86 |
+
"acc_stderr": 0.0024577056660753426
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"task_name": "qqp",
|
90 |
+
"prompt_name": "duplicate or not",
|
91 |
+
"acc_norm": 0.6318327974276527,
|
92 |
+
"fixed_answer_choice_list": [
|
93 |
+
"not duplicates",
|
94 |
+
"duplicates"
|
95 |
+
],
|
96 |
+
"dataset_path": "glue",
|
97 |
+
"dataset_name": "qqp",
|
98 |
+
"subset": null,
|
99 |
+
"prompt_id": "94972071-a726-42a3-a726-13f414b65e67",
|
100 |
+
"prompt_jinja": "{{question1}}\n{{question2}}\nPick one: These questions are \"{{\"duplicates\"}}\" or \"{{\"not duplicates\"}}\".\n|||\n{{ answer_choices[label] }}",
|
101 |
+
"prompt_original_task": true,
|
102 |
+
"comment": "",
|
103 |
+
"acc_norm_stderr": 0.002398706610614492
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"task_name": "qqp",
|
107 |
+
"prompt_name": "meaning",
|
108 |
+
"acc": 0.3681424684640119,
|
109 |
+
"fixed_answer_choice_list": [
|
110 |
+
"No",
|
111 |
+
"Yes"
|
112 |
+
],
|
113 |
+
"dataset_path": "glue",
|
114 |
+
"dataset_name": "qqp",
|
115 |
+
"subset": null,
|
116 |
+
"prompt_id": "c0724198-97e7-44a1-89d8-c51e97ce0b04",
|
117 |
+
"prompt_jinja": "Question 1: {{question1}}\nQuestion 2: {{question2}}\n\nDo these two questions convey the same meaning? Yes or no? ||| {{answer_choices[label]}}",
|
118 |
+
"prompt_original_task": true,
|
119 |
+
"comment": "",
|
120 |
+
"acc_stderr": 0.0023986729832071916
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"task_name": "qqp",
|
124 |
+
"prompt_name": "meaning",
|
125 |
+
"acc_norm": 0.36816720257234725,
|
126 |
+
"fixed_answer_choice_list": [
|
127 |
+
"No",
|
128 |
+
"Yes"
|
129 |
+
],
|
130 |
+
"dataset_path": "glue",
|
131 |
+
"dataset_name": "qqp",
|
132 |
+
"subset": null,
|
133 |
+
"prompt_id": "c0724198-97e7-44a1-89d8-c51e97ce0b04",
|
134 |
+
"prompt_jinja": "Question 1: {{question1}}\nQuestion 2: {{question2}}\n\nDo these two questions convey the same meaning? Yes or no? ||| {{answer_choices[label]}}",
|
135 |
+
"prompt_original_task": true,
|
136 |
+
"comment": "",
|
137 |
+
"acc_norm_stderr": 0.002398706610614492
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"task_name": "qqp",
|
141 |
+
"prompt_name": "quora",
|
142 |
+
"acc": 0.36821667078901804,
|
143 |
+
"fixed_answer_choice_list": [
|
144 |
+
"no",
|
145 |
+
"yes"
|
146 |
+
],
|
147 |
+
"dataset_path": "glue",
|
148 |
+
"dataset_name": "qqp",
|
149 |
+
"subset": null,
|
150 |
+
"prompt_id": "8e711799-a57c-4941-833b-466bedfb80ad",
|
151 |
+
"prompt_jinja": "I'm an administrator on the website Quora. There are two posts, one that asks \"{{question1}}\" and another that asks \"{{question2}}\". I can merge questions if they are asking the same thing. Can I merge these two questions? ||| {{ answer_choices[label] }}",
|
152 |
+
"prompt_original_task": true,
|
153 |
+
"comment": "",
|
154 |
+
"acc_stderr": 0.0023987738450886556
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"task_name": "qqp",
|
158 |
+
"prompt_name": "quora",
|
159 |
+
"acc_norm": 0.36816720257234725,
|
160 |
+
"fixed_answer_choice_list": [
|
161 |
+
"no",
|
162 |
+
"yes"
|
163 |
+
],
|
164 |
+
"dataset_path": "glue",
|
165 |
+
"dataset_name": "qqp",
|
166 |
+
"subset": null,
|
167 |
+
"prompt_id": "8e711799-a57c-4941-833b-466bedfb80ad",
|
168 |
+
"prompt_jinja": "I'm an administrator on the website Quora. There are two posts, one that asks \"{{question1}}\" and another that asks \"{{question2}}\". I can merge questions if they are asking the same thing. Can I merge these two questions? ||| {{ answer_choices[label] }}",
|
169 |
+
"prompt_original_task": true,
|
170 |
+
"comment": "",
|
171 |
+
"acc_norm_stderr": 0.002398706610614492
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"task_name": "qqp",
|
175 |
+
"prompt_name": "same thing",
|
176 |
+
"acc": 0.5099431115508286,
|
177 |
+
"fixed_answer_choice_list": [
|
178 |
+
"no",
|
179 |
+
"yes"
|
180 |
+
],
|
181 |
+
"dataset_path": "glue",
|
182 |
+
"dataset_name": "qqp",
|
183 |
+
"subset": null,
|
184 |
+
"prompt_id": "a45ad5cd-a3ba-4ab2-a728-a9ea0f27102b",
|
185 |
+
"prompt_jinja": "Are the questions \"{{question1}}\" and \"{{question2}}\" asking the same thing? ||| {{ answer_choices[label] }}",
|
186 |
+
"prompt_original_task": true,
|
187 |
+
"comment": "",
|
188 |
+
"acc_stderr": 0.002486208885430481
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"task_name": "qqp",
|
192 |
+
"prompt_name": "same thing",
|
193 |
+
"acc_norm": 0.36816720257234725,
|
194 |
+
"fixed_answer_choice_list": [
|
195 |
+
"no",
|
196 |
+
"yes"
|
197 |
+
],
|
198 |
+
"dataset_path": "glue",
|
199 |
+
"dataset_name": "qqp",
|
200 |
+
"subset": null,
|
201 |
+
"prompt_id": "a45ad5cd-a3ba-4ab2-a728-a9ea0f27102b",
|
202 |
+
"prompt_jinja": "Are the questions \"{{question1}}\" and \"{{question2}}\" asking the same thing? ||| {{ answer_choices[label] }}",
|
203 |
+
"prompt_original_task": true,
|
204 |
+
"comment": "",
|
205 |
+
"acc_norm_stderr": 0.002398706610614492
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"task_name": "rte",
|
209 |
+
"prompt_name": "does the claim\u2026 follow the fact\u2026",
|
210 |
+
"acc": 0.4729241877256318,
|
211 |
+
"fixed_answer_choice_list": [
|
212 |
+
"yes",
|
213 |
+
"no"
|
214 |
+
],
|
215 |
+
"dataset_path": "glue",
|
216 |
+
"dataset_name": "rte",
|
217 |
+
"subset": null,
|
218 |
+
"prompt_id": "4ee6ff27-de63-4e7b-a9d4-82a17eba407a",
|
219 |
+
"prompt_jinja": "Does the claim \"{{sentence2}}\" follow from the fact that \"{{sentence1}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
|
220 |
+
"prompt_original_task": true,
|
221 |
+
"comment": "",
|
222 |
+
"acc_stderr": 0.030052303463143706
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"task_name": "rte",
|
226 |
+
"prompt_name": "does the claim\u2026 follow the fact\u2026",
|
227 |
+
"acc_norm": 0.5270758122743683,
|
228 |
+
"fixed_answer_choice_list": [
|
229 |
+
"yes",
|
230 |
+
"no"
|
231 |
+
],
|
232 |
+
"dataset_path": "glue",
|
233 |
+
"dataset_name": "rte",
|
234 |
+
"subset": null,
|
235 |
+
"prompt_id": "4ee6ff27-de63-4e7b-a9d4-82a17eba407a",
|
236 |
+
"prompt_jinja": "Does the claim \"{{sentence2}}\" follow from the fact that \"{{sentence1}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
|
237 |
+
"prompt_original_task": true,
|
238 |
+
"comment": "",
|
239 |
+
"acc_norm_stderr": 0.0300523034631437
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"task_name": "rte",
|
243 |
+
"prompt_name": "entailment explained",
|
244 |
+
"acc": 0.49458483754512633,
|
245 |
+
"fixed_answer_choice_list": [
|
246 |
+
"entailment",
|
247 |
+
"not entailment"
|
248 |
+
],
|
249 |
+
"dataset_path": "glue",
|
250 |
+
"dataset_name": "rte",
|
251 |
+
"subset": null,
|
252 |
+
"prompt_id": "9e2b4267-ec23-44c8-b82a-107e2c890fec",
|
253 |
+
"prompt_jinja": "We say that one sentence \"{{\"entails\"}}\" another sentence when the first sentence implies the second sentence. Consider the following two sentences:\n{{sentence1}}\n{{sentence2}}\nIs the relationship from the first to the second sentence \"{{\"entailment\"}}\" or \"{{\"not entailment\"}}\"?\n|||\n{{answer_choices[label]}}",
|
254 |
+
"prompt_original_task": true,
|
255 |
+
"comment": "",
|
256 |
+
"acc_stderr": 0.030094698123239966
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"task_name": "rte",
|
260 |
+
"prompt_name": "entailment explained",
|
261 |
+
"acc_norm": 0.4729241877256318,
|
262 |
+
"fixed_answer_choice_list": [
|
263 |
+
"entailment",
|
264 |
+
"not entailment"
|
265 |
+
],
|
266 |
+
"dataset_path": "glue",
|
267 |
+
"dataset_name": "rte",
|
268 |
+
"subset": null,
|
269 |
+
"prompt_id": "9e2b4267-ec23-44c8-b82a-107e2c890fec",
|
270 |
+
"prompt_jinja": "We say that one sentence \"{{\"entails\"}}\" another sentence when the first sentence implies the second sentence. Consider the following two sentences:\n{{sentence1}}\n{{sentence2}}\nIs the relationship from the first to the second sentence \"{{\"entailment\"}}\" or \"{{\"not entailment\"}}\"?\n|||\n{{answer_choices[label]}}",
|
271 |
+
"prompt_original_task": true,
|
272 |
+
"comment": "",
|
273 |
+
"acc_norm_stderr": 0.0300523034631437
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"task_name": "rte",
|
277 |
+
"prompt_name": "imply",
|
278 |
+
"acc": 0.48375451263537905,
|
279 |
+
"fixed_answer_choice_list": [
|
280 |
+
"yes",
|
281 |
+
"no"
|
282 |
+
],
|
283 |
+
"dataset_path": "glue",
|
284 |
+
"dataset_name": "rte",
|
285 |
+
"subset": null,
|
286 |
+
"prompt_id": "c8dfc879-40f2-412d-be1e-4cd70107f6e6",
|
287 |
+
"prompt_jinja": "Does \"{{sentence1}}\" imply that \"{{sentence2}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
|
288 |
+
"prompt_original_task": true,
|
289 |
+
"comment": "",
|
290 |
+
"acc_stderr": 0.030080573208738064
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"task_name": "rte",
|
294 |
+
"prompt_name": "imply",
|
295 |
+
"acc_norm": 0.5270758122743683,
|
296 |
+
"fixed_answer_choice_list": [
|
297 |
+
"yes",
|
298 |
+
"no"
|
299 |
+
],
|
300 |
+
"dataset_path": "glue",
|
301 |
+
"dataset_name": "rte",
|
302 |
+
"subset": null,
|
303 |
+
"prompt_id": "c8dfc879-40f2-412d-be1e-4cd70107f6e6",
|
304 |
+
"prompt_jinja": "Does \"{{sentence1}}\" imply that \"{{sentence2}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
|
305 |
+
"prompt_original_task": true,
|
306 |
+
"comment": "",
|
307 |
+
"acc_norm_stderr": 0.0300523034631437
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"task_name": "rte",
|
311 |
+
"prompt_name": "imply separated",
|
312 |
+
"acc": 0.45126353790613716,
|
313 |
+
"fixed_answer_choice_list": [
|
314 |
+
"yes",
|
315 |
+
"no"
|
316 |
+
],
|
317 |
+
"dataset_path": "glue",
|
318 |
+
"dataset_name": "rte",
|
319 |
+
"subset": null,
|
320 |
+
"prompt_id": "f56ffced-9b16-431a-8a17-501e63cddf73",
|
321 |
+
"prompt_jinja": "{{sentence1}}\nDoes this imply\n{{sentence2}}\nPlease answer {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
|
322 |
+
"prompt_original_task": true,
|
323 |
+
"comment": "",
|
324 |
+
"acc_stderr": 0.029953149241808943
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"task_name": "rte",
|
328 |
+
"prompt_name": "imply separated",
|
329 |
+
"acc_norm": 0.5270758122743683,
|
330 |
+
"fixed_answer_choice_list": [
|
331 |
+
"yes",
|
332 |
+
"no"
|
333 |
+
],
|
334 |
+
"dataset_path": "glue",
|
335 |
+
"dataset_name": "rte",
|
336 |
+
"subset": null,
|
337 |
+
"prompt_id": "f56ffced-9b16-431a-8a17-501e63cddf73",
|
338 |
+
"prompt_jinja": "{{sentence1}}\nDoes this imply\n{{sentence2}}\nPlease answer {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
|
339 |
+
"prompt_original_task": true,
|
340 |
+
"comment": "",
|
341 |
+
"acc_norm_stderr": 0.0300523034631437
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"task_name": "rte",
|
345 |
+
"prompt_name": "mean",
|
346 |
+
"acc": 0.48014440433212996,
|
347 |
+
"fixed_answer_choice_list": [
|
348 |
+
"yes",
|
349 |
+
"no"
|
350 |
+
],
|
351 |
+
"dataset_path": "glue",
|
352 |
+
"dataset_name": "rte",
|
353 |
+
"subset": null,
|
354 |
+
"prompt_id": "03a7ae07-5ddd-46c4-92f3-2152223d44ec",
|
355 |
+
"prompt_jinja": "{{sentence1}}\nDoes this mean that \"{{sentence2}}\" is true? {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
|
356 |
+
"prompt_original_task": true,
|
357 |
+
"comment": "",
|
358 |
+
"acc_stderr": 0.030072723167317194
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"task_name": "rte",
|
362 |
+
"prompt_name": "mean",
|
363 |
+
"acc_norm": 0.5270758122743683,
|
364 |
+
"fixed_answer_choice_list": [
|
365 |
+
"yes",
|
366 |
+
"no"
|
367 |
+
],
|
368 |
+
"dataset_path": "glue",
|
369 |
+
"dataset_name": "rte",
|
370 |
+
"subset": null,
|
371 |
+
"prompt_id": "03a7ae07-5ddd-46c4-92f3-2152223d44ec",
|
372 |
+
"prompt_jinja": "{{sentence1}}\nDoes this mean that \"{{sentence2}}\" is true? {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
|
373 |
+
"prompt_original_task": true,
|
374 |
+
"comment": "",
|
375 |
+
"acc_norm_stderr": 0.0300523034631437
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"task_name": "sst",
|
379 |
+
"prompt_name": "following positive negative",
|
380 |
+
"acc": 0.8061926605504587,
|
381 |
+
"fixed_answer_choice_list": [
|
382 |
+
"negative",
|
383 |
+
"positive"
|
384 |
+
],
|
385 |
+
"dataset_path": "glue",
|
386 |
+
"dataset_name": "sst2",
|
387 |
+
"subset": null,
|
388 |
+
"prompt_id": "63c6b2be-8ecd-42ad-88c7-0d1dc1a8323a",
|
389 |
+
"prompt_jinja": "Does the following sentence have a {{\"positive\"}} or {{\"negative\"}} sentiment?\n{{sentence}}\n|||\n{{ answer_choices[label] }}",
|
390 |
+
"prompt_original_task": true,
|
391 |
+
"comment": "",
|
392 |
+
"acc_stderr": 0.013393542261521812
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"task_name": "sst",
|
396 |
+
"prompt_name": "following positive negative",
|
397 |
+
"acc_norm": 0.8061926605504587,
|
398 |
+
"fixed_answer_choice_list": [
|
399 |
+
"negative",
|
400 |
+
"positive"
|
401 |
+
],
|
402 |
+
"dataset_path": "glue",
|
403 |
+
"dataset_name": "sst2",
|
404 |
+
"subset": null,
|
405 |
+
"prompt_id": "63c6b2be-8ecd-42ad-88c7-0d1dc1a8323a",
|
406 |
+
"prompt_jinja": "Does the following sentence have a {{\"positive\"}} or {{\"negative\"}} sentiment?\n{{sentence}}\n|||\n{{ answer_choices[label] }}",
|
407 |
+
"prompt_original_task": true,
|
408 |
+
"comment": "",
|
409 |
+
"acc_norm_stderr": 0.013393542261521812
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"task_name": "sst",
|
413 |
+
"prompt_name": "happy or mad",
|
414 |
+
"acc": 0.5091743119266054,
|
415 |
+
"fixed_answer_choice_list": [
|
416 |
+
"bad",
|
417 |
+
"good"
|
418 |
+
],
|
419 |
+
"dataset_path": "glue",
|
420 |
+
"dataset_name": "sst2",
|
421 |
+
"subset": null,
|
422 |
+
"prompt_id": "6dd74cd5-e074-4612-9e96-c17ca88c3bc4",
|
423 |
+
"prompt_jinja": "Someone sent me an email with the sentence \"{{sentence}}\". Do you think they are feeling {{\"good\"}} or {{\"bad\"}}? ||| {{ answer_choices[label] }}",
|
424 |
+
"prompt_original_task": true,
|
425 |
+
"comment": "",
|
426 |
+
"acc_stderr": 0.01693900152535154
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"task_name": "sst",
|
430 |
+
"prompt_name": "happy or mad",
|
431 |
+
"acc_norm": 0.5091743119266054,
|
432 |
+
"fixed_answer_choice_list": [
|
433 |
+
"bad",
|
434 |
+
"good"
|
435 |
+
],
|
436 |
+
"dataset_path": "glue",
|
437 |
+
"dataset_name": "sst2",
|
438 |
+
"subset": null,
|
439 |
+
"prompt_id": "6dd74cd5-e074-4612-9e96-c17ca88c3bc4",
|
440 |
+
"prompt_jinja": "Someone sent me an email with the sentence \"{{sentence}}\". Do you think they are feeling {{\"good\"}} or {{\"bad\"}}? ||| {{ answer_choices[label] }}",
|
441 |
+
"prompt_original_task": true,
|
442 |
+
"comment": "",
|
443 |
+
"acc_norm_stderr": 0.01693900152535154
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"task_name": "sst",
|
447 |
+
"prompt_name": "positive negative after",
|
448 |
+
"acc": 0.6204128440366973,
|
449 |
+
"fixed_answer_choice_list": [
|
450 |
+
"negative",
|
451 |
+
"positive"
|
452 |
+
],
|
453 |
+
"dataset_path": "glue",
|
454 |
+
"dataset_name": "sst2",
|
455 |
+
"subset": null,
|
456 |
+
"prompt_id": "11d1c505-9232-4c35-82a4-4c3642843e2e",
|
457 |
+
"prompt_jinja": "{{sentence}}\nQuestion: Was that sentence {{\"positive\"}} or {{\"negative\"}}? Answer: ||| {{ answer_choices[label] }}",
|
458 |
+
"prompt_original_task": true,
|
459 |
+
"comment": "",
|
460 |
+
"acc_stderr": 0.016443227556688766
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"task_name": "sst",
|
464 |
+
"prompt_name": "positive negative after",
|
465 |
+
"acc_norm": 0.6204128440366973,
|
466 |
+
"fixed_answer_choice_list": [
|
467 |
+
"negative",
|
468 |
+
"positive"
|
469 |
+
],
|
470 |
+
"dataset_path": "glue",
|
471 |
+
"dataset_name": "sst2",
|
472 |
+
"subset": null,
|
473 |
+
"prompt_id": "11d1c505-9232-4c35-82a4-4c3642843e2e",
|
474 |
+
"prompt_jinja": "{{sentence}}\nQuestion: Was that sentence {{\"positive\"}} or {{\"negative\"}}? Answer: ||| {{ answer_choices[label] }}",
|
475 |
+
"prompt_original_task": true,
|
476 |
+
"comment": "",
|
477 |
+
"acc_norm_stderr": 0.016443227556688766
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"task_name": "sst",
|
481 |
+
"prompt_name": "review",
|
482 |
+
"acc": 0.5091743119266054,
|
483 |
+
"fixed_answer_choice_list": [
|
484 |
+
"negative",
|
485 |
+
"positive"
|
486 |
+
],
|
487 |
+
"dataset_path": "glue",
|
488 |
+
"dataset_name": "sst2",
|
489 |
+
"subset": null,
|
490 |
+
"prompt_id": "228fcae7-7f4c-4e3c-9ac4-e49b26bc103d",
|
491 |
+
"prompt_jinja": "I'm reading a review that says \"{{sentence}}\".\n\nDo you think the review is {{\"positive\"}} or {{\"negative\"}}? ||| {{ answer_choices[label] }}",
|
492 |
+
"prompt_original_task": true,
|
493 |
+
"comment": "",
|
494 |
+
"acc_stderr": 0.01693900152535154
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"task_name": "sst",
|
498 |
+
"prompt_name": "review",
|
499 |
+
"acc_norm": 0.5091743119266054,
|
500 |
+
"fixed_answer_choice_list": [
|
501 |
+
"negative",
|
502 |
+
"positive"
|
503 |
+
],
|
504 |
+
"dataset_path": "glue",
|
505 |
+
"dataset_name": "sst2",
|
506 |
+
"subset": null,
|
507 |
+
"prompt_id": "228fcae7-7f4c-4e3c-9ac4-e49b26bc103d",
|
508 |
+
"prompt_jinja": "I'm reading a review that says \"{{sentence}}\".\n\nDo you think the review is {{\"positive\"}} or {{\"negative\"}}? ||| {{ answer_choices[label] }}",
|
509 |
+
"prompt_original_task": true,
|
510 |
+
"comment": "",
|
511 |
+
"acc_norm_stderr": 0.01693900152535154
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"task_name": "sst",
|
515 |
+
"prompt_name": "said",
|
516 |
+
"acc": 0.4908256880733945,
|
517 |
+
"fixed_answer_choice_list": [
|
518 |
+
"sad",
|
519 |
+
"happy"
|
520 |
+
],
|
521 |
+
"dataset_path": "glue",
|
522 |
+
"dataset_name": "sst2",
|
523 |
+
"subset": null,
|
524 |
+
"prompt_id": "5aa0cea9-0f8d-454d-b25b-b0d4cda273b8",
|
525 |
+
"prompt_jinja": "Someone just said to me \"{{sentence}}\".\n\nDo you think they are {{\"sad\"}} or {{\"happy\"}}? ||| {{ answer_choices[label] }}",
|
526 |
+
"prompt_original_task": true,
|
527 |
+
"comment": "",
|
528 |
+
"acc_stderr": 0.01693900152535154
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"task_name": "sst",
|
532 |
+
"prompt_name": "said",
|
533 |
+
"acc_norm": 0.5091743119266054,
|
534 |
+
"fixed_answer_choice_list": [
|
535 |
+
"sad",
|
536 |
+
"happy"
|
537 |
+
],
|
538 |
+
"dataset_path": "glue",
|
539 |
+
"dataset_name": "sst2",
|
540 |
+
"subset": null,
|
541 |
+
"prompt_id": "5aa0cea9-0f8d-454d-b25b-b0d4cda273b8",
|
542 |
+
"prompt_jinja": "Someone just said to me \"{{sentence}}\".\n\nDo you think they are {{\"sad\"}} or {{\"happy\"}}? ||| {{ answer_choices[label] }}",
|
543 |
+
"prompt_original_task": true,
|
544 |
+
"comment": "",
|
545 |
+
"acc_norm_stderr": 0.01693900152535154
|
546 |
+
}
|
547 |
+
],
|
548 |
+
"versions": {
|
549 |
+
"qqp+answer": 0,
|
550 |
+
"qqp+duplicate": 0,
|
551 |
+
"qqp+duplicate or not": 0,
|
552 |
+
"qqp+meaning": 0,
|
553 |
+
"qqp+quora": 0,
|
554 |
+
"qqp+same thing": 0,
|
555 |
+
"rte+does the claim\u2026 follow the fact\u2026": 0,
|
556 |
+
"rte+entailment explained": 0,
|
557 |
+
"rte+imply": 0,
|
558 |
+
"rte+imply separated": 0,
|
559 |
+
"rte+mean": 0,
|
560 |
+
"sst+following positive negative": 0,
|
561 |
+
"sst+happy or mad": 0,
|
562 |
+
"sst+positive negative after": 0,
|
563 |
+
"sst+review": 0,
|
564 |
+
"sst+said": 0
|
565 |
+
},
|
566 |
+
"table_results": {
|
567 |
+
"qqp+answer": {
|
568 |
+
"task_name": "qqp",
|
569 |
+
"prompt_name": "answer",
|
570 |
+
"acc": 0.40558990848379917,
|
571 |
+
"acc_stderr": 0.002441969063495092,
|
572 |
+
"acc_norm": 0.36816720257234725,
|
573 |
+
"acc_norm_stderr": 0.002398706610614492
|
574 |
+
},
|
575 |
+
"qqp+duplicate": {
|
576 |
+
"task_name": "qqp",
|
577 |
+
"prompt_name": "duplicate",
|
578 |
+
"acc": 0.3788523373732377,
|
579 |
+
"acc_stderr": 0.002412603277723025,
|
580 |
+
"acc_norm": 0.36816720257234725,
|
581 |
+
"acc_norm_stderr": 0.002398706610614492
|
582 |
+
},
|
583 |
+
"qqp+duplicate or not": {
|
584 |
+
"task_name": "qqp",
|
585 |
+
"prompt_name": "duplicate or not",
|
586 |
+
"acc": 0.5761315854563444,
|
587 |
+
"acc_stderr": 0.0024577056660753426,
|
588 |
+
"acc_norm": 0.6318327974276527,
|
589 |
+
"acc_norm_stderr": 0.002398706610614492
|
590 |
+
},
|
591 |
+
"qqp+meaning": {
|
592 |
+
"task_name": "qqp",
|
593 |
+
"prompt_name": "meaning",
|
594 |
+
"acc": 0.3681424684640119,
|
595 |
+
"acc_stderr": 0.0023986729832071916,
|
596 |
+
"acc_norm": 0.36816720257234725,
|
597 |
+
"acc_norm_stderr": 0.002398706610614492
|
598 |
+
},
|
599 |
+
"qqp+quora": {
|
600 |
+
"task_name": "qqp",
|
601 |
+
"prompt_name": "quora",
|
602 |
+
"acc": 0.36821667078901804,
|
603 |
+
"acc_stderr": 0.0023987738450886556,
|
604 |
+
"acc_norm": 0.36816720257234725,
|
605 |
+
"acc_norm_stderr": 0.002398706610614492
|
606 |
+
},
|
607 |
+
"qqp+same thing": {
|
608 |
+
"task_name": "qqp",
|
609 |
+
"prompt_name": "same thing",
|
610 |
+
"acc": 0.5099431115508286,
|
611 |
+
"acc_stderr": 0.002486208885430481,
|
612 |
+
"acc_norm": 0.36816720257234725,
|
613 |
+
"acc_norm_stderr": 0.002398706610614492
|
614 |
+
},
|
615 |
+
"rte+does the claim\u2026 follow the fact\u2026": {
|
616 |
+
"task_name": "rte",
|
617 |
+
"prompt_name": "does the claim\u2026 follow the fact\u2026",
|
618 |
+
"acc": 0.4729241877256318,
|
619 |
+
"acc_stderr": 0.030052303463143706,
|
620 |
+
"acc_norm": 0.5270758122743683,
|
621 |
+
"acc_norm_stderr": 0.0300523034631437
|
622 |
+
},
|
623 |
+
"rte+entailment explained": {
|
624 |
+
"task_name": "rte",
|
625 |
+
"prompt_name": "entailment explained",
|
626 |
+
"acc": 0.49458483754512633,
|
627 |
+
"acc_stderr": 0.030094698123239966,
|
628 |
+
"acc_norm": 0.4729241877256318,
|
629 |
+
"acc_norm_stderr": 0.0300523034631437
|
630 |
+
},
|
631 |
+
"rte+imply": {
|
632 |
+
"task_name": "rte",
|
633 |
+
"prompt_name": "imply",
|
634 |
+
"acc": 0.48375451263537905,
|
635 |
+
"acc_stderr": 0.030080573208738064,
|
636 |
+
"acc_norm": 0.5270758122743683,
|
637 |
+
"acc_norm_stderr": 0.0300523034631437
|
638 |
+
},
|
639 |
+
"rte+imply separated": {
|
640 |
+
"task_name": "rte",
|
641 |
+
"prompt_name": "imply separated",
|
642 |
+
"acc": 0.45126353790613716,
|
643 |
+
"acc_stderr": 0.029953149241808943,
|
644 |
+
"acc_norm": 0.5270758122743683,
|
645 |
+
"acc_norm_stderr": 0.0300523034631437
|
646 |
+
},
|
647 |
+
"rte+mean": {
|
648 |
+
"task_name": "rte",
|
649 |
+
"prompt_name": "mean",
|
650 |
+
"acc": 0.48014440433212996,
|
651 |
+
"acc_stderr": 0.030072723167317194,
|
652 |
+
"acc_norm": 0.5270758122743683,
|
653 |
+
"acc_norm_stderr": 0.0300523034631437
|
654 |
+
},
|
655 |
+
"sst+following positive negative": {
|
656 |
+
"task_name": "sst",
|
657 |
+
"prompt_name": "following positive negative",
|
658 |
+
"acc": 0.8061926605504587,
|
659 |
+
"acc_stderr": 0.013393542261521812,
|
660 |
+
"acc_norm": 0.8061926605504587,
|
661 |
+
"acc_norm_stderr": 0.013393542261521812
|
662 |
+
},
|
663 |
+
"sst+happy or mad": {
|
664 |
+
"task_name": "sst",
|
665 |
+
"prompt_name": "happy or mad",
|
666 |
+
"acc": 0.5091743119266054,
|
667 |
+
"acc_stderr": 0.01693900152535154,
|
668 |
+
"acc_norm": 0.5091743119266054,
|
669 |
+
"acc_norm_stderr": 0.01693900152535154
|
670 |
+
},
|
671 |
+
"sst+positive negative after": {
|
672 |
+
"task_name": "sst",
|
673 |
+
"prompt_name": "positive negative after",
|
674 |
+
"acc": 0.6204128440366973,
|
675 |
+
"acc_stderr": 0.016443227556688766,
|
676 |
+
"acc_norm": 0.6204128440366973,
|
677 |
+
"acc_norm_stderr": 0.016443227556688766
|
678 |
+
},
|
679 |
+
"sst+review": {
|
680 |
+
"task_name": "sst",
|
681 |
+
"prompt_name": "review",
|
682 |
+
"acc": 0.5091743119266054,
|
683 |
+
"acc_stderr": 0.01693900152535154,
|
684 |
+
"acc_norm": 0.5091743119266054,
|
685 |
+
"acc_norm_stderr": 0.01693900152535154
|
686 |
+
},
|
687 |
+
"sst+said": {
|
688 |
+
"task_name": "sst",
|
689 |
+
"prompt_name": "said",
|
690 |
+
"acc": 0.4908256880733945,
|
691 |
+
"acc_stderr": 0.01693900152535154,
|
692 |
+
"acc_norm": 0.5091743119266054,
|
693 |
+
"acc_norm_stderr": 0.01693900152535154
|
694 |
+
}
|
695 |
+
},
|
696 |
+
"config": {
|
697 |
+
"adaptive_seq_len": true,
|
698 |
+
"num_fewshot": 0,
|
699 |
+
"bootstrap_iters": 100000
|
700 |
+
}
|
701 |
+
}
|
bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-15-11-47-34.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/evaluation/results/tr11/bloom1b3/humaneval_temp06.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.031249999999999993, "pass@10": 0.07447701667197712, "pass@100": 0.1253791767704454}
|
bigscience/evaluation/results/tr11/bloom1b3/humaneval_temp08.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.023475609756097564, "pass@10": 0.06591235746713595, "pass@100": 0.12748827115496364}
|
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/concat.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
from pathlib import Path
|
5 |
+
from re import Pattern
|
6 |
+
from typing import List, Dict
|
7 |
+
|
8 |
+
|
9 |
+
def get_args():
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--results-dir", required=True, type=Path, help="Path to the list of results")
|
12 |
+
parser.add_argument("--concatenate-output-file", required=True, type=Path, help="Path to store the final output file")
|
13 |
+
return parser.parse_args()
|
14 |
+
|
15 |
+
MODEL = "tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step337250"
|
16 |
+
# MODEL = "global_step95000"
|
17 |
+
RESULTS_REGEX = re.compile(rf"(eai|bs)_results_lm-eval_{MODEL}_(\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2})_backup\.json")
|
18 |
+
RESULTS_REGEX = re.compile(rf"{MODEL}_*.json")
|
19 |
+
#tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-10-03-25.json
|
20 |
+
def get_all_files_that_match_results_in_folder(root_folder: Path) -> List[Path]:
|
21 |
+
json_files = []
|
22 |
+
for folder in root_folder.iterdir():
|
23 |
+
if folder.is_dir():
|
24 |
+
json_files += get_all_files_that_match_results_in_folder(folder)
|
25 |
+
else:
|
26 |
+
# it's actually a file
|
27 |
+
file = folder
|
28 |
+
|
29 |
+
#match = RESULTS_REGEX.match(file.name)
|
30 |
+
|
31 |
+
if not str(file.name).endswith("json"):
|
32 |
+
continue
|
33 |
+
else:
|
34 |
+
json_files.append(file)
|
35 |
+
return json_files
|
36 |
+
|
37 |
+
def sort_dict(dictionary: Dict) -> Dict:
|
38 |
+
results = {}
|
39 |
+
|
40 |
+
for key, value in sorted(dictionary.items()):
|
41 |
+
new_value = value
|
42 |
+
|
43 |
+
if isinstance(value, dict):
|
44 |
+
new_value = sort_dict(new_value)
|
45 |
+
elif isinstance(value, list):
|
46 |
+
new_value = sorted(value)
|
47 |
+
|
48 |
+
results[key] = new_value
|
49 |
+
|
50 |
+
return results
|
51 |
+
|
52 |
+
def main():
|
53 |
+
args = get_args()
|
54 |
+
|
55 |
+
# Get all json files
|
56 |
+
json_files = get_all_files_that_match_results_in_folder(args.results_dir)
|
57 |
+
print("GOT", json_files)
|
58 |
+
# Merge all json files
|
59 |
+
final_result = {
|
60 |
+
"results": {},
|
61 |
+
"versions": {}
|
62 |
+
}
|
63 |
+
for file in json_files:
|
64 |
+
with open(file, "r") as fi:
|
65 |
+
task_result = json.load(fi)
|
66 |
+
|
67 |
+
#match = RESULTS_REGEX.match(file.name)
|
68 |
+
#assert match is not None
|
69 |
+
prefix = "bs" if "bs" in file.name else "eai"#match.group(1)
|
70 |
+
datetime_string = file.name[file.name.index("global_step337250_") + len("global_step337250_"):].replace(".json", "")#match.group(2)
|
71 |
+
|
72 |
+
if prefix == "eai":
|
73 |
+
results_key = "results"
|
74 |
+
elif prefix == "bs":
|
75 |
+
results_key = "table_results"
|
76 |
+
else:
|
77 |
+
raise ValueError(f"Unsupported key: {prefix}")
|
78 |
+
|
79 |
+
for key, value in task_result[results_key].items():
|
80 |
+
if key not in final_result["results"]:
|
81 |
+
final_result["results"][key] = {
|
82 |
+
datetime_string: value
|
83 |
+
}
|
84 |
+
#else:
|
85 |
+
# assert datetime_string not in final_result["results"][key]
|
86 |
+
# final_result["results"][key][datetime_string] = value
|
87 |
+
|
88 |
+
for key, value in task_result["versions"].items():
|
89 |
+
final_result["versions"][key] = value
|
90 |
+
|
91 |
+
# We sort dict, better for serialization
|
92 |
+
print(final_result)
|
93 |
+
final_result = sort_dict(final_result)
|
94 |
+
|
95 |
+
# Save result
|
96 |
+
with open(args.concatenate_output_file, "w") as fo:
|
97 |
+
json.dump(final_result, fo, indent=2)
|
98 |
+
|
99 |
+
pass
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
main()
|
103 |
+
|
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-12-23-19-06.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-13-10-19.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-20-09-16.json
ADDED
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "gsarti/flores_101_kor",
|
5 |
+
"prompt_name": null,
|
6 |
+
"word_perplexity": 1199924.6918920355
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"task_name": "gsarti/flores_101_kor",
|
10 |
+
"prompt_name": null,
|
11 |
+
"byte_perplexity": 3.932884847226212
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"task_name": "gsarti/flores_101_kor",
|
15 |
+
"prompt_name": null,
|
16 |
+
"bits_per_byte": 1.9755879455567535
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"task_name": "gsarti/flores_101_kir",
|
20 |
+
"prompt_name": null,
|
21 |
+
"word_perplexity": 140474672.36703426
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"task_name": "gsarti/flores_101_kir",
|
25 |
+
"prompt_name": null,
|
26 |
+
"byte_perplexity": 3.729278369847201
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"task_name": "gsarti/flores_101_kir",
|
30 |
+
"prompt_name": null,
|
31 |
+
"bits_per_byte": 1.8988964902756764
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"task_name": "gsarti/flores_101_lao",
|
35 |
+
"prompt_name": null,
|
36 |
+
"word_perplexity": 6.1350041352351446e+26
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"task_name": "gsarti/flores_101_lao",
|
40 |
+
"prompt_name": null,
|
41 |
+
"byte_perplexity": 2.9077314760849924
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"task_name": "gsarti/flores_101_lao",
|
45 |
+
"prompt_name": null,
|
46 |
+
"bits_per_byte": 1.5398940450457603
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "gsarti/flores_101_lav",
|
50 |
+
"prompt_name": null,
|
51 |
+
"word_perplexity": 10925745.685132286
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"task_name": "gsarti/flores_101_lav",
|
55 |
+
"prompt_name": null,
|
56 |
+
"byte_perplexity": 7.777221919194806
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"task_name": "gsarti/flores_101_lav",
|
60 |
+
"prompt_name": null,
|
61 |
+
"bits_per_byte": 2.959254905963978
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"task_name": "gsarti/flores_101_lin",
|
65 |
+
"prompt_name": null,
|
66 |
+
"word_perplexity": 166841.83897098716
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"task_name": "gsarti/flores_101_lin",
|
70 |
+
"prompt_name": null,
|
71 |
+
"byte_perplexity": 7.524842908050988
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"task_name": "gsarti/flores_101_lin",
|
75 |
+
"prompt_name": null,
|
76 |
+
"bits_per_byte": 2.9116614638468965
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"task_name": "gsarti/flores_101_lit",
|
80 |
+
"prompt_name": null,
|
81 |
+
"word_perplexity": 8532364.031813102
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"task_name": "gsarti/flores_101_lit",
|
85 |
+
"prompt_name": null,
|
86 |
+
"byte_perplexity": 7.369179434621725
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"task_name": "gsarti/flores_101_lit",
|
90 |
+
"prompt_name": null,
|
91 |
+
"bits_per_byte": 2.88150398275188
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "gsarti/flores_101_luo",
|
95 |
+
"prompt_name": null,
|
96 |
+
"word_perplexity": 1335199.656768974
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"task_name": "gsarti/flores_101_luo",
|
100 |
+
"prompt_name": null,
|
101 |
+
"byte_perplexity": 11.975963093623681
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"task_name": "gsarti/flores_101_luo",
|
105 |
+
"prompt_name": null,
|
106 |
+
"bits_per_byte": 3.5820697754437467
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"task_name": "gsarti/flores_101_ltz",
|
110 |
+
"prompt_name": null,
|
111 |
+
"word_perplexity": 4081613.1281958995
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"task_name": "gsarti/flores_101_ltz",
|
115 |
+
"prompt_name": null,
|
116 |
+
"byte_perplexity": 8.801059747949214
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"task_name": "gsarti/flores_101_ltz",
|
120 |
+
"prompt_name": null,
|
121 |
+
"bits_per_byte": 3.1376772511430198
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"task_name": "gsarti/flores_101_mkd",
|
125 |
+
"prompt_name": null,
|
126 |
+
"word_perplexity": 291548.6603872499
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"task_name": "gsarti/flores_101_mkd",
|
130 |
+
"prompt_name": null,
|
131 |
+
"byte_perplexity": 2.9656732291754087
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"task_name": "gsarti/flores_101_mkd",
|
135 |
+
"prompt_name": null,
|
136 |
+
"bits_per_byte": 1.5683596441110415
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"task_name": "gsarti/flores_101_msa",
|
140 |
+
"prompt_name": null,
|
141 |
+
"word_perplexity": 931.4191160965655
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"task_name": "gsarti/flores_101_msa",
|
145 |
+
"prompt_name": null,
|
146 |
+
"byte_perplexity": 2.5710001772665634
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"task_name": "gsarti/flores_101_msa",
|
150 |
+
"prompt_name": null,
|
151 |
+
"bits_per_byte": 1.3623297096432079
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"task_name": "gsarti/flores_101_mal",
|
155 |
+
"prompt_name": null,
|
156 |
+
"word_perplexity": 1.207348615509252e+18
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"task_name": "gsarti/flores_101_mal",
|
160 |
+
"prompt_name": null,
|
161 |
+
"byte_perplexity": 4.615948455160037
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"task_name": "gsarti/flores_101_mal",
|
165 |
+
"prompt_name": null,
|
166 |
+
"bits_per_byte": 2.2066271139530245
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"task_name": "gsarti/flores_101_mlt",
|
170 |
+
"prompt_name": null,
|
171 |
+
"word_perplexity": 1820552051.5260184
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"task_name": "gsarti/flores_101_mlt",
|
175 |
+
"prompt_name": null,
|
176 |
+
"byte_perplexity": 15.004773437665275
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"task_name": "gsarti/flores_101_mlt",
|
180 |
+
"prompt_name": null,
|
181 |
+
"bits_per_byte": 3.9073496302297994
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"task_name": "gsarti/flores_101_mri",
|
185 |
+
"prompt_name": null,
|
186 |
+
"word_perplexity": 26466.98082941409
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"task_name": "gsarti/flores_101_mri",
|
190 |
+
"prompt_name": null,
|
191 |
+
"byte_perplexity": 7.474035895661322
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"task_name": "gsarti/flores_101_mri",
|
195 |
+
"prompt_name": null,
|
196 |
+
"bits_per_byte": 2.9018874925878335
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"task_name": "gsarti/flores_101_mar",
|
200 |
+
"prompt_name": null,
|
201 |
+
"word_perplexity": 54017030487867.64
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"task_name": "gsarti/flores_101_mar",
|
205 |
+
"prompt_name": null,
|
206 |
+
"byte_perplexity": 5.483253482821379
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"task_name": "gsarti/flores_101_mar",
|
210 |
+
"prompt_name": null,
|
211 |
+
"bits_per_byte": 2.4550321688665875
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"task_name": "gsarti/flores_101_mon",
|
215 |
+
"prompt_name": null,
|
216 |
+
"word_perplexity": 6612951.176601774
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"task_name": "gsarti/flores_101_mon",
|
220 |
+
"prompt_name": null,
|
221 |
+
"byte_perplexity": 3.410598542315402
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"task_name": "gsarti/flores_101_mon",
|
225 |
+
"prompt_name": null,
|
226 |
+
"bits_per_byte": 1.7700249469487581
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"task_name": "gsarti/flores_101_npi",
|
230 |
+
"prompt_name": null,
|
231 |
+
"word_perplexity": 9218412485042.457
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"task_name": "gsarti/flores_101_npi",
|
235 |
+
"prompt_name": null,
|
236 |
+
"byte_perplexity": 5.199342701937889
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"task_name": "gsarti/flores_101_npi",
|
240 |
+
"prompt_name": null,
|
241 |
+
"bits_per_byte": 2.3783292500628397
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"task_name": "gsarti/flores_101_nso",
|
245 |
+
"prompt_name": null,
|
246 |
+
"word_perplexity": 84236.45826211123
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"task_name": "gsarti/flores_101_nso",
|
250 |
+
"prompt_name": null,
|
251 |
+
"byte_perplexity": 8.154626800955667
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"task_name": "gsarti/flores_101_nso",
|
255 |
+
"prompt_name": null,
|
256 |
+
"bits_per_byte": 3.027618853058479
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"task_name": "gsarti/flores_101_nob",
|
260 |
+
"prompt_name": null,
|
261 |
+
"word_perplexity": 36969.51682419191
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"task_name": "gsarti/flores_101_nob",
|
265 |
+
"prompt_name": null,
|
266 |
+
"byte_perplexity": 5.402763169129877
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"task_name": "gsarti/flores_101_nob",
|
270 |
+
"prompt_name": null,
|
271 |
+
"bits_per_byte": 2.4336974426149056
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"task_name": "gsarti/flores_101_nya",
|
275 |
+
"prompt_name": null,
|
276 |
+
"word_perplexity": 6609896.030066139
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"task_name": "gsarti/flores_101_nya",
|
280 |
+
"prompt_name": null,
|
281 |
+
"byte_perplexity": 8.179860208369393
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"task_name": "gsarti/flores_101_nya",
|
285 |
+
"prompt_name": null,
|
286 |
+
"bits_per_byte": 3.0320761881040017
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"task_name": "gsarti/flores_101_oci",
|
290 |
+
"prompt_name": null,
|
291 |
+
"word_perplexity": 21641.316763505896
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"task_name": "gsarti/flores_101_oci",
|
295 |
+
"prompt_name": null,
|
296 |
+
"byte_perplexity": 4.8617357393685845
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"task_name": "gsarti/flores_101_oci",
|
300 |
+
"prompt_name": null,
|
301 |
+
"bits_per_byte": 2.2814714775164466
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"task_name": "gsarti/flores_101_ory",
|
305 |
+
"prompt_name": null,
|
306 |
+
"word_perplexity": 11873283711992.748
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"task_name": "gsarti/flores_101_ory",
|
310 |
+
"prompt_name": null,
|
311 |
+
"byte_perplexity": 5.189421861225964
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"task_name": "gsarti/flores_101_ory",
|
315 |
+
"prompt_name": null,
|
316 |
+
"bits_per_byte": 2.375573820972048
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"task_name": "gsarti/flores_101_orm",
|
320 |
+
"prompt_name": null,
|
321 |
+
"word_perplexity": 944722910.1683049
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"task_name": "gsarti/flores_101_orm",
|
325 |
+
"prompt_name": null,
|
326 |
+
"byte_perplexity": 12.911595421079408
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"task_name": "gsarti/flores_101_orm",
|
330 |
+
"prompt_name": null,
|
331 |
+
"bits_per_byte": 3.690595373136525
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"task_name": "gsarti/flores_101_pus",
|
335 |
+
"prompt_name": null,
|
336 |
+
"word_perplexity": 153261.38659736273
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"task_name": "gsarti/flores_101_pus",
|
340 |
+
"prompt_name": null,
|
341 |
+
"byte_perplexity": 4.4963371422771585
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"task_name": "gsarti/flores_101_pus",
|
345 |
+
"prompt_name": null,
|
346 |
+
"bits_per_byte": 2.1687502151085742
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"task_name": "gsarti/flores_101_fas",
|
350 |
+
"prompt_name": null,
|
351 |
+
"word_perplexity": 44174.10652942002
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"task_name": "gsarti/flores_101_fas",
|
355 |
+
"prompt_name": null,
|
356 |
+
"byte_perplexity": 3.058009097116482
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"task_name": "gsarti/flores_101_fas",
|
360 |
+
"prompt_name": null,
|
361 |
+
"bits_per_byte": 1.6125926985055565
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"task_name": "gsarti/flores_101_pol",
|
365 |
+
"prompt_name": null,
|
366 |
+
"word_perplexity": 104253.80848720921
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"task_name": "gsarti/flores_101_pol",
|
370 |
+
"prompt_name": null,
|
371 |
+
"byte_perplexity": 4.625550458479643
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"task_name": "gsarti/flores_101_pol",
|
375 |
+
"prompt_name": null,
|
376 |
+
"bits_per_byte": 2.2096250621616695
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"task_name": "gsarti/flores_101_por",
|
380 |
+
"prompt_name": null,
|
381 |
+
"word_perplexity": 70.12185258792593
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"task_name": "gsarti/flores_101_por",
|
385 |
+
"prompt_name": null,
|
386 |
+
"byte_perplexity": 1.9754515986213523
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"task_name": "gsarti/flores_101_por",
|
390 |
+
"prompt_name": null,
|
391 |
+
"bits_per_byte": 0.9821824986646657
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"task_name": "gsarti/flores_101_pan",
|
395 |
+
"prompt_name": null,
|
396 |
+
"word_perplexity": 847925284.3968099
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"task_name": "gsarti/flores_101_pan",
|
400 |
+
"prompt_name": null,
|
401 |
+
"byte_perplexity": 4.698477289331806
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"task_name": "gsarti/flores_101_pan",
|
405 |
+
"prompt_name": null,
|
406 |
+
"bits_per_byte": 2.2321932752863454
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"task_name": "gsarti/flores_101_ron",
|
410 |
+
"prompt_name": null,
|
411 |
+
"word_perplexity": 36440.61611845943
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"task_name": "gsarti/flores_101_ron",
|
415 |
+
"prompt_name": null,
|
416 |
+
"byte_perplexity": 4.965456830031304
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"task_name": "gsarti/flores_101_ron",
|
420 |
+
"prompt_name": null,
|
421 |
+
"bits_per_byte": 2.31192645412871
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"task_name": "gsarti/flores_101_rus",
|
425 |
+
"prompt_name": null,
|
426 |
+
"word_perplexity": 12717.27557342625
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"task_name": "gsarti/flores_101_rus",
|
430 |
+
"prompt_name": null,
|
431 |
+
"byte_perplexity": 2.0498020542445303
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"task_name": "gsarti/flores_101_rus",
|
435 |
+
"prompt_name": null,
|
436 |
+
"bits_per_byte": 1.0354845979511649
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"task_name": "gsarti/flores_101_srp",
|
440 |
+
"prompt_name": null,
|
441 |
+
"word_perplexity": 179094.36755355867
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"task_name": "gsarti/flores_101_srp",
|
445 |
+
"prompt_name": null,
|
446 |
+
"byte_perplexity": 2.871214785885079
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"task_name": "gsarti/flores_101_srp",
|
450 |
+
"prompt_name": null,
|
451 |
+
"bits_per_byte": 1.5216612577275341
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"task_name": "gsarti/flores_101_sna",
|
455 |
+
"prompt_name": null,
|
456 |
+
"word_perplexity": 64794029.630749054
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"task_name": "gsarti/flores_101_sna",
|
460 |
+
"prompt_name": null,
|
461 |
+
"byte_perplexity": 8.462166771382726
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"task_name": "gsarti/flores_101_sna",
|
465 |
+
"prompt_name": null,
|
466 |
+
"bits_per_byte": 3.0810271184378166
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"task_name": "gsarti/flores_101_snd",
|
470 |
+
"prompt_name": null,
|
471 |
+
"word_perplexity": 1593844.7987764536
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"task_name": "gsarti/flores_101_snd",
|
475 |
+
"prompt_name": null,
|
476 |
+
"byte_perplexity": 5.466066951221973
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"task_name": "gsarti/flores_101_snd",
|
480 |
+
"prompt_name": null,
|
481 |
+
"bits_per_byte": 2.450503130846187
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"task_name": "gsarti/flores_101_slk",
|
485 |
+
"prompt_name": null,
|
486 |
+
"word_perplexity": 766753.5771631876
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"task_name": "gsarti/flores_101_slk",
|
490 |
+
"prompt_name": null,
|
491 |
+
"byte_perplexity": 6.450822127057479
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"task_name": "gsarti/flores_101_slk",
|
495 |
+
"prompt_name": null,
|
496 |
+
"bits_per_byte": 2.6894830369770566
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"task_name": "gsarti/flores_101_slv",
|
500 |
+
"prompt_name": null,
|
501 |
+
"word_perplexity": 281495.6973621906
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"task_name": "gsarti/flores_101_slv",
|
505 |
+
"prompt_name": null,
|
506 |
+
"byte_perplexity": 6.620252120186232
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"task_name": "gsarti/flores_101_slv",
|
510 |
+
"prompt_name": null,
|
511 |
+
"bits_per_byte": 2.726886160479057
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"task_name": "gsarti/flores_101_som",
|
515 |
+
"prompt_name": null,
|
516 |
+
"word_perplexity": 9117591.536991648
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"task_name": "gsarti/flores_101_som",
|
520 |
+
"prompt_name": null,
|
521 |
+
"byte_perplexity": 11.95918054093392
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"task_name": "gsarti/flores_101_som",
|
525 |
+
"prompt_name": null,
|
526 |
+
"bits_per_byte": 3.5800466324138576
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"task_name": "gsarti/flores_101_ckb",
|
530 |
+
"prompt_name": null,
|
531 |
+
"word_perplexity": 7641937.513844287
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"task_name": "gsarti/flores_101_ckb",
|
535 |
+
"prompt_name": null,
|
536 |
+
"byte_perplexity": 3.7255124939234765
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"task_name": "gsarti/flores_101_ckb",
|
540 |
+
"prompt_name": null,
|
541 |
+
"bits_per_byte": 1.8974389011678956
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"task_name": "gsarti/flores_101_spa",
|
545 |
+
"prompt_name": null,
|
546 |
+
"word_perplexity": 50.48600403475257
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"task_name": "gsarti/flores_101_spa",
|
550 |
+
"prompt_name": null,
|
551 |
+
"byte_perplexity": 1.8965140104323535
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"task_name": "gsarti/flores_101_spa",
|
555 |
+
"prompt_name": null,
|
556 |
+
"bits_per_byte": 0.9233500295317635
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"task_name": "gsarti/flores_101_swh",
|
560 |
+
"prompt_name": null,
|
561 |
+
"word_perplexity": 4756.310957867697
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"task_name": "gsarti/flores_101_swh",
|
565 |
+
"prompt_name": null,
|
566 |
+
"byte_perplexity": 3.6973091886730676
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"task_name": "gsarti/flores_101_swh",
|
570 |
+
"prompt_name": null,
|
571 |
+
"bits_per_byte": 1.8864756944079395
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"task_name": "gsarti/flores_101_swe",
|
575 |
+
"prompt_name": null,
|
576 |
+
"word_perplexity": 50609.194691403645
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"task_name": "gsarti/flores_101_swe",
|
580 |
+
"prompt_name": null,
|
581 |
+
"byte_perplexity": 5.054972008155866
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"task_name": "gsarti/flores_101_swe",
|
585 |
+
"prompt_name": null,
|
586 |
+
"bits_per_byte": 2.3377031032447033
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"task_name": "gsarti/flores_101_tgk",
|
590 |
+
"prompt_name": null,
|
591 |
+
"word_perplexity": 4653242.643384356
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"task_name": "gsarti/flores_101_tgk",
|
595 |
+
"prompt_name": null,
|
596 |
+
"byte_perplexity": 3.5994818827380426
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"task_name": "gsarti/flores_101_tgk",
|
600 |
+
"prompt_name": null,
|
601 |
+
"bits_per_byte": 1.847789256832959
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"task_name": "gsarti/flores_101_tam",
|
605 |
+
"prompt_name": null,
|
606 |
+
"word_perplexity": 1.7375636861561886e+16
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"task_name": "gsarti/flores_101_tam",
|
610 |
+
"prompt_name": null,
|
611 |
+
"byte_perplexity": 4.539493400469833
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"task_name": "gsarti/flores_101_tam",
|
615 |
+
"prompt_name": null,
|
616 |
+
"bits_per_byte": 2.182531304254031
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"task_name": "gsarti/flores_101_tel",
|
620 |
+
"prompt_name": null,
|
621 |
+
"word_perplexity": 6240250468604343.0
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"task_name": "gsarti/flores_101_tel",
|
625 |
+
"prompt_name": null,
|
626 |
+
"byte_perplexity": 5.807499987508966
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"task_name": "gsarti/flores_101_tel",
|
630 |
+
"prompt_name": null,
|
631 |
+
"bits_per_byte": 2.537917245931069
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"task_name": "gsarti/flores_101_tha",
|
635 |
+
"prompt_name": null,
|
636 |
+
"word_perplexity": 2.7023221906004898e+31
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"task_name": "gsarti/flores_101_tha",
|
640 |
+
"prompt_name": null,
|
641 |
+
"byte_perplexity": 2.365940201944242
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"task_name": "gsarti/flores_101_tha",
|
645 |
+
"prompt_name": null,
|
646 |
+
"bits_per_byte": 1.242413610681628
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"task_name": "gsarti/flores_101_tur",
|
650 |
+
"prompt_name": null,
|
651 |
+
"word_perplexity": 598170.0194818947
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"task_name": "gsarti/flores_101_tur",
|
655 |
+
"prompt_name": null,
|
656 |
+
"byte_perplexity": 4.885014749844601
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"task_name": "gsarti/flores_101_tur",
|
660 |
+
"prompt_name": null,
|
661 |
+
"bits_per_byte": 2.288362918282818
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"task_name": "gsarti/flores_101_ukr",
|
665 |
+
"prompt_name": null,
|
666 |
+
"word_perplexity": 375312.1511987307
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"task_name": "gsarti/flores_101_ukr",
|
670 |
+
"prompt_name": null,
|
671 |
+
"byte_perplexity": 2.7240934990288483
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"task_name": "gsarti/flores_101_ukr",
|
675 |
+
"prompt_name": null,
|
676 |
+
"bits_per_byte": 1.445776221804572
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"task_name": "gsarti/flores_101_umb",
|
680 |
+
"prompt_name": null,
|
681 |
+
"word_perplexity": 286182026.84727985
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"task_name": "gsarti/flores_101_umb",
|
685 |
+
"prompt_name": null,
|
686 |
+
"byte_perplexity": 12.766915508610673
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"task_name": "gsarti/flores_101_umb",
|
690 |
+
"prompt_name": null,
|
691 |
+
"bits_per_byte": 3.6743381063848357
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"task_name": "gsarti/flores_101_urd",
|
695 |
+
"prompt_name": null,
|
696 |
+
"word_perplexity": 294.7473718166965
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"task_name": "gsarti/flores_101_urd",
|
700 |
+
"prompt_name": null,
|
701 |
+
"byte_perplexity": 1.9797467071381232
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"task_name": "gsarti/flores_101_urd",
|
705 |
+
"prompt_name": null,
|
706 |
+
"bits_per_byte": 0.9853158607436239
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"task_name": "gsarti/flores_101_uzb",
|
710 |
+
"prompt_name": null,
|
711 |
+
"word_perplexity": 657971096.5030558
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"task_name": "gsarti/flores_101_uzb",
|
715 |
+
"prompt_name": null,
|
716 |
+
"byte_perplexity": 12.002337637722146
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"task_name": "gsarti/flores_101_uzb",
|
720 |
+
"prompt_name": null,
|
721 |
+
"bits_per_byte": 3.5852435148799184
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"task_name": "gsarti/flores_101_vie",
|
725 |
+
"prompt_name": null,
|
726 |
+
"word_perplexity": 30.113286809710246
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"task_name": "gsarti/flores_101_vie",
|
730 |
+
"prompt_name": null,
|
731 |
+
"byte_perplexity": 1.76578415476397
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"task_name": "gsarti/flores_101_vie",
|
735 |
+
"prompt_name": null,
|
736 |
+
"bits_per_byte": 0.8203090021691818
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"task_name": "gsarti/flores_101_cym",
|
740 |
+
"prompt_name": null,
|
741 |
+
"word_perplexity": 2638019.4579179045
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"task_name": "gsarti/flores_101_cym",
|
745 |
+
"prompt_name": null,
|
746 |
+
"byte_perplexity": 12.539424151448149
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"task_name": "gsarti/flores_101_cym",
|
750 |
+
"prompt_name": null,
|
751 |
+
"bits_per_byte": 3.6483991915978407
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"task_name": "gsarti/flores_101_wol",
|
755 |
+
"prompt_name": null,
|
756 |
+
"word_perplexity": 119795.78671768666
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"task_name": "gsarti/flores_101_wol",
|
760 |
+
"prompt_name": null,
|
761 |
+
"byte_perplexity": 9.144285650306488
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"task_name": "gsarti/flores_101_wol",
|
765 |
+
"prompt_name": null,
|
766 |
+
"bits_per_byte": 3.1928704713393357
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"task_name": "gsarti/flores_101_xho",
|
770 |
+
"prompt_name": null,
|
771 |
+
"word_perplexity": 54307092.21333007
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"task_name": "gsarti/flores_101_xho",
|
775 |
+
"prompt_name": null,
|
776 |
+
"byte_perplexity": 7.403240538286952
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"task_name": "gsarti/flores_101_xho",
|
780 |
+
"prompt_name": null,
|
781 |
+
"bits_per_byte": 2.8881569038733983
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"task_name": "gsarti/flores_101_yor",
|
785 |
+
"prompt_name": null,
|
786 |
+
"word_perplexity": 130267.12232132205
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"task_name": "gsarti/flores_101_yor",
|
790 |
+
"prompt_name": null,
|
791 |
+
"byte_perplexity": 5.91272037551173
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"task_name": "gsarti/flores_101_yor",
|
795 |
+
"prompt_name": null,
|
796 |
+
"bits_per_byte": 2.5638220507535796
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"task_name": "gsarti/flores_101_zul",
|
800 |
+
"prompt_name": null,
|
801 |
+
"word_perplexity": 493606524.8156374
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"task_name": "gsarti/flores_101_zul",
|
805 |
+
"prompt_name": null,
|
806 |
+
"byte_perplexity": 8.53353320693145
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"task_name": "gsarti/flores_101_zul",
|
810 |
+
"prompt_name": null,
|
811 |
+
"bits_per_byte": 3.0931431957905224
|
812 |
+
}
|
813 |
+
],
|
814 |
+
"versions": {
|
815 |
+
"gsarti/flores_101_kor+null": 0,
|
816 |
+
"gsarti/flores_101_kir+null": 0,
|
817 |
+
"gsarti/flores_101_lao+null": 0,
|
818 |
+
"gsarti/flores_101_lav+null": 0,
|
819 |
+
"gsarti/flores_101_lin+null": 0,
|
820 |
+
"gsarti/flores_101_lit+null": 0,
|
821 |
+
"gsarti/flores_101_luo+null": 0,
|
822 |
+
"gsarti/flores_101_ltz+null": 0,
|
823 |
+
"gsarti/flores_101_mkd+null": 0,
|
824 |
+
"gsarti/flores_101_msa+null": 0,
|
825 |
+
"gsarti/flores_101_mal+null": 0,
|
826 |
+
"gsarti/flores_101_mlt+null": 0,
|
827 |
+
"gsarti/flores_101_mri+null": 0,
|
828 |
+
"gsarti/flores_101_mar+null": 0,
|
829 |
+
"gsarti/flores_101_mon+null": 0,
|
830 |
+
"gsarti/flores_101_npi+null": 0,
|
831 |
+
"gsarti/flores_101_nso+null": 0,
|
832 |
+
"gsarti/flores_101_nob+null": 0,
|
833 |
+
"gsarti/flores_101_nya+null": 0,
|
834 |
+
"gsarti/flores_101_oci+null": 0,
|
835 |
+
"gsarti/flores_101_ory+null": 0,
|
836 |
+
"gsarti/flores_101_orm+null": 0,
|
837 |
+
"gsarti/flores_101_pus+null": 0,
|
838 |
+
"gsarti/flores_101_fas+null": 0,
|
839 |
+
"gsarti/flores_101_pol+null": 0,
|
840 |
+
"gsarti/flores_101_por+null": 0,
|
841 |
+
"gsarti/flores_101_pan+null": 0,
|
842 |
+
"gsarti/flores_101_ron+null": 0,
|
843 |
+
"gsarti/flores_101_rus+null": 0,
|
844 |
+
"gsarti/flores_101_srp+null": 0,
|
845 |
+
"gsarti/flores_101_sna+null": 0,
|
846 |
+
"gsarti/flores_101_snd+null": 0,
|
847 |
+
"gsarti/flores_101_slk+null": 0,
|
848 |
+
"gsarti/flores_101_slv+null": 0,
|
849 |
+
"gsarti/flores_101_som+null": 0,
|
850 |
+
"gsarti/flores_101_ckb+null": 0,
|
851 |
+
"gsarti/flores_101_spa+null": 0,
|
852 |
+
"gsarti/flores_101_swh+null": 0,
|
853 |
+
"gsarti/flores_101_swe+null": 0,
|
854 |
+
"gsarti/flores_101_tgk+null": 0,
|
855 |
+
"gsarti/flores_101_tam+null": 0,
|
856 |
+
"gsarti/flores_101_tel+null": 0,
|
857 |
+
"gsarti/flores_101_tha+null": 0,
|
858 |
+
"gsarti/flores_101_tur+null": 0,
|
859 |
+
"gsarti/flores_101_ukr+null": 0,
|
860 |
+
"gsarti/flores_101_umb+null": 0,
|
861 |
+
"gsarti/flores_101_urd+null": 0,
|
862 |
+
"gsarti/flores_101_uzb+null": 0,
|
863 |
+
"gsarti/flores_101_vie+null": 0,
|
864 |
+
"gsarti/flores_101_cym+null": 0,
|
865 |
+
"gsarti/flores_101_wol+null": 0,
|
866 |
+
"gsarti/flores_101_xho+null": 0,
|
867 |
+
"gsarti/flores_101_yor+null": 0,
|
868 |
+
"gsarti/flores_101_zul+null": 0
|
869 |
+
},
|
870 |
+
"table_results": {
|
871 |
+
"gsarti/flores_101_kor+null": {
|
872 |
+
"task_name": "gsarti/flores_101_kor",
|
873 |
+
"prompt_name": "null",
|
874 |
+
"word_perplexity": 1199924.6918920355,
|
875 |
+
"byte_perplexity": 3.932884847226212,
|
876 |
+
"bits_per_byte": 1.9755879455567535
|
877 |
+
},
|
878 |
+
"gsarti/flores_101_kir+null": {
|
879 |
+
"task_name": "gsarti/flores_101_kir",
|
880 |
+
"prompt_name": "null",
|
881 |
+
"word_perplexity": 140474672.36703426,
|
882 |
+
"byte_perplexity": 3.729278369847201,
|
883 |
+
"bits_per_byte": 1.8988964902756764
|
884 |
+
},
|
885 |
+
"gsarti/flores_101_lao+null": {
|
886 |
+
"task_name": "gsarti/flores_101_lao",
|
887 |
+
"prompt_name": "null",
|
888 |
+
"word_perplexity": 6.1350041352351446e+26,
|
889 |
+
"byte_perplexity": 2.9077314760849924,
|
890 |
+
"bits_per_byte": 1.5398940450457603
|
891 |
+
},
|
892 |
+
"gsarti/flores_101_lav+null": {
|
893 |
+
"task_name": "gsarti/flores_101_lav",
|
894 |
+
"prompt_name": "null",
|
895 |
+
"word_perplexity": 10925745.685132286,
|
896 |
+
"byte_perplexity": 7.777221919194806,
|
897 |
+
"bits_per_byte": 2.959254905963978
|
898 |
+
},
|
899 |
+
"gsarti/flores_101_lin+null": {
|
900 |
+
"task_name": "gsarti/flores_101_lin",
|
901 |
+
"prompt_name": "null",
|
902 |
+
"word_perplexity": 166841.83897098716,
|
903 |
+
"byte_perplexity": 7.524842908050988,
|
904 |
+
"bits_per_byte": 2.9116614638468965
|
905 |
+
},
|
906 |
+
"gsarti/flores_101_lit+null": {
|
907 |
+
"task_name": "gsarti/flores_101_lit",
|
908 |
+
"prompt_name": "null",
|
909 |
+
"word_perplexity": 8532364.031813102,
|
910 |
+
"byte_perplexity": 7.369179434621725,
|
911 |
+
"bits_per_byte": 2.88150398275188
|
912 |
+
},
|
913 |
+
"gsarti/flores_101_luo+null": {
|
914 |
+
"task_name": "gsarti/flores_101_luo",
|
915 |
+
"prompt_name": "null",
|
916 |
+
"word_perplexity": 1335199.656768974,
|
917 |
+
"byte_perplexity": 11.975963093623681,
|
918 |
+
"bits_per_byte": 3.5820697754437467
|
919 |
+
},
|
920 |
+
"gsarti/flores_101_ltz+null": {
|
921 |
+
"task_name": "gsarti/flores_101_ltz",
|
922 |
+
"prompt_name": "null",
|
923 |
+
"word_perplexity": 4081613.1281958995,
|
924 |
+
"byte_perplexity": 8.801059747949214,
|
925 |
+
"bits_per_byte": 3.1376772511430198
|
926 |
+
},
|
927 |
+
"gsarti/flores_101_mkd+null": {
|
928 |
+
"task_name": "gsarti/flores_101_mkd",
|
929 |
+
"prompt_name": "null",
|
930 |
+
"word_perplexity": 291548.6603872499,
|
931 |
+
"byte_perplexity": 2.9656732291754087,
|
932 |
+
"bits_per_byte": 1.5683596441110415
|
933 |
+
},
|
934 |
+
"gsarti/flores_101_msa+null": {
|
935 |
+
"task_name": "gsarti/flores_101_msa",
|
936 |
+
"prompt_name": "null",
|
937 |
+
"word_perplexity": 931.4191160965655,
|
938 |
+
"byte_perplexity": 2.5710001772665634,
|
939 |
+
"bits_per_byte": 1.3623297096432079
|
940 |
+
},
|
941 |
+
"gsarti/flores_101_mal+null": {
|
942 |
+
"task_name": "gsarti/flores_101_mal",
|
943 |
+
"prompt_name": "null",
|
944 |
+
"word_perplexity": 1.207348615509252e+18,
|
945 |
+
"byte_perplexity": 4.615948455160037,
|
946 |
+
"bits_per_byte": 2.2066271139530245
|
947 |
+
},
|
948 |
+
"gsarti/flores_101_mlt+null": {
|
949 |
+
"task_name": "gsarti/flores_101_mlt",
|
950 |
+
"prompt_name": "null",
|
951 |
+
"word_perplexity": 1820552051.5260184,
|
952 |
+
"byte_perplexity": 15.004773437665275,
|
953 |
+
"bits_per_byte": 3.9073496302297994
|
954 |
+
},
|
955 |
+
"gsarti/flores_101_mri+null": {
|
956 |
+
"task_name": "gsarti/flores_101_mri",
|
957 |
+
"prompt_name": "null",
|
958 |
+
"word_perplexity": 26466.98082941409,
|
959 |
+
"byte_perplexity": 7.474035895661322,
|
960 |
+
"bits_per_byte": 2.9018874925878335
|
961 |
+
},
|
962 |
+
"gsarti/flores_101_mar+null": {
|
963 |
+
"task_name": "gsarti/flores_101_mar",
|
964 |
+
"prompt_name": "null",
|
965 |
+
"word_perplexity": 54017030487867.64,
|
966 |
+
"byte_perplexity": 5.483253482821379,
|
967 |
+
"bits_per_byte": 2.4550321688665875
|
968 |
+
},
|
969 |
+
"gsarti/flores_101_mon+null": {
|
970 |
+
"task_name": "gsarti/flores_101_mon",
|
971 |
+
"prompt_name": "null",
|
972 |
+
"word_perplexity": 6612951.176601774,
|
973 |
+
"byte_perplexity": 3.410598542315402,
|
974 |
+
"bits_per_byte": 1.7700249469487581
|
975 |
+
},
|
976 |
+
"gsarti/flores_101_npi+null": {
|
977 |
+
"task_name": "gsarti/flores_101_npi",
|
978 |
+
"prompt_name": "null",
|
979 |
+
"word_perplexity": 9218412485042.457,
|
980 |
+
"byte_perplexity": 5.199342701937889,
|
981 |
+
"bits_per_byte": 2.3783292500628397
|
982 |
+
},
|
983 |
+
"gsarti/flores_101_nso+null": {
|
984 |
+
"task_name": "gsarti/flores_101_nso",
|
985 |
+
"prompt_name": "null",
|
986 |
+
"word_perplexity": 84236.45826211123,
|
987 |
+
"byte_perplexity": 8.154626800955667,
|
988 |
+
"bits_per_byte": 3.027618853058479
|
989 |
+
},
|
990 |
+
"gsarti/flores_101_nob+null": {
|
991 |
+
"task_name": "gsarti/flores_101_nob",
|
992 |
+
"prompt_name": "null",
|
993 |
+
"word_perplexity": 36969.51682419191,
|
994 |
+
"byte_perplexity": 5.402763169129877,
|
995 |
+
"bits_per_byte": 2.4336974426149056
|
996 |
+
},
|
997 |
+
"gsarti/flores_101_nya+null": {
|
998 |
+
"task_name": "gsarti/flores_101_nya",
|
999 |
+
"prompt_name": "null",
|
1000 |
+
"word_perplexity": 6609896.030066139,
|
1001 |
+
"byte_perplexity": 8.179860208369393,
|
1002 |
+
"bits_per_byte": 3.0320761881040017
|
1003 |
+
},
|
1004 |
+
"gsarti/flores_101_oci+null": {
|
1005 |
+
"task_name": "gsarti/flores_101_oci",
|
1006 |
+
"prompt_name": "null",
|
1007 |
+
"word_perplexity": 21641.316763505896,
|
1008 |
+
"byte_perplexity": 4.8617357393685845,
|
1009 |
+
"bits_per_byte": 2.2814714775164466
|
1010 |
+
},
|
1011 |
+
"gsarti/flores_101_ory+null": {
|
1012 |
+
"task_name": "gsarti/flores_101_ory",
|
1013 |
+
"prompt_name": "null",
|
1014 |
+
"word_perplexity": 11873283711992.748,
|
1015 |
+
"byte_perplexity": 5.189421861225964,
|
1016 |
+
"bits_per_byte": 2.375573820972048
|
1017 |
+
},
|
1018 |
+
"gsarti/flores_101_orm+null": {
|
1019 |
+
"task_name": "gsarti/flores_101_orm",
|
1020 |
+
"prompt_name": "null",
|
1021 |
+
"word_perplexity": 944722910.1683049,
|
1022 |
+
"byte_perplexity": 12.911595421079408,
|
1023 |
+
"bits_per_byte": 3.690595373136525
|
1024 |
+
},
|
1025 |
+
"gsarti/flores_101_pus+null": {
|
1026 |
+
"task_name": "gsarti/flores_101_pus",
|
1027 |
+
"prompt_name": "null",
|
1028 |
+
"word_perplexity": 153261.38659736273,
|
1029 |
+
"byte_perplexity": 4.4963371422771585,
|
1030 |
+
"bits_per_byte": 2.1687502151085742
|
1031 |
+
},
|
1032 |
+
"gsarti/flores_101_fas+null": {
|
1033 |
+
"task_name": "gsarti/flores_101_fas",
|
1034 |
+
"prompt_name": "null",
|
1035 |
+
"word_perplexity": 44174.10652942002,
|
1036 |
+
"byte_perplexity": 3.058009097116482,
|
1037 |
+
"bits_per_byte": 1.6125926985055565
|
1038 |
+
},
|
1039 |
+
"gsarti/flores_101_pol+null": {
|
1040 |
+
"task_name": "gsarti/flores_101_pol",
|
1041 |
+
"prompt_name": "null",
|
1042 |
+
"word_perplexity": 104253.80848720921,
|
1043 |
+
"byte_perplexity": 4.625550458479643,
|
1044 |
+
"bits_per_byte": 2.2096250621616695
|
1045 |
+
},
|
1046 |
+
"gsarti/flores_101_por+null": {
|
1047 |
+
"task_name": "gsarti/flores_101_por",
|
1048 |
+
"prompt_name": "null",
|
1049 |
+
"word_perplexity": 70.12185258792593,
|
1050 |
+
"byte_perplexity": 1.9754515986213523,
|
1051 |
+
"bits_per_byte": 0.9821824986646657
|
1052 |
+
},
|
1053 |
+
"gsarti/flores_101_pan+null": {
|
1054 |
+
"task_name": "gsarti/flores_101_pan",
|
1055 |
+
"prompt_name": "null",
|
1056 |
+
"word_perplexity": 847925284.3968099,
|
1057 |
+
"byte_perplexity": 4.698477289331806,
|
1058 |
+
"bits_per_byte": 2.2321932752863454
|
1059 |
+
},
|
1060 |
+
"gsarti/flores_101_ron+null": {
|
1061 |
+
"task_name": "gsarti/flores_101_ron",
|
1062 |
+
"prompt_name": "null",
|
1063 |
+
"word_perplexity": 36440.61611845943,
|
1064 |
+
"byte_perplexity": 4.965456830031304,
|
1065 |
+
"bits_per_byte": 2.31192645412871
|
1066 |
+
},
|
1067 |
+
"gsarti/flores_101_rus+null": {
|
1068 |
+
"task_name": "gsarti/flores_101_rus",
|
1069 |
+
"prompt_name": "null",
|
1070 |
+
"word_perplexity": 12717.27557342625,
|
1071 |
+
"byte_perplexity": 2.0498020542445303,
|
1072 |
+
"bits_per_byte": 1.0354845979511649
|
1073 |
+
},
|
1074 |
+
"gsarti/flores_101_srp+null": {
|
1075 |
+
"task_name": "gsarti/flores_101_srp",
|
1076 |
+
"prompt_name": "null",
|
1077 |
+
"word_perplexity": 179094.36755355867,
|
1078 |
+
"byte_perplexity": 2.871214785885079,
|
1079 |
+
"bits_per_byte": 1.5216612577275341
|
1080 |
+
},
|
1081 |
+
"gsarti/flores_101_sna+null": {
|
1082 |
+
"task_name": "gsarti/flores_101_sna",
|
1083 |
+
"prompt_name": "null",
|
1084 |
+
"word_perplexity": 64794029.630749054,
|
1085 |
+
"byte_perplexity": 8.462166771382726,
|
1086 |
+
"bits_per_byte": 3.0810271184378166
|
1087 |
+
},
|
1088 |
+
"gsarti/flores_101_snd+null": {
|
1089 |
+
"task_name": "gsarti/flores_101_snd",
|
1090 |
+
"prompt_name": "null",
|
1091 |
+
"word_perplexity": 1593844.7987764536,
|
1092 |
+
"byte_perplexity": 5.466066951221973,
|
1093 |
+
"bits_per_byte": 2.450503130846187
|
1094 |
+
},
|
1095 |
+
"gsarti/flores_101_slk+null": {
|
1096 |
+
"task_name": "gsarti/flores_101_slk",
|
1097 |
+
"prompt_name": "null",
|
1098 |
+
"word_perplexity": 766753.5771631876,
|
1099 |
+
"byte_perplexity": 6.450822127057479,
|
1100 |
+
"bits_per_byte": 2.6894830369770566
|
1101 |
+
},
|
1102 |
+
"gsarti/flores_101_slv+null": {
|
1103 |
+
"task_name": "gsarti/flores_101_slv",
|
1104 |
+
"prompt_name": "null",
|
1105 |
+
"word_perplexity": 281495.6973621906,
|
1106 |
+
"byte_perplexity": 6.620252120186232,
|
1107 |
+
"bits_per_byte": 2.726886160479057
|
1108 |
+
},
|
1109 |
+
"gsarti/flores_101_som+null": {
|
1110 |
+
"task_name": "gsarti/flores_101_som",
|
1111 |
+
"prompt_name": "null",
|
1112 |
+
"word_perplexity": 9117591.536991648,
|
1113 |
+
"byte_perplexity": 11.95918054093392,
|
1114 |
+
"bits_per_byte": 3.5800466324138576
|
1115 |
+
},
|
1116 |
+
"gsarti/flores_101_ckb+null": {
|
1117 |
+
"task_name": "gsarti/flores_101_ckb",
|
1118 |
+
"prompt_name": "null",
|
1119 |
+
"word_perplexity": 7641937.513844287,
|
1120 |
+
"byte_perplexity": 3.7255124939234765,
|
1121 |
+
"bits_per_byte": 1.8974389011678956
|
1122 |
+
},
|
1123 |
+
"gsarti/flores_101_spa+null": {
|
1124 |
+
"task_name": "gsarti/flores_101_spa",
|
1125 |
+
"prompt_name": "null",
|
1126 |
+
"word_perplexity": 50.48600403475257,
|
1127 |
+
"byte_perplexity": 1.8965140104323535,
|
1128 |
+
"bits_per_byte": 0.9233500295317635
|
1129 |
+
},
|
1130 |
+
"gsarti/flores_101_swh+null": {
|
1131 |
+
"task_name": "gsarti/flores_101_swh",
|
1132 |
+
"prompt_name": "null",
|
1133 |
+
"word_perplexity": 4756.310957867697,
|
1134 |
+
"byte_perplexity": 3.6973091886730676,
|
1135 |
+
"bits_per_byte": 1.8864756944079395
|
1136 |
+
},
|
1137 |
+
"gsarti/flores_101_swe+null": {
|
1138 |
+
"task_name": "gsarti/flores_101_swe",
|
1139 |
+
"prompt_name": "null",
|
1140 |
+
"word_perplexity": 50609.194691403645,
|
1141 |
+
"byte_perplexity": 5.054972008155866,
|
1142 |
+
"bits_per_byte": 2.3377031032447033
|
1143 |
+
},
|
1144 |
+
"gsarti/flores_101_tgk+null": {
|
1145 |
+
"task_name": "gsarti/flores_101_tgk",
|
1146 |
+
"prompt_name": "null",
|
1147 |
+
"word_perplexity": 4653242.643384356,
|
1148 |
+
"byte_perplexity": 3.5994818827380426,
|
1149 |
+
"bits_per_byte": 1.847789256832959
|
1150 |
+
},
|
1151 |
+
"gsarti/flores_101_tam+null": {
|
1152 |
+
"task_name": "gsarti/flores_101_tam",
|
1153 |
+
"prompt_name": "null",
|
1154 |
+
"word_perplexity": 1.7375636861561886e+16,
|
1155 |
+
"byte_perplexity": 4.539493400469833,
|
1156 |
+
"bits_per_byte": 2.182531304254031
|
1157 |
+
},
|
1158 |
+
"gsarti/flores_101_tel+null": {
|
1159 |
+
"task_name": "gsarti/flores_101_tel",
|
1160 |
+
"prompt_name": "null",
|
1161 |
+
"word_perplexity": 6240250468604343.0,
|
1162 |
+
"byte_perplexity": 5.807499987508966,
|
1163 |
+
"bits_per_byte": 2.537917245931069
|
1164 |
+
},
|
1165 |
+
"gsarti/flores_101_tha+null": {
|
1166 |
+
"task_name": "gsarti/flores_101_tha",
|
1167 |
+
"prompt_name": "null",
|
1168 |
+
"word_perplexity": 2.7023221906004898e+31,
|
1169 |
+
"byte_perplexity": 2.365940201944242,
|
1170 |
+
"bits_per_byte": 1.242413610681628
|
1171 |
+
},
|
1172 |
+
"gsarti/flores_101_tur+null": {
|
1173 |
+
"task_name": "gsarti/flores_101_tur",
|
1174 |
+
"prompt_name": "null",
|
1175 |
+
"word_perplexity": 598170.0194818947,
|
1176 |
+
"byte_perplexity": 4.885014749844601,
|
1177 |
+
"bits_per_byte": 2.288362918282818
|
1178 |
+
},
|
1179 |
+
"gsarti/flores_101_ukr+null": {
|
1180 |
+
"task_name": "gsarti/flores_101_ukr",
|
1181 |
+
"prompt_name": "null",
|
1182 |
+
"word_perplexity": 375312.1511987307,
|
1183 |
+
"byte_perplexity": 2.7240934990288483,
|
1184 |
+
"bits_per_byte": 1.445776221804572
|
1185 |
+
},
|
1186 |
+
"gsarti/flores_101_umb+null": {
|
1187 |
+
"task_name": "gsarti/flores_101_umb",
|
1188 |
+
"prompt_name": "null",
|
1189 |
+
"word_perplexity": 286182026.84727985,
|
1190 |
+
"byte_perplexity": 12.766915508610673,
|
1191 |
+
"bits_per_byte": 3.6743381063848357
|
1192 |
+
},
|
1193 |
+
"gsarti/flores_101_urd+null": {
|
1194 |
+
"task_name": "gsarti/flores_101_urd",
|
1195 |
+
"prompt_name": "null",
|
1196 |
+
"word_perplexity": 294.7473718166965,
|
1197 |
+
"byte_perplexity": 1.9797467071381232,
|
1198 |
+
"bits_per_byte": 0.9853158607436239
|
1199 |
+
},
|
1200 |
+
"gsarti/flores_101_uzb+null": {
|
1201 |
+
"task_name": "gsarti/flores_101_uzb",
|
1202 |
+
"prompt_name": "null",
|
1203 |
+
"word_perplexity": 657971096.5030558,
|
1204 |
+
"byte_perplexity": 12.002337637722146,
|
1205 |
+
"bits_per_byte": 3.5852435148799184
|
1206 |
+
},
|
1207 |
+
"gsarti/flores_101_vie+null": {
|
1208 |
+
"task_name": "gsarti/flores_101_vie",
|
1209 |
+
"prompt_name": "null",
|
1210 |
+
"word_perplexity": 30.113286809710246,
|
1211 |
+
"byte_perplexity": 1.76578415476397,
|
1212 |
+
"bits_per_byte": 0.8203090021691818
|
1213 |
+
},
|
1214 |
+
"gsarti/flores_101_cym+null": {
|
1215 |
+
"task_name": "gsarti/flores_101_cym",
|
1216 |
+
"prompt_name": "null",
|
1217 |
+
"word_perplexity": 2638019.4579179045,
|
1218 |
+
"byte_perplexity": 12.539424151448149,
|
1219 |
+
"bits_per_byte": 3.6483991915978407
|
1220 |
+
},
|
1221 |
+
"gsarti/flores_101_wol+null": {
|
1222 |
+
"task_name": "gsarti/flores_101_wol",
|
1223 |
+
"prompt_name": "null",
|
1224 |
+
"word_perplexity": 119795.78671768666,
|
1225 |
+
"byte_perplexity": 9.144285650306488,
|
1226 |
+
"bits_per_byte": 3.1928704713393357
|
1227 |
+
},
|
1228 |
+
"gsarti/flores_101_xho+null": {
|
1229 |
+
"task_name": "gsarti/flores_101_xho",
|
1230 |
+
"prompt_name": "null",
|
1231 |
+
"word_perplexity": 54307092.21333007,
|
1232 |
+
"byte_perplexity": 7.403240538286952,
|
1233 |
+
"bits_per_byte": 2.8881569038733983
|
1234 |
+
},
|
1235 |
+
"gsarti/flores_101_yor+null": {
|
1236 |
+
"task_name": "gsarti/flores_101_yor",
|
1237 |
+
"prompt_name": "null",
|
1238 |
+
"word_perplexity": 130267.12232132205,
|
1239 |
+
"byte_perplexity": 5.91272037551173,
|
1240 |
+
"bits_per_byte": 2.5638220507535796
|
1241 |
+
},
|
1242 |
+
"gsarti/flores_101_zul+null": {
|
1243 |
+
"task_name": "gsarti/flores_101_zul",
|
1244 |
+
"prompt_name": "null",
|
1245 |
+
"word_perplexity": 493606524.8156374,
|
1246 |
+
"byte_perplexity": 8.53353320693145,
|
1247 |
+
"bits_per_byte": 3.0931431957905224
|
1248 |
+
}
|
1249 |
+
},
|
1250 |
+
"config": {
|
1251 |
+
"adaptive_seq_len": true,
|
1252 |
+
"num_fewshot": 0,
|
1253 |
+
"bootstrap_iters": 100000
|
1254 |
+
}
|
1255 |
+
}
|
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-evalharness-results_lm-eval_global_step337250_2022-07-13-09-55-04.json
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"arc_challenge": {
|
4 |
+
"acc": 0.27986348122866894,
|
5 |
+
"acc_stderr": 0.013119040897725922,
|
6 |
+
"acc_norm": 0.3054607508532423,
|
7 |
+
"acc_norm_stderr": 0.013460080478002498
|
8 |
+
},
|
9 |
+
"arc_easy": {
|
10 |
+
"acc": 0.5946969696969697,
|
11 |
+
"acc_stderr": 0.010074093589739182,
|
12 |
+
"acc_norm": 0.5324074074074074,
|
13 |
+
"acc_norm_stderr": 0.010238210368801902
|
14 |
+
},
|
15 |
+
"boolq": {
|
16 |
+
"acc": 0.6165137614678899,
|
17 |
+
"acc_stderr": 0.008504304838837027
|
18 |
+
},
|
19 |
+
"copa": {
|
20 |
+
"acc": 0.74,
|
21 |
+
"acc_stderr": 0.04408440022768078
|
22 |
+
},
|
23 |
+
"headqa": {
|
24 |
+
"acc": 0.26440554339897887,
|
25 |
+
"acc_stderr": 0.008423643607316284,
|
26 |
+
"acc_norm": 0.3099927060539752,
|
27 |
+
"acc_norm_stderr": 0.008833810133604958
|
28 |
+
},
|
29 |
+
"hellaswag": {
|
30 |
+
"acc": 0.41236805417247563,
|
31 |
+
"acc_stderr": 0.004912547040132878,
|
32 |
+
"acc_norm": 0.527185819557857,
|
33 |
+
"acc_norm_stderr": 0.0049824003689396615
|
34 |
+
},
|
35 |
+
"lambada": {
|
36 |
+
"ppl": 9.094305394880015,
|
37 |
+
"ppl_stderr": 0.2651922806718523,
|
38 |
+
"acc": 0.5181447700368718,
|
39 |
+
"acc_stderr": 0.0069613892910728266
|
40 |
+
},
|
41 |
+
"logiqa": {
|
42 |
+
"acc": 0.2073732718894009,
|
43 |
+
"acc_stderr": 0.015902084913876333,
|
44 |
+
"acc_norm": 0.29185867895545314,
|
45 |
+
"acc_norm_stderr": 0.017831570553971925
|
46 |
+
},
|
47 |
+
"mathqa": {
|
48 |
+
"acc": 0.24958123953098826,
|
49 |
+
"acc_stderr": 0.007922429819042544,
|
50 |
+
"acc_norm": 0.2492462311557789,
|
51 |
+
"acc_norm_stderr": 0.007918877981680667
|
52 |
+
},
|
53 |
+
"mc_taco": {
|
54 |
+
"em": 0.11936936936936937,
|
55 |
+
"f1": 0.4957122298258418
|
56 |
+
},
|
57 |
+
"mrpc": {
|
58 |
+
"acc": 0.5857843137254902,
|
59 |
+
"acc_stderr": 0.02441658575130785,
|
60 |
+
"f1": 0.6998223801065719,
|
61 |
+
"f1_stderr": 0.021967079752819446
|
62 |
+
},
|
63 |
+
"multirc": {
|
64 |
+
"acc": 0.012591815320041973,
|
65 |
+
"acc_stderr": 0.0036138827653638874
|
66 |
+
},
|
67 |
+
"openbookqa": {
|
68 |
+
"acc": 0.216,
|
69 |
+
"acc_stderr": 0.01842190906141194,
|
70 |
+
"acc_norm": 0.322,
|
71 |
+
"acc_norm_stderr": 0.020916668330019882
|
72 |
+
},
|
73 |
+
"piqa": {
|
74 |
+
"acc": 0.7078346028291621,
|
75 |
+
"acc_stderr": 0.010610252174513661,
|
76 |
+
"acc_norm": 0.705114254624592,
|
77 |
+
"acc_norm_stderr": 0.010639030620156982
|
78 |
+
},
|
79 |
+
"prost": {
|
80 |
+
"acc": 0.22683603757472245,
|
81 |
+
"acc_stderr": 0.003059602302050251,
|
82 |
+
"acc_norm": 0.26371690862510677,
|
83 |
+
"acc_norm_stderr": 0.003219323004106053
|
84 |
+
},
|
85 |
+
"pubmedqa": {
|
86 |
+
"acc": 0.616,
|
87 |
+
"acc_stderr": 0.01538768276189707
|
88 |
+
},
|
89 |
+
"qnli": {
|
90 |
+
"acc": 0.5072304594545122,
|
91 |
+
"acc_stderr": 0.006764703129634549
|
92 |
+
},
|
93 |
+
"qqp": {
|
94 |
+
"acc": 0.38211723967350975,
|
95 |
+
"acc_stderr": 0.0024166004681771985,
|
96 |
+
"f1": 0.5301408768597062,
|
97 |
+
"f1_stderr": 0.002619199330934276
|
98 |
+
},
|
99 |
+
"race": {
|
100 |
+
"acc": 0.3521531100478469,
|
101 |
+
"acc_stderr": 0.014782629897202264
|
102 |
+
},
|
103 |
+
"rte": {
|
104 |
+
"acc": 0.5631768953068592,
|
105 |
+
"acc_stderr": 0.029855247390314945
|
106 |
+
},
|
107 |
+
"sciq": {
|
108 |
+
"acc": 0.892,
|
109 |
+
"acc_stderr": 0.009820001651345703,
|
110 |
+
"acc_norm": 0.817,
|
111 |
+
"acc_norm_stderr": 0.012233587399477823
|
112 |
+
},
|
113 |
+
"sst": {
|
114 |
+
"acc": 0.49426605504587157,
|
115 |
+
"acc_stderr": 0.01694073961990489
|
116 |
+
},
|
117 |
+
"triviaqa": {
|
118 |
+
"acc": 0.041633518960487934,
|
119 |
+
"acc_stderr": 0.0018780954895624524
|
120 |
+
},
|
121 |
+
"webqs": {
|
122 |
+
"acc": 0.01673228346456693,
|
123 |
+
"acc_stderr": 0.0028461549169432184
|
124 |
+
},
|
125 |
+
"wic": {
|
126 |
+
"acc": 0.49843260188087773,
|
127 |
+
"acc_stderr": 0.019810623954060382
|
128 |
+
},
|
129 |
+
"winogrande": {
|
130 |
+
"acc": 0.5864246250986582,
|
131 |
+
"acc_stderr": 0.013840971763195303
|
132 |
+
},
|
133 |
+
"wnli": {
|
134 |
+
"acc": 0.4507042253521127,
|
135 |
+
"acc_stderr": 0.05947027187737998
|
136 |
+
},
|
137 |
+
"wsc": {
|
138 |
+
"acc": 0.375,
|
139 |
+
"acc_stderr": 0.04770204856076104
|
140 |
+
}
|
141 |
+
},
|
142 |
+
"versions": {
|
143 |
+
"arc_challenge": 0,
|
144 |
+
"arc_easy": 0,
|
145 |
+
"boolq": 1,
|
146 |
+
"copa": 0,
|
147 |
+
"headqa": 0,
|
148 |
+
"hellaswag": 0,
|
149 |
+
"lambada": 0,
|
150 |
+
"logiqa": 0,
|
151 |
+
"mathqa": 0,
|
152 |
+
"mc_taco": 0,
|
153 |
+
"mrpc": 0,
|
154 |
+
"multirc": 1,
|
155 |
+
"openbookqa": 0,
|
156 |
+
"piqa": 0,
|
157 |
+
"prost": 0,
|
158 |
+
"pubmedqa": 0,
|
159 |
+
"qnli": 0,
|
160 |
+
"qqp": 0,
|
161 |
+
"race": 1,
|
162 |
+
"rte": 0,
|
163 |
+
"sciq": 0,
|
164 |
+
"sst": 0,
|
165 |
+
"triviaqa": 0,
|
166 |
+
"webqs": 0,
|
167 |
+
"wic": 0,
|
168 |
+
"winogrande": 0,
|
169 |
+
"wnli": 1,
|
170 |
+
"wsc": 0
|
171 |
+
}
|
172 |
+
}
|
bigscience/evaluation/results/tr11/bloom2b5/humaneval_temp06.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.04460365853658537, "pass@10": 0.11354616672373204, "pass@100": 0.1866822927112951}
|
bigscience/evaluation/results/tr11/bloom2b5/mdtable.txt
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
| Task | Language | Metric | BLOOM-2B5 |
|
2 |
+
|:----|:----|:----|:----:|
|
3 |
+
| arc_challenge | eng | acc ↑ | 0.28 |
|
4 |
+
| arc_easy | eng | acc ↑ | 0.595 |
|
5 |
+
| axb (Median of 10 prompts) | eng | acc ↑ | 0.443 |
|
6 |
+
| axg (Median of 10 prompts) | eng | acc ↑ | 0.5 |
|
7 |
+
| boolq (Median of 11 prompts) | eng | acc ↑ | 0.617 |
|
8 |
+
| cb (Median of 15 prompts) | eng | acc ↑ | 0.304 |
|
9 |
+
| cola (Median of 5 prompts) | eng | acc ↑ | 0.611 |
|
10 |
+
| copa (Median of 9 prompts) | eng | acc ↑ | 0.63 |
|
11 |
+
| crows_pairs_english (Median of 6 prompts) | eng | acc ↑ | 0.497 |
|
12 |
+
| crows_pairs_french (Median of 7 prompts) | fra | acc ↑ | 0.503 |
|
13 |
+
| diabla (Median of 2 prompts) | eng | acc ↑ | 0.289 |
|
14 |
+
| gsarti/flores_101_afr | afr | byte_perplexity ↓ | 6.501 |
|
15 |
+
| gsarti/flores_101_amh | amh | byte_perplexity ↓ | 3.973 |
|
16 |
+
| gsarti/flores_101_ara | ara | byte_perplexity ↓ | 1.808 |
|
17 |
+
| gsarti/flores_101_asm | asm | byte_perplexity ↓ | 5.699 |
|
18 |
+
| gsarti/flores_101_ast | ast | byte_perplexity ↓ | 3.925 |
|
19 |
+
| gsarti/flores_101_azj | azj | byte_perplexity ↓ | 6.943 |
|
20 |
+
| gsarti/flores_101_bel | bel | byte_perplexity ↓ | 3.614 |
|
21 |
+
| gsarti/flores_101_ben | ben | byte_perplexity ↓ | 5.121 |
|
22 |
+
| gsarti/flores_101_bos | bos | byte_perplexity ↓ | 5.653 |
|
23 |
+
| gsarti/flores_101_bul | bul | byte_perplexity ↓ | 2.701 |
|
24 |
+
| gsarti/flores_101_cat | cat | byte_perplexity ↓ | 2.305 |
|
25 |
+
| gsarti/flores_101_ceb | ceb | byte_perplexity ↓ | 6.291 |
|
26 |
+
| gsarti/flores_101_ces | ces | byte_perplexity ↓ | 5.447 |
|
27 |
+
| gsarti/flores_101_ckb | ckb | byte_perplexity ↓ | 3.726 |
|
28 |
+
| gsarti/flores_101_cym | cym | byte_perplexity ↓ | 12.539 |
|
29 |
+
| gsarti/flores_101_dan | dan | byte_perplexity ↓ | 5.183 |
|
30 |
+
| gsarti/flores_101_deu | deu | byte_perplexity ↓ | 3.118 |
|
31 |
+
| gsarti/flores_101_ell | ell | byte_perplexity ↓ | 2.468 |
|
32 |
+
| gsarti/flores_101_eng | eng | byte_perplexity ↓ | 2.019 |
|
33 |
+
| gsarti/flores_101_est | est | byte_perplexity ↓ | 9.117 |
|
34 |
+
| gsarti/flores_101_fas | fas | byte_perplexity ↓ | 3.058 |
|
35 |
+
| gsarti/flores_101_fin | fin | byte_perplexity ↓ | 6.847 |
|
36 |
+
| gsarti/flores_101_fra | fra | byte_perplexity ↓ | 1.998 |
|
37 |
+
| gsarti/flores_101_ful | ful | byte_perplexity ↓ | 11.466 |
|
38 |
+
| gsarti/flores_101_gle | gle | byte_perplexity ↓ | 8.681 |
|
39 |
+
| gsarti/flores_101_glg | glg | byte_perplexity ↓ | 3.03 |
|
40 |
+
| gsarti/flores_101_guj | guj | byte_perplexity ↓ | 4.955 |
|
41 |
+
| gsarti/flores_101_hau | hau | byte_perplexity ↓ | 10.758 |
|
42 |
+
| gsarti/flores_101_heb | heb | byte_perplexity ↓ | 3.6 |
|
43 |
+
| gsarti/flores_101_hin | hin | byte_perplexity ↓ | 4.713 |
|
44 |
+
| gsarti/flores_101_hrv | hrv | byte_perplexity ↓ | 5.822 |
|
45 |
+
| gsarti/flores_101_hun | hun | byte_perplexity ↓ | 6.44 |
|
46 |
+
| gsarti/flores_101_hye | hye | byte_perplexity ↓ | 3.658 |
|
47 |
+
| gsarti/flores_101_ibo | ibo | byte_perplexity ↓ | 5.565 |
|
48 |
+
| gsarti/flores_101_ind | ind | byte_perplexity ↓ | 2.16 |
|
49 |
+
| gsarti/flores_101_isl | isl | byte_perplexity ↓ | 8.082 |
|
50 |
+
| gsarti/flores_101_ita | ita | byte_perplexity ↓ | 2.969 |
|
51 |
+
| gsarti/flores_101_jav | jav | byte_perplexity ↓ | 7.057 |
|
52 |
+
| gsarti/flores_101_jpn | jpn | byte_perplexity ↓ | 2.776 |
|
53 |
+
| gsarti/flores_101_kam | kam | byte_perplexity ↓ | 11.073 |
|
54 |
+
| gsarti/flores_101_kan | kan | byte_perplexity ↓ | 5.552 |
|
55 |
+
| gsarti/flores_101_kat | kat | byte_perplexity ↓ | 2.523 |
|
56 |
+
| gsarti/flores_101_kaz | kaz | byte_perplexity ↓ | 3.39 |
|
57 |
+
| gsarti/flores_101_kea | kea | byte_perplexity ↓ | 8.919 |
|
58 |
+
| gsarti/flores_101_kir | kir | byte_perplexity ↓ | 3.729 |
|
59 |
+
| gsarti/flores_101_kor | kor | byte_perplexity ↓ | 3.933 |
|
60 |
+
| gsarti/flores_101_lao | lao | byte_perplexity ↓ | 2.908 |
|
61 |
+
| gsarti/flores_101_lav | lav | byte_perplexity ↓ | 7.777 |
|
62 |
+
| gsarti/flores_101_lin | lin | byte_perplexity ↓ | 7.525 |
|
63 |
+
| gsarti/flores_101_lit | lit | byte_perplexity ↓ | 7.369 |
|
64 |
+
| gsarti/flores_101_ltz | ltz | byte_perplexity ↓ | 8.801 |
|
65 |
+
| gsarti/flores_101_lug | lug | byte_perplexity ↓ | 8.483 |
|
66 |
+
| gsarti/flores_101_luo | luo | byte_perplexity ↓ | 11.976 |
|
67 |
+
| gsarti/flores_101_mal | mal | byte_perplexity ↓ | 4.616 |
|
68 |
+
| gsarti/flores_101_mar | mar | byte_perplexity ↓ | 5.483 |
|
69 |
+
| gsarti/flores_101_mkd | mkd | byte_perplexity ↓ | 2.966 |
|
70 |
+
| gsarti/flores_101_mlt | mlt | byte_perplexity ↓ | 15.005 |
|
71 |
+
| gsarti/flores_101_mon | mon | byte_perplexity ↓ | 3.411 |
|
72 |
+
| gsarti/flores_101_mri | mri | byte_perplexity ↓ | 7.474 |
|
73 |
+
| gsarti/flores_101_msa | msa | byte_perplexity ↓ | 2.571 |
|
74 |
+
| gsarti/flores_101_mya | mya | byte_perplexity ↓ | 2.414 |
|
75 |
+
| gsarti/flores_101_nld | nld | byte_perplexity ↓ | 4.128 |
|
76 |
+
| gsarti/flores_101_nob | nob | byte_perplexity ↓ | 5.403 |
|
77 |
+
| gsarti/flores_101_npi | npi | byte_perplexity ↓ | 5.199 |
|
78 |
+
| gsarti/flores_101_nso | nso | byte_perplexity ↓ | 8.155 |
|
79 |
+
| gsarti/flores_101_nya | nya | byte_perplexity ↓ | 8.18 |
|
80 |
+
| gsarti/flores_101_oci | oci | byte_perplexity ↓ | 4.862 |
|
81 |
+
| gsarti/flores_101_orm | orm | byte_perplexity ↓ | 12.912 |
|
82 |
+
| gsarti/flores_101_ory | ory | byte_perplexity ↓ | 5.189 |
|
83 |
+
| gsarti/flores_101_pan | pan | byte_perplexity ↓ | 4.698 |
|
84 |
+
| gsarti/flores_101_pol | pol | byte_perplexity ↓ | 4.626 |
|
85 |
+
| gsarti/flores_101_por | por | byte_perplexity ↓ | 1.975 |
|
86 |
+
| gsarti/flores_101_pus | pus | byte_perplexity ↓ | 4.496 |
|
87 |
+
| gsarti/flores_101_ron | ron | byte_perplexity ↓ | 4.965 |
|
88 |
+
| gsarti/flores_101_rus | rus | byte_perplexity ↓ | 2.05 |
|
89 |
+
| gsarti/flores_101_slk | slk | byte_perplexity ↓ | 6.451 |
|
90 |
+
| gsarti/flores_101_slv | slv | byte_perplexity ↓ | 6.62 |
|
91 |
+
| gsarti/flores_101_sna | sna | byte_perplexity ↓ | 8.462 |
|
92 |
+
| gsarti/flores_101_snd | snd | byte_perplexity ↓ | 5.466 |
|
93 |
+
| gsarti/flores_101_som | som | byte_perplexity ↓ | 11.959 |
|
94 |
+
| gsarti/flores_101_spa | spa | byte_perplexity ↓ | 1.897 |
|
95 |
+
| gsarti/flores_101_srp | srp | byte_perplexity ↓ | 2.871 |
|
96 |
+
| gsarti/flores_101_swe | swe | byte_perplexity ↓ | 5.055 |
|
97 |
+
| gsarti/flores_101_swh | swh | byte_perplexity ↓ | 3.697 |
|
98 |
+
| gsarti/flores_101_tam | tam | byte_perplexity ↓ | 4.539 |
|
99 |
+
| gsarti/flores_101_tel | tel | byte_perplexity ↓ | 5.807 |
|
100 |
+
| gsarti/flores_101_tgk | tgk | byte_perplexity ↓ | 3.599 |
|
101 |
+
| gsarti/flores_101_tgl | tgl | byte_perplexity ↓ | 5.667 |
|
102 |
+
| gsarti/flores_101_tha | tha | byte_perplexity ↓ | 2.366 |
|
103 |
+
| gsarti/flores_101_tur | tur | byte_perplexity ↓ | 4.885 |
|
104 |
+
| gsarti/flores_101_ukr | ukr | byte_perplexity ↓ | 2.724 |
|
105 |
+
| gsarti/flores_101_umb | umb | byte_perplexity ↓ | 12.767 |
|
106 |
+
| gsarti/flores_101_urd | urd | byte_perplexity ↓ | 1.98 |
|
107 |
+
| gsarti/flores_101_uzb | uzb | byte_perplexity ↓ | 12.002 |
|
108 |
+
| gsarti/flores_101_vie | vie | byte_perplexity ↓ | 1.766 |
|
109 |
+
| gsarti/flores_101_wol | wol | byte_perplexity ↓ | 9.144 |
|
110 |
+
| gsarti/flores_101_xho | xho | byte_perplexity ↓ | 7.403 |
|
111 |
+
| gsarti/flores_101_yor | yor | byte_perplexity ↓ | 5.913 |
|
112 |
+
| gsarti/flores_101_zho_simpl | zho_simpl | byte_perplexity ↓ | 2.277 |
|
113 |
+
| gsarti/flores_101_zho_trad | zho_trad | byte_perplexity ↓ | 2.518 |
|
114 |
+
| gsarti/flores_101_zul | zul | byte_perplexity ↓ | 8.534 |
|
115 |
+
| headqa | esp | acc ↑ | 0.264 |
|
116 |
+
| hellaswag | eng | acc ↑ | 0.412 |
|
117 |
+
| logiqa | eng | acc ↑ | 0.207 |
|
118 |
+
| mathqa | eng | acc ↑ | 0.25 |
|
119 |
+
| mc_taco | eng | em ↑ | 0.119 |
|
120 |
+
| mnli (Median of 15 prompts) | eng | acc ↑ | 0.355 |
|
121 |
+
| mnli_mismatched (Median of 15 prompts) | eng | acc ↑ | 0.352 |
|
122 |
+
| mrpc | eng | acc ↑ | 0.586 |
|
123 |
+
| multirc (Median of 11 prompts) | eng | acc ↑ | 0.538 |
|
124 |
+
| openbookqa | eng | acc ↑ | 0.216 |
|
125 |
+
| piqa | eng | acc ↑ | 0.708 |
|
126 |
+
| prost | eng | acc ↑ | 0.227 |
|
127 |
+
| pubmedqa | eng | acc ↑ | 0.616 |
|
128 |
+
| qnli | eng | acc ↑ | 0.507 |
|
129 |
+
| qqp (Median of 7 prompts) | eng | acc ↑ | 0.384 |
|
130 |
+
| race | eng | acc ↑ | 0.352 |
|
131 |
+
| rte (Median of 6 prompts) | eng | acc ↑ | 0.477 |
|
132 |
+
| sciq | eng | acc ↑ | 0.892 |
|
133 |
+
| sst (Median of 6 prompts) | eng | acc ↑ | 0.518 |
|
134 |
+
| triviaqa | eng | acc ↑ | 0.042 |
|
135 |
+
| tydiqa_primary (Median of 24 prompts) | eng | acc ↑ | 0.301 |
|
136 |
+
| webqs | eng | acc ↑ | 0.017 |
|
137 |
+
| wic (Median of 11 prompts) | eng | acc ↑ | 0.502 |
|
138 |
+
| winogrande | eng | acc ↑ | 0.586 |
|
139 |
+
| wnli (Median of 6 prompts) | eng | acc ↑ | 0.472 |
|
140 |
+
| wsc (Median of 11 prompts) | eng | acc ↑ | 0.442 |
|
141 |
+
| humaneval | python | pass@1 ↑ | 0.155 |
|
142 |
+
| humaneval | python | pass@10 ↑ | 0.322 |
|
143 |
+
| humaneval | python | pass@100 ↑ | 0.555 |
|
bigscience/evaluation/results/tr11/get_templates.sh
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATASETS_AND_CONFIGS=(
|
2 |
+
piaf,None,None
|
3 |
+
GEM/wiki_lingua,ar,ar
|
4 |
+
GEM/wiki_lingua,en,en
|
5 |
+
GEM/wiki_lingua,es,es
|
6 |
+
GEM/wiki_lingua,fr,fr
|
7 |
+
GEM/wiki_lingua,hi,hi
|
8 |
+
GEM/wiki_lingua,id,id
|
9 |
+
GEM/wiki_lingua,pt,pt
|
10 |
+
GEM/wiki_lingua,vi,vi
|
11 |
+
GEM/wiki_lingua,zh,zh
|
12 |
+
GEM/web_nlg,en,en
|
13 |
+
GEM/web_nlg,ru,ru
|
14 |
+
wmt14,fr-en,fr-en
|
15 |
+
)
|
16 |
+
|
17 |
+
# Unique ones: 0 1 2 5 6 7 8 9 10 11
|
18 |
+
for val in {0..12}; do
|
19 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$val]}
|
20 |
+
IFS=',' read dataset_name dataset_config_name template_config_name <<< "${DATASET_AND_CONFIG}"
|
21 |
+
echo $dataset_config_name
|
22 |
+
python evaluation/results/tr13/tzeroeval/get_templates.py \
|
23 |
+
--dataset_name $dataset_name \
|
24 |
+
--dataset_config_name $dataset_config_name \
|
25 |
+
--template_config_name $template_config_name
|
26 |
+
done
|
27 |
+
|
bigscience/evaluation/results/tr12/tr12a-1B3-oscar-en-filtered_agg.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/evaluation/results/tr12/tr12b-1B3-oscar-en-filtered-dedup_agg.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/evaluation/results/tr13/download_bslmeval.slurm
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=download-bslmeval
|
3 |
+
#SBATCH --partition=prepost
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
9 |
+
#SBATCH --output=%x-%j.out # output file name
|
10 |
+
#SBATCH --account=six@cpu
|
11 |
+
|
12 |
+
set -x -e
|
13 |
+
|
14 |
+
echo "START TIME: $(date)"
|
15 |
+
|
16 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
17 |
+
conda activate muennighofflmeval
|
18 |
+
|
19 |
+
#export HF_DATASETS_OFFLINE=1
|
20 |
+
#export TRANSFORMERS_OFFLINE=1
|
21 |
+
|
22 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
export TOKENIZERS_PARALLELISM=false
|
27 |
+
|
28 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/lm-evaluation-harness
|
29 |
+
|
30 |
+
# GEM/web_nlg_en,GEM/web_nlg_en_challenge_test_numbers,GEM/web_nlg_en_challenge_test_scramble,GEM/web_nlg_en_challenge_validation_sample,GEM/web_nlg_ru,GEM/web_nlg_ru_challenge_test_scramble,GEM/web_nlg_ru_challenge_validation_sample,GEM/wiki_auto_asset_turk_challenge_test_asset_backtranslation,GEM/wiki_auto_asset_turk_challenge_test_asset_bfp02,GEM/wiki_auto_asset_turk_challenge_test_asset_bfp05,GEM/wiki_auto_asset_turk_challenge_test_asset_nopunc,GEM/wiki_auto_asset_turk_challenge_test_turk_backtranslation,GEM/wiki_auto_asset_turk_challenge_test_turk_bfp02,GEM/wiki_auto_asset_turk_challenge_test_turk_bfp05,GEM/wiki_auto_asset_turk_challenge_test_turk_nopunc,GEM/wiki_auto_asset_turk_test_asset,GEM/wiki_auto_asset_turk_test_turk,GEM/wiki_lingua_ar,GEM/wiki_lingua_cs,GEM/wiki_lingua_de,GEM/wiki_lingua_en,GEM/wiki_lingua_es,GEM/wiki_lingua_fr,GEM/wiki_lingua_hi,GEM/wiki_lingua_id,GEM/wiki_lingua_it,GEM/wiki_lingua_ja,GEM/wiki_lingua_ko,GEM/wiki_lingua_nl,GEM/wiki_lingua_pt,GEM/wiki_lingua_ru,GEM/wiki_lingua_th,GEM/wiki_lingua_tr,GEM/wiki_lingua_vi,GEM/wiki_lingua_zh,gem_xsum,gem_xsum_challenge_sample,gem_xsum_challenge_test_backtranslation,gem_xsum_challenge_test_bfp_02,gem_xsum_challenge_test_bfp_05,gem_xsum_challenge_test_covid,gem_xsum_challenge_test_nopunc \
|
31 |
+
python3 main.py --model hf-causal \
|
32 |
+
--model_args pretrained=hf-internal-testing/tiny-random-gpt2,use_accelerate=True,tokenizer=hf-internal-testing/tiny-random-gpt2,dtype=float16 \
|
33 |
+
--tasks wmt14_fr_en,wmt19_ru_en,wmt19_zh_en \
|
34 |
+
--device cuda \
|
35 |
+
--limit 1 \
|
36 |
+
--no_cache \
|
37 |
+
--num_fewshot 0
|
bigscience/evaluation/results/tr13/results_to_csv.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# this script converts results.json:
|
4 |
+
#
|
5 |
+
# "results": {
|
6 |
+
# "arc_challenge": {
|
7 |
+
# "acc": 0.24232081911262798,
|
8 |
+
# "acc_stderr": 0.01252159329580012,
|
9 |
+
# "acc_norm": 0.2764505119453925,
|
10 |
+
# "acc_norm_stderr": 0.013069662474252425
|
11 |
+
# },
|
12 |
+
#
|
13 |
+
# into a format expected by a spreadsheet, which is:
|
14 |
+
#
|
15 |
+
# task metric value err
|
16 |
+
# arc_challenge acc xxx yyy
|
17 |
+
# arc_challenge acc_norm xxx yyy
|
18 |
+
# arc_challenge f1 xxx yyy
|
19 |
+
#
|
20 |
+
# usage:
|
21 |
+
# report-to-csv.py results.json
|
22 |
+
|
23 |
+
|
24 |
+
import sys
|
25 |
+
import statistics
|
26 |
+
import json
|
27 |
+
import io
|
28 |
+
import csv
|
29 |
+
|
30 |
+
results_file = sys.argv[1]
|
31 |
+
|
32 |
+
csv_file = results_file.replace("json", "csv")
|
33 |
+
|
34 |
+
print(f"Converting {results_file} to {csv_file}")
|
35 |
+
|
36 |
+
with io.open(results_file, 'r', encoding='utf-8') as f:
|
37 |
+
raw_results = json.load(f)
|
38 |
+
|
39 |
+
results = {}
|
40 |
+
for ds_name, v in sorted(raw_results.items()):
|
41 |
+
results[ds_name.split("/")[-1]] = v
|
42 |
+
|
43 |
+
with io.open(csv_file, 'w', encoding='utf-8') as f:
|
44 |
+
|
45 |
+
writer = csv.writer(f)
|
46 |
+
writer.writerow(["dataset", "prompt", "metric", "value"])
|
47 |
+
medians = []
|
48 |
+
for ds_name, v in sorted(results.items()):
|
49 |
+
acc_scores, bleu_scores, rouge2_fmeasure = [], [], []
|
50 |
+
for prompt_name, res in sorted(v.items()):
|
51 |
+
# T0 Eval
|
52 |
+
if "evaluation" in res:
|
53 |
+
for metric, value in sorted(res["evaluation"].items()):
|
54 |
+
writer.writerow([ds_name, prompt_name, metric, value])
|
55 |
+
if metric == "accuracy":
|
56 |
+
acc_scores.append(value)
|
57 |
+
# LM Eval Harness Generation
|
58 |
+
elif "bleu" in res:
|
59 |
+
# Make sure BLEU is 0-1 not 0-100
|
60 |
+
writer.writerow([ds_name, prompt_name, "bleu", res["bleu"] / 100])
|
61 |
+
bleu_scores.append(res["bleu"] / 100)
|
62 |
+
|
63 |
+
if acc_scores:
|
64 |
+
median = statistics.median(acc_scores)
|
65 |
+
medians.append(median)
|
66 |
+
writer.writerow([ds_name, "median", "accuracy", median])
|
67 |
+
elif bleu_scores:
|
68 |
+
median = statistics.median(bleu_scores)
|
69 |
+
medians.append(median)
|
70 |
+
writer.writerow([ds_name, "median", "bleu", median])
|
71 |
+
if medians:
|
72 |
+
writer.writerow(["multiple", "average", "multiple", statistics.mean(medians)])
|
bigscience/evaluation/results/tr3/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
We're interested in understanding when zero shot capabilities appear.
|
bigscience/evaluation/results/tr3/switch_tokenizer_to_t5_for_tr3e.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export GIT_LFS_SKIP_SMUDGE=1
|
2 |
+
git clone https://huggingface.co/bigscience/tr3e-1B3-c4-checkpoints
|
3 |
+
cd tr3e-1B3-c4-checkpoints
|
4 |
+
$six_ALL_CCFRWORK/code/bigscience/tools/hub-sync.py --repo-path . --patterns '*bogus*'
|
5 |
+
git branch -a | sort -V | perl -lne 'm|(global_step\d+)| && print qx[git checkout $1; perl -pi -e "s|\\"tokenizer_class\\": null|\\"tokenizer_class\\": \\"T5Tokenizer\\"|" config.json; git commit -m "Fix tokenizer_class to use T5 tokenizer" .; git push --set-upstream origin $1]'
|
6 |
+
export GIT_LFS_SKIP_SMUDGE=0
|
bigscience/evaluation/results/tr3/tr3d-1B3-oscar-checkpoints_agg.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/evaluation/utilities/download_all_models.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import ArgumentParser
|
2 |
+
from multiprocessing import Pool
|
3 |
+
|
4 |
+
from requests import HTTPError
|
5 |
+
from transformers import AutoModel, AutoTokenizer
|
6 |
+
|
7 |
+
def get_args():
|
8 |
+
parser = ArgumentParser()
|
9 |
+
# --experiments bigscience/tr3d-1B3-oscar-checkpoints,bigscience/tr3e-1B3-c4-checkpoints,bigscience/tr3m-1B3-pile-checkpoints
|
10 |
+
parser.add_argument('--experiments', type=lambda s: s.split(','), required=True, help='Experiments we want to download.')
|
11 |
+
# --steps 19500,28500,37500,48000,57000,66000,76500,85500,94500,105000,114000
|
12 |
+
parser.add_argument('--steps', type=lambda s: [int(item) for item in s.split(',')], required=True, help='Steps we should download the model checkpoints')
|
13 |
+
return parser.parse_args()
|
14 |
+
|
15 |
+
def _load_model(pretrain:str, revision: str):
|
16 |
+
try:
|
17 |
+
AutoModel.from_pretrained(pretrain, revision=revision)
|
18 |
+
AutoTokenizer.from_pretrained(pretrain, revision=revision)
|
19 |
+
return f"Loaded: {{pretrain:{pretrain}, revision:{revision}}}"
|
20 |
+
except HTTPError:
|
21 |
+
return f"Failed to load: {{pretrain:{pretrain}, revision:{revision}}}"
|
22 |
+
|
23 |
+
def load_model(kwargs):
|
24 |
+
return _load_model(**kwargs)
|
25 |
+
|
26 |
+
def main():
|
27 |
+
args = get_args()
|
28 |
+
pretrains = args.experiments
|
29 |
+
steps = args.steps
|
30 |
+
revisions = [f"global_step{step}" for step in steps]
|
31 |
+
|
32 |
+
# with Pool(10) as pool:
|
33 |
+
# results = pool.imap(
|
34 |
+
# load_model,
|
35 |
+
# [{"pretrain": pretrain, "revision": revision} for pretrain in pretrains for revision in revisions],
|
36 |
+
# chunksize=1
|
37 |
+
# )
|
38 |
+
#
|
39 |
+
# for result in results:
|
40 |
+
# print(result)
|
41 |
+
|
42 |
+
|
43 |
+
for kwargs in [{"pretrain": pretrain, "revision": revision} for pretrain in pretrains for revision in revisions]:
|
44 |
+
print(load_model(kwargs))
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
main()
|
bigscience/evaluation/utilities/download_all_models.slurm
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=download_all_models
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
5 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --time 10:00:00 # maximum execution time (HH:MM:SS)
|
8 |
+
#SBATCH --output=logs/%x.out # output file name
|
9 |
+
#SBATCH --account=six@gpu
|
10 |
+
#SBATCH --partition=compil
|
11 |
+
|
12 |
+
set -x -e
|
13 |
+
|
14 |
+
source $six_ALL_CCFRWORK/start-prod
|
15 |
+
conda activate thomas_lm_eval
|
16 |
+
|
17 |
+
# TODO: replace with local fork of bigscience
|
18 |
+
BIGSCIENCE_REPO=$WORK/code/big_science/bigscience/evaluation/results/tr3
|
19 |
+
|
20 |
+
pushd $BIGSCIENCE_REPO
|
21 |
+
|
22 |
+
# TODO: replace with experiment / steps
|
23 |
+
EXPERIMENTS=bigscience/tr3d-1B3-oscar-checkpoints,bigscience/tr3e-1B3-c4-checkpoints,bigscience/tr3m-1B3-pile-checkpoints
|
24 |
+
STEPS=$(python -c "print(\",\".join([str(i) for i in range(19500, 118500, 1500)]))")
|
25 |
+
|
26 |
+
python download_all_models.py --experiments $EXPERIMENTS --steps $STEPS
|
bigscience/evaluation/utilities/export_results_through_training_to_wandb.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import wandb
|
5 |
+
import json
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
RANDOM_BASELINE={
|
9 |
+
"arc_challenge": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6
|
10 |
+
"arc_easy": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6
|
11 |
+
"boolq": 0.5,
|
12 |
+
"copa": 0.5,
|
13 |
+
"headqa_en": 0.25,
|
14 |
+
"hellaswag": 0.25,
|
15 |
+
"lambada": 0., # Safe to say that random models won't perform well at all.
|
16 |
+
"logiqa": 0.25,
|
17 |
+
"mathqa": (4360 * 1/ 5 - (4475 - 4360) * 1/ 4) / 4475,
|
18 |
+
"mrpc": 0.5,
|
19 |
+
"multirc": 0., # TODO: I couldn't figure it out
|
20 |
+
"openbookqa": 0.25,
|
21 |
+
"piqa": 0.5,
|
22 |
+
"prost": 0.25,
|
23 |
+
"pubmedqa": 1/3,
|
24 |
+
"qnli": 0.5,
|
25 |
+
"qqp": 0.5,
|
26 |
+
"race": 0.25, # Source: https://arxiv.org/pdf/1704.04683.pdf table 5
|
27 |
+
"rte": 0.5,
|
28 |
+
"sciq": 0.25,
|
29 |
+
"sst": 0.5,
|
30 |
+
"triviaqa": 0.,
|
31 |
+
"webqs": 0.,
|
32 |
+
"wic": 0.5,
|
33 |
+
"winogrande": 0.5,
|
34 |
+
"wnli": 0.5,
|
35 |
+
"wsc": 0.5
|
36 |
+
}
|
37 |
+
|
38 |
+
def normalise(score, task):
|
39 |
+
return (score - RANDOM_BASELINE[task]) / (1. - RANDOM_BASELINE[task])
|
40 |
+
|
41 |
+
def parse_args():
|
42 |
+
parser = argparse.ArgumentParser()
|
43 |
+
parser.add_argument("--input_files", type=lambda s: s.split(','), required=True)
|
44 |
+
parser.add_argument("--all_tasks", action="store_true")
|
45 |
+
parser.add_argument("--naive_average", action="store_true")
|
46 |
+
parser.add_argument("--acc_average", action="store_true")
|
47 |
+
parser.add_argument("--normalised_acc_average", action="store_true")
|
48 |
+
return parser.parse_args()
|
49 |
+
|
50 |
+
def main():
|
51 |
+
args = parse_args()
|
52 |
+
for input_file in args.input_files:
|
53 |
+
assert os.path.basename(input_file).endswith("_agg.json")
|
54 |
+
experiment_name = os.path.basename(input_file).split("_agg.json")[0]
|
55 |
+
with open(input_file, "r") as fi:
|
56 |
+
experiment = json.load(fi)
|
57 |
+
|
58 |
+
results = experiment["results"]
|
59 |
+
tokens = experiment["tokens"]
|
60 |
+
run = wandb.init(project="bigscience-tr3-evaluation-through-training", entity="timerobber", name=experiment_name,
|
61 |
+
reinit=True)
|
62 |
+
for i, n_tokens in enumerate(tokens):
|
63 |
+
all_values = []
|
64 |
+
acc_average = []
|
65 |
+
normalised_acc_average = []
|
66 |
+
for task, task_results in results.items():
|
67 |
+
values = None
|
68 |
+
for metric, values in task_results.items():
|
69 |
+
if args.all_tasks:
|
70 |
+
wandb.log({f"{task}_{metric}": values[i], "tokens": tokens[i]})
|
71 |
+
if "stderr" not in metric and "ppl" not in metric:
|
72 |
+
all_values.append(values[i])
|
73 |
+
if metric == "acc":
|
74 |
+
acc_average.append(values[i])
|
75 |
+
normalised_acc_average.append(normalise(values[i], task))
|
76 |
+
if args.naive_average:
|
77 |
+
wandb.log({f"naive_average": np.mean(all_values), "tokens": tokens[i]})
|
78 |
+
if args.acc_average:
|
79 |
+
wandb.log({f"acc_average": np.mean(acc_average), "tokens": tokens[i]})
|
80 |
+
if args.normalised_acc_average:
|
81 |
+
wandb.log({f"normalised_acc_average": np.mean(normalised_acc_average), "tokens": tokens[i]})
|
82 |
+
|
83 |
+
run.finish()
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
main()
|
bigscience/evaluation/utilities/find_checkpoints_at_token_intervals.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import json
|
3 |
+
|
4 |
+
steps_vs_samples = datasets.load_dataset("csv", data_files="run-.-tag-steps-vs-samples_y=steps,x=samples.csv")["train"]
|
5 |
+
|
6 |
+
slope = (steps_vs_samples[-1]["Step"] - steps_vs_samples[-2]["Step"]) / (
|
7 |
+
steps_vs_samples[-1]["Value"] - steps_vs_samples[-2]["Value"])
|
8 |
+
offset = steps_vs_samples[-1]["Step"] - steps_vs_samples[-1]["Value"] * slope
|
9 |
+
|
10 |
+
token_interval = 1e10
|
11 |
+
step_interval = 1500
|
12 |
+
tokens_per_sample = 2048
|
13 |
+
token_count = token_interval
|
14 |
+
|
15 |
+
output_checkpoints = []
|
16 |
+
|
17 |
+
for item in steps_vs_samples:
|
18 |
+
if item["Step"] * tokens_per_sample > token_count:
|
19 |
+
token_count += token_interval
|
20 |
+
step = step_interval * (item['Value'] // step_interval)
|
21 |
+
tokens = tokens_per_sample * (slope * (step_interval * (item['Value'] // step_interval)) + offset)
|
22 |
+
print(f"step: {step}")
|
23 |
+
print(f"tokens at that step: {tokens}")
|
24 |
+
output_checkpoints.append({"step": step, "tokens": tokens})
|
25 |
+
|
26 |
+
|
27 |
+
json.dump(output_checkpoints, open("steps_to_evaluate_with_tokens.json", "w"))
|
bigscience/evaluation/utilities/plot_all_eval.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from argparse import ArgumentParser
|
4 |
+
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
|
7 |
+
|
8 |
+
def get_args():
|
9 |
+
parser = ArgumentParser()
|
10 |
+
parser.add_argument('--input-files', type=lambda s: s.split(','), required=True, help='Input files that hold all evaluation metrics')
|
11 |
+
return parser.parse_args()
|
12 |
+
|
13 |
+
def main():
|
14 |
+
args = get_args()
|
15 |
+
|
16 |
+
plots = {} # {"{EVALUATION}_{METRIC}": plt.figure}
|
17 |
+
for input_file in args.input_files:
|
18 |
+
assert os.path.basename(input_file).endswith("_agg.json")
|
19 |
+
experiment_name = os.path.basename(input_file).split("_agg.json")[0]
|
20 |
+
with open(input_file, "r") as fi:
|
21 |
+
experiment = json.load(fi)
|
22 |
+
|
23 |
+
tokens = experiment["tokens"]
|
24 |
+
for evaluation_name, evaluation in experiment["results"].items():
|
25 |
+
for metric_name, metric in evaluation.items():
|
26 |
+
key = f"{evaluation_name}_{metric_name}"
|
27 |
+
if key[-7:] == "_stderr":
|
28 |
+
continue
|
29 |
+
|
30 |
+
if key not in plots:
|
31 |
+
plot = plt.figure(len(plots))
|
32 |
+
plot = plot.add_subplot(1,1,1)
|
33 |
+
plot.set_title(key)
|
34 |
+
plots[key] = plot
|
35 |
+
|
36 |
+
plot = plots[key]
|
37 |
+
|
38 |
+
plot.plot(tokens, metric, label=experiment_name)
|
39 |
+
|
40 |
+
for plot in plots.values():
|
41 |
+
plot.legend()
|
42 |
+
plt.show()
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
main()
|
bigscience/experiments/bandwidth/README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Bandwidth tests
|
2 |
+
|
3 |
+
## Deepspeed benchmark
|
4 |
+
|
5 |
+
https://gist.github.com/stas00/ec5e197b15e2e7aea0153f54d2f97c15
|
6 |
+
|
7 |
+
Probably need to adjust `TRIALS` to a higher number to get the more realistic results (after the interconnects is saturated).
|
8 |
+
|
9 |
+
Note: tried a larger number but got the same results.
|
10 |
+
|
11 |
+
## Single node V100
|
12 |
+
|
13 |
+
ssh into a desired node and then:
|
14 |
+
```
|
15 |
+
export NCCL_DEBUG=info
|
16 |
+
python -m torch.distributed.launch --nproc_per_node=4 all_reduce_bench.py 2>&1 | tee n1_32gb_all_reduce_bench.txt
|
17 |
+
```
|
18 |
+
|
19 |
+
Results:
|
20 |
+
- [16gb](./n1_16gb_all_reduce_bench.txt) - `algo throughput: 1329.4242 Gbps`
|
21 |
+
- [32gb](./n1_32gb_all_reduce_bench.txt) - `algo throughput: 1323.6244 Gbps`
|
22 |
+
|
23 |
+
Here we have NVLink gen 2
|
24 |
+
|
25 |
+
https://en.wikipedia.org/wiki/NVLink
|
26 |
+
```
|
27 |
+
Nvidia GV100 | V100 SXM2 | NVLink 2.0 | 25 GT/s | 300 GByte/s
|
28 |
+
```
|
29 |
+
So the total is 300GB/s => 2400 Gb/s
|
30 |
+
|
31 |
+
and the benchmark clocks 1360 Gb/s - slightly more than half of the max total.
|
32 |
+
|
33 |
+
if this test is run a bit longer, it drops to 600 Gbps.
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## 16 nodes V100 32GB
|
38 |
+
|
39 |
+
```
|
40 |
+
export NCCL_DEBUG=info
|
41 |
+
export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
42 |
+
srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.launch --nnodes 16 --nproc_per_node=4 --node_rank $SLURM_PROCID --master_addr $MASTER_ADDR --master_port 12345 all_reduce_bench.py' 2>&1 | tee n16_32gb_all_reduce_bench.txt
|
43 |
+
```
|
44 |
+
Results:
|
45 |
+
|
46 |
+
- [32gp](./n16_32gb_all_reduce_bench.txt) - `algo throughput: 23.2939 to 55.0766 Gbps`
|
47 |
+
|
48 |
+
If the test is run much longer it fluctuates between 44 and 57 Gbps.
|
49 |
+
|
50 |
+
Currently we have an issue with nccl that doesn't fully utilize Intel OPA full bandwidth. Which is supposed to be 400Gbps max.
|
51 |
+
|
52 |
+
|
53 |
+
## 4 nodes V100 32GB
|
54 |
+
|
55 |
+
Here is a recent re-run - jan 2022:
|
56 |
+
|
57 |
+
script: [all_reduce_bench-32gb-n4.slurm](./all_reduce_bench-32gb-n4.slurm)
|
58 |
+
|
59 |
+
|
60 |
+
```
|
61 |
+
sbatch all_reduce_bench-32gb-n4.slurm
|
62 |
+
```
|
63 |
+
|
64 |
+
Results:
|
65 |
+
|
66 |
+
[all_reduce_bench-32gb-n4.txt](./all_reduce_bench-32gb-n4.txt) - `algo throughput: 30 to 90 Gbps`
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
## 4 nodes A100 80GB
|
72 |
+
|
73 |
+
|
74 |
+
script: [all_reduce_bench-a100-n4.slurm](./all_reduce_bench-a100-n4.slurm)
|
75 |
+
|
76 |
+
|
77 |
+
```
|
78 |
+
sbatch all_reduce_bench-a100-n4.slurm
|
79 |
+
```
|
80 |
+
|
81 |
+
Results:
|
82 |
+
|
83 |
+
[all_reduce_bench-a100-n4.txt](./all_reduce_bench-a100-n4.txt) - `algo throughput: 15 to 42 Gbps`
|
84 |
+
|
85 |
+
As a reference Azure has [ND A100 v4-series](https://docs.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series) w/ 1.6 Tb/s of interconnect bandwidth per VM. And Jeff Rasley clocked ~1.5Tb/s with this `all_reduce_bench` script.
|
86 |
+
|
87 |
+
|
88 |
+
## NCCL tests
|
89 |
+
|
90 |
+
https://github.com/nvidia/nccl-tests
|
91 |
+
|
92 |
+
The details are explained here:
|
93 |
+
|
94 |
+
https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
|
95 |
+
|
96 |
+
```
|
97 |
+
git clone https://github.com/nvidia/nccl-tests
|
98 |
+
cd nccl-tests
|
99 |
+
make
|
100 |
+
```
|
101 |
+
|
102 |
+
|
103 |
+
## Single node
|
104 |
+
|
105 |
+
ssh into a desired node and then:
|
106 |
+
```
|
107 |
+
./build/all_reduce_perf -b 8 -e 128M -f 2 -g 4
|
108 |
+
```
|
109 |
+
|
110 |
+
|
111 |
+
## 16 nodes
|
112 |
+
|
113 |
+
from master node:
|
114 |
+
```
|
115 |
+
srun --jobid $SLURM_JOBID ./build/all_reduce_perf -b 8 -e 128M -f 2 -g 4
|
116 |
+
```
|
117 |
+
(not sure if I did it right - didn't have time to read the docs)
|
bigscience/experiments/bandwidth/all_reduce_bench-32gb-n4.slurm
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=all_reduce_bench-32gb-n4
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=4
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:4 # number of gpus
|
9 |
+
#SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@gpu
|
12 |
+
|
13 |
+
export LOG_FILE=all_reduce_bench-32gb-n4.txt
|
14 |
+
export NNODES=4
|
15 |
+
export GPUS_PER_NODE=4
|
16 |
+
export NCCL_DEBUG=info
|
17 |
+
|
18 |
+
export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
19 |
+
|
20 |
+
srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.launch --nnodes $NNODES --nproc_per_node $GPUS_PER_NODE --node_rank $SLURM_PROCID --master_addr $MASTER_ADDR --master_port 12345 all_reduce_bench.py' 2>&1 | tee $LOG_FILE
|
bigscience/experiments/bandwidth/all_reduce_bench-32gb-n4.txt
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
|
2 |
+
and will be removed in future. Use torchrun.
|
3 |
+
Note that --use_env is set by default in torchrun.
|
4 |
+
If your script expects `--local_rank` argument to be set, please
|
5 |
+
change it to read from `os.environ['LOCAL_RANK']` instead. See
|
6 |
+
https://pytorch.org/docs/stable/distributed.html#launch-utility for
|
7 |
+
further instructions
|
8 |
+
|
9 |
+
warnings.warn(
|
10 |
+
/gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
|
11 |
+
and will be removed in future. Use torchrun.
|
12 |
+
Note that --use_env is set by default in torchrun.
|
13 |
+
If your script expects `--local_rank` argument to be set, please
|
14 |
+
change it to read from `os.environ['LOCAL_RANK']` instead. See
|
15 |
+
https://pytorch.org/docs/stable/distributed.html#launch-utility for
|
16 |
+
further instructions
|
17 |
+
|
18 |
+
warnings.warn(
|
19 |
+
/gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
|
20 |
+
and will be removed in future. Use torchrun.
|
21 |
+
Note that --use_env is set by default in torchrun.
|
22 |
+
If your script expects `--local_rank` argument to be set, please
|
23 |
+
change it to read from `os.environ['LOCAL_RANK']` instead. See
|
24 |
+
https://pytorch.org/docs/stable/distributed.html#launch-utility for
|
25 |
+
further instructions
|
26 |
+
|
27 |
+
warnings.warn(
|
28 |
+
WARNING:torch.distributed.run:
|
29 |
+
*****************************************
|
30 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
31 |
+
*****************************************
|
32 |
+
/gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
|
33 |
+
and will be removed in future. Use torchrun.
|
34 |
+
Note that --use_env is set by default in torchrun.
|
35 |
+
If your script expects `--local_rank` argument to be set, please
|
36 |
+
change it to read from `os.environ['LOCAL_RANK']` instead. See
|
37 |
+
https://pytorch.org/docs/stable/distributed.html#launch-utility for
|
38 |
+
further instructions
|
39 |
+
|
40 |
+
warnings.warn(
|
41 |
+
WARNING:torch.distributed.run:
|
42 |
+
*****************************************
|
43 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
44 |
+
*****************************************
|
45 |
+
WARNING:torch.distributed.run:
|
46 |
+
*****************************************
|
47 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
48 |
+
*****************************************
|
49 |
+
WARNING:torch.distributed.run:
|
50 |
+
*****************************************
|
51 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
52 |
+
*****************************************
|
53 |
+
local_rank: 0
|
54 |
+
local_rank: 0
|
55 |
+
local_rank: 2
|
56 |
+
local_rank: 1
|
57 |
+
local_rank: 1
|
58 |
+
local_rank: 3
|
59 |
+
local_rank: 3
|
60 |
+
local_rank: 2
|
61 |
+
local_rank: 1
|
62 |
+
local_rank: 3
|
63 |
+
local_rank: 2
|
64 |
+
local_rank: 0
|
65 |
+
local_rank: 0
|
66 |
+
local_rank: 1
|
67 |
+
local_rank: 3
|
68 |
+
local_rank: 2
|
69 |
+
0 data size: 4.0 GB
|
70 |
+
4 data size: 4.0 GB
|
71 |
+
6 data size: 4.0 GB
|
72 |
+
11 data size: 4.0 GB
|
73 |
+
3 data size: 4.0 GB
|
74 |
+
10 data size: 4.0 GB
|
75 |
+
7 data size: 4.0 GB
|
76 |
+
5 data size: 4.0 GB
|
77 |
+
1 data size: 4.0 GB
|
78 |
+
2 data size: 4.0 GB
|
79 |
+
8 data size: 4.0 GB
|
80 |
+
15 data size: 4.0 GB
|
81 |
+
13 data size: 4.0 GB
|
82 |
+
12 data size: 4.0 GB
|
83 |
+
14 data size: 4.0 GB
|
84 |
+
9 data size: 4.0 GB
|
85 |
+
r6i6n4:257714:257714 [0] NCCL INFO Bootstrap : Using ib0:10.148.7.175<0>
|
86 |
+
r6i6n4:257714:257714 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
87 |
+
r6i6n4:257714:257714 [0] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.175<0>
|
88 |
+
r6i6n4:257714:257714 [0] NCCL INFO Using network IB
|
89 |
+
NCCL version 2.10.3+cuda11.3
|
90 |
+
r6i6n4:257715:257715 [1] NCCL INFO Bootstrap : Using ib0:10.148.7.175<0>
|
91 |
+
r6i6n5:378203:378203 [3] NCCL INFO Bootstrap : Using ib0:10.148.7.176<0>
|
92 |
+
r6i6n5:378202:378202 [2] NCCL INFO Bootstrap : Using ib0:10.148.7.176<0>
|
93 |
+
r6i6n5:378201:378201 [1] NCCL INFO Bootstrap : Using ib0:10.148.7.176<0>
|
94 |
+
r6i6n4:257715:257715 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
95 |
+
r6i6n5:378202:378202 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
96 |
+
r6i6n5:378203:378203 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
97 |
+
r6i6n5:378201:378201 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
98 |
+
r6i6n4:257715:257715 [1] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.175<0>
|
99 |
+
r6i6n4:257715:257715 [1] NCCL INFO Using network IB
|
100 |
+
r6i6n5:378203:378203 [3] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.176<0>
|
101 |
+
r6i6n5:378202:378202 [2] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.176<0>
|
102 |
+
r6i6n5:378203:378203 [3] NCCL INFO Using network IB
|
103 |
+
r6i6n5:378202:378202 [2] NCCL INFO Using network IB
|
104 |
+
r6i6n5:378201:378201 [1] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.176<0>
|
105 |
+
r6i6n5:378201:378201 [1] NCCL INFO Using network IB
|
106 |
+
r6i6n4:257717:257717 [3] NCCL INFO Bootstrap : Using ib0:10.148.7.175<0>
|
107 |
+
r6i6n4:257717:257717 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
108 |
+
r6i6n4:257717:257717 [3] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.175<0>
|
109 |
+
r6i6n4:257717:257717 [3] NCCL INFO Using network IB
|
110 |
+
r6i6n4:257716:257716 [2] NCCL INFO Bootstrap : Using ib0:10.148.7.175<0>
|
111 |
+
r6i6n4:257716:257716 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
112 |
+
r6i6n4:257716:257716 [2] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.175<0>
|
113 |
+
r6i6n4:257716:257716 [2] NCCL INFO Using network IB
|
114 |
+
r6i6n5:378200:378200 [0] NCCL INFO Bootstrap : Using ib0:10.148.7.176<0>
|
115 |
+
r6i6n5:378200:378200 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
116 |
+
r6i6n5:378200:378200 [0] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.176<0>
|
117 |
+
r6i6n5:378200:378200 [0] NCCL INFO Using network IB
|
118 |
+
r7i6n2:1370349:1370349 [2] NCCL INFO Bootstrap : Using ib0:10.148.0.95<0>
|
119 |
+
r7i6n2:1370348:1370348 [1] NCCL INFO Bootstrap : Using ib0:10.148.0.95<0>
|
120 |
+
r7i6n2:1370348:1370348 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
121 |
+
r7i6n2:1370349:1370349 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
122 |
+
r7i6n2:1370349:1370349 [2] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.95<0>
|
123 |
+
r7i6n2:1370349:1370349 [2] NCCL INFO Using network IB
|
124 |
+
r7i6n2:1370348:1370348 [1] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.95<0>
|
125 |
+
r7i6n2:1370348:1370348 [1] NCCL INFO Using network IB
|
126 |
+
r7i6n3:610063:610063 [0] NCCL INFO Bootstrap : Using ib0:10.148.0.96<0>
|
127 |
+
r7i6n3:610066:610066 [3] NCCL INFO Bootstrap : Using ib0:10.148.0.96<0>
|
128 |
+
r7i6n3:610063:610063 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
129 |
+
r7i6n3:610066:610066 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
130 |
+
r7i6n3:610066:610066 [3] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.96<0>
|
131 |
+
r7i6n3:610066:610066 [3] NCCL INFO Using network IB
|
132 |
+
r7i6n3:610063:610063 [0] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.96<0>
|
133 |
+
r7i6n3:610063:610063 [0] NCCL INFO Using network IB
|
134 |
+
r7i6n2:1370347:1370347 [0] NCCL INFO Bootstrap : Using ib0:10.148.0.95<0>
|
135 |
+
r7i6n2:1370347:1370347 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
136 |
+
r7i6n2:1370347:1370347 [0] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.95<0>
|
137 |
+
r7i6n2:1370347:1370347 [0] NCCL INFO Using network IB
|
138 |
+
r7i6n3:610065:610065 [2] NCCL INFO Bootstrap : Using ib0:10.148.0.96<0>
|
139 |
+
r7i6n3:610065:610065 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
140 |
+
r7i6n3:610064:610064 [1] NCCL INFO Bootstrap : Using ib0:10.148.0.96<0>
|
141 |
+
r7i6n3:610065:610065 [2] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.96<0>
|
142 |
+
r7i6n3:610065:610065 [2] NCCL INFO Using network IB
|
143 |
+
r7i6n3:610064:610064 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
144 |
+
r7i6n3:610064:610064 [1] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.96<0>
|
145 |
+
r7i6n3:610064:610064 [1] NCCL INFO Using network IB
|
146 |
+
r7i6n2:1370350:1370350 [3] NCCL INFO Bootstrap : Using ib0:10.148.0.95<0>
|
147 |
+
r7i6n2:1370350:1370350 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
148 |
+
r7i6n2:1370350:1370350 [3] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.95<0>
|
149 |
+
r7i6n2:1370350:1370350 [3] NCCL INFO Using network IB
|
150 |
+
r7i6n3:610064:610133 [1] NCCL INFO Trees [0] 14/-1/-1->13->12 [1] -1/-1/-1->13->12 [2] 14/-1/-1->13->12 [3] -1/-1/-1->13->12
|
151 |
+
r7i6n3:610065:610128 [2] NCCL INFO Trees [0] 15/-1/-1->14->13 [1] 15/-1/-1->14->10 [2] 15/-1/-1->14->13 [3] 15/6/-1->14->-1
|
152 |
+
r7i6n3:610066:610123 [3] NCCL INFO Trees [0] -1/-1/-1->15->14 [1] 12/-1/-1->15->14 [2] -1/-1/-1->15->14 [3] 12/-1/-1->15->14
|
153 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 00/04 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
154 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 01/04 : 0 3 2 1 4 7 6 5 8 11 10 9 12 15 14 13
|
155 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 02/04 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
156 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 03/04 : 0 3 2 1 4 7 6 5 8 11 10 9 12 15 14 13
|
157 |
+
r6i6n4:257714:257762 [0] NCCL INFO Trees [0] 1/8/-1->0->-1 [1] 1/-1/-1->0->3 [2] 1/-1/-1->0->4 [3] 1/-1/-1->0->3
|
158 |
+
r6i6n4:257716:257777 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/10/-1->2->-1 [2] 3/-1/-1->2->1 [3] 3/-1/-1->2->6
|
159 |
+
r6i6n4:257715:257767 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] -1/-1/-1->1->0 [2] 2/-1/-1->1->0 [3] -1/-1/-1->1->0
|
160 |
+
r7i6n3:610063:610122 [0] NCCL INFO Trees [0] 13/-1/-1->12->8 [1] 13/-1/-1->12->15 [2] 13/4/-1->12->-1 [3] 13/-1/-1->12->15
|
161 |
+
r6i6n4:257714:257762 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff
|
162 |
+
r6i6n4:257715:257767 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff
|
163 |
+
r6i6n4:257717:257772 [3] NCCL INFO Trees [0] -1/-1/-1->3->2 [1] 0/-1/-1->3->2 [2] -1/-1/-1->3->2 [3] 0/-1/-1->3->2
|
164 |
+
r6i6n4:257716:257777 [2] NCCL INFO Setting affinity for GPU 2 to ff,fff00000
|
165 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Trees [0] -1/-1/-1->11->10 [1] 8/6/-1->11->10 [2] -1/-1/-1->11->10 [3] 8/-1/-1->11->10
|
166 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Trees [0] 11/-1/-1->10->9 [1] 11/14/-1->10->2 [2] 11/-1/-1->10->9 [3] 11/-1/-1->10->7
|
167 |
+
r6i6n4:257717:257772 [3] NCCL INFO Setting affinity for GPU 3 to ff,fff00000
|
168 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Trees [0] 9/12/-1->8->0 [1] 9/-1/-1->8->11 [2] 9/-1/-1->8->5 [3] 9/-1/-1->8->11
|
169 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Trees [0] 10/4/-1->9->8 [1] -1/-1/-1->9->8 [2] 10/-1/-1->9->8 [3] -1/-1/-1->9->8
|
170 |
+
r6i6n5:378202:378256 [2] NCCL INFO Trees [0] 7/-1/-1->6->5 [1] 7/-1/-1->6->11 [2] 7/-1/-1->6->5 [3] 7/2/-1->6->14
|
171 |
+
r6i6n5:378203:378255 [3] NCCL INFO Trees [0] -1/-1/-1->7->6 [1] 4/-1/-1->7->6 [2] -1/-1/-1->7->6 [3] 4/10/-1->7->6
|
172 |
+
r6i6n5:378201:378257 [1] NCCL INFO Trees [0] 6/-1/-1->5->4 [1] -1/-1/-1->5->4 [2] 6/8/-1->5->4 [3] -1/-1/-1->5->4
|
173 |
+
r6i6n5:378200:378262 [0] NCCL INFO Trees [0] 5/-1/-1->4->9 [1] 5/-1/-1->4->7 [2] 5/0/-1->4->12 [3] 5/-1/-1->4->7
|
174 |
+
r6i6n5:378202:378256 [2] NCCL INFO Setting affinity for GPU 2 to ff,fff00000
|
175 |
+
r6i6n5:378203:378255 [3] NCCL INFO Setting affinity for GPU 3 to ff,fff00000
|
176 |
+
r6i6n5:378201:378257 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff
|
177 |
+
r6i6n5:378200:378262 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff
|
178 |
+
r7i6n3:610064:610133 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff
|
179 |
+
r7i6n3:610065:610128 [2] NCCL INFO Setting affinity for GPU 2 to ff,fff00000
|
180 |
+
r7i6n3:610066:610123 [3] NCCL INFO Setting affinity for GPU 3 to ff,fff00000
|
181 |
+
r7i6n3:610063:610122 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff
|
182 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Setting affinity for GPU 3 to ff,fff00000
|
183 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Setting affinity for GPU 2 to ff,fff00000
|
184 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff
|
185 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff
|
186 |
+
r7i6n3:610064:610133 [1] NCCL INFO Channel 00 : 13[1c000] -> 14[88000] via P2P/IPC
|
187 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 00 : 5[1c000] -> 6[88000] via P2P/IPC
|
188 |
+
r7i6n3:610064:610133 [1] NCCL INFO Channel 02 : 13[1c000] -> 14[88000] via P2P/IPC
|
189 |
+
r6i6n4:257715:257767 [1] NCCL INFO Channel 00 : 1[1c000] -> 2[88000] via P2P/IPC
|
190 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 00 : 14[88000] -> 15[8a000] via P2P/IPC
|
191 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 00 : 2[88000] -> 3[8a000] via P2P/IPC
|
192 |
+
r6i6n4:257715:257767 [1] NCCL INFO Channel 02 : 1[1c000] -> 2[88000] via P2P/IPC
|
193 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 02 : 5[1c000] -> 6[88000] via P2P/IPC
|
194 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 00 : 6[88000] -> 7[8a000] via P2P/IPC
|
195 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 02 : 14[88000] -> 15[8a000] via P2P/IPC
|
196 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 02 : 2[88000] -> 3[8a000] via P2P/IPC
|
197 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 02 : 6[88000] -> 7[8a000] via P2P/IPC
|
198 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 00 : 15[8a000] -> 0[1a000] [receive] via NET/IB/1
|
199 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 00 : 3[8a000] -> 4[1a000] [receive] via NET/IB/1
|
200 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 00 : 11[8a000] -> 12[1a000] [receive] via NET/IB/1
|
201 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 00 : 9[1c000] -> 10[88000] via P2P/IPC
|
202 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 00 : 10[88000] -> 11[8a000] via P2P/IPC
|
203 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 02 : 9[1c000] -> 10[88000] via P2P/IPC
|
204 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 02 : 10[88000] -> 11[8a000] via P2P/IPC
|
205 |
+
r6i6n4:257717:257772 [3] NCCL INFO Channel 00 : 3[8a000] -> 4[1a000] [send] via NET/IB/3
|
206 |
+
r7i6n3:610066:610123 [3] NCCL INFO Channel 00 : 15[8a000] -> 0[1a000] [send] via NET/IB/3
|
207 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 00 : 7[8a000] -> 8[1a000] [send] via NET/IB/3
|
208 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 7[8a000] -> 8[1a000] [receive] via NET/IB/1
|
209 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 02 : 15[8a000] -> 0[1a000] [receive] via NET/IB/1
|
210 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 3[8a000] -> 4[1a000] [receive] via NET/IB/1
|
211 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 02 : 11[8a000] -> 12[1a000] [receive] via NET/IB/1
|
212 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 00 : 11[8a000] -> 12[1a000] [send] via NET/IB/3
|
213 |
+
r6i6n4:257717:257772 [3] NCCL INFO Channel 02 : 3[8a000] -> 4[1a000] [send] via NET/IB/3
|
214 |
+
r7i6n3:610066:610123 [3] NCCL INFO Channel 02 : 15[8a000] -> 0[1a000] [send] via NET/IB/3
|
215 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 01 : 2[88000] -> 1[1c000] via P2P/IPC
|
216 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 03 : 2[88000] -> 1[1c000] via P2P/IPC
|
217 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 02 : 7[8a000] -> 8[1a000] [send] via NET/IB/3
|
218 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 02 : 7[8a000] -> 8[1a000] [receive] via NET/IB/1
|
219 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 02 : 11[8a000] -> 12[1a000] [send] via NET/IB/3
|
220 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 10[88000] -> 9[1c000] via P2P/IPC
|
221 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 03 : 10[88000] -> 9[1c000] via P2P/IPC
|
222 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 01 : 6[88000] -> 5[1c000] via P2P/IPC
|
223 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 6[88000] -> 5[1c000] via P2P/IPC
|
224 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 00 : 12[1a000] -> 13[1c000] via P2P/IPC
|
225 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 02 : 12[1a000] -> 13[1c000] via P2P/IPC
|
226 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 01 : 14[88000] -> 13[1c000] via P2P/IPC
|
227 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 03 : 14[88000] -> 13[1c000] via P2P/IPC
|
228 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 00 : 4[1a000] -> 5[1c000] via P2P/IPC
|
229 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 4[1a000] -> 5[1c000] via P2P/IPC
|
230 |
+
r7i6n3:610064:610133 [1] NCCL INFO Channel 01 : 13[1c000] -> 0[1a000] [send] via NET/IB/1
|
231 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 00 : 0[1a000] -> 1[1c000] via P2P/IPC
|
232 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 02 : 0[1a000] -> 1[1c000] via P2P/IPC
|
233 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 01 : 9[1c000] -> 12[1a000] [receive] via NET/IB/1
|
234 |
+
r7i6n3:610064:610133 [1] NCCL INFO Channel 03 : 13[1c000] -> 0[1a000] [send] via NET/IB/1
|
235 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 8[1a000] -> 9[1c000] via P2P/IPC
|
236 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 02 : 8[1a000] -> 9[1c000] via P2P/IPC
|
237 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 01 : 1[1c000] -> 4[1a000] [receive] via NET/IB/1
|
238 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 01 : 13[1c000] -> 0[1a000] [receive] via NET/IB/1
|
239 |
+
r6i6n4:257715:257767 [1] NCCL INFO Channel 01 : 1[1c000] -> 4[1a000] [send] via NET/IB/1
|
240 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 03 : 9[1c000] -> 12[1a000] [receive] via NET/IB/1
|
241 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 01 : 12[1a000] -> 15[8a000] via P2P/IPC
|
242 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 03 : 12[1a000] -> 15[8a000] via P2P/IPC
|
243 |
+
r7i6n3:610066:610123 [3] NCCL INFO Channel 01 : 15[8a000] -> 14[88000] via P2P/IPC
|
244 |
+
r7i6n3:610066:610123 [3] NCCL INFO Channel 03 : 15[8a000] -> 14[88000] via P2P/IPC
|
245 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 03 : 1[1c000] -> 4[1a000] [receive] via NET/IB/1
|
246 |
+
r7i6n3:610066:610123 [3] NCCL INFO Connected all rings
|
247 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 01 : 4[1a000] -> 7[8a000] via P2P/IPC
|
248 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 03 : 4[1a000] -> 7[8a000] via P2P/IPC
|
249 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 01 : 5[1c000] -> 8[1a000] [receive] via NET/IB/1
|
250 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 03 : 13[1c000] -> 0[1a000] [receive] via NET/IB/1
|
251 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 01 : 7[8a000] -> 6[88000] via P2P/IPC
|
252 |
+
r6i6n4:257715:257767 [1] NCCL INFO Channel 03 : 1[1c000] -> 4[1a000] [send] via NET/IB/1
|
253 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 01 : 0[1a000] -> 3[8a000] via P2P/IPC
|
254 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 03 : 0[1a000] -> 3[8a000] via P2P/IPC
|
255 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 03 : 7[8a000] -> 6[88000] via P2P/IPC
|
256 |
+
r6i6n5:378203:378255 [3] NCCL INFO Connected all rings
|
257 |
+
r6i6n4:257717:257772 [3] NCCL INFO Channel 01 : 3[8a000] -> 2[88000] via P2P/IPC
|
258 |
+
r6i6n4:257717:257772 [3] NCCL INFO Channel 03 : 3[8a000] -> 2[88000] via P2P/IPC
|
259 |
+
r6i6n5:378200:378262 [0] NCCL INFO Connected all rings
|
260 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 01 : 4[1a000] -> 5[1c000] via P2P/IPC
|
261 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 03 : 4[1a000] -> 5[1c000] via P2P/IPC
|
262 |
+
r6i6n4:257715:257767 [1] NCCL INFO Connected all rings
|
263 |
+
r6i6n4:257717:257772 [3] NCCL INFO Connected all rings
|
264 |
+
r6i6n4:257716:257777 [2] NCCL INFO Connected all rings
|
265 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 03 : 5[1c000] -> 8[1a000] [receive] via NET/IB/1
|
266 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 01 : 8[1a000] -> 11[8a000] via P2P/IPC
|
267 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 01 : 2[88000] -> 3[8a000] via P2P/IPC
|
268 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 03 : 2[88000] -> 3[8a000] via P2P/IPC
|
269 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 01 : 5[1c000] -> 8[1a000] [send] via NET/IB/1
|
270 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 03 : 8[1a000] -> 11[8a000] via P2P/IPC
|
271 |
+
r6i6n4:257717:257772 [3] NCCL INFO Channel 01 : 3[8a000] -> 0[1a000] via P2P/IPC
|
272 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 01 : 9[1c000] -> 12[1a000] [send] via NET/IB/1
|
273 |
+
r6i6n4:257717:257772 [3] NCCL INFO Channel 03 : 3[8a000] -> 0[1a000] via P2P/IPC
|
274 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 01 : 11[8a000] -> 10[88000] via P2P/IPC
|
275 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 03 : 11[8a000] -> 10[88000] via P2P/IPC
|
276 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Connected all rings
|
277 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 03 : 5[1c000] -> 8[1a000] [send] via NET/IB/1
|
278 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 03 : 2[88000] -> 6[88000] [send] via NET/IB/3
|
279 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 03 : 9[1c000] -> 12[1a000] [send] via NET/IB/1
|
280 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Connected all rings
|
281 |
+
r6i6n4:257714:257762 [0] NCCL INFO Connected all rings
|
282 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 01 : 8[1a000] -> 9[1c000] via P2P/IPC
|
283 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 01 : 0[1a000] -> 1[1c000] via P2P/IPC
|
284 |
+
r6i6n5:378201:378257 [1] NCCL INFO Connected all rings
|
285 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 03 : 0[1a000] -> 1[1c000] via P2P/IPC
|
286 |
+
r7i6n3:610063:610122 [0] NCCL INFO Connected all rings
|
287 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 03 : 8[1a000] -> 9[1c000] via P2P/IPC
|
288 |
+
r6i6n5:378202:378256 [2] NCCL INFO Connected all rings
|
289 |
+
r7i6n3:610064:610133 [1] NCCL INFO Connected all rings
|
290 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 01 : 6[88000] -> 7[8a000] via P2P/IPC
|
291 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 01 : 12[1a000] -> 13[1c000] via P2P/IPC
|
292 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Connected all rings
|
293 |
+
r6i6n4:257715:257767 [1] NCCL INFO Channel 00 : 1[1c000] -> 0[1a000] via P2P/IPC
|
294 |
+
r6i6n4:257715:257767 [1] NCCL INFO Channel 01 : 1[1c000] -> 0[1a000] via P2P/IPC
|
295 |
+
r6i6n4:257715:257767 [1] NCCL INFO Channel 02 : 1[1c000] -> 0[1a000] via P2P/IPC
|
296 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 03 : 12[1a000] -> 13[1c000] via P2P/IPC
|
297 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 6[88000] -> 7[8a000] via P2P/IPC
|
298 |
+
r7i6n3:610065:610128 [2] NCCL INFO Connected all rings
|
299 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Connected all rings
|
300 |
+
r6i6n4:257715:257767 [1] NCCL INFO Channel 03 : 1[1c000] -> 0[1a000] via P2P/IPC
|
301 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 01 : 14[88000] -> 15[8a000] via P2P/IPC
|
302 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 10[88000] -> 11[8a000] via P2P/IPC
|
303 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 03 : 14[88000] -> 15[8a000] via P2P/IPC
|
304 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 03 : 10[88000] -> 11[8a000] via P2P/IPC
|
305 |
+
r7i6n3:610066:610123 [3] NCCL INFO Channel 01 : 15[8a000] -> 12[1a000] via P2P/IPC
|
306 |
+
r7i6n3:610064:610133 [1] NCCL INFO Channel 00 : 13[1c000] -> 12[1a000] via P2P/IPC
|
307 |
+
r7i6n3:610066:610123 [3] NCCL INFO Channel 03 : 15[8a000] -> 12[1a000] via P2P/IPC
|
308 |
+
r7i6n3:610064:610133 [1] NCCL INFO Channel 01 : 13[1c000] -> 12[1a000] via P2P/IPC
|
309 |
+
r7i6n3:610064:610133 [1] NCCL INFO Channel 02 : 13[1c000] -> 12[1a000] via P2P/IPC
|
310 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 02 : 0[1a000] -> 4[1a000] [send] via NET/IB/1
|
311 |
+
r7i6n3:610064:610133 [1] NCCL INFO Channel 03 : 13[1c000] -> 12[1a000] via P2P/IPC
|
312 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 0[1a000] -> 4[1a000] [receive] via NET/IB/1
|
313 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 02 : 5[1c000] -> 8[1a000] [send] via NET/IB/1
|
314 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 03 : 7[8a000] -> 10[88000] [send] via NET/IB/3
|
315 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 00 : 8[1a000] -> 12[1a000] [receive] via NET/IB/1
|
316 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 2[88000] -> 6[88000] [receive] via NET/IB/3
|
317 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 02 : 5[1c000] -> 8[1a000] [receive] via NET/IB/1
|
318 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 00 : 4[1a000] -> 9[1c000] [receive] via NET/IB/1
|
319 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 01 : 10[88000] -> 14[88000] [receive] via NET/IB/3
|
320 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 01 : 6[88000] -> 11[8a000] [receive] via NET/IB/3
|
321 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 03 : 7[8a000] -> 10[88000] [receive] via NET/IB/3
|
322 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 00 : 8[1a000] -> 0[1a000] [receive] via NET/IB/1
|
323 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 00 : 4[1a000] -> 9[1c000] [send] via NET/IB/1
|
324 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 01 : 10[88000] -> 2[88000] [receive] via NET/IB/3
|
325 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 01 : 6[88000] -> 11[8a000] [send] via NET/IB/3
|
326 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 8[1a000] -> 12[1a000] [send] via NET/IB/1
|
327 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 02 : 8[1a000] -> 5[1c000] [receive] via NET/IB/1
|
328 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 03 : 10[88000] -> 7[8a000] [receive] via NET/IB/3
|
329 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 01 : 7[8a000] -> 4[1a000] via P2P/IPC
|
330 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 10[88000] -> 14[88000] [send] via NET/IB/3
|
331 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 03 : 7[8a000] -> 4[1a000] via P2P/IPC
|
332 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 00 : 0[1a000] -> 8[1a000] [send] via NET/IB/1
|
333 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 01 : 2[88000] -> 10[88000] [send] via NET/IB/3
|
334 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 12[1a000] -> 4[1a000] [receive] via NET/IB/1
|
335 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 00 : 9[1c000] -> 4[1a000] [send] via NET/IB/1
|
336 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 14[88000] -> 6[88000] [receive] via NET/IB/3
|
337 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 02 : 4[1a000] -> 12[1a000] [receive] via NET/IB/1
|
338 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 0[1a000] -> 8[1a000] [receive] via NET/IB/1
|
339 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 01 : 11[8a000] -> 6[88000] [send] via NET/IB/3
|
340 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 03 : 6[88000] -> 14[88000] [receive] via NET/IB/3
|
341 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 2[88000] -> 10[88000] [receive] via NET/IB/3
|
342 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 4[1a000] -> 12[1a000] [send] via NET/IB/1
|
343 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 6[88000] -> 14[88000] [send] via NET/IB/3
|
344 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 02 : 12[1a000] -> 4[1a000] [send] via NET/IB/1
|
345 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 8[1a000] -> 0[1a000] [send] via NET/IB/1
|
346 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 03 : 14[88000] -> 6[88000] [send] via NET/IB/3
|
347 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 10[88000] -> 2[88000] [send] via NET/IB/3
|
348 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 00 : 9[1c000] -> 4[1a000] [receive] via NET/IB/1
|
349 |
+
r7i6n3:610063:610122 [0] NCCL INFO Channel 00 : 12[1a000] -> 8[1a000] [send] via NET/IB/1
|
350 |
+
r6i6n4:257714:257762 [0] NCCL INFO Channel 02 : 4[1a000] -> 0[1a000] [receive] via NET/IB/1
|
351 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 12[1a000] -> 8[1a000] [receive] via NET/IB/1
|
352 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 01 : 14[88000] -> 10[88000] [send] via NET/IB/3
|
353 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 01 : 11[8a000] -> 6[88000] [receive] via NET/IB/3
|
354 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 00 : 9[1c000] -> 8[1a000] via P2P/IPC
|
355 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 03 : 6[88000] -> 2[88000] [receive] via NET/IB/3
|
356 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 01 : 9[1c000] -> 8[1a000] via P2P/IPC
|
357 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 14[88000] -> 10[88000] [receive] via NET/IB/3
|
358 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 01 : 11[8a000] -> 8[1a000] via P2P/IPC
|
359 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 02 : 9[1c000] -> 8[1a000] via P2P/IPC
|
360 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 03 : 11[8a000] -> 8[1a000] via P2P/IPC
|
361 |
+
r7i6n3:610066:610123 [3] NCCL INFO Channel 00 : 15[8a000] -> 14[88000] via P2P/IPC
|
362 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Channel 03 : 9[1c000] -> 8[1a000] via P2P/IPC
|
363 |
+
r7i6n3:610066:610123 [3] NCCL INFO Channel 02 : 15[8a000] -> 14[88000] via P2P/IPC
|
364 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 00 : 14[88000] -> 13[1c000] via P2P/IPC
|
365 |
+
r7i6n3:610065:610128 [2] NCCL INFO Channel 02 : 14[88000] -> 13[1c000] via P2P/IPC
|
366 |
+
r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 4[1a000] -> 0[1a000] [send] via NET/IB/1
|
367 |
+
r7i6n3:610063:610122 [0] NCCL INFO Connected all trees
|
368 |
+
r7i6n3:610063:610122 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
369 |
+
r7i6n3:610063:610122 [0] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
370 |
+
r7i6n3:610066:610123 [3] NCCL INFO Connected all trees
|
371 |
+
r7i6n3:610066:610123 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
372 |
+
r7i6n3:610066:610123 [3] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
373 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 6[88000] -> 2[88000] [send] via NET/IB/3
|
374 |
+
r7i6n3:610065:610128 [2] NCCL INFO Connected all trees
|
375 |
+
r7i6n3:610065:610128 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
376 |
+
r7i6n3:610065:610128 [2] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
377 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Channel 02 : 8[1a000] -> 5[1c000] [send] via NET/IB/1
|
378 |
+
r7i6n3:610064:610133 [1] NCCL INFO Connected all trees
|
379 |
+
r7i6n3:610064:610133 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
380 |
+
r7i6n3:610064:610133 [1] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
381 |
+
r7i6n3:610064:610133 [1] NCCL INFO comm 0x1471e8002fb0 rank 13 nranks 16 cudaDev 1 busId 1c000 - Init COMPLETE
|
382 |
+
r7i6n3:610063:610122 [0] NCCL INFO comm 0x148058002fb0 rank 12 nranks 16 cudaDev 0 busId 1a000 - Init COMPLETE
|
383 |
+
r7i6n3:610066:610123 [3] NCCL INFO comm 0x155220002fb0 rank 15 nranks 16 cudaDev 3 busId 8a000 - Init COMPLETE
|
384 |
+
r7i6n3:610065:610128 [2] NCCL INFO comm 0x1521c8002fb0 rank 14 nranks 16 cudaDev 2 busId 88000 - Init COMPLETE
|
385 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 03 : 10[88000] -> 7[8a000] [send] via NET/IB/3
|
386 |
+
r6i6n4:257717:257772 [3] NCCL INFO Channel 00 : 3[8a000] -> 2[88000] via P2P/IPC
|
387 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 00 : 11[8a000] -> 10[88000] via P2P/IPC
|
388 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 00 : 6[88000] -> 5[1c000] via P2P/IPC
|
389 |
+
r6i6n4:257717:257772 [3] NCCL INFO Channel 02 : 3[8a000] -> 2[88000] via P2P/IPC
|
390 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Channel 02 : 11[8a000] -> 10[88000] via P2P/IPC
|
391 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 00 : 2[88000] -> 1[1c000] via P2P/IPC
|
392 |
+
r6i6n4:257716:257777 [2] NCCL INFO Channel 02 : 2[88000] -> 1[1c000] via P2P/IPC
|
393 |
+
r6i6n5:378202:378256 [2] NCCL INFO Channel 02 : 6[88000] -> 5[1c000] via P2P/IPC
|
394 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 00 : 5[1c000] -> 4[1a000] via P2P/IPC
|
395 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 00 : 10[88000] -> 9[1c000] via P2P/IPC
|
396 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 01 : 5[1c000] -> 4[1a000] via P2P/IPC
|
397 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 00 : 7[8a000] -> 6[88000] via P2P/IPC
|
398 |
+
r6i6n4:257717:257772 [3] NCCL INFO Connected all trees
|
399 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Channel 02 : 10[88000] -> 9[1c000] via P2P/IPC
|
400 |
+
r6i6n4:257717:257772 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
401 |
+
r6i6n4:257717:257772 [3] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
402 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 02 : 5[1c000] -> 4[1a000] via P2P/IPC
|
403 |
+
r6i6n5:378203:378255 [3] NCCL INFO Channel 02 : 7[8a000] -> 6[88000] via P2P/IPC
|
404 |
+
r6i6n5:378201:378257 [1] NCCL INFO Channel 03 : 5[1c000] -> 4[1a000] via P2P/IPC
|
405 |
+
r6i6n4:257714:257762 [0] NCCL INFO Connected all trees
|
406 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO Connected all trees
|
407 |
+
r6i6n4:257714:257762 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
408 |
+
r6i6n4:257714:257762 [0] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
409 |
+
r6i6n4:257716:257777 [2] NCCL INFO Connected all trees
|
410 |
+
r6i6n4:257716:257777 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
411 |
+
r6i6n4:257716:257777 [2] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
412 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
413 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
414 |
+
r6i6n5:378203:378255 [3] NCCL INFO Connected all trees
|
415 |
+
r6i6n5:378203:378255 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
416 |
+
r6i6n5:378203:378255 [3] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
417 |
+
r6i6n4:257715:257767 [1] NCCL INFO Connected all trees
|
418 |
+
r6i6n4:257715:257767 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
419 |
+
r6i6n4:257715:257767 [1] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
420 |
+
r6i6n4:257714:257762 [0] NCCL INFO comm 0x145844002fb0 rank 0 nranks 16 cudaDev 0 busId 1a000 - Init COMPLETE
|
421 |
+
r6i6n4:257715:257767 [1] NCCL INFO comm 0x14c6f8002fb0 rank 1 nranks 16 cudaDev 1 busId 1c000 - Init COMPLETE
|
422 |
+
r6i6n4:257717:257772 [3] NCCL INFO comm 0x149830002fb0 rank 3 nranks 16 cudaDev 3 busId 8a000 - Init COMPLETE
|
423 |
+
r6i6n4:257716:257777 [2] NCCL INFO comm 0x151a88002fb0 rank 2 nranks 16 cudaDev 2 busId 88000 - Init COMPLETE
|
424 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO Connected all trees
|
425 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
426 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
427 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO Connected all trees
|
428 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
429 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
430 |
+
r6i6n4:257714:257714 [0] NCCL INFO Launch mode Parallel
|
431 |
+
r6i6n5:378202:378256 [2] NCCL INFO Connected all trees
|
432 |
+
r6i6n5:378202:378256 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
433 |
+
r6i6n5:378202:378256 [2] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
434 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO Connected all trees
|
435 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
436 |
+
r6i6n5:378200:378262 [0] NCCL INFO Connected all trees
|
437 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
438 |
+
r6i6n5:378200:378262 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
439 |
+
r6i6n5:378200:378262 [0] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
440 |
+
r7i6n2:1370347:1370447 [0] NCCL INFO comm 0x151020002fb0 rank 8 nranks 16 cudaDev 0 busId 1a000 - Init COMPLETE
|
441 |
+
r6i6n5:378201:378257 [1] NCCL INFO Connected all trees
|
442 |
+
r7i6n2:1370348:1370434 [1] NCCL INFO comm 0x14d418002fb0 rank 9 nranks 16 cudaDev 1 busId 1c000 - Init COMPLETE
|
443 |
+
r7i6n2:1370350:1370452 [3] NCCL INFO comm 0x154f28002fb0 rank 11 nranks 16 cudaDev 3 busId 8a000 - Init COMPLETE
|
444 |
+
r6i6n5:378201:378257 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
|
445 |
+
r6i6n5:378201:378257 [1] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
|
446 |
+
r7i6n2:1370349:1370433 [2] NCCL INFO comm 0x154d48002fb0 rank 10 nranks 16 cudaDev 2 busId 88000 - Init COMPLETE
|
447 |
+
r6i6n5:378200:378262 [0] NCCL INFO comm 0x153408002fb0 rank 4 nranks 16 cudaDev 0 busId 1a000 - Init COMPLETE
|
448 |
+
r6i6n5:378202:378256 [2] NCCL INFO comm 0x154188002fb0 rank 6 nranks 16 cudaDev 2 busId 88000 - Init COMPLETE
|
449 |
+
r6i6n5:378201:378257 [1] NCCL INFO comm 0x14c900002fb0 rank 5 nranks 16 cudaDev 1 busId 1c000 - Init COMPLETE
|
450 |
+
r6i6n5:378203:378255 [3] NCCL INFO comm 0x14ef58002fb0 rank 7 nranks 16 cudaDev 3 busId 8a000 - Init COMPLETE
|
451 |
+
ignore me 6
|
452 |
+
14:
|
453 |
+
duration: 1.1593 sec
|
454 |
+
algo throughput: 55204675592.2273 bps, 55.2047 Gbps
|
455 |
+
busbw: 51.7544 Gbps
|
456 |
+
ignore me 6
|
457 |
+
ignore me 6
|
458 |
+
15:
|
459 |
+
duration: 1.2942 sec
|
460 |
+
algo throughput: 49451976290.1993 bps, 49.4520 Gbps
|
461 |
+
busbw: 46.3612 Gbps
|
462 |
+
13:
|
463 |
+
duration: 1.1545 sec
|
464 |
+
algo throughput: 55435153048.8659 bps, 55.4352 Gbps
|
465 |
+
busbw: 51.9705 Gbps
|
466 |
+
ignore me 6
|
467 |
+
12:
|
468 |
+
duration: 1.2946 sec
|
469 |
+
algo throughput: 49434318117.6515 bps, 49.4343 Gbps
|
470 |
+
busbw: 46.3447 Gbps
|
471 |
+
ignore me 6
|
472 |
+
ignore me 6
|
473 |
+
9:
|
474 |
+
duration: 1.4402 sec
|
475 |
+
algo throughput: 44438492090.8732 bps, 44.4385 Gbps
|
476 |
+
busbw: 41.6611 Gbps
|
477 |
+
10:
|
478 |
+
duration: 1.4738 sec
|
479 |
+
algo throughput: 43424520166.0441 bps, 43.4245 Gbps
|
480 |
+
ignore me 6
|
481 |
+
busbw: 40.7105 Gbps
|
482 |
+
ignore me 6
|
483 |
+
ignore me 6
|
484 |
+
3:
|
485 |
+
duration: 1.7691 sec
|
486 |
+
algo throughput: 36177572497.7145 bps, 36.1776 Gbps
|
487 |
+
busbw: 33.9165 Gbps
|
488 |
+
0:
|
489 |
+
11:
|
490 |
+
duration: 1.0927 sec
|
491 |
+
duration: 1.8093 sec
|
492 |
+
algo throughput: 35371927695.6812 bps, 35.3719 Gbps
|
493 |
+
busbw: 33.1612 Gbps
|
494 |
+
algo throughput: 58569704243.7844 bps, 58.5697 Gbps
|
495 |
+
busbw: 54.9091 Gbps
|
496 |
+
ignore me 6
|
497 |
+
ignore me 6
|
498 |
+
5:
|
499 |
+
duration: 2.0802 sec
|
500 |
+
algo throughput: 30765780785.6832 bps, 30.7658 Gbps
|
501 |
+
busbw: 28.8429 Gbps
|
502 |
+
ignore me 6
|
503 |
+
6:
|
504 |
+
duration: 2.1418 sec
|
505 |
+
algo throughput: 29880845367.0138 bps, 29.8808 Gbps
|
506 |
+
busbw: 28.0133 Gbps
|
507 |
+
ignore me 6
|
508 |
+
8:
|
509 |
+
duration: 1.2561 sec
|
510 |
+
algo throughput: 50951080615.8564 bps, 50.9511 Gbps
|
511 |
+
busbw: 47.7666 Gbps
|
512 |
+
7:
|
513 |
+
duration: 1.8124 sec
|
514 |
+
algo throughput: 35312957596.3833 bps, 35.3130 Gbps
|
515 |
+
busbw: 33.1059 Gbps
|
516 |
+
ignore me 6
|
517 |
+
4:
|
518 |
+
duration: 1.7526 sec
|
519 |
+
algo throughput: 36517122206.3803 bps, 36.5171 Gbps
|
520 |
+
busbw: 34.2348 Gbps
|
521 |
+
ignore me 6
|
522 |
+
1:
|
523 |
+
duration: 1.8395 sec
|
524 |
+
algo throughput: 34792737240.4271 bps, 34.7927 Gbps
|
525 |
+
busbw: 32.6182 Gbps
|
526 |
+
ignore me 6
|
527 |
+
2:
|
528 |
+
duration: 1.7637 sec
|
529 |
+
algo throughput: 36287170944.4988 bps, 36.2872 Gbps
|
530 |
+
busbw: 34.0192 Gbps
|
531 |
+
ignore me 109
|
532 |
+
14:
|
533 |
+
duration: 0.7080 sec
|
534 |
+
algo throughput: 90399491760.9001 bps, 90.3995 Gbps
|
535 |
+
busbw: 84.7495 Gbps
|
536 |
+
ignore me 109
|
537 |
+
15:
|
538 |
+
duration: 0.7080 sec
|
539 |
+
algo throughput: 90395163203.6951 bps, 90.3952 Gbps
|
540 |
+
busbw: 84.7455 Gbps
|
541 |
+
ignore me 109
|
542 |
+
13:
|
543 |
+
duration: 0.7081 sec
|
544 |
+
algo throughput: 90382326783.5510 bps, 90.3823 Gbps
|
545 |
+
busbw: 84.7334 Gbps
|
546 |
+
ignore me 109
|
547 |
+
12:
|
548 |
+
duration: 0.7080 sec
|
549 |
+
algo throughput: 90401745663.7657 bps, 90.4017 Gbps
|
550 |
+
busbw: 84.7516 Gbps
|
551 |
+
ignore me 109
|
552 |
+
9:
|
553 |
+
duration: 0.7080 sec
|
554 |
+
algo throughput: 90395783074.5905 bps, 90.3958 Gbps
|
555 |
+
busbw: 84.7460 Gbps
|
556 |
+
ignore me 109
|
557 |
+
10:
|
558 |
+
duration: 0.7082 sec
|
559 |
+
algo throughput: 90374224799.5715 bps, 90.3742 Gbps
|
560 |
+
busbw: 84.7258 Gbps
|
561 |
+
ignore me 109
|
562 |
+
0:
|
563 |
+
duration: 0.7083 sec
|
564 |
+
algo throughput: 90354374863.7591 bps, 90.3544 Gbps
|
565 |
+
busbw: 84.7072 Gbps
|
566 |
+
ignore me 109
|
567 |
+
11:
|
568 |
+
duration: 0.7084 sec
|
569 |
+
algo throughput: 90343336684.2220 bps, 90.3433 Gbps
|
570 |
+
busbw: 84.6969 Gbps
|
571 |
+
ignore me 109
|
572 |
+
3:
|
573 |
+
duration: 0.7087 sec
|
574 |
+
algo throughput: 90311896434.2268 bps, 90.3119 Gbps
|
575 |
+
busbw: 84.6674 Gbps
|
576 |
+
ignore me 109
|
577 |
+
8:
|
578 |
+
duration: 0.7085 sec
|
579 |
+
algo throughput: 90330088518.1323 bps, 90.3301 Gbps
|
580 |
+
busbw: 84.6845 Gbps
|
581 |
+
ignore me 109
|
582 |
+
ignore me 109
|
583 |
+
2:
|
584 |
+
duration: 0.7085 sec
|
585 |
+
algo throughput: 90337030385.0629 bps, 90.3370 Gbps
|
586 |
+
busbw: 84.6910 Gbps
|
587 |
+
5:
|
588 |
+
duration: 0.7088 sec
|
589 |
+
algo throughput: 90287308758.8899 bps, 90.2873 Gbps
|
590 |
+
busbw: 84.6444 Gbps
|
591 |
+
ignore me 109
|
592 |
+
ignore me 109
|
593 |
+
1:
|
594 |
+
duration: 0.7089 sec
|
595 |
+
algo throughput: 90280901515.7927 bps, 90.2809 Gbps
|
596 |
+
busbw: 84.6383 Gbps
|
597 |
+
6:
|
598 |
+
duration: 0.7090 sec
|
599 |
+
algo throughput: 90270047942.0345 bps, 90.2700 Gbps
|
600 |
+
busbw: 84.6282 Gbps
|
601 |
+
ignore me 109
|
602 |
+
7:
|
603 |
+
duration: 0.7090 sec
|
604 |
+
algo throughput: 90272586091.4933 bps, 90.2726 Gbps
|
605 |
+
busbw: 84.6305 Gbps
|
606 |
+
ignore me 109
|
607 |
+
4:
|
608 |
+
duration: 0.7085 sec
|
609 |
+
algo throughput: 90337161208.6908 bps, 90.3372 Gbps
|
610 |
+
busbw: 84.6911 Gbps
|
611 |
+
ignore me 1749
|
612 |
+
14:
|
613 |
+
duration: 0.7107 sec
|
614 |
+
algo throughput: 90058256584.7650 bps, 90.0583 Gbps
|
615 |
+
busbw: 84.4296 Gbps
|
616 |
+
ignore me 1749
|
617 |
+
ignore me 1749
|
618 |
+
15:
|
619 |
+
duration: 0.7107 sec
|
620 |
+
algo throughput: 90057464420.3045 bps, 90.0575 Gbps
|
621 |
+
busbw: 84.4289 Gbps
|
622 |
+
13:
|
623 |
+
duration: 0.7106 sec
|
624 |
+
algo throughput: 90070702828.5613 bps, 90.0707 Gbps
|
625 |
+
busbw: 84.4413 Gbps
|
626 |
+
ignore me 1749
|
627 |
+
ignore me 1749
|
628 |
+
12:
|
629 |
+
duration: 0.7106 sec
|
630 |
+
algo throughput: 90059933061.1509 bps, 90.0599 Gbps
|
631 |
+
busbw: 84.4312 Gbps
|
632 |
+
9:
|
633 |
+
duration: 0.7105 sec
|
634 |
+
algo throughput: 90071340053.9053 bps, 90.0713 Gbps
|
635 |
+
busbw: 84.4419 Gbps
|
636 |
+
ignore me 1749
|
637 |
+
10:
|
638 |
+
duration: 0.7106 sec
|
639 |
+
algo throughput: 90063253431.3530 bps, 90.0633 Gbps
|
640 |
+
busbw: 84.4343 Gbps
|
641 |
+
ignore me 1749
|
642 |
+
ignore me 1749
|
643 |
+
11:
|
644 |
+
duration: 0.7106 sec
|
645 |
+
algo throughput: 90065670303.2662 bps, 90.0657 Gbps
|
646 |
+
busbw: 84.4366 Gbps
|
647 |
+
0:
|
648 |
+
duration: 0.7107 sec
|
649 |
+
algo throughput: 90053334417.7426 bps, 90.0533 Gbps
|
650 |
+
busbw: 84.4250 Gbps
|
651 |
+
ignore me 1749
|
652 |
+
3:
|
653 |
+
duration: 0.7106 sec
|
654 |
+
algo throughput: 90068692693.3661 bps, 90.0687 Gbps
|
655 |
+
busbw: 84.4394 Gbps
|
656 |
+
ignore me 1749
|
657 |
+
ignore me 1749
|
658 |
+
ignore me 1749
|
659 |
+
8:
|
660 |
+
duration: 0.7105 sec
|
661 |
+
2:
|
662 |
+
duration: 0.7104 sec
|
663 |
+
algo throughput: 90072894085.7098 bps, 90.0729 Gbps
|
664 |
+
busbw: 84.4433 Gbps
|
665 |
+
algo throughput: 90091360420.7079 bps, 90.0914 Gbps
|
666 |
+
busbw: 84.4607 Gbps
|
667 |
+
ignore me 1749
|
668 |
+
ignore me 1749
|
669 |
+
5:
|
670 |
+
duration: 0.7104 sec
|
671 |
+
algo throughput: 90091316675.7603 bps, 90.0913 Gbps
|
672 |
+
busbw: 84.4606 Gbps
|
673 |
+
1:
|
674 |
+
duration: 0.7103 sec
|
675 |
+
algo throughput: 90101456511.8536 bps, 90.1015 Gbps
|
676 |
+
busbw: 84.4701 Gbps
|
677 |
+
6:
|
678 |
+
duration: 0.7103 sec
|
679 |
+
algo throughput: 90107024226.3038 bps, 90.1070 Gbps
|
680 |
+
busbw: 84.4753 Gbps
|
681 |
+
ignore me 1749
|
682 |
+
7:
|
683 |
+
duration: 0.7103 sec
|
684 |
+
algo throughput: 90107799997.7677 bps, 90.1078 Gbps
|
685 |
+
busbw: 84.4761 Gbps
|
686 |
+
ignore me 1749
|
687 |
+
4:
|
688 |
+
duration: 0.7103 sec
|
689 |
+
algo throughput: 90102477650.2766 bps, 90.1025 Gbps
|
690 |
+
busbw: 84.4711 Gbps
|
691 |
+
ignore me 27986
|
692 |
+
14:
|
693 |
+
duration: 0.7092 sec
|
694 |
+
algo throughput: 90242129271.5844 bps, 90.2421 Gbps
|
695 |
+
busbw: 84.6020 Gbps
|
696 |
+
ignore me 27986
|
697 |
+
ignore me 27986
|
698 |
+
15:
|
699 |
+
duration: 0.7093 sec
|
700 |
+
algo throughput: 90233065038.0259 bps, 90.2331 Gbps
|
701 |
+
busbw: 84.5935 Gbps
|
702 |
+
13:
|
703 |
+
duration: 0.7093 sec
|
704 |
+
algo throughput: 90226024022.6829 bps, 90.2260 Gbps
|
705 |
+
busbw: 84.5869 Gbps
|
706 |
+
ignore me 27986
|
707 |
+
12:
|
708 |
+
duration: 0.7092 sec
|
709 |
+
algo throughput: 90236901241.3211 bps, 90.2369 Gbps
|
710 |
+
busbw: 84.5971 Gbps
|
711 |
+
ignore me 27986
|
712 |
+
9:
|
713 |
+
duration: 0.7093 sec
|
714 |
+
algo throughput: 90231794012.9985 bps, 90.2318 Gbps
|
715 |
+
busbw: 84.5923 Gbps
|
716 |
+
ignore me 27986
|
717 |
+
10:
|
718 |
+
duration: 0.7093 sec
|
719 |
+
algo throughput: 90224093186.3902 bps, 90.2241 Gbps
|
720 |
+
busbw: 84.5851 Gbps
|
721 |
+
ignore me 27986
|
722 |
+
ignore me 27986
|
723 |
+
0:
|
724 |
+
duration: 0.7092 sec
|
725 |
+
11:
|
726 |
+
duration: 0.7092 sec
|
727 |
+
algo throughput: 90246123531.0302 bps, 90.2461 Gbps
|
728 |
+
busbw: 84.6057 Gbps
|
729 |
+
algo throughput: 90237670852.4900 bps, 90.2377 Gbps
|
730 |
+
busbw: 84.5978 Gbps
|
731 |
+
ignore me 27986
|
732 |
+
3:
|
733 |
+
duration: 0.7093 sec
|
734 |
+
algo throughput: 90235789890.2677 bps, 90.2358 Gbps
|
735 |
+
busbw: 84.5961 Gbps
|
736 |
+
ignore me 27986
|
737 |
+
8:
|
738 |
+
duration: 0.7092 sec
|
739 |
+
algo throughput: 90238335770.9699 bps, 90.2383 Gbps
|
740 |
+
busbw: 84.5984 Gbps
|
741 |
+
ignore me 27986
|
742 |
+
ignore me 27986
|
743 |
+
2:
|
744 |
+
duration: 0.7093 sec
|
745 |
+
algo throughput: 90223737057.9605 bps, 90.2237 Gbps
|
746 |
+
busbw: 84.5848 Gbps
|
747 |
+
ignore me 27986
|
748 |
+
ignore me 27986
|
749 |
+
5:
|
750 |
+
duration: 0.7093 sec
|
751 |
+
algo throughput: 90226816489.8323 bps, 90.2268 Gbps
|
752 |
+
busbw: 84.5876 Gbps
|
753 |
+
6:
|
754 |
+
duration: 0.7093 sec
|
755 |
+
algo throughput: 90227312447.8407 bps, 90.2273 Gbps
|
756 |
+
busbw: 84.5881 Gbps
|
757 |
+
1:
|
758 |
+
duration: 0.7094 sec
|
759 |
+
algo throughput: 90222924803.6610 bps, 90.2229 Gbps
|
760 |
+
busbw: 84.5840 Gbps
|
761 |
+
ignore me 27986
|
762 |
+
7:
|
763 |
+
duration: 0.7093 sec
|
764 |
+
algo throughput: 90229254099.1920 bps, 90.2293 Gbps
|
765 |
+
busbw: 84.5899 Gbps
|
766 |
+
ignore me 27986
|
767 |
+
4:
|
768 |
+
duration: 0.7094 sec
|
769 |
+
algo throughput: 90217548148.5392 bps, 90.2175 Gbps
|
770 |
+
busbw: 84.5790 Gbps
|
771 |
+
ignore me 447779
|
772 |
+
14:
|
773 |
+
duration: 0.7079 sec
|
774 |
+
algo throughput: 90401898007.1683 bps, 90.4019 Gbps
|
775 |
+
busbw: 84.7518 Gbps
|
776 |
+
ignore me 447779
|
777 |
+
13:
|
778 |
+
duration: 0.7078 sec
|
779 |
+
algo throughput: 90422510545.5320 bps, 90.4225 Gbps
|
780 |
+
busbw: 84.7711 Gbps
|
781 |
+
ignore me 447779
|
782 |
+
15:
|
783 |
+
duration: 0.7080 sec
|
784 |
+
algo throughput: 90397684358.3370 bps, 90.3977 Gbps
|
785 |
+
busbw: 84.7478 Gbps
|
786 |
+
ignore me 447779
|
787 |
+
12:
|
788 |
+
duration: 0.7080 sec
|
789 |
+
algo throughput: 90398934791.1951 bps, 90.3989 Gbps
|
790 |
+
busbw: 84.7490 Gbps
|
791 |
+
ignore me 447779
|
792 |
+
10:
|
793 |
+
duration: 0.7079 sec
|
794 |
+
algo throughput: 90404439072.1211 bps, 90.4044 Gbps
|
795 |
+
busbw: 84.7542 Gbps
|
796 |
+
ignore me 447779
|
797 |
+
11:
|
798 |
+
duration: 0.7078 sec
|
799 |
+
algo throughput: 90415260229.4886 bps, 90.4153 Gbps
|
800 |
+
busbw: 84.7643 Gbps
|
801 |
+
ignore me 447779
|
802 |
+
ignore me 447779
|
803 |
+
9:
|
804 |
+
duration: 0.7086 sec
|
805 |
+
algo throughput: 90317814308.9687 bps, 90.3178 Gbps
|
806 |
+
busbw: 84.6730 Gbps
|
807 |
+
0:
|
808 |
+
duration: 0.7081 sec
|
809 |
+
algo throughput: 90384670565.8098 bps, 90.3847 Gbps
|
810 |
+
busbw: 84.7356 Gbps
|
811 |
+
ignore me 447779
|
812 |
+
8:
|
813 |
+
duration: 0.7080 sec
|
814 |
+
algo throughput: 90401729311.5575 bps, 90.4017 Gbps
|
815 |
+
busbw: 84.7516 Gbps
|
816 |
+
ignore me 447779
|
817 |
+
ignore me 447779
|
818 |
+
2:
|
819 |
+
duration: 0.7081 sec
|
820 |
+
algo throughput: 90388659575.5084 bps, 90.3887 Gbps
|
821 |
+
busbw: 84.7394 Gbps
|
822 |
+
1:
|
823 |
+
duration: 0.7080 sec
|
824 |
+
algo throughput: 90397847806.5952 bps, 90.3978 Gbps
|
825 |
+
busbw: 84.7480 Gbps
|
826 |
+
ignore me 447779
|
827 |
+
ignore me 447779
|
828 |
+
3:
|
829 |
+
duration: 0.7086 sec
|
830 |
+
6:
|
831 |
+
duration: 0.7083 sec
|
832 |
+
algo throughput: 90320233896.8830 bps, 90.3202 Gbps
|
833 |
+
busbw: 84.6752 Gbps
|
834 |
+
algo throughput: 90360979559.3395 bps, 90.3610 Gbps
|
835 |
+
busbw: 84.7134 Gbps
|
836 |
+
ignore me 447779
|
837 |
+
7:
|
838 |
+
duration: 0.7083 sec
|
839 |
+
algo throughput: 90360919482.0588 bps, 90.3609 Gbps
|
840 |
+
busbw: 84.7134 Gbps
|
841 |
+
ignore me 447779
|
842 |
+
5:
|
843 |
+
duration: 0.7087 sec
|
844 |
+
algo throughput: 90307672345.7347 bps, 90.3077 Gbps
|
845 |
+
busbw: 84.6634 Gbps
|
846 |
+
ignore me 447779
|
847 |
+
4:
|
848 |
+
duration: 0.7085 sec
|
849 |
+
algo throughput: 90328680753.0585 bps, 90.3287 Gbps
|
850 |
+
busbw: 84.6831 Gbps
|
bigscience/experiments/bandwidth/all_reduce_bench-a100-n4.slurm
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=all_reduce_bench-a100-n4
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=4
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=64 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:8 # number of gpus
|
10 |
+
#SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
|
14 |
+
source $six_ALL_CCFRWORK/code/tr11-176B-ml/bigscience/train/tr11-176B-ml/start-tr11-176B-ml
|
15 |
+
|
16 |
+
export NNODES=$SLURM_NNODES
|
17 |
+
export GPUS_PER_NODE=8
|
18 |
+
export NCCL_DEBUG=info
|
19 |
+
|
20 |
+
export LOG_FILE=all_reduce_bench-a100-$NNODES.txt
|
21 |
+
|
22 |
+
export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
23 |
+
|
24 |
+
srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.launch --nnodes $NNODES --nproc_per_node $GPUS_PER_NODE --node_rank $SLURM_PROCID --master_addr $MASTER_ADDR --master_port 12345 all_reduce_bench.py' 2>&1 | tee $LOG_FILE
|
bigscience/experiments/bandwidth/all_reduce_bench-a100-n4.txt
ADDED
@@ -0,0 +1,1424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
|
2 |
+
and will be removed in future. Use torchrun.
|
3 |
+
Note that --use_env is set by default in torchrun.
|
4 |
+
If your script expects `--local_rank` argument to be set, please
|
5 |
+
change it to read from `os.environ['LOCAL_RANK']` instead. See
|
6 |
+
https://pytorch.org/docs/stable/distributed.html#launch-utility for
|
7 |
+
further instructions
|
8 |
+
|
9 |
+
warnings.warn(
|
10 |
+
/gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
|
11 |
+
and will be removed in future. Use torchrun.
|
12 |
+
Note that --use_env is set by default in torchrun.
|
13 |
+
If your script expects `--local_rank` argument to be set, please
|
14 |
+
change it to read from `os.environ['LOCAL_RANK']` instead. See
|
15 |
+
https://pytorch.org/docs/stable/distributed.html#launch-utility for
|
16 |
+
further instructions
|
17 |
+
|
18 |
+
warnings.warn(
|
19 |
+
/gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
|
20 |
+
and will be removed in future. Use torchrun.
|
21 |
+
Note that --use_env is set by default in torchrun.
|
22 |
+
If your script expects `--local_rank` argument to be set, please
|
23 |
+
change it to read from `os.environ['LOCAL_RANK']` instead. See
|
24 |
+
https://pytorch.org/docs/stable/distributed.html#launch-utility for
|
25 |
+
further instructions
|
26 |
+
|
27 |
+
warnings.warn(
|
28 |
+
/gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
|
29 |
+
and will be removed in future. Use torchrun.
|
30 |
+
Note that --use_env is set by default in torchrun.
|
31 |
+
If your script expects `--local_rank` argument to be set, please
|
32 |
+
change it to read from `os.environ['LOCAL_RANK']` instead. See
|
33 |
+
https://pytorch.org/docs/stable/distributed.html#launch-utility for
|
34 |
+
further instructions
|
35 |
+
|
36 |
+
warnings.warn(
|
37 |
+
WARNING:torch.distributed.run:
|
38 |
+
*****************************************
|
39 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
40 |
+
*****************************************
|
41 |
+
WARNING:torch.distributed.run:
|
42 |
+
*****************************************
|
43 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
44 |
+
*****************************************
|
45 |
+
WARNING:torch.distributed.run:
|
46 |
+
*****************************************
|
47 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
48 |
+
*****************************************
|
49 |
+
WARNING:torch.distributed.run:
|
50 |
+
*****************************************
|
51 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
52 |
+
*****************************************
|
53 |
+
local_rank: 1
|
54 |
+
local_rank: 3
|
55 |
+
local_rank: 5
|
56 |
+
local_rank: 6
|
57 |
+
local_rank: 7
|
58 |
+
local_rank: 2
|
59 |
+
local_rank: 2
|
60 |
+
local_rank: 3
|
61 |
+
local_rank: 2
|
62 |
+
local_rank: 1
|
63 |
+
local_rank: 0
|
64 |
+
local_rank: 2
|
65 |
+
local_rank: 0
|
66 |
+
local_rank: 0
|
67 |
+
local_rank: 5
|
68 |
+
local_rank: 1
|
69 |
+
local_rank: 4
|
70 |
+
local_rank: 3
|
71 |
+
local_rank: 7
|
72 |
+
local_rank: 7
|
73 |
+
local_rank: 6
|
74 |
+
local_rank: 6
|
75 |
+
local_rank: 4
|
76 |
+
local_rank: 5
|
77 |
+
local_rank: 5
|
78 |
+
local_rank: 1
|
79 |
+
local_rank: 3
|
80 |
+
local_rank: 4
|
81 |
+
local_rank: 6
|
82 |
+
local_rank: 7
|
83 |
+
local_rank: 0
|
84 |
+
local_rank: 4
|
85 |
+
0 data size: 4.0 GB
|
86 |
+
1 data size: 4.0 GB
|
87 |
+
5 data size: 4.0 GB
|
88 |
+
20 data size: 4.0 GB
|
89 |
+
30 data size: 4.0 GB
|
90 |
+
3 data size: 4.0 GB
|
91 |
+
12 data size: 4.0 GB
|
92 |
+
21 data size: 4.0 GB
|
93 |
+
28 data size: 4.0 GB
|
94 |
+
17 data size: 4.0 GB
|
95 |
+
2 data size: 4.0 GB
|
96 |
+
25 data size: 4.0 GB
|
97 |
+
19 data size: 4.0 GB
|
98 |
+
22 data size: 4.0 GB
|
99 |
+
16 data size: 4.0 GB
|
100 |
+
15 data size: 4.0 GB
|
101 |
+
26 data size: 4.0 GB
|
102 |
+
27 data size: 4.0 GB
|
103 |
+
6 data size: 4.0 GB
|
104 |
+
24 data size: 4.0 GB
|
105 |
+
9 data size: 4.0 GB
|
106 |
+
29 data size: 4.0 GB
|
107 |
+
23 data size: 4.0 GB
|
108 |
+
31 data size: 4.0 GB
|
109 |
+
14 data size: 4.0 GB
|
110 |
+
7 data size: 4.0 GB
|
111 |
+
18 data size: 4.0 GB
|
112 |
+
8 data size: 4.0 GB
|
113 |
+
11 data size: 4.0 GB
|
114 |
+
10 data size: 4.0 GB
|
115 |
+
13 data size: 4.0 GB
|
116 |
+
4 data size: 4.0 GB
|
117 |
+
jean-zay-iam37:261379:261379 [0] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
|
118 |
+
jean-zay-iam37:261379:261379 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
119 |
+
jean-zay-iam37:261379:261379 [0] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
|
120 |
+
jean-zay-iam37:261379:261379 [0] NCCL INFO Using network IB
|
121 |
+
NCCL version 2.10.3+cuda11.3
|
122 |
+
jean-zay-iam37:261380:261380 [1] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
|
123 |
+
jean-zay-iam37:261383:261383 [4] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
|
124 |
+
jean-zay-iam37:261384:261384 [5] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
|
125 |
+
jean-zay-iam37:261386:261386 [7] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
|
126 |
+
jean-zay-iam37:261381:261381 [2] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
|
127 |
+
jean-zay-iam37:261382:261382 [3] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
|
128 |
+
jean-zay-iam41:276753:276753 [7] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
|
129 |
+
jean-zay-iam41:276748:276748 [2] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
|
130 |
+
jean-zay-iam41:276747:276747 [1] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
|
131 |
+
jean-zay-iam41:276752:276752 [6] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
|
132 |
+
jean-zay-iam41:276750:276750 [4] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
|
133 |
+
jean-zay-iam41:276751:276751 [5] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
|
134 |
+
jean-zay-iam41:276746:276746 [0] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
|
135 |
+
jean-zay-iam41:276749:276749 [3] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
|
136 |
+
jean-zay-iam37:261384:261384 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
137 |
+
jean-zay-iam52:263016:263016 [1] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
|
138 |
+
jean-zay-iam52:263017:263017 [2] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
|
139 |
+
jean-zay-iam52:263018:263018 [3] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
|
140 |
+
jean-zay-iam52:263021:263021 [6] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
|
141 |
+
jean-zay-iam52:263019:263019 [4] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
|
142 |
+
jean-zay-iam52:263015:263015 [0] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
|
143 |
+
jean-zay-iam52:263020:263020 [5] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
|
144 |
+
jean-zay-iam52:263022:263022 [7] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
|
145 |
+
jean-zay-iam37:261386:261386 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
146 |
+
jean-zay-iam37:261381:261381 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
147 |
+
jean-zay-iam37:261380:261380 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
148 |
+
jean-zay-iam37:261383:261383 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
149 |
+
jean-zay-iam40:289973:289973 [6] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
|
150 |
+
jean-zay-iam40:289967:289967 [0] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
|
151 |
+
jean-zay-iam40:289969:289969 [2] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
|
152 |
+
jean-zay-iam40:289971:289971 [4] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
|
153 |
+
jean-zay-iam40:289970:289970 [3] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
|
154 |
+
jean-zay-iam40:289972:289972 [5] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
|
155 |
+
jean-zay-iam40:289968:289968 [1] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
|
156 |
+
jean-zay-iam40:289974:289974 [7] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
|
157 |
+
jean-zay-iam37:261382:261382 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
158 |
+
jean-zay-iam41:276751:276751 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
159 |
+
jean-zay-iam41:276749:276749 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
160 |
+
jean-zay-iam41:276746:276746 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
161 |
+
jean-zay-iam41:276753:276753 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
162 |
+
jean-zay-iam41:276748:276748 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
163 |
+
jean-zay-iam41:276752:276752 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
164 |
+
jean-zay-iam41:276747:276747 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
165 |
+
jean-zay-iam41:276750:276750 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
166 |
+
jean-zay-iam52:263017:263017 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
167 |
+
jean-zay-iam52:263016:263016 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
168 |
+
jean-zay-iam40:289968:289968 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
169 |
+
jean-zay-iam40:289974:289974 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
170 |
+
jean-zay-iam52:263021:263021 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
171 |
+
jean-zay-iam52:263015:263015 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
172 |
+
jean-zay-iam52:263019:263019 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
173 |
+
jean-zay-iam52:263020:263020 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
174 |
+
jean-zay-iam40:289973:289973 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
175 |
+
jean-zay-iam52:263018:263018 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
176 |
+
jean-zay-iam52:263022:263022 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
177 |
+
jean-zay-iam40:289972:289972 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
178 |
+
jean-zay-iam40:289969:289969 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
179 |
+
jean-zay-iam40:289971:289971 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
180 |
+
jean-zay-iam40:289967:289967 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
181 |
+
jean-zay-iam40:289970:289970 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
182 |
+
jean-zay-iam37:261384:261384 [5] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
|
183 |
+
jean-zay-iam37:261384:261384 [5] NCCL INFO Using network IB
|
184 |
+
jean-zay-iam37:261380:261380 [1] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
|
185 |
+
jean-zay-iam37:261380:261380 [1] NCCL INFO Using network IB
|
186 |
+
jean-zay-iam37:261383:261383 [4] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
|
187 |
+
jean-zay-iam37:261381:261381 [2] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
|
188 |
+
jean-zay-iam37:261386:261386 [7] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
|
189 |
+
jean-zay-iam37:261381:261381 [2] NCCL INFO Using network IB
|
190 |
+
jean-zay-iam37:261383:261383 [4] NCCL INFO Using network IB
|
191 |
+
jean-zay-iam37:261386:261386 [7] NCCL INFO Using network IB
|
192 |
+
jean-zay-iam37:261382:261382 [3] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
|
193 |
+
jean-zay-iam37:261382:261382 [3] NCCL INFO Using network IB
|
194 |
+
jean-zay-iam41:276751:276751 [5] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
|
195 |
+
jean-zay-iam41:276751:276751 [5] NCCL INFO Using network IB
|
196 |
+
jean-zay-iam41:276748:276748 [2] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
|
197 |
+
jean-zay-iam41:276748:276748 [2] NCCL INFO Using network IB
|
198 |
+
jean-zay-iam41:276747:276747 [1] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
|
199 |
+
jean-zay-iam41:276747:276747 [1] NCCL INFO Using network IB
|
200 |
+
jean-zay-iam41:276752:276752 [6] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
|
201 |
+
jean-zay-iam41:276746:276746 [0] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
|
202 |
+
jean-zay-iam41:276749:276749 [3] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
|
203 |
+
jean-zay-iam41:276753:276753 [7] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
|
204 |
+
jean-zay-iam41:276749:276749 [3] NCCL INFO Using network IB
|
205 |
+
jean-zay-iam41:276750:276750 [4] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
|
206 |
+
jean-zay-iam41:276746:276746 [0] NCCL INFO Using network IB
|
207 |
+
jean-zay-iam41:276753:276753 [7] NCCL INFO Using network IB
|
208 |
+
jean-zay-iam41:276752:276752 [6] NCCL INFO Using network IB
|
209 |
+
jean-zay-iam41:276750:276750 [4] NCCL INFO Using network IB
|
210 |
+
jean-zay-iam52:263022:263022 [7] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
|
211 |
+
jean-zay-iam52:263022:263022 [7] NCCL INFO Using network IB
|
212 |
+
jean-zay-iam52:263019:263019 [4] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
|
213 |
+
jean-zay-iam52:263019:263019 [4] NCCL INFO Using network IB
|
214 |
+
jean-zay-iam52:263021:263021 [6] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
|
215 |
+
jean-zay-iam52:263021:263021 [6] NCCL INFO Using network IB
|
216 |
+
jean-zay-iam52:263017:263017 [2] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
|
217 |
+
jean-zay-iam52:263017:263017 [2] NCCL INFO Using network IB
|
218 |
+
jean-zay-iam52:263020:263020 [5] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
|
219 |
+
jean-zay-iam52:263020:263020 [5] NCCL INFO Using network IB
|
220 |
+
jean-zay-iam52:263015:263015 [0] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
|
221 |
+
jean-zay-iam52:263018:263018 [3] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
|
222 |
+
jean-zay-iam52:263015:263015 [0] NCCL INFO Using network IB
|
223 |
+
jean-zay-iam52:263018:263018 [3] NCCL INFO Using network IB
|
224 |
+
jean-zay-iam52:263016:263016 [1] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
|
225 |
+
jean-zay-iam52:263016:263016 [1] NCCL INFO Using network IB
|
226 |
+
jean-zay-iam40:289968:289968 [1] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
|
227 |
+
jean-zay-iam40:289968:289968 [1] NCCL INFO Using network IB
|
228 |
+
jean-zay-iam40:289972:289972 [5] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
|
229 |
+
jean-zay-iam40:289972:289972 [5] NCCL INFO Using network IB
|
230 |
+
jean-zay-iam40:289969:289969 [2] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
|
231 |
+
jean-zay-iam40:289969:289969 [2] NCCL INFO Using network IB
|
232 |
+
jean-zay-iam40:289973:289973 [6] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
|
233 |
+
jean-zay-iam40:289973:289973 [6] NCCL INFO Using network IB
|
234 |
+
jean-zay-iam40:289970:289970 [3] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
|
235 |
+
jean-zay-iam40:289970:289970 [3] NCCL INFO Using network IB
|
236 |
+
jean-zay-iam40:289967:289967 [0] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
|
237 |
+
jean-zay-iam40:289967:289967 [0] NCCL INFO Using network IB
|
238 |
+
jean-zay-iam40:289974:289974 [7] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
|
239 |
+
jean-zay-iam40:289971:289971 [4] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
|
240 |
+
jean-zay-iam40:289974:289974 [7] NCCL INFO Using network IB
|
241 |
+
jean-zay-iam40:289971:289971 [4] NCCL INFO Using network IB
|
242 |
+
jean-zay-iam37:261385:261385 [6] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
|
243 |
+
jean-zay-iam37:261385:261385 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
244 |
+
jean-zay-iam37:261385:261385 [6] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
|
245 |
+
jean-zay-iam37:261385:261385 [6] NCCL INFO Using network IB
|
246 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO Trees [0] 26/-1/-1->25->24 [1] 26/-1/-1->25->24
|
247 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO Setting affinity for GPU 1 to ffffffff
|
248 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO Trees [0] 27/-1/-1->26->25 [1] 27/-1/-1->26->25
|
249 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO Setting affinity for GPU 2 to ffffffff
|
250 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO Trees [0] 28/-1/-1->27->26 [1] 28/-1/-1->27->26
|
251 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO Setting affinity for GPU 3 to ffffffff
|
252 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO Trees [0] 31/-1/-1->30->29 [1] 31/-1/-1->30->29
|
253 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO Trees [0] 30/-1/-1->29->28 [1] 30/-1/-1->29->28
|
254 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO Setting affinity for GPU 6 to ff,00000000
|
255 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO Setting affinity for GPU 5 to ff,00000000
|
256 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO Trees [0] 29/-1/-1->28->27 [1] 29/-1/-1->28->27
|
257 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO Trees [0] -1/-1/-1->31->30 [1] -1/-1/-1->31->30
|
258 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO Setting affinity for GPU 4 to ff,00000000
|
259 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO Setting affinity for GPU 7 to ff,00000000
|
260 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
261 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/-1/-1->2->1
|
262 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
263 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Trees [0] 1/16/-1->0->-1 [1] 1/-1/-1->0->8
|
264 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] 2/-1/-1->1->0
|
265 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO Setting affinity for GPU 2 to ffffffff
|
266 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Setting affinity for GPU 0 to ffffffff
|
267 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO Setting affinity for GPU 1 to ffffffff
|
268 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO Trees [0] 20/-1/-1->19->18 [1] 20/-1/-1->19->18
|
269 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO Trees [0] 22/-1/-1->21->20 [1] 22/-1/-1->21->20
|
270 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO Setting affinity for GPU 3 to ffffffff
|
271 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO Trees [0] 21/-1/-1->20->19 [1] 21/-1/-1->20->19
|
272 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO Trees [0] 23/-1/-1->22->21 [1] 23/-1/-1->22->21
|
273 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Trees [0] 25/-1/-1->24->16 [1] 25/8/-1->24->-1
|
274 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Setting affinity for GPU 0 to ffffffff
|
275 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO Trees [0] -1/-1/-1->15->14 [1] -1/-1/-1->15->14
|
276 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO Setting affinity for GPU 5 to ff,00000000
|
277 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO Setting affinity for GPU 4 to ff,00000000
|
278 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO Setting affinity for GPU 6 to ff,00000000
|
279 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO Trees [0] -1/-1/-1->23->22 [1] -1/-1/-1->23->22
|
280 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO Setting affinity for GPU 7 to ff,00000000
|
281 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO Setting affinity for GPU 7 to ff,00000000
|
282 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Trees [0] 18/8/-1->17->16 [1] 18/-1/-1->17->16
|
283 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO Trees [0] 19/-1/-1->18->17 [1] 19/-1/-1->18->17
|
284 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Trees [0] 17/24/-1->16->0 [1] 17/-1/-1->16->9
|
285 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO Setting affinity for GPU 2 to ffffffff
|
286 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Setting affinity for GPU 0 to ffffffff
|
287 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Setting affinity for GPU 1 to ffffffff
|
288 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO Trees [0] 4/-1/-1->3->2 [1] 4/-1/-1->3->2
|
289 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO Setting affinity for GPU 3 to ffffffff
|
290 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO Trees [0] 5/-1/-1->4->3 [1] 5/-1/-1->4->3
|
291 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO Setting affinity for GPU 4 to ff,00000000
|
292 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO Trees [0] 7/-1/-1->6->5 [1] 7/-1/-1->6->5
|
293 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO Setting affinity for GPU 6 to ff,00000000
|
294 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO Trees [0] 6/-1/-1->5->4 [1] 6/-1/-1->5->4
|
295 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO Setting affinity for GPU 5 to ff,00000000
|
296 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO Trees [0] -1/-1/-1->7->6 [1] -1/-1/-1->7->6
|
297 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO Setting affinity for GPU 7 to ff,00000000
|
298 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Trees [0] 9/-1/-1->8->17 [1] 9/0/-1->8->24
|
299 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Setting affinity for GPU 0 to ffffffff
|
300 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO Trees [0] 11/-1/-1->10->9 [1] 11/-1/-1->10->9
|
301 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO Trees [0] 12/-1/-1->11->10 [1] 12/-1/-1->11->10
|
302 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Trees [0] 10/-1/-1->9->8 [1] 10/16/-1->9->8
|
303 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO Trees [0] 15/-1/-1->14->13 [1] 15/-1/-1->14->13
|
304 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO Setting affinity for GPU 2 to ffffffff
|
305 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO Setting affinity for GPU 3 to ffffffff
|
306 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO Setting affinity for GPU 6 to ff,00000000
|
307 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Setting affinity for GPU 1 to ffffffff
|
308 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO Trees [0] 14/-1/-1->13->12 [1] 14/-1/-1->13->12
|
309 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO Trees [0] 13/-1/-1->12->11 [1] 13/-1/-1->12->11
|
310 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO Setting affinity for GPU 5 to ff,00000000
|
311 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO Setting affinity for GPU 4 to ff,00000000
|
312 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00 : 31[cb000] -> 0[7000] [receive] via NET/IB/1
|
313 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 00 : 7[cb000] -> 8[7000] [receive] via NET/IB/1
|
314 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 00 : 23[cb000] -> 24[7000] [receive] via NET/IB/1
|
315 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO Channel 00 : 25[b000] -> 26[48000] via P2P/IPC/read
|
316 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO Channel 00 : 26[48000] -> 27[4c000] via P2P/IPC/read
|
317 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO Channel 00 : 27[4c000] -> 28[88000] via P2P/IPC/read
|
318 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 15[cb000] -> 16[7000] [receive] via NET/IB/1
|
319 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO Channel 00 : 29[8b000] -> 30[c8000] via P2P/IPC/read
|
320 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO Channel 00 : 15[cb000] -> 16[7000] [send] via NET/IB/3
|
321 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO Channel 00 : 22[c8000] -> 23[cb000] via P2P/IPC/read
|
322 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO Channel 00 : 28[88000] -> 29[8b000] via P2P/IPC/read
|
323 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO Channel 00 : 30[c8000] -> 31[cb000] via P2P/IPC/read
|
324 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO Channel 01 : 25[b000] -> 26[48000] via P2P/IPC/read
|
325 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO Channel 00 : 20[88000] -> 21[8b000] via P2P/IPC/read
|
326 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 01 : 23[cb000] -> 24[7000] [receive] via NET/IB/1
|
327 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO Channel 01 : 26[48000] -> 27[4c000] via P2P/IPC/read
|
328 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO Channel 00 : 21[8b000] -> 22[c8000] via P2P/IPC/read
|
329 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO Channel 00 : 31[cb000] -> 0[7000] [send] via NET/IB/3
|
330 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO Channel 00 : 19[4c000] -> 20[88000] via P2P/IPC/read
|
331 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01 : 31[cb000] -> 0[7000] [receive] via NET/IB/1
|
332 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO Channel 00 : 2[48000] -> 3[4c000] via P2P/IPC/read
|
333 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO Channel 01 : 27[4c000] -> 28[88000] via P2P/IPC/read
|
334 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 00 : 17[b000] -> 18[48000] via P2P/IPC/read
|
335 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO Channel 00 : 18[48000] -> 19[4c000] via P2P/IPC/read
|
336 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO Channel 01 : 29[8b000] -> 30[c8000] via P2P/IPC/read
|
337 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO Channel 00 : 1[b000] -> 2[48000] via P2P/IPC/read
|
338 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 01 : 15[cb000] -> 16[7000] [receive] via NET/IB/1
|
339 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO Channel 00 : 3[4c000] -> 4[88000] via P2P/IPC/read
|
340 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO Channel 00 : 6[c8000] -> 7[cb000] via P2P/IPC/read
|
341 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO Channel 01 : 22[c8000] -> 23[cb000] via P2P/IPC/read
|
342 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO Channel 01 : 28[88000] -> 29[8b000] via P2P/IPC/read
|
343 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO Channel 01 : 30[c8000] -> 31[cb000] via P2P/IPC/read
|
344 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 7[cb000] -> 8[7000] [receive] via NET/IB/1
|
345 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 00 : 9[b000] -> 10[48000] via P2P/IPC/read
|
346 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 00 : 24[7000] -> 25[b000] via P2P/IPC/read
|
347 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO Channel 00 : 23[cb000] -> 24[7000] [send] via NET/IB/3
|
348 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO Channel 01 : 20[88000] -> 21[8b000] via P2P/IPC/read
|
349 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO Channel 00 : 11[4c000] -> 12[88000] via P2P/IPC/read
|
350 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO Channel 00 : 10[48000] -> 11[4c000] via P2P/IPC/read
|
351 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO Channel 00 : 14[c8000] -> 15[cb000] via P2P/IPC/read
|
352 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO Channel 00 : 13[8b000] -> 14[c8000] via P2P/IPC/read
|
353 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO Channel 00 : 7[cb000] -> 8[7000] [send] via NET/IB/3
|
354 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO Channel 01 : 21[8b000] -> 22[c8000] via P2P/IPC/read
|
355 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO Channel 01 : 19[4c000] -> 20[88000] via P2P/IPC/read
|
356 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO Channel 01 : 15[cb000] -> 16[7000] [send] via NET/IB/3
|
357 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO Channel 00 : 12[88000] -> 13[8b000] via P2P/IPC/read
|
358 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 01 : 17[b000] -> 18[48000] via P2P/IPC/read
|
359 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO Channel 01 : 18[48000] -> 19[4c000] via P2P/IPC/read
|
360 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 16[7000] -> 17[b000] via P2P/IPC/read
|
361 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO Channel 00 : 4[88000] -> 5[8b000] via P2P/IPC/read
|
362 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO Channel 01 : 31[cb000] -> 0[7000] [send] via NET/IB/3
|
363 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO Channel 00 : 5[8b000] -> 6[c8000] via P2P/IPC/read
|
364 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 01 : 9[b000] -> 10[48000] via P2P/IPC/read
|
365 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 00 : 8[7000] -> 9[b000] via P2P/IPC/read
|
366 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO Channel 01 : 11[4c000] -> 12[88000] via P2P/IPC/read
|
367 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO Channel 01 : 10[48000] -> 11[4c000] via P2P/IPC/read
|
368 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO Channel 01 : 13[8b000] -> 14[c8000] via P2P/IPC/read
|
369 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO Channel 01 : 14[c8000] -> 15[cb000] via P2P/IPC/read
|
370 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00 : 0[7000] -> 1[b000] via P2P/IPC/read
|
371 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO Channel 01 : 2[48000] -> 3[4c000] via P2P/IPC/read
|
372 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO Channel 01 : 12[88000] -> 13[8b000] via P2P/IPC/read
|
373 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO Channel 01 : 1[b000] -> 2[48000] via P2P/IPC/read
|
374 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO Channel 01 : 3[4c000] -> 4[88000] via P2P/IPC/read
|
375 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO Channel 01 : 6[c8000] -> 7[cb000] via P2P/IPC/read
|
376 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO Channel 01 : 7[cb000] -> 8[7000] [send] via NET/IB/3
|
377 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO Channel 01 : 23[cb000] -> 24[7000] [send] via NET/IB/3
|
378 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 01 : 24[7000] -> 25[b000] via P2P/IPC/read
|
379 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO Channel 01 : 4[88000] -> 5[8b000] via P2P/IPC/read
|
380 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO Channel 01 : 5[8b000] -> 6[c8000] via P2P/IPC/read
|
381 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 8[7000] -> 9[b000] via P2P/IPC/read
|
382 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 01 : 16[7000] -> 17[b000] via P2P/IPC/read
|
383 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01 : 0[7000] -> 1[b000] via P2P/IPC/read
|
384 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO Connected all rings
|
385 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO Connected all rings
|
386 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO Connected all rings
|
387 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Connected all rings
|
388 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO Connected all rings
|
389 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO Connected all rings
|
390 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO Connected all rings
|
391 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Connected all rings
|
392 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO Connected all rings
|
393 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO Connected all rings
|
394 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO Connected all rings
|
395 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Connected all rings
|
396 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO Connected all rings
|
397 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Connected all rings
|
398 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO Connected all rings
|
399 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO Connected all rings
|
400 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO Connected all rings
|
401 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO Connected all rings
|
402 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO Connected all rings
|
403 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 00 : 16[7000] -> 24[7000] [receive] via NET/IB/1
|
404 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO Channel 00 : 23[cb000] -> 22[c8000] via P2P/IPC/read
|
405 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO Connected all rings
|
406 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO Connected all rings
|
407 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO Connected all rings
|
408 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO Channel 00 : 31[cb000] -> 30[c8000] via P2P/IPC/read
|
409 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO Connected all rings
|
410 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO Connected all rings
|
411 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO Connected all rings
|
412 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO Channel 00 : 7[cb000] -> 6[c8000] via P2P/IPC/read
|
413 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO Connected all rings
|
414 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO Channel 00 : 15[cb000] -> 14[c8000] via P2P/IPC/read
|
415 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Connected all rings
|
416 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 0[7000] -> 8[7000] [receive] via NET/IB/1
|
417 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 01 : 9[b000] -> 16[7000] [receive] via NET/IB/1
|
418 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO Connected all rings
|
419 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO Connected all rings
|
420 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Connected all rings
|
421 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO Connected all rings
|
422 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO Channel 01 : 31[cb000] -> 30[c8000] via P2P/IPC/read
|
423 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO Channel 01 : 23[cb000] -> 22[c8000] via P2P/IPC/read
|
424 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01 : 0[7000] -> 8[7000] [send] via NET/IB/1
|
425 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO Channel 00 : 26[48000] -> 25[b000] via P2P/IPC/read
|
426 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO Connected all rings
|
427 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO Channel 01 : 15[cb000] -> 14[c8000] via P2P/IPC/read
|
428 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO Channel 00 : 27[4c000] -> 26[48000] via P2P/IPC/read
|
429 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO Channel 00 : 28[88000] -> 27[4c000] via P2P/IPC/read
|
430 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO Channel 00 : 29[8b000] -> 28[88000] via P2P/IPC/read
|
431 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO Channel 00 : 21[8b000] -> 20[88000] via P2P/IPC/read
|
432 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 00 : 8[7000] -> 17[b000] [receive] via NET/IB/1
|
433 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO Channel 01 : 7[cb000] -> 6[c8000] via P2P/IPC/read
|
434 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO Channel 00 : 20[88000] -> 19[4c000] via P2P/IPC/read
|
435 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO Channel 01 : 26[48000] -> 25[b000] via P2P/IPC/read
|
436 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO Channel 00 : 30[c8000] -> 29[8b000] via P2P/IPC/read
|
437 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO Channel 00 : 18[48000] -> 17[b000] via P2P/IPC/read
|
438 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO Channel 00 : 19[4c000] -> 18[48000] via P2P/IPC/read
|
439 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 01 : 9[b000] -> 16[7000] [send] via NET/IB/1
|
440 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO Channel 01 : 27[4c000] -> 26[48000] via P2P/IPC/read
|
441 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO Channel 01 : 28[88000] -> 27[4c000] via P2P/IPC/read
|
442 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO Channel 01 : 29[8b000] -> 28[88000] via P2P/IPC/read
|
443 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO Channel 00 : 25[b000] -> 24[7000] via P2P/IPC/read
|
444 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO Channel 01 : 21[8b000] -> 20[88000] via P2P/IPC/read
|
445 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO Channel 01 : 20[88000] -> 19[4c000] via P2P/IPC/read
|
446 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO Channel 00 : 22[c8000] -> 21[8b000] via P2P/IPC/read
|
447 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00 : 16[7000] -> 0[7000] [receive] via NET/IB/1
|
448 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO Channel 01 : 18[48000] -> 17[b000] via P2P/IPC/read
|
449 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO Channel 01 : 19[4c000] -> 18[48000] via P2P/IPC/read
|
450 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO Channel 01 : 30[c8000] -> 29[8b000] via P2P/IPC/read
|
451 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO Channel 00 : 14[c8000] -> 13[8b000] via P2P/IPC/read
|
452 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO Channel 01 : 22[c8000] -> 21[8b000] via P2P/IPC/read
|
453 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO Channel 00 : 10[48000] -> 9[b000] via P2P/IPC/read
|
454 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 00 : 8[7000] -> 17[b000] [send] via NET/IB/1
|
455 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO Channel 00 : 11[4c000] -> 10[48000] via P2P/IPC/read
|
456 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO Channel 00 : 13[8b000] -> 12[88000] via P2P/IPC/read
|
457 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO Channel 00 : 12[88000] -> 11[4c000] via P2P/IPC/read
|
458 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO Channel 00 : 2[48000] -> 1[b000] via P2P/IPC/read
|
459 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO Channel 01 : 25[b000] -> 24[7000] via P2P/IPC/read
|
460 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO Channel 00 : 3[4c000] -> 2[48000] via P2P/IPC/read
|
461 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO Channel 00 : 6[c8000] -> 5[8b000] via P2P/IPC/read
|
462 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO Channel 00 : 5[8b000] -> 4[88000] via P2P/IPC/read
|
463 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO Channel 01 : 14[c8000] -> 13[8b000] via P2P/IPC/read
|
464 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO Channel 01 : 10[48000] -> 9[b000] via P2P/IPC/read
|
465 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 01 : 16[7000] -> 9[b000] [receive] via NET/IB/1
|
466 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO Channel 00 : 4[88000] -> 3[4c000] via P2P/IPC/read
|
467 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00 : 0[7000] -> 16[7000] [send] via NET/IB/1
|
468 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO Channel 01 : 11[4c000] -> 10[48000] via P2P/IPC/read
|
469 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO Channel 01 : 13[8b000] -> 12[88000] via P2P/IPC/read
|
470 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO Channel 01 : 12[88000] -> 11[4c000] via P2P/IPC/read
|
471 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO Channel 00 : 1[b000] -> 0[7000] via P2P/IPC/read
|
472 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 24[7000] -> 8[7000] [receive] via NET/IB/1
|
473 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO Channel 01 : 2[48000] -> 1[b000] via P2P/IPC/read
|
474 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO Channel 01 : 3[4c000] -> 2[48000] via P2P/IPC/read
|
475 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO Channel 01 : 6[c8000] -> 5[8b000] via P2P/IPC/read
|
476 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO Channel 01 : 5[8b000] -> 4[88000] via P2P/IPC/read
|
477 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO Channel 01 : 4[88000] -> 3[4c000] via P2P/IPC/read
|
478 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 16[7000] -> 24[7000] [send] via NET/IB/1
|
479 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO Channel 01 : 1[b000] -> 0[7000] via P2P/IPC/read
|
480 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO Connected all trees
|
481 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
482 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
483 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO Connected all trees
|
484 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
485 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
486 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 00 : 17[b000] -> 8[7000] [send] via NET/IB/1
|
487 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO Connected all trees
|
488 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
489 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
490 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO Connected all trees
|
491 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
492 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
493 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 8[7000] -> 24[7000] [send] via NET/IB/1
|
494 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO Connected all trees
|
495 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
496 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
497 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO Connected all trees
|
498 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
499 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
500 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO Connected all trees
|
501 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
502 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
503 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 0[7000] -> 16[7000] [receive] via NET/IB/1
|
504 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO Connected all trees
|
505 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
506 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
507 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO Connected all trees
|
508 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
509 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO Connected all trees
|
510 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
511 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
512 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
513 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO Connected all trees
|
514 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
515 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
516 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 01 : 8[7000] -> 24[7000] [receive] via NET/IB/1
|
517 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO Connected all trees
|
518 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
519 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
520 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO Connected all trees
|
521 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
522 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
523 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO Connected all trees
|
524 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
525 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
526 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO Connected all trees
|
527 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
528 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
529 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 16[7000] -> 0[7000] [send] via NET/IB/1
|
530 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO Connected all trees
|
531 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
532 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
533 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO Connected all trees
|
534 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
535 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
536 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 01 : 24[7000] -> 8[7000] [send] via NET/IB/1
|
537 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO Connected all trees
|
538 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
539 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
540 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO Connected all trees
|
541 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
542 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
543 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO Connected all trees
|
544 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
545 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
546 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO Connected all trees
|
547 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
548 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
549 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 24[7000] -> 16[7000] [receive] via NET/IB/1
|
550 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO Connected all trees
|
551 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
552 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
553 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01 : 8[7000] -> 0[7000] [receive] via NET/IB/1
|
554 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 00 : 24[7000] -> 16[7000] [send] via NET/IB/1
|
555 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 00 : 17[b000] -> 8[7000] [receive] via NET/IB/1
|
556 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 00 : 17[b000] -> 16[7000] via P2P/IPC/read
|
557 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 01 : 17[b000] -> 16[7000] via P2P/IPC/read
|
558 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO Connected all trees
|
559 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
560 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
561 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 8[7000] -> 0[7000] [send] via NET/IB/1
|
562 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 01 : 16[7000] -> 9[b000] [send] via NET/IB/1
|
563 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO Connected all trees
|
564 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
565 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
566 |
+
jean-zay-iam52:263019:263136 [4] NCCL INFO comm 0x14b1a8002fb0 rank 28 nranks 32 cudaDev 4 busId 88000 - Init COMPLETE
|
567 |
+
jean-zay-iam52:263020:263139 [5] NCCL INFO comm 0x151418002fb0 rank 29 nranks 32 cudaDev 5 busId 8b000 - Init COMPLETE
|
568 |
+
jean-zay-iam52:263016:263142 [1] NCCL INFO comm 0x145588002fb0 rank 25 nranks 32 cudaDev 1 busId b000 - Init COMPLETE
|
569 |
+
jean-zay-iam52:263015:263140 [0] NCCL INFO comm 0x14c858002fb0 rank 24 nranks 32 cudaDev 0 busId 7000 - Init COMPLETE
|
570 |
+
jean-zay-iam52:263017:263138 [2] NCCL INFO comm 0x14e858002fb0 rank 26 nranks 32 cudaDev 2 busId 48000 - Init COMPLETE
|
571 |
+
jean-zay-iam52:263018:263141 [3] NCCL INFO comm 0x150208002fb0 rank 27 nranks 32 cudaDev 3 busId 4c000 - Init COMPLETE
|
572 |
+
jean-zay-iam52:263021:263137 [6] NCCL INFO comm 0x151df8002fb0 rank 30 nranks 32 cudaDev 6 busId c8000 - Init COMPLETE
|
573 |
+
jean-zay-iam52:263022:263135 [7] NCCL INFO comm 0x152728002fb0 rank 31 nranks 32 cudaDev 7 busId cb000 - Init COMPLETE
|
574 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO Connected all trees
|
575 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
576 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
577 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 00 : 9[b000] -> 8[7000] via P2P/IPC/read
|
578 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 01 : 9[b000] -> 8[7000] via P2P/IPC/read
|
579 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO Connected all trees
|
580 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
581 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
582 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO Connected all trees
|
583 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
584 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
585 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO Connected all trees
|
586 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
587 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
588 |
+
jean-zay-iam37:261380:261497 [1] NCCL INFO comm 0x151790002fb0 rank 1 nranks 32 cudaDev 1 busId b000 - Init COMPLETE
|
589 |
+
jean-zay-iam37:261379:261471 [0] NCCL INFO comm 0x151f24002fb0 rank 0 nranks 32 cudaDev 0 busId 7000 - Init COMPLETE
|
590 |
+
jean-zay-iam37:261382:261501 [3] NCCL INFO comm 0x14a538002fb0 rank 3 nranks 32 cudaDev 3 busId 4c000 - Init COMPLETE
|
591 |
+
jean-zay-iam37:261381:261500 [2] NCCL INFO comm 0x151028002fb0 rank 2 nranks 32 cudaDev 2 busId 48000 - Init COMPLETE
|
592 |
+
jean-zay-iam37:261383:261499 [4] NCCL INFO comm 0x152340002fb0 rank 4 nranks 32 cudaDev 4 busId 88000 - Init COMPLETE
|
593 |
+
jean-zay-iam37:261384:261496 [5] NCCL INFO comm 0x14d048002fb0 rank 5 nranks 32 cudaDev 5 busId 8b000 - Init COMPLETE
|
594 |
+
jean-zay-iam37:261379:261379 [0] NCCL INFO Launch mode Parallel
|
595 |
+
jean-zay-iam37:261386:261498 [7] NCCL INFO comm 0x1519b0002fb0 rank 7 nranks 32 cudaDev 7 busId cb000 - Init COMPLETE
|
596 |
+
jean-zay-iam37:261385:261506 [6] NCCL INFO comm 0x14bd98002fb0 rank 6 nranks 32 cudaDev 6 busId c8000 - Init COMPLETE
|
597 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO Connected all trees
|
598 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
599 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
600 |
+
jean-zay-iam41:276749:276869 [3] NCCL INFO comm 0x14d508002fb0 rank 19 nranks 32 cudaDev 3 busId 4c000 - Init COMPLETE
|
601 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO Connected all trees
|
602 |
+
jean-zay-iam41:276748:276866 [2] NCCL INFO comm 0x14ae78002fb0 rank 18 nranks 32 cudaDev 2 busId 48000 - Init COMPLETE
|
603 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
604 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
605 |
+
jean-zay-iam41:276747:276867 [1] NCCL INFO comm 0x14d928002fb0 rank 17 nranks 32 cudaDev 1 busId b000 - Init COMPLETE
|
606 |
+
jean-zay-iam41:276750:276871 [4] NCCL INFO comm 0x146d68002fb0 rank 20 nranks 32 cudaDev 4 busId 88000 - Init COMPLETE
|
607 |
+
jean-zay-iam41:276753:276870 [7] NCCL INFO comm 0x1523f8002fb0 rank 23 nranks 32 cudaDev 7 busId cb000 - Init COMPLETE
|
608 |
+
jean-zay-iam41:276746:276868 [0] NCCL INFO comm 0x152f60002fb0 rank 16 nranks 32 cudaDev 0 busId 7000 - Init COMPLETE
|
609 |
+
jean-zay-iam41:276751:276865 [5] NCCL INFO comm 0x14c788002fb0 rank 21 nranks 32 cudaDev 5 busId 8b000 - Init COMPLETE
|
610 |
+
jean-zay-iam41:276752:276872 [6] NCCL INFO comm 0x14e538002fb0 rank 22 nranks 32 cudaDev 6 busId c8000 - Init COMPLETE
|
611 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO Connected all trees
|
612 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
613 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
614 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO Connected all trees
|
615 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
|
616 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
|
617 |
+
jean-zay-iam40:289969:290087 [2] NCCL INFO comm 0x154f98002fb0 rank 10 nranks 32 cudaDev 2 busId 48000 - Init COMPLETE
|
618 |
+
jean-zay-iam40:289971:290093 [4] NCCL INFO comm 0x1529e8002fb0 rank 12 nranks 32 cudaDev 4 busId 88000 - Init COMPLETE
|
619 |
+
jean-zay-iam40:289970:290090 [3] NCCL INFO comm 0x14ee38002fb0 rank 11 nranks 32 cudaDev 3 busId 4c000 - Init COMPLETE
|
620 |
+
jean-zay-iam40:289973:290089 [6] NCCL INFO comm 0x145bb0002fb0 rank 14 nranks 32 cudaDev 6 busId c8000 - Init COMPLETE
|
621 |
+
jean-zay-iam40:289972:290088 [5] NCCL INFO comm 0x14d508002fb0 rank 13 nranks 32 cudaDev 5 busId 8b000 - Init COMPLETE
|
622 |
+
jean-zay-iam40:289968:290086 [1] NCCL INFO comm 0x14d558002fb0 rank 9 nranks 32 cudaDev 1 busId b000 - Init COMPLETE
|
623 |
+
jean-zay-iam40:289974:290092 [7] NCCL INFO comm 0x1494b8002fb0 rank 15 nranks 32 cudaDev 7 busId cb000 - Init COMPLETE
|
624 |
+
jean-zay-iam40:289967:290091 [0] NCCL INFO comm 0x14aa40002fb0 rank 8 nranks 32 cudaDev 0 busId 7000 - Init COMPLETE
|
625 |
+
ignore me 17
|
626 |
+
6:
|
627 |
+
duration: 3.9563 sec
|
628 |
+
algo throughput: 16176643777.3540 bps, 16.1766 Gbps
|
629 |
+
busbw: 15.6711 Gbps
|
630 |
+
ignore me 17
|
631 |
+
7:
|
632 |
+
duration: 4.1011 sec
|
633 |
+
algo throughput: 15605538666.8284 bps, 15.6055 Gbps
|
634 |
+
busbw: 15.1179 Gbps
|
635 |
+
ignore me 17
|
636 |
+
5:
|
637 |
+
duration: 4.0281 sec
|
638 |
+
algo throughput: 15888388696.7879 bps, 15.8884 Gbps
|
639 |
+
busbw: 15.3919 Gbps
|
640 |
+
ignore me 17
|
641 |
+
ignore me 17
|
642 |
+
27:
|
643 |
+
duration: 4.1446 sec
|
644 |
+
algo throughput: 15441789907.3424 bps, 15.4418 Gbps
|
645 |
+
busbw: 14.9592 Gbps
|
646 |
+
4:
|
647 |
+
duration: 4.1584 sec
|
648 |
+
algo throughput: 15390377253.3963 bps, 15.3904 Gbps
|
649 |
+
busbw: 14.9094 Gbps
|
650 |
+
ignore me 17
|
651 |
+
ignore me 17
|
652 |
+
28:
|
653 |
+
duration: 4.0857 sec
|
654 |
+
ignore me 17
|
655 |
+
algo throughput: 15664581341.3504 bps, 15.6646 Gbps
|
656 |
+
busbw: 15.1751 Gbps
|
657 |
+
26:
|
658 |
+
duration: 4.1296 sec
|
659 |
+
algo throughput: 15497834133.7166 bps, 15.4978 Gbps
|
660 |
+
busbw: 15.0135 Gbps
|
661 |
+
3:
|
662 |
+
duration: 4.1508 sec
|
663 |
+
algo throughput: 15418582053.9969 bps, 15.4186 Gbps
|
664 |
+
busbw: 14.9368 Gbps
|
665 |
+
ignore me 17
|
666 |
+
ignore me 17
|
667 |
+
8:
|
668 |
+
duration: 4.2224 sec
|
669 |
+
algo throughput: 15157302718.4214 bps, 15.1573 Gbps
|
670 |
+
busbw: 14.6836 Gbps
|
671 |
+
ignore me 17
|
672 |
+
29:
|
673 |
+
duration: 4.0621 sec
|
674 |
+
algo throughput: 15755272218.1164 bps, 15.7553 Gbps
|
675 |
+
busbw: 15.2629 Gbps
|
676 |
+
25:
|
677 |
+
duration: 4.1516 sec
|
678 |
+
algo throughput: 15415828590.9963 bps, 15.4158 Gbps
|
679 |
+
busbw: 14.9341 Gbps
|
680 |
+
ignore me 17
|
681 |
+
ignore me 17
|
682 |
+
9:
|
683 |
+
duration: 4.0906 sec
|
684 |
+
algo throughput: 15645779547.2488 bps, 15.6458 Gbps
|
685 |
+
busbw: 15.1568 Gbps
|
686 |
+
ignore me 17
|
687 |
+
ignore me 17
|
688 |
+
ignore me 17
|
689 |
+
ignore me 17
|
690 |
+
23:
|
691 |
+
duration: 4.1569 sec
|
692 |
+
30:
|
693 |
+
duration: 4.0722 sec
|
694 |
+
algo throughput: 15716173146.2812 bps, 15.7162 Gbps
|
695 |
+
1:
|
696 |
+
duration: 4.0663 sec
|
697 |
+
algo throughput: 15396140153.8145 bps, 15.3961 Gbps
|
698 |
+
busbw: 14.9150 Gbps
|
699 |
+
algo throughput: 15739134214.8659 bps, 15.7391 Gbps
|
700 |
+
busbw: 15.2473 Gbps
|
701 |
+
busbw: 15.2250 Gbps
|
702 |
+
22:
|
703 |
+
duration: 4.0428 sec
|
704 |
+
algo throughput: 15830448441.2183 bps, 15.8304 Gbps
|
705 |
+
busbw: 15.3357 Gbps
|
706 |
+
ignore me 17
|
707 |
+
2:
|
708 |
+
duration: 4.1513 sec
|
709 |
+
algo throughput: 15416737873.4375 bps, 15.4167 Gbps
|
710 |
+
busbw: 14.9350 Gbps
|
711 |
+
ignore me 17
|
712 |
+
ignore me 17
|
713 |
+
10:
|
714 |
+
duration: 4.1135 sec
|
715 |
+
24:
|
716 |
+
duration: 4.0613 sec
|
717 |
+
algo throughput: 15758479220.2859 bps, 15.7585 Gbps
|
718 |
+
busbw: 15.2660 Gbps
|
719 |
+
algo throughput: 15558588332.8945 bps, 15.5586 Gbps
|
720 |
+
busbw: 15.0724 Gbps
|
721 |
+
ignore me 17
|
722 |
+
31:
|
723 |
+
duration: 4.1502 sec
|
724 |
+
algo throughput: 15420839540.9777 bps, 15.4208 Gbps
|
725 |
+
busbw: 14.9389 Gbps
|
726 |
+
21:
|
727 |
+
duration: 4.1419 sec
|
728 |
+
algo throughput: 15451690470.9343 bps, 15.4517 Gbps
|
729 |
+
busbw: 14.9688 Gbps
|
730 |
+
ignore me 17
|
731 |
+
ignore me 17
|
732 |
+
ignore me 17
|
733 |
+
11:
|
734 |
+
duration: 4.0492 sec
|
735 |
+
algo throughput: 15805693708.4176 bps, 15.8057 Gbps
|
736 |
+
20:
|
737 |
+
duration: 4.0993 sec
|
738 |
+
algo throughput: 15612440511.8644 bps, 15.6124 Gbps
|
739 |
+
busbw: 15.1246 Gbps
|
740 |
+
0:
|
741 |
+
duration: 4.0120 sec
|
742 |
+
algo throughput: 15952303597.3018 bps, 15.9523 Gbps
|
743 |
+
busbw: 15.3118 Gbps
|
744 |
+
busbw: 15.4538 Gbps
|
745 |
+
ignore me 17
|
746 |
+
ignore me 17
|
747 |
+
12:
|
748 |
+
duration: 4.1850 sec
|
749 |
+
algo throughput: 15292749814.3865 bps, 15.2927 Gbps
|
750 |
+
busbw: 14.8149 Gbps
|
751 |
+
19:
|
752 |
+
duration: 4.0412 sec
|
753 |
+
algo throughput: 15836843924.5534 bps, 15.8368 Gbps
|
754 |
+
busbw: 15.3419 Gbps
|
755 |
+
ignore me 17
|
756 |
+
13:
|
757 |
+
duration: 4.0840 sec
|
758 |
+
algo throughput: 15670769926.9476 bps, 15.6708 Gbps
|
759 |
+
busbw: 15.1811 Gbps
|
760 |
+
ignore me 17
|
761 |
+
18:
|
762 |
+
duration: 4.1647 sec
|
763 |
+
algo throughput: 15367278261.5983 bps, 15.3673 Gbps
|
764 |
+
busbw: 14.8871 Gbps
|
765 |
+
ignore me 17
|
766 |
+
14:
|
767 |
+
duration: 4.0438 sec
|
768 |
+
algo throughput: 15826582974.8276 bps, 15.8266 Gbps
|
769 |
+
busbw: 15.3320 Gbps
|
770 |
+
ignore me 17
|
771 |
+
ignore me 17
|
772 |
+
17:
|
773 |
+
duration: 4.1553 sec
|
774 |
+
algo throughput: 15401946302.4121 bps, 15.4019 Gbps
|
775 |
+
15:
|
776 |
+
duration: 4.1608 sec
|
777 |
+
algo throughput: 15381558817.4705 bps, 15.3816 Gbps
|
778 |
+
busbw: 14.9206 Gbps
|
779 |
+
busbw: 14.9009 Gbps
|
780 |
+
ignore me 17
|
781 |
+
16:
|
782 |
+
duration: 4.0474 sec
|
783 |
+
algo throughput: 15812815660.2083 bps, 15.8128 Gbps
|
784 |
+
busbw: 15.3187 Gbps
|
785 |
+
ignore me 555
|
786 |
+
23:
|
787 |
+
duration: 1.5186 sec
|
788 |
+
algo throughput: 42143980222.5332 bps, 42.1440 Gbps
|
789 |
+
ignore me 555
|
790 |
+
busbw: 40.8270 Gbps
|
791 |
+
9:
|
792 |
+
duration: 1.5187 sec
|
793 |
+
algo throughput: 42140589448.6002 bps, 42.1406 Gbps
|
794 |
+
busbw: 40.8237 Gbps
|
795 |
+
ignore me 555
|
796 |
+
22:
|
797 |
+
duration: 1.5187 sec
|
798 |
+
algo throughput: 42140378571.5530 bps, 42.1404 Gbps
|
799 |
+
ignore me 555
|
800 |
+
busbw: 40.8235 Gbps
|
801 |
+
24:
|
802 |
+
duration: 1.5187 sec
|
803 |
+
algo throughput: 42142240285.3888 bps, 42.1422 Gbps
|
804 |
+
busbw: 40.8253 Gbps
|
805 |
+
ignore me 555
|
806 |
+
7:
|
807 |
+
duration: 1.5199 sec
|
808 |
+
algo throughput: 42108029847.7049 bps, 42.1080 Gbps
|
809 |
+
busbw: 40.7922 Gbps
|
810 |
+
ignore me 555
|
811 |
+
ignore me 555
|
812 |
+
10:
|
813 |
+
duration: 1.5188 sec
|
814 |
+
algo throughput: 42138916267.0821 bps, 42.1389 Gbps
|
815 |
+
busbw: 40.8221 Gbps
|
816 |
+
8:
|
817 |
+
duration: 1.5192 sec
|
818 |
+
algo throughput: 42126338602.2545 bps, 42.1263 Gbps
|
819 |
+
busbw: 40.8099 Gbps
|
820 |
+
ignore me 555
|
821 |
+
ignore me 555
|
822 |
+
ignore me 555
|
823 |
+
21:
|
824 |
+
duration: 1.5188 sec
|
825 |
+
algo throughput: 42139898494.4063 bps, 42.1399 Gbps
|
826 |
+
busbw: 40.8230 Gbps
|
827 |
+
25:
|
828 |
+
duration: 1.5192 sec
|
829 |
+
algo throughput: 42127092502.8457 bps, 42.1271 Gbps
|
830 |
+
busbw: 40.8106 Gbps
|
831 |
+
6:
|
832 |
+
duration: 1.5202 sec
|
833 |
+
algo throughput: 42099423136.7009 bps, 42.0994 Gbps
|
834 |
+
busbw: 40.7838 Gbps
|
835 |
+
ignore me 555
|
836 |
+
11:
|
837 |
+
duration: 1.5187 sec
|
838 |
+
algo throughput: 42141289163.4721 bps, 42.1413 Gbps
|
839 |
+
ignore me 555
|
840 |
+
busbw: 40.8244 Gbps
|
841 |
+
20:
|
842 |
+
duration: 1.5188 sec
|
843 |
+
algo throughput: 42139687792.2383 bps, 42.1397 Gbps
|
844 |
+
busbw: 40.8228 Gbps
|
845 |
+
ignore me 555
|
846 |
+
26:
|
847 |
+
duration: 1.5197 sec
|
848 |
+
algo throughput: 42113294024.4995 bps, 42.1133 Gbps
|
849 |
+
busbw: 40.7973 Gbps
|
850 |
+
ignore me 555
|
851 |
+
ignore me 555
|
852 |
+
5:
|
853 |
+
duration: 1.5202 sec
|
854 |
+
algo throughput: 42100022978.8723 bps, 42.1000 Gbps
|
855 |
+
busbw: 40.7844 Gbps
|
856 |
+
12:
|
857 |
+
duration: 1.5187 sec
|
858 |
+
algo throughput: 42141483180.7297 bps, 42.1415 Gbps
|
859 |
+
busbw: 40.8246 Gbps
|
860 |
+
ignore me 555
|
861 |
+
19:
|
862 |
+
duration: 1.5188 sec
|
863 |
+
algo throughput: 42139070669.3367 bps, 42.1391 Gbps
|
864 |
+
busbw: 40.8222 Gbps
|
865 |
+
ignore me 555
|
866 |
+
ignore me 555
|
867 |
+
13:
|
868 |
+
duration: 1.5187 sec
|
869 |
+
algo throughput: 42140413754.7281 bps, 42.1404 Gbps
|
870 |
+
27:
|
871 |
+
duration: 1.5202 sec
|
872 |
+
algo throughput: 42099139976.4359 bps, 42.0991 Gbps
|
873 |
+
busbw: 40.7835 Gbps
|
874 |
+
busbw: 40.8235 Gbps
|
875 |
+
ignore me 555
|
876 |
+
4:
|
877 |
+
duration: 1.5203 sec
|
878 |
+
algo throughput: 42097969076.0652 bps, 42.0980 Gbps
|
879 |
+
busbw: 40.7824 Gbps
|
880 |
+
ignore me 555
|
881 |
+
18:
|
882 |
+
duration: 1.5187 sec
|
883 |
+
algo throughput: 42141134996.9228 bps, 42.1411 Gbps
|
884 |
+
busbw: 40.8242 Gbps
|
885 |
+
ignore me 555
|
886 |
+
28:
|
887 |
+
duration: 1.5203 sec
|
888 |
+
algo throughput: 42097422955.6261 bps, 42.0974 Gbps
|
889 |
+
ignore me 555
|
890 |
+
busbw: 40.7819 Gbps
|
891 |
+
ignore me 555
|
892 |
+
14:
|
893 |
+
duration: 1.5188 sec
|
894 |
+
algo throughput: 42139893361.7641 bps, 42.1399 Gbps
|
895 |
+
busbw: 40.8230 Gbps
|
896 |
+
3:
|
897 |
+
duration: 1.5203 sec
|
898 |
+
algo throughput: 42097598433.0412 bps, 42.0976 Gbps
|
899 |
+
busbw: 40.7820 Gbps
|
900 |
+
ignore me 555
|
901 |
+
17:
|
902 |
+
duration: 1.5188 sec
|
903 |
+
algo throughput: 42139267495.6574 bps, 42.1393 Gbps
|
904 |
+
busbw: 40.8224 Gbps
|
905 |
+
ignore me 555
|
906 |
+
ignore me 555
|
907 |
+
29:
|
908 |
+
duration: 1.5203 sec
|
909 |
+
algo throughput: 42096144082.6273 bps, 42.0961 Gbps
|
910 |
+
ignore me 555
|
911 |
+
busbw: 40.7806 Gbps
|
912 |
+
15:
|
913 |
+
duration: 1.5188 sec
|
914 |
+
algo throughput: 42137175969.6847 bps, 42.1372 Gbps
|
915 |
+
ignore me 555
|
916 |
+
busbw: 40.8204 Gbps
|
917 |
+
16:
|
918 |
+
duration: 1.5186 sec
|
919 |
+
algo throughput: 42144770940.2506 bps, 42.1448 Gbps
|
920 |
+
busbw: 40.8277 Gbps
|
921 |
+
2:
|
922 |
+
duration: 1.5201 sec
|
923 |
+
algo throughput: 42101391688.1200 bps, 42.1014 Gbps
|
924 |
+
busbw: 40.7857 Gbps
|
925 |
+
ignore me 555
|
926 |
+
ignore me 555
|
927 |
+
30:
|
928 |
+
duration: 1.5203 sec
|
929 |
+
algo throughput: 42096228974.3786 bps, 42.0962 Gbps
|
930 |
+
busbw: 40.7807 Gbps
|
931 |
+
1:
|
932 |
+
duration: 1.5204 sec
|
933 |
+
algo throughput: 42095494315.5608 bps, 42.0955 Gbps
|
934 |
+
busbw: 40.7800 Gbps
|
935 |
+
ignore me 555
|
936 |
+
31:
|
937 |
+
duration: 1.5203 sec
|
938 |
+
algo throughput: 42096577970.2344 bps, 42.0966 Gbps
|
939 |
+
busbw: 40.7811 Gbps
|
940 |
+
ignore me 555
|
941 |
+
0:
|
942 |
+
duration: 1.5203 sec
|
943 |
+
algo throughput: 42097401467.1174 bps, 42.0974 Gbps
|
944 |
+
busbw: 40.7819 Gbps
|
945 |
+
ignore me 17760
|
946 |
+
19:
|
947 |
+
duration: 1.5271 sec
|
948 |
+
algo throughput: 41910600634.9022 bps, 41.9106 Gbps
|
949 |
+
busbw: 40.6009 Gbps
|
950 |
+
ignore me 17760
|
951 |
+
ignore me 17760
|
952 |
+
18:
|
953 |
+
duration: 1.5270 sec
|
954 |
+
algo throughput: 41911582289.7142 bps, 41.9116 Gbps
|
955 |
+
busbw: 40.6018 Gbps
|
956 |
+
20:
|
957 |
+
duration: 1.5276 sec
|
958 |
+
algo throughput: 41894987422.3905 bps, 41.8950 Gbps
|
959 |
+
busbw: 40.5858 Gbps
|
960 |
+
ignore me 17760
|
961 |
+
ignore me 17760
|
962 |
+
17:
|
963 |
+
duration: 1.5270 sec
|
964 |
+
algo throughput: 41913406576.8859 bps, 41.9134 Gbps
|
965 |
+
busbw: 40.6036 Gbps
|
966 |
+
ignore me 17760
|
967 |
+
21:
|
968 |
+
duration: 1.5280 sec
|
969 |
+
algo throughput: 41885069299.4918 bps, 41.8851 Gbps
|
970 |
+
busbw: 40.5762 Gbps
|
971 |
+
ignore me 17760
|
972 |
+
14:
|
973 |
+
duration: 1.5272 sec
|
974 |
+
algo throughput: 41907314947.6113 bps, 41.9073 Gbps
|
975 |
+
busbw: 40.5977 Gbps
|
976 |
+
15:
|
977 |
+
duration: 1.5270 sec
|
978 |
+
algo throughput: 41913242272.3447 bps, 41.9132 Gbps
|
979 |
+
busbw: 40.6035 Gbps
|
980 |
+
ignore me 17760
|
981 |
+
ignore me 17760
|
982 |
+
13:
|
983 |
+
duration: 1.5277 sec
|
984 |
+
algo throughput: 41893273876.8880 bps, 41.8933 Gbps
|
985 |
+
busbw: 40.5841 Gbps
|
986 |
+
ignore me 17760
|
987 |
+
16:
|
988 |
+
duration: 1.5271 sec
|
989 |
+
algo throughput: 41909230280.3461 bps, 41.9092 Gbps
|
990 |
+
busbw: 40.5996 Gbps
|
991 |
+
22:
|
992 |
+
duration: 1.5286 sec
|
993 |
+
algo throughput: 41869319488.2197 bps, 41.8693 Gbps
|
994 |
+
busbw: 40.5609 Gbps
|
995 |
+
ignore me 17760
|
996 |
+
ignore me 17760
|
997 |
+
23:
|
998 |
+
duration: 1.5289 sec
|
999 |
+
algo throughput: 41861290350.4216 bps, 41.8613 Gbps
|
1000 |
+
12:
|
1001 |
+
duration: 1.5281 sec
|
1002 |
+
algo throughput: 41882850453.1701 bps, 41.8829 Gbps
|
1003 |
+
busbw: 40.5740 Gbps
|
1004 |
+
busbw: 40.5531 Gbps
|
1005 |
+
ignore me 17760
|
1006 |
+
11:
|
1007 |
+
duration: 1.5286 sec
|
1008 |
+
algo throughput: 41868966830.1641 bps, 41.8690 Gbps
|
1009 |
+
busbw: 40.5606 Gbps
|
1010 |
+
ignore me 17760
|
1011 |
+
ignore me 17760
|
1012 |
+
24:
|
1013 |
+
duration: 1.5291 sec
|
1014 |
+
algo throughput: 41854797523.2289 bps, 41.8548 Gbps
|
1015 |
+
10:
|
1016 |
+
duration: 1.5290 sec
|
1017 |
+
algo throughput: 41858049187.4726 bps, 41.8580 Gbps
|
1018 |
+
busbw: 40.5468 Gbps
|
1019 |
+
busbw: 40.5500 Gbps
|
1020 |
+
ignore me 17760
|
1021 |
+
25:
|
1022 |
+
duration: 1.5291 sec
|
1023 |
+
algo throughput: 41855697296.6685 bps, 41.8557 Gbps
|
1024 |
+
busbw: 40.5477 Gbps
|
1025 |
+
ignore me 17760
|
1026 |
+
ignore me 17760
|
1027 |
+
ignore me 17760
|
1028 |
+
9:
|
1029 |
+
duration: 1.5296 sec
|
1030 |
+
algo throughput: 41841767653.6339 bps, 41.8418 Gbps
|
1031 |
+
busbw: 40.5342 Gbps
|
1032 |
+
6:
|
1033 |
+
duration: 1.5292 sec
|
1034 |
+
algo throughput: 41851931325.8954 bps, 41.8519 Gbps
|
1035 |
+
busbw: 40.5441 Gbps
|
1036 |
+
7:
|
1037 |
+
duration: 1.5294 sec
|
1038 |
+
algo throughput: 41846364025.0241 bps, 41.8464 Gbps
|
1039 |
+
busbw: 40.5387 Gbps
|
1040 |
+
ignore me 17760
|
1041 |
+
26:
|
1042 |
+
duration: 1.5290 sec
|
1043 |
+
algo throughput: 41856070811.5191 bps, 41.8561 Gbps
|
1044 |
+
busbw: 40.5481 Gbps
|
1045 |
+
ignore me 17760
|
1046 |
+
ignore me 17760
|
1047 |
+
5:
|
1048 |
+
duration: 1.5291 sec
|
1049 |
+
algo throughput: 41855875143.2076 bps, 41.8559 Gbps
|
1050 |
+
busbw: 40.5479 Gbps
|
1051 |
+
8:
|
1052 |
+
duration: 1.5295 sec
|
1053 |
+
algo throughput: 41843741534.2125 bps, 41.8437 Gbps
|
1054 |
+
busbw: 40.5361 Gbps
|
1055 |
+
ignore me 17760
|
1056 |
+
27:
|
1057 |
+
duration: 1.5290 sec
|
1058 |
+
algo throughput: 41856588048.6577 bps, 41.8566 Gbps
|
1059 |
+
busbw: 40.5486 Gbps
|
1060 |
+
ignore me 17760
|
1061 |
+
4:
|
1062 |
+
duration: 1.5290 sec
|
1063 |
+
algo throughput: 41856245346.9914 bps, 41.8562 Gbps
|
1064 |
+
busbw: 40.5482 Gbps
|
1065 |
+
ignore me 17760
|
1066 |
+
28:
|
1067 |
+
duration: 1.5290 sec
|
1068 |
+
algo throughput: 41858071525.4799 bps, 41.8581 Gbps
|
1069 |
+
busbw: 40.5500 Gbps
|
1070 |
+
ignore me 17760
|
1071 |
+
3:
|
1072 |
+
duration: 1.5290 sec
|
1073 |
+
algo throughput: 41857294677.8322 bps, 41.8573 Gbps
|
1074 |
+
busbw: 40.5493 Gbps
|
1075 |
+
ignore me 17760
|
1076 |
+
29:
|
1077 |
+
duration: 1.5289 sec
|
1078 |
+
algo throughput: 41859219678.2562 bps, 41.8592 Gbps
|
1079 |
+
busbw: 40.5511 Gbps
|
1080 |
+
ignore me 17760
|
1081 |
+
2:
|
1082 |
+
duration: 1.5289 sec
|
1083 |
+
algo throughput: 41859941759.2278 bps, 41.8599 Gbps
|
1084 |
+
busbw: 40.5518 Gbps
|
1085 |
+
ignore me 17760
|
1086 |
+
30:
|
1087 |
+
duration: 1.5289 sec
|
1088 |
+
algo throughput: 41858890268.6218 bps, 41.8589 Gbps
|
1089 |
+
busbw: 40.5508 Gbps
|
1090 |
+
ignore me 17760
|
1091 |
+
1:
|
1092 |
+
duration: 1.5290 sec
|
1093 |
+
algo throughput: 41856634528.5093 bps, 41.8566 Gbps
|
1094 |
+
busbw: 40.5486 Gbps
|
1095 |
+
ignore me 17760
|
1096 |
+
31:
|
1097 |
+
duration: 1.5290 sec
|
1098 |
+
algo throughput: 41858450586.8372 bps, 41.8585 Gbps
|
1099 |
+
busbw: 40.5504 Gbps
|
1100 |
+
ignore me 17760
|
1101 |
+
0:
|
1102 |
+
duration: 1.5289 sec
|
1103 |
+
algo throughput: 41860374323.0033 bps, 41.8604 Gbps
|
1104 |
+
busbw: 40.5522 Gbps
|
1105 |
+
ignore me 568326
|
1106 |
+
18:
|
1107 |
+
duration: 1.5292 sec
|
1108 |
+
algo throughput: 41851192689.6061 bps, 41.8512 Gbps
|
1109 |
+
busbw: 40.5433 Gbps
|
1110 |
+
ignore me 568326
|
1111 |
+
19:
|
1112 |
+
duration: 1.5296 sec
|
1113 |
+
algo throughput: 41840982602.8527 bps, 41.8410 Gbps
|
1114 |
+
busbw: 40.5335 Gbps
|
1115 |
+
ignore me 568326
|
1116 |
+
17:
|
1117 |
+
duration: 1.5292 sec
|
1118 |
+
algo throughput: 41851389273.1359 bps, 41.8514 Gbps
|
1119 |
+
busbw: 40.5435 Gbps
|
1120 |
+
ignore me 568326
|
1121 |
+
ignore me 568326
|
1122 |
+
ignore me 568326
|
1123 |
+
14:
|
1124 |
+
duration: 1.5293 sec
|
1125 |
+
algo throughput: 41850546358.8408 bps, 41.8505 Gbps
|
1126 |
+
busbw: 40.5427 Gbps
|
1127 |
+
20:
|
1128 |
+
duration: 1.5296 sec
|
1129 |
+
algo throughput: 41841711605.3523 bps, 41.8417 Gbps
|
1130 |
+
15:
|
1131 |
+
duration: 1.5292 sec
|
1132 |
+
algo throughput: 41850900844.4322 bps, 41.8509 Gbps
|
1133 |
+
busbw: 40.5342 Gbps
|
1134 |
+
busbw: 40.5431 Gbps
|
1135 |
+
ignore me 568326
|
1136 |
+
ignore me 568326
|
1137 |
+
13:
|
1138 |
+
duration: 1.5293 sec
|
1139 |
+
16:
|
1140 |
+
duration: 1.5292 sec
|
1141 |
+
algo throughput: 41851732548.4344 bps, 41.8517 Gbps
|
1142 |
+
busbw: 40.5439 Gbps
|
1143 |
+
algo throughput: 41849491619.2404 bps, 41.8495 Gbps
|
1144 |
+
busbw: 40.5417 Gbps
|
1145 |
+
ignore me 568326
|
1146 |
+
21:
|
1147 |
+
duration: 1.5296 sec
|
1148 |
+
algo throughput: 41841051125.8787 bps, 41.8411 Gbps
|
1149 |
+
busbw: 40.5335 Gbps
|
1150 |
+
ignore me 568326
|
1151 |
+
12:
|
1152 |
+
duration: 1.5293 sec
|
1153 |
+
algo throughput: 41848837733.7002 bps, 41.8488 Gbps
|
1154 |
+
busbw: 40.5411 Gbps
|
1155 |
+
ignore me 568326
|
1156 |
+
ignore me 568326
|
1157 |
+
22:
|
1158 |
+
duration: 1.5295 sec
|
1159 |
+
algo throughput: 41842526390.1754 bps, 41.8425 Gbps
|
1160 |
+
11:
|
1161 |
+
duration: 1.5292 sec
|
1162 |
+
algo throughput: 41851402077.7964 bps, 41.8514 Gbps
|
1163 |
+
busbw: 40.5349 Gbps
|
1164 |
+
busbw: 40.5435 Gbps
|
1165 |
+
ignore me 568326
|
1166 |
+
ignore me 568326
|
1167 |
+
25:
|
1168 |
+
duration: 1.5289 sec
|
1169 |
+
algo throughput: 41860057899.5817 bps, 41.8601 Gbps
|
1170 |
+
busbw: 40.5519 Gbps
|
1171 |
+
23:
|
1172 |
+
duration: 1.5296 sec
|
1173 |
+
algo throughput: 41841328471.6004 bps, 41.8413 Gbps
|
1174 |
+
busbw: 40.5338 Gbps
|
1175 |
+
ignore me 568326
|
1176 |
+
ignore me 568326
|
1177 |
+
10:
|
1178 |
+
duration: 1.5293 sec
|
1179 |
+
algo throughput: 41850492064.7668 bps, 41.8505 Gbps
|
1180 |
+
ignore me 568326
|
1181 |
+
busbw: 40.5427 Gbps
|
1182 |
+
26:
|
1183 |
+
duration: 1.5289 sec
|
1184 |
+
algo throughput: 41861009756.5066 bps, 41.8610 Gbps
|
1185 |
+
busbw: 40.5529 Gbps
|
1186 |
+
24:
|
1187 |
+
duration: 1.5293 sec
|
1188 |
+
algo throughput: 41848595317.3039 bps, 41.8486 Gbps
|
1189 |
+
busbw: 40.5408 Gbps
|
1190 |
+
ignore me 568326
|
1191 |
+
5:
|
1192 |
+
duration: 1.5289 sec
|
1193 |
+
algo throughput: 41860676073.0211 bps, 41.8607 Gbps
|
1194 |
+
ignore me 568326
|
1195 |
+
busbw: 40.5525 Gbps
|
1196 |
+
ignore me 568326
|
1197 |
+
27:
|
1198 |
+
duration: 1.5288 sec
|
1199 |
+
algo throughput: 41861710376.5379 bps, 41.8617 Gbps
|
1200 |
+
busbw: 40.5535 Gbps
|
1201 |
+
ignore me 568326
|
1202 |
+
6:
|
1203 |
+
duration: 1.5292 sec
|
1204 |
+
algo throughput: 41852910485.9393 bps, 41.8529 Gbps
|
1205 |
+
busbw: 40.5450 Gbps
|
1206 |
+
ignore me 568326
|
1207 |
+
9:
|
1208 |
+
duration: 1.5292 sec
|
1209 |
+
algo throughput: 41850873996.3972 bps, 41.8509 Gbps
|
1210 |
+
ignore me 568326
|
1211 |
+
busbw: 40.5430 Gbps
|
1212 |
+
4:
|
1213 |
+
duration: 1.5288 sec
|
1214 |
+
algo throughput: 41861534698.9598 bps, 41.8615 Gbps
|
1215 |
+
busbw: 40.5534 Gbps
|
1216 |
+
7:
|
1217 |
+
duration: 1.5293 sec
|
1218 |
+
algo throughput: 41849369678.9657 bps, 41.8494 Gbps
|
1219 |
+
busbw: 40.5416 Gbps
|
1220 |
+
ignore me 568326
|
1221 |
+
28:
|
1222 |
+
duration: 1.5289 sec
|
1223 |
+
algo throughput: 41861383911.2504 bps, 41.8614 Gbps
|
1224 |
+
busbw: 40.5532 Gbps
|
1225 |
+
ignore me 568326
|
1226 |
+
ignore me 568326
|
1227 |
+
8:
|
1228 |
+
duration: 1.5293 sec
|
1229 |
+
algo throughput: 41848441035.8316 bps, 41.8484 Gbps
|
1230 |
+
3:
|
1231 |
+
duration: 1.5289 sec
|
1232 |
+
algo throughput: 41861481198.7633 bps, 41.8615 Gbps
|
1233 |
+
busbw: 40.5533 Gbps
|
1234 |
+
busbw: 40.5407 Gbps
|
1235 |
+
ignore me 568326
|
1236 |
+
29:
|
1237 |
+
duration: 1.5289 sec
|
1238 |
+
algo throughput: 41861138665.5933 bps, 41.8611 Gbps
|
1239 |
+
busbw: 40.5530 Gbps
|
1240 |
+
ignore me 568326
|
1241 |
+
2:
|
1242 |
+
duration: 1.5289 sec
|
1243 |
+
algo throughput: 41861040340.5475 bps, 41.8610 Gbps
|
1244 |
+
busbw: 40.5529 Gbps
|
1245 |
+
ignore me 568326
|
1246 |
+
30:
|
1247 |
+
duration: 1.5289 sec
|
1248 |
+
algo throughput: 41861393521.7231 bps, 41.8614 Gbps
|
1249 |
+
ignore me 568326
|
1250 |
+
busbw: 40.5532 Gbps
|
1251 |
+
1:
|
1252 |
+
duration: 1.5288 sec
|
1253 |
+
algo throughput: 41863250360.5825 bps, 41.8633 Gbps
|
1254 |
+
busbw: 40.5550 Gbps
|
1255 |
+
ignore me 568326
|
1256 |
+
31:
|
1257 |
+
duration: 1.5289 sec
|
1258 |
+
algo throughput: 41860930490.0206 bps, 41.8609 Gbps
|
1259 |
+
busbw: 40.5528 Gbps
|
1260 |
+
ignore me 568326
|
1261 |
+
0:
|
1262 |
+
duration: 1.5289 sec
|
1263 |
+
algo throughput: 41861381313.3954 bps, 41.8614 Gbps
|
1264 |
+
busbw: 40.5532 Gbps
|
1265 |
+
ignore me 18186434
|
1266 |
+
18:
|
1267 |
+
duration: 1.5304 sec
|
1268 |
+
algo throughput: 41819308451.5824 bps, 41.8193 Gbps
|
1269 |
+
busbw: 40.5125 Gbps
|
1270 |
+
ignore me 18186434
|
1271 |
+
19:
|
1272 |
+
duration: 1.5304 sec
|
1273 |
+
algo throughput: 41819374415.9696 bps, 41.8194 Gbps
|
1274 |
+
busbw: 40.5125 Gbps
|
1275 |
+
ignore me 18186434
|
1276 |
+
17:
|
1277 |
+
duration: 1.5304 sec
|
1278 |
+
algo throughput: 41819400154.7344 bps, 41.8194 Gbps
|
1279 |
+
busbw: 40.5125 Gbps
|
1280 |
+
ignore me 18186434
|
1281 |
+
ignore me 18186434
|
1282 |
+
15:
|
1283 |
+
duration: 1.5303 sec
|
1284 |
+
algo throughput: 41821175681.0869 bps, 41.8212 Gbps
|
1285 |
+
20:
|
1286 |
+
duration: 1.5304 sec
|
1287 |
+
algo throughput: 41820265560.0101 bps, 41.8203 Gbps
|
1288 |
+
busbw: 40.5134 Gbps
|
1289 |
+
busbw: 40.5143 Gbps
|
1290 |
+
ignore me 18186434
|
1291 |
+
14:
|
1292 |
+
duration: 1.5305 sec
|
1293 |
+
algo throughput: 41817412474.7738 bps, 41.8174 Gbps
|
1294 |
+
busbw: 40.5106 Gbps
|
1295 |
+
ignore me 18186434
|
1296 |
+
16:
|
1297 |
+
duration: 1.5304 sec
|
1298 |
+
algo throughput: 41820405171.5425 bps, 41.8204 Gbps
|
1299 |
+
busbw: 40.5135 Gbps
|
1300 |
+
ignore me 18186434
|
1301 |
+
ignore me 18186434
|
1302 |
+
21:
|
1303 |
+
duration: 1.5304 sec
|
1304 |
+
algo throughput: 41820211341.2948 bps, 41.8202 Gbps
|
1305 |
+
busbw: 40.5133 Gbps
|
1306 |
+
13:
|
1307 |
+
duration: 1.5305 sec
|
1308 |
+
algo throughput: 41815893542.3173 bps, 41.8159 Gbps
|
1309 |
+
busbw: 40.5091 Gbps
|
1310 |
+
ignore me 18186434
|
1311 |
+
ignore me 18186434
|
1312 |
+
22:
|
1313 |
+
duration: 1.5304 sec
|
1314 |
+
algo throughput: 41819993958.8392 bps, 41.8200 Gbps
|
1315 |
+
busbw: 40.5131 Gbps
|
1316 |
+
12:
|
1317 |
+
duration: 1.5305 sec
|
1318 |
+
algo throughput: 41816988451.4211 bps, 41.8170 Gbps
|
1319 |
+
busbw: 40.5102 Gbps
|
1320 |
+
ignore me 18186434
|
1321 |
+
23:
|
1322 |
+
duration: 1.5304 sec
|
1323 |
+
algo throughput: 41820013685.7934 bps, 41.8200 Gbps
|
1324 |
+
busbw: 40.5131 Gbps
|
1325 |
+
ignore me 18186434
|
1326 |
+
11:
|
1327 |
+
duration: 1.5306 sec
|
1328 |
+
algo throughput: 41813631070.6557 bps, 41.8136 Gbps
|
1329 |
+
busbw: 40.5070 Gbps
|
1330 |
+
ignore me 18186434
|
1331 |
+
10:
|
1332 |
+
duration: 1.5306 sec
|
1333 |
+
algo throughput: 41813136230.6469 bps, 41.8131 Gbps
|
1334 |
+
busbw: 40.5065 Gbps
|
1335 |
+
ignore me 18186434
|
1336 |
+
24:
|
1337 |
+
duration: 1.5306 sec
|
1338 |
+
algo throughput: 41813362805.8615 bps, 41.8134 Gbps
|
1339 |
+
busbw: 40.5067 Gbps
|
1340 |
+
ignore me 18186434
|
1341 |
+
ignore me 18186434
|
1342 |
+
9:
|
1343 |
+
duration: 1.5306 sec
|
1344 |
+
algo throughput: 41814612837.9065 bps, 41.8146 Gbps
|
1345 |
+
25:
|
1346 |
+
duration: 1.5311 sec
|
1347 |
+
algo throughput: 41801050732.9013 bps, 41.8011 Gbps
|
1348 |
+
busbw: 40.4948 Gbps
|
1349 |
+
busbw: 40.5079 Gbps
|
1350 |
+
ignore me 18186434
|
1351 |
+
ignore me 18186434
|
1352 |
+
6:
|
1353 |
+
duration: 1.5307 sec
|
1354 |
+
algo throughput: 41811611108.9466 bps, 41.8116 Gbps
|
1355 |
+
busbw: 40.5050 Gbps
|
1356 |
+
7:
|
1357 |
+
duration: 1.5305 sec
|
1358 |
+
algo throughput: 41815091867.5771 bps, 41.8151 Gbps
|
1359 |
+
busbw: 40.5084 Gbps
|
1360 |
+
ignore me 18186434
|
1361 |
+
8:
|
1362 |
+
duration: 1.5304 sec
|
1363 |
+
algo throughput: 41818224707.1108 bps, 41.8182 Gbps
|
1364 |
+
busbw: 40.5114 Gbps
|
1365 |
+
ignore me 18186434
|
1366 |
+
26:
|
1367 |
+
duration: 1.5311 sec
|
1368 |
+
algo throughput: 41799543931.1436 bps, 41.7995 Gbps
|
1369 |
+
busbw: 40.4933 Gbps
|
1370 |
+
ignore me 18186434
|
1371 |
+
5:
|
1372 |
+
duration: 1.5311 sec
|
1373 |
+
algo throughput: 41800540982.4688 bps, 41.8005 Gbps
|
1374 |
+
busbw: 40.4943 Gbps
|
1375 |
+
ignore me 18186434
|
1376 |
+
27:
|
1377 |
+
duration: 1.5311 sec
|
1378 |
+
algo throughput: 41798734639.3871 bps, 41.7987 Gbps
|
1379 |
+
busbw: 40.4925 Gbps
|
1380 |
+
ignore me 18186434
|
1381 |
+
4:
|
1382 |
+
duration: 1.5311 sec
|
1383 |
+
algo throughput: 41799893567.7921 bps, 41.7999 Gbps
|
1384 |
+
busbw: 40.4936 Gbps
|
1385 |
+
ignore me 18186434
|
1386 |
+
28:
|
1387 |
+
duration: 1.5312 sec
|
1388 |
+
algo throughput: 41798021113.2911 bps, 41.7980 Gbps
|
1389 |
+
busbw: 40.4918 Gbps
|
1390 |
+
ignore me 18186434
|
1391 |
+
3:
|
1392 |
+
duration: 1.5311 sec
|
1393 |
+
algo throughput: 41799656984.3057 bps, 41.7997 Gbps
|
1394 |
+
busbw: 40.4934 Gbps
|
1395 |
+
ignore me 18186434
|
1396 |
+
29:
|
1397 |
+
duration: 1.5312 sec
|
1398 |
+
ignore me 18186434
|
1399 |
+
algo throughput: 41797483455.9485 bps, 41.7975 Gbps
|
1400 |
+
busbw: 40.4913 Gbps
|
1401 |
+
2:
|
1402 |
+
duration: 1.5312 sec
|
1403 |
+
algo throughput: 41797889916.8612 bps, 41.7979 Gbps
|
1404 |
+
busbw: 40.4917 Gbps
|
1405 |
+
ignore me 18186434
|
1406 |
+
30:
|
1407 |
+
duration: 1.5312 sec
|
1408 |
+
algo throughput: 41797399459.7577 bps, 41.7974 Gbps
|
1409 |
+
busbw: 40.4912 Gbps
|
1410 |
+
ignore me 18186434
|
1411 |
+
1:
|
1412 |
+
duration: 1.5312 sec
|
1413 |
+
algo throughput: 41796838922.8479 bps, 41.7968 Gbps
|
1414 |
+
busbw: 40.4907 Gbps
|
1415 |
+
ignore me 18186434
|
1416 |
+
31:
|
1417 |
+
duration: 1.5312 sec
|
1418 |
+
algo throughput: 41798535248.2715 bps, 41.7985 Gbps
|
1419 |
+
busbw: 40.4923 Gbps
|
1420 |
+
ignore me 18186434
|
1421 |
+
0:
|
1422 |
+
duration: 1.5312 sec
|
1423 |
+
algo throughput: 41797155891.1448 bps, 41.7972 Gbps
|
1424 |
+
busbw: 40.4910 Gbps
|
bigscience/experiments/bandwidth/all_reduce_bench.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python -m torch.distributed.run --nproc_per_node=2 all_reduce_bench.py
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import fcntl
|
5 |
+
import os
|
6 |
+
import socket
|
7 |
+
import time
|
8 |
+
import torch
|
9 |
+
import torch.distributed as dist
|
10 |
+
|
11 |
+
# note: this benchmark doesn't care how many gpus per node one has
|
12 |
+
|
13 |
+
TRIALS = 5
|
14 |
+
|
15 |
+
N = 500000
|
16 |
+
M = 2000
|
17 |
+
|
18 |
+
def printflock(*msgs):
|
19 |
+
""" print """
|
20 |
+
with open(__file__, "r") as fh:
|
21 |
+
fcntl.flock(fh, fcntl.LOCK_EX)
|
22 |
+
try:
|
23 |
+
print(*msgs)
|
24 |
+
finally:
|
25 |
+
fcntl.flock(fh, fcntl.LOCK_UN)
|
26 |
+
|
27 |
+
def timed_allreduce(mat, id):
|
28 |
+
pre = time.perf_counter()
|
29 |
+
dist.all_reduce(mat)
|
30 |
+
printflock(f"ignore me {int(mat[0][0])}") # required due to lazy evaluation
|
31 |
+
duration = time.perf_counter() - pre
|
32 |
+
tput = ((M*N*4*2)/duration)*8 # *2 is for send + receive, *8 for gigabits/second
|
33 |
+
size = M * N * 4 # 4 is fp32
|
34 |
+
n = dist.get_world_size()
|
35 |
+
busbw = (size / duration) * (2 * (n - 1) / n) * 8
|
36 |
+
printflock(f"{id}:\n",
|
37 |
+
f"duration: {duration:.4f} sec\n",
|
38 |
+
f"algo throughput: {tput:.4f} bps, {tput/1e9:.4f} Gbps\n",
|
39 |
+
f"busbw: {busbw / 1e9:.4f} Gbps"
|
40 |
+
)
|
41 |
+
|
42 |
+
def run(local_rank):
|
43 |
+
hostname = socket.gethostname()
|
44 |
+
id = f"{hostname}:{local_rank}"
|
45 |
+
global_rank = dist.get_rank()
|
46 |
+
|
47 |
+
printflock(f"{id} data size: {M*N*4/1e9} GB")
|
48 |
+
mat = torch.rand(N, M, dtype=torch.float32).cuda(local_rank)
|
49 |
+
|
50 |
+
for i in range(TRIALS):
|
51 |
+
dist.barrier()
|
52 |
+
if global_rank == 0:
|
53 |
+
print(f"\n\n\n-----------trial-{i}----------------")
|
54 |
+
timed_allreduce(mat, id)
|
55 |
+
|
56 |
+
def init_processes(local_rank, fn, backend='nccl'):
|
57 |
+
torch.cuda.set_device(local_rank)
|
58 |
+
dist.init_process_group(backend)
|
59 |
+
fn(local_rank)
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
rank = int(os.environ["LOCAL_RANK"])
|
64 |
+
printflock("local_rank: %d" % rank)
|
65 |
+
init_processes(local_rank=rank, fn=run)
|
66 |
+
|
bigscience/experiments/bandwidth/n16_32gb_all_reduce_bench.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/experiments/bandwidth/n1_16gb_all_reduce_bench.txt
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export NCCL_DEBUG=info
|
2 |
+
python -m torch.distributed.launch --nproc_per_node=4 all_reduce_bench.py
|
3 |
+
|
4 |
+
*****************************************
|
5 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
6 |
+
*****************************************
|
7 |
+
local_rank: 2
|
8 |
+
local_rank: 3
|
9 |
+
local_rank: 1
|
10 |
+
local_rank: 0
|
11 |
+
0 data size: 4.0 GB
|
12 |
+
2 data size: 4.0 GB
|
13 |
+
1 data size: 4.0 GB
|
14 |
+
3 data size: 4.0 GB
|
15 |
+
r10i4n8:38029:38029 [0] NCCL INFO Bootstrap : Using [0]ib0:10.148.8.71<0> [1]ib1:10.149.8.71<0>
|
16 |
+
r10i4n8:38029:38029 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
17 |
+
r10i4n8:38029:38029 [0] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.8.71<0>
|
18 |
+
r10i4n8:38029:38029 [0] NCCL INFO Using network IB
|
19 |
+
NCCL version 2.7.8+cuda10.2
|
20 |
+
r10i4n8:38030:38030 [1] NCCL INFO Bootstrap : Using [0]ib0:10.148.8.71<0> [1]ib1:10.149.8.71<0>
|
21 |
+
r10i4n8:38030:38030 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
22 |
+
r10i4n8:38030:38030 [1] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.8.71<0>
|
23 |
+
r10i4n8:38030:38030 [1] NCCL INFO Using network IB
|
24 |
+
r10i4n8:38032:38032 [3] NCCL INFO Bootstrap : Using [0]ib0:10.148.8.71<0> [1]ib1:10.149.8.71<0>
|
25 |
+
r10i4n8:38032:38032 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
26 |
+
r10i4n8:38031:38031 [2] NCCL INFO Bootstrap : Using [0]ib0:10.148.8.71<0> [1]ib1:10.149.8.71<0>
|
27 |
+
r10i4n8:38031:38031 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
28 |
+
r10i4n8:38032:38032 [3] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.8.71<0>
|
29 |
+
r10i4n8:38032:38032 [3] NCCL INFO Using network IB
|
30 |
+
r10i4n8:38031:38031 [2] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.8.71<0>
|
31 |
+
r10i4n8:38031:38031 [2] NCCL INFO Using network IB
|
32 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 00/12 : 0 1 2 3
|
33 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 01/12 : 0 1 3 2
|
34 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 02/12 : 0 2 3 1
|
35 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 03/12 : 0 2 1 3
|
36 |
+
r10i4n8:38030:38071 [1] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
|
37 |
+
r10i4n8:38032:38077 [3] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
|
38 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 04/12 : 0 3 1 2
|
39 |
+
r10i4n8:38031:38081 [2] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
|
40 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 05/12 : 0 3 2 1
|
41 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 06/12 : 0 1 2 3
|
42 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 07/12 : 0 1 3 2
|
43 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 08/12 : 0 2 3 1
|
44 |
+
r10i4n8:38030:38071 [1] NCCL INFO Trees [0] 2/-1/-1->1->0|0->1->2/-1/-1 [1] 3/-1/-1->1->-1|-1->1->3/-1/-1 [2] -1/-1/-1->1->3|3->1->-1/-1/-1 [3] 0/-1/-1->1->2|2->1->0/-1/-1 [4] 2/-1/-1->1->0|0->1->2/-1/-1 [5] 3/-1/-1->1->-1|-1->1->3/-1/-1 [6] 2/-1/-1->1->0|0->1->2/-1/-1 [7] 3/-1/-1->1->-1|-1->1->3/-1/-1 [8] -1/-1/-1->1->3|3->1->-1/-1/-1 [9] 0/-1/-1->1->2|2->1->0/-1/-1 [10] 2/-1/-1->1->0|0->1->2/-1/-1 [11] 3/-1/-1->1->-1|-1->1->3/-1/-1
|
45 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 09/12 : 0 2 1 3
|
46 |
+
r10i4n8:38032:38077 [3] NCCL INFO Trees [0] -1/-1/-1->3->2|2->3->-1/-1/-1 [1] 0/-1/-1->3->1|1->3->0/-1/-1 [2] 1/-1/-1->3->0|0->3->1/-1/-1 [3] 2/-1/-1->3->-1|-1->3->2/-1/-1 [4] -1/-1/-1->3->2|2->3->-1/-1/-1 [5] 0/-1/-1->3->1|1->3->0/-1/-1 [6] -1/-1/-1->3->2|2->3->-1/-1/-1 [7] 0/-1/-1->3->1|1->3->0/-1/-1 [8] 1/-1/-1->3->0|0->3->1/-1/-1 [9] 2/-1/-1->3->-1|-1->3->2/-1/-1 [10] -1/-1/-1->3->2|2->3->-1/-1/-1 [11] 0/-1/-1->3->1|1->3->0/-1/-1
|
47 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 10/12 : 0 3 1 2
|
48 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 11/12 : 0 3 2 1
|
49 |
+
r10i4n8:38031:38081 [2] NCCL INFO Trees [0] 3/-1/-1->2->1|1->2->3/-1/-1 [1] -1/-1/-1->2->0|0->2->-1/-1/-1 [2] 0/-1/-1->2->-1|-1->2->0/-1/-1 [3] 1/-1/-1->2->3|3->2->1/-1/-1 [4] 3/-1/-1->2->1|1->2->3/-1/-1 [5] -1/-1/-1->2->0|0->2->-1/-1/-1 [6] 3/-1/-1->2->1|1->2->3/-1/-1 [7] -1/-1/-1->2->0|0->2->-1/-1/-1 [8] 0/-1/-1->2->-1|-1->2->0/-1/-1 [9] 1/-1/-1->2->3|3->2->1/-1/-1 [10] 3/-1/-1->2->1|1->2->3/-1/-1 [11] -1/-1/-1->2->0|0->2->-1/-1/-1
|
50 |
+
r10i4n8:38030:38071 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff00,000fffff
|
51 |
+
r10i4n8:38032:38077 [3] NCCL INFO Setting affinity for GPU 3 to ffff,f00000ff,fff00000
|
52 |
+
r10i4n8:38031:38081 [2] NCCL INFO Setting affinity for GPU 2 to ffff,f00000ff,fff00000
|
53 |
+
r10i4n8:38029:38066 [0] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
|
54 |
+
r10i4n8:38029:38066 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1|-1->0->1/-1/-1 [1] 2/-1/-1->0->3|3->0->2/-1/-1 [2] 3/-1/-1->0->2|2->0->3/-1/-1 [3] -1/-1/-1->0->1|1->0->-1/-1/-1 [4] 1/-1/-1->0->-1|-1->0->1/-1/-1 [5] 2/-1/-1->0->3|3->0->2/-1/-1 [6] 1/-1/-1->0->-1|-1->0->1/-1/-1 [7] 2/-1/-1->0->3|3->0->2/-1/-1 [8] 3/-1/-1->0->2|2->0->3/-1/-1 [9] -1/-1/-1->0->1|1->0->-1/-1/-1 [10] 1/-1/-1->0->-1|-1->0->1/-1/-1 [11] 2/-1/-1->0->3|3->0->2/-1/-1
|
55 |
+
r10i4n8:38029:38066 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff00,000fffff
|
56 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 00 : 3[8a000] -> 0[1a000] via P2P/IPC
|
57 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 00 : 2[88000] -> 3[8a000] via P2P/IPC
|
58 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 00 : 1[1c000] -> 2[88000] via P2P/IPC
|
59 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 00 : 0[1a000] -> 1[1c000] via P2P/IPC
|
60 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 00 : 3[8a000] -> 2[88000] via P2P/IPC
|
61 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 00 : 2[88000] -> 1[1c000] via P2P/IPC
|
62 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 00 : 1[1c000] -> 0[1a000] via P2P/IPC
|
63 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 01 : 3[8a000] -> 2[88000] via P2P/IPC
|
64 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 01 : 0[1a000] -> 1[1c000] via P2P/IPC
|
65 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 01 : 2[88000] -> 0[1a000] via P2P/IPC
|
66 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 01 : 1[1c000] -> 3[8a000] via P2P/IPC
|
67 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 01 : 0[1a000] -> 3[8a000] via P2P/IPC
|
68 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 01 : 3[8a000] -> 1[1c000] via P2P/IPC
|
69 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 01 : 0[1a000] -> 2[88000] via P2P/IPC
|
70 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 01 : 3[8a000] -> 0[1a000] via P2P/IPC
|
71 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 02 : 1[1c000] -> 0[1a000] via P2P/IPC
|
72 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 02 : 2[88000] -> 3[8a000] via P2P/IPC
|
73 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 02 : 3[8a000] -> 1[1c000] via P2P/IPC
|
74 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 02 : 0[1a000] -> 2[88000] via P2P/IPC
|
75 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 02 : 1[1c000] -> 3[8a000] via P2P/IPC
|
76 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 02 : 2[88000] -> 0[1a000] via P2P/IPC
|
77 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 02 : 3[8a000] -> 0[1a000] via P2P/IPC
|
78 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 03 : 1[1c000] -> 3[8a000] via P2P/IPC
|
79 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 02 : 0[1a000] -> 3[8a000] via P2P/IPC
|
80 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 03 : 2[88000] -> 1[1c000] via P2P/IPC
|
81 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 03 : 3[8a000] -> 0[1a000] via P2P/IPC
|
82 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 03 : 0[1a000] -> 2[88000] via P2P/IPC
|
83 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 03 : 1[1c000] -> 2[88000] via P2P/IPC
|
84 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 03 : 0[1a000] -> 1[1c000] via P2P/IPC
|
85 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 03 : 2[88000] -> 3[8a000] via P2P/IPC
|
86 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 03 : 1[1c000] -> 0[1a000] via P2P/IPC
|
87 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 03 : 3[8a000] -> 2[88000] via P2P/IPC
|
88 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 04 : 1[1c000] -> 2[88000] via P2P/IPC
|
89 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 04 : 0[1a000] -> 3[8a000] via P2P/IPC
|
90 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 04 : 3[8a000] -> 1[1c000] via P2P/IPC
|
91 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 04 : 2[88000] -> 0[1a000] via P2P/IPC
|
92 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 04 : 3[8a000] -> 2[88000] via P2P/IPC
|
93 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 04 : 1[1c000] -> 0[1a000] via P2P/IPC
|
94 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 04 : 2[88000] -> 1[1c000] via P2P/IPC
|
95 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 04 : 0[1a000] -> 1[1c000] via P2P/IPC
|
96 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 04 : 2[88000] -> 3[8a000] via P2P/IPC
|
97 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 05 : 1[1c000] -> 0[1a000] via P2P/IPC
|
98 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 05 : 0[1a000] -> 3[8a000] via P2P/IPC
|
99 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 05 : 3[8a000] -> 2[88000] via P2P/IPC
|
100 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 05 : 2[88000] -> 1[1c000] via P2P/IPC
|
101 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 05 : 3[8a000] -> 1[1c000] via P2P/IPC
|
102 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 05 : 2[88000] -> 0[1a000] via P2P/IPC
|
103 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 05 : 1[1c000] -> 3[8a000] via P2P/IPC
|
104 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 05 : 3[8a000] -> 0[1a000] via P2P/IPC
|
105 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 05 : 0[1a000] -> 2[88000] via P2P/IPC
|
106 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 06 : 1[1c000] -> 2[88000] via P2P/IPC
|
107 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 06 : 2[88000] -> 3[8a000] via P2P/IPC
|
108 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 06 : 3[8a000] -> 0[1a000] via P2P/IPC
|
109 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 06 : 0[1a000] -> 1[1c000] via P2P/IPC
|
110 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 06 : 3[8a000] -> 2[88000] via P2P/IPC
|
111 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 06 : 2[88000] -> 1[1c000] via P2P/IPC
|
112 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 06 : 1[1c000] -> 0[1a000] via P2P/IPC
|
113 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 07 : 3[8a000] -> 2[88000] via P2P/IPC
|
114 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 07 : 2[88000] -> 0[1a000] via P2P/IPC
|
115 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 07 : 0[1a000] -> 1[1c000] via P2P/IPC
|
116 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 07 : 1[1c000] -> 3[8a000] via P2P/IPC
|
117 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 07 : 0[1a000] -> 3[8a000] via P2P/IPC
|
118 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 07 : 3[8a000] -> 1[1c000] via P2P/IPC
|
119 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 07 : 0[1a000] -> 2[88000] via P2P/IPC
|
120 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 07 : 3[8a000] -> 0[1a000] via P2P/IPC
|
121 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 08 : 1[1c000] -> 0[1a000] via P2P/IPC
|
122 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 08 : 2[88000] -> 3[8a000] via P2P/IPC
|
123 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 08 : 3[8a000] -> 1[1c000] via P2P/IPC
|
124 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 08 : 0[1a000] -> 2[88000] via P2P/IPC
|
125 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 08 : 1[1c000] -> 3[8a000] via P2P/IPC
|
126 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 08 : 2[88000] -> 0[1a000] via P2P/IPC
|
127 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 08 : 3[8a000] -> 0[1a000] via P2P/IPC
|
128 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 09 : 1[1c000] -> 3[8a000] via P2P/IPC
|
129 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 08 : 0[1a000] -> 3[8a000] via P2P/IPC
|
130 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 09 : 2[88000] -> 1[1c000] via P2P/IPC
|
131 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 09 : 3[8a000] -> 0[1a000] via P2P/IPC
|
132 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 09 : 0[1a000] -> 2[88000] via P2P/IPC
|
133 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 09 : 1[1c000] -> 2[88000] via P2P/IPC
|
134 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 09 : 0[1a000] -> 1[1c000] via P2P/IPC
|
135 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 09 : 2[88000] -> 3[8a000] via P2P/IPC
|
136 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 09 : 1[1c000] -> 0[1a000] via P2P/IPC
|
137 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 09 : 3[8a000] -> 2[88000] via P2P/IPC
|
138 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 10 : 1[1c000] -> 2[88000] via P2P/IPC
|
139 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 10 : 0[1a000] -> 3[8a000] via P2P/IPC
|
140 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 10 : 3[8a000] -> 1[1c000] via P2P/IPC
|
141 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 10 : 2[88000] -> 0[1a000] via P2P/IPC
|
142 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 10 : 3[8a000] -> 2[88000] via P2P/IPC
|
143 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 10 : 1[1c000] -> 0[1a000] via P2P/IPC
|
144 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 10 : 2[88000] -> 1[1c000] via P2P/IPC
|
145 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 10 : 0[1a000] -> 1[1c000] via P2P/IPC
|
146 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 10 : 2[88000] -> 3[8a000] via P2P/IPC
|
147 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 11 : 1[1c000] -> 0[1a000] via P2P/IPC
|
148 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 11 : 0[1a000] -> 3[8a000] via P2P/IPC
|
149 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 11 : 3[8a000] -> 2[88000] via P2P/IPC
|
150 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 11 : 2[88000] -> 1[1c000] via P2P/IPC
|
151 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 11 : 3[8a000] -> 1[1c000] via P2P/IPC
|
152 |
+
r10i4n8:38031:38081 [2] NCCL INFO Channel 11 : 2[88000] -> 0[1a000] via P2P/IPC
|
153 |
+
r10i4n8:38030:38071 [1] NCCL INFO Channel 11 : 1[1c000] -> 3[8a000] via P2P/IPC
|
154 |
+
r10i4n8:38032:38077 [3] NCCL INFO Channel 11 : 3[8a000] -> 0[1a000] via P2P/IPC
|
155 |
+
r10i4n8:38029:38066 [0] NCCL INFO Channel 11 : 0[1a000] -> 2[88000] via P2P/IPC
|
156 |
+
r10i4n8:38030:38071 [1] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
|
157 |
+
r10i4n8:38030:38071 [1] NCCL INFO comm 0x14dbb0001060 rank 1 nranks 4 cudaDev 1 busId 1c000 - Init COMPLETE
|
158 |
+
r10i4n8:38031:38081 [2] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
|
159 |
+
r10i4n8:38031:38081 [2] NCCL INFO comm 0x150950001060 rank 2 nranks 4 cudaDev 2 busId 88000 - Init COMPLETE
|
160 |
+
r10i4n8:38032:38077 [3] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
|
161 |
+
r10i4n8:38032:38077 [3] NCCL INFO comm 0x14ccd8001060 rank 3 nranks 4 cudaDev 3 busId 8a000 - Init COMPLETE
|
162 |
+
r10i4n8:38029:38066 [0] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
|
163 |
+
r10i4n8:38029:38066 [0] NCCL INFO comm 0x149bac001060 rank 0 nranks 4 cudaDev 0 busId 1a000 - Init COMPLETE
|
164 |
+
r10i4n8:38029:38029 [0] NCCL INFO Launch mode Parallel
|
165 |
+
ignore me 1
|
166 |
+
ignore me 1
|
167 |
+
ignore me 1
|
168 |
+
0:
|
169 |
+
duration: 0.6633 sec
|
170 |
+
algo throughput: 96488131490.3540 bps, 96.4881 Gbps
|
171 |
+
busbw: 72.3661 Gbps
|
172 |
+
1:
|
173 |
+
duration: 0.4507 sec
|
174 |
+
algo throughput: 142007505620.8443 bps, 142.0075 Gbps
|
175 |
+
busbw: 106.5056 Gbps
|
176 |
+
2:
|
177 |
+
duration: 0.4203 sec
|
178 |
+
algo throughput: 152274131784.9601 bps, 152.2741 Gbps
|
179 |
+
busbw: 114.2056 Gbps
|
180 |
+
ignore me 1
|
181 |
+
3:
|
182 |
+
duration: 0.4225 sec
|
183 |
+
algo throughput: 151490688123.0876 bps, 151.4907 Gbps
|
184 |
+
busbw: 113.6180 Gbps
|
185 |
+
ignore me 7
|
186 |
+
ignore me 7
|
187 |
+
ignore me 7
|
188 |
+
3:
|
189 |
+
duration: 0.0479 sec
|
190 |
+
algo throughput: 1336658447010.4644 bps, 1336.6584 Gbps
|
191 |
+
busbw: 1002.4938 Gbps
|
192 |
+
ignore me 7
|
193 |
+
1:
|
194 |
+
duration: 0.0483 sec
|
195 |
+
algo throughput: 1325019685494.1951 bps, 1325.0197 Gbps
|
196 |
+
busbw: 993.7648 Gbps
|
197 |
+
0:
|
198 |
+
duration: 0.0483 sec
|
199 |
+
algo throughput: 1323924013812.1467 bps, 1323.9240 Gbps
|
200 |
+
busbw: 992.9430 Gbps
|
201 |
+
2:
|
202 |
+
duration: 0.0483 sec
|
203 |
+
algo throughput: 1324507343140.4290 bps, 1324.5073 Gbps
|
204 |
+
busbw: 993.3805 Gbps
|
205 |
+
ignore me 31
|
206 |
+
ignore me 31
|
207 |
+
ignore me 31
|
208 |
+
ignore me 31
|
209 |
+
3:
|
210 |
+
duration: 0.0479 sec
|
211 |
+
algo throughput: 1335850436641.9412 bps, 1335.8504 Gbps
|
212 |
+
busbw: 1001.8878 Gbps
|
213 |
+
2:
|
214 |
+
duration: 0.0478 sec
|
215 |
+
algo throughput: 1338717258044.6157 bps, 1338.7173 Gbps
|
216 |
+
busbw: 1004.0379 Gbps
|
217 |
+
0:
|
218 |
+
duration: 0.0479 sec
|
219 |
+
algo throughput: 1336480609710.5195 bps, 1336.4806 Gbps
|
220 |
+
busbw: 1002.3605 Gbps
|
221 |
+
1:
|
222 |
+
duration: 0.0479 sec
|
223 |
+
algo throughput: 1335644997705.6060 bps, 1335.6450 Gbps
|
224 |
+
busbw: 1001.7337 Gbps
|
225 |
+
ignore me 124
|
226 |
+
ignore me 124
|
227 |
+
ignore me 124
|
228 |
+
2:
|
229 |
+
duration: 0.0479 sec
|
230 |
+
algo throughput: 1337297229056.0354 bps, 1337.2972 Gbps
|
231 |
+
busbw: 1002.9729 Gbps
|
232 |
+
0:
|
233 |
+
duration: 0.0479 sec
|
234 |
+
algo throughput: 1337048861958.8491 bps, 1337.0489 Gbps
|
235 |
+
busbw: 1002.7866 Gbps
|
236 |
+
ignore me 124
|
237 |
+
1:
|
238 |
+
duration: 0.0479 sec
|
239 |
+
algo throughput: 1337386146372.2676 bps, 1337.3861 Gbps
|
240 |
+
busbw: 1003.0396 Gbps
|
241 |
+
3:
|
242 |
+
duration: 0.0480 sec
|
243 |
+
algo throughput: 1333613993474.4404 bps, 1333.6140 Gbps
|
244 |
+
busbw: 1000.2105 Gbps
|
245 |
+
ignore me 496
|
246 |
+
ignore me 496
|
247 |
+
ignore me 496
|
248 |
+
ignore me 496
|
249 |
+
2:
|
250 |
+
duration: 0.0481 sec
|
251 |
+
algo throughput: 1329998661494.7930 bps, 1329.9987 Gbps
|
252 |
+
busbw: 997.4990 Gbps
|
253 |
+
3:
|
254 |
+
duration: 0.0480 sec
|
255 |
+
algo throughput: 1333082662016.4126 bps, 1333.0827 Gbps
|
256 |
+
busbw: 999.8120 Gbps
|
257 |
+
1:
|
258 |
+
duration: 0.0481 sec
|
259 |
+
algo throughput: 1330394518818.0288 bps, 1330.3945 Gbps
|
260 |
+
busbw: 997.7959 Gbps
|
261 |
+
0:
|
262 |
+
duration: 0.0481 sec
|
263 |
+
algo throughput: 1329424219916.1433 bps, 1329.4242 Gbps
|
264 |
+
busbw: 997.0682 Gbps
|
bigscience/experiments/bandwidth/n1_32gb_all_reduce_bench.txt
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export NCCL_DEBUG=info
|
2 |
+
python -m torch.distributed.launch --nproc_per_node=4 all_reduce_bench.py
|
3 |
+
|
4 |
+
*****************************************
|
5 |
+
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
6 |
+
*****************************************
|
7 |
+
local_rank: 3
|
8 |
+
local_rank: 1
|
9 |
+
local_rank: 0
|
10 |
+
local_rank: 2
|
11 |
+
0 data size: 4.0 GB
|
12 |
+
2 data size: 4.0 GB
|
13 |
+
3 data size: 4.0 GB
|
14 |
+
1 data size: 4.0 GB
|
15 |
+
r7i4n1:63120:63120 [0] NCCL INFO Bootstrap : Using [0]ib0:10.148.0.76<0> [1]ib1:10.149.0.76<0>
|
16 |
+
r7i4n1:63120:63120 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
17 |
+
r7i4n1:63120:63120 [0] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.0.76<0>
|
18 |
+
r7i4n1:63120:63120 [0] NCCL INFO Using network IB
|
19 |
+
NCCL version 2.7.8+cuda10.2
|
20 |
+
r7i4n1:63123:63123 [3] NCCL INFO Bootstrap : Using [0]ib0:10.148.0.76<0> [1]ib1:10.149.0.76<0>
|
21 |
+
r7i4n1:63121:63121 [1] NCCL INFO Bootstrap : Using [0]ib0:10.148.0.76<0> [1]ib1:10.149.0.76<0>
|
22 |
+
r7i4n1:63123:63123 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
23 |
+
r7i4n1:63121:63121 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
24 |
+
r7i4n1:63121:63121 [1] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.0.76<0>
|
25 |
+
r7i4n1:63123:63123 [3] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.0.76<0>
|
26 |
+
r7i4n1:63121:63121 [1] NCCL INFO Using network IB
|
27 |
+
r7i4n1:63123:63123 [3] NCCL INFO Using network IB
|
28 |
+
r7i4n1:63122:63122 [2] NCCL INFO Bootstrap : Using [0]ib0:10.148.0.76<0> [1]ib1:10.149.0.76<0>
|
29 |
+
r7i4n1:63122:63122 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
30 |
+
r7i4n1:63122:63122 [2] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.0.76<0>
|
31 |
+
r7i4n1:63122:63122 [2] NCCL INFO Using network IB
|
32 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 00/12 : 0 1 2 3
|
33 |
+
r7i4n1:63122:63194 [2] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
|
34 |
+
r7i4n1:63121:63193 [1] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
|
35 |
+
r7i4n1:63123:63192 [3] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
|
36 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 01/12 : 0 1 3 2
|
37 |
+
r7i4n1:63122:63194 [2] NCCL INFO Trees [0] 3/-1/-1->2->1|1->2->3/-1/-1 [1] -1/-1/-1->2->0|0->2->-1/-1/-1 [2] 0/-1/-1->2->-1|-1->2->0/-1/-1 [3] 1/-1/-1->2->3|3->2->1/-1/-1 [4] 3/-1/-1->2->1|1->2->3/-1/-1 [5] -1/-1/-1->2->0|0->2->-1/-1/-1 [6] 3/-1/-1->2->1|1->2->3/-1/-1 [7] -1/-1/-1->2->0|0->2->-1/-1/-1 [8] 0/-1/-1->2->-1|-1->2->0/-1/-1 [9] 1/-1/-1->2->3|3->2->1/-1/-1 [10] 3/-1/-1->2->1|1->2->3/-1/-1 [11] -1/-1/-1->2->0|0->2->-1/-1/-1
|
38 |
+
r7i4n1:63121:63193 [1] NCCL INFO Trees [0] 2/-1/-1->1->0|0->1->2/-1/-1 [1] 3/-1/-1->1->-1|-1->1->3/-1/-1 [2] -1/-1/-1->1->3|3->1->-1/-1/-1 [3] 0/-1/-1->1->2|2->1->0/-1/-1 [4] 2/-1/-1->1->0|0->1->2/-1/-1 [5] 3/-1/-1->1->-1|-1->1->3/-1/-1 [6] 2/-1/-1->1->0|0->1->2/-1/-1 [7] 3/-1/-1->1->-1|-1->1->3/-1/-1 [8] -1/-1/-1->1->3|3->1->-1/-1/-1 [9] 0/-1/-1->1->2|2->1->0/-1/-1 [10] 2/-1/-1->1->0|0->1->2/-1/-1 [11] 3/-1/-1->1->-1|-1->1->3/-1/-1
|
39 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 02/12 : 0 2 3 1
|
40 |
+
r7i4n1:63123:63192 [3] NCCL INFO Trees [0] -1/-1/-1->3->2|2->3->-1/-1/-1 [1] 0/-1/-1->3->1|1->3->0/-1/-1 [2] 1/-1/-1->3->0|0->3->1/-1/-1 [3] 2/-1/-1->3->-1|-1->3->2/-1/-1 [4] -1/-1/-1->3->2|2->3->-1/-1/-1 [5] 0/-1/-1->3->1|1->3->0/-1/-1 [6] -1/-1/-1->3->2|2->3->-1/-1/-1 [7] 0/-1/-1->3->1|1->3->0/-1/-1 [8] 1/-1/-1->3->0|0->3->1/-1/-1 [9] 2/-1/-1->3->-1|-1->3->2/-1/-1 [10] -1/-1/-1->3->2|2->3->-1/-1/-1 [11] 0/-1/-1->3->1|1->3->0/-1/-1
|
41 |
+
r7i4n1:63122:63194 [2] NCCL INFO Setting affinity for GPU 2 to ffff,f00000ff,fff00000
|
42 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 03/12 : 0 2 1 3
|
43 |
+
r7i4n1:63121:63193 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff00,000fffff
|
44 |
+
r7i4n1:63123:63192 [3] NCCL INFO Setting affinity for GPU 3 to ffff,f00000ff,fff00000
|
45 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 04/12 : 0 3 1 2
|
46 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 00 : 2[88000] -> 3[8a000] via P2P/IPC
|
47 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 05/12 : 0 3 2 1
|
48 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 06/12 : 0 1 2 3
|
49 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 07/12 : 0 1 3 2
|
50 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 08/12 : 0 2 3 1
|
51 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 09/12 : 0 2 1 3
|
52 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 10/12 : 0 3 1 2
|
53 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 11/12 : 0 3 2 1
|
54 |
+
r7i4n1:63120:63191 [0] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
|
55 |
+
r7i4n1:63120:63191 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1|-1->0->1/-1/-1 [1] 2/-1/-1->0->3|3->0->2/-1/-1 [2] 3/-1/-1->0->2|2->0->3/-1/-1 [3] -1/-1/-1->0->1|1->0->-1/-1/-1 [4] 1/-1/-1->0->-1|-1->0->1/-1/-1 [5] 2/-1/-1->0->3|3->0->2/-1/-1 [6] 1/-1/-1->0->-1|-1->0->1/-1/-1 [7] 2/-1/-1->0->3|3->0->2/-1/-1 [8] 3/-1/-1->0->2|2->0->3/-1/-1 [9] -1/-1/-1->0->1|1->0->-1/-1/-1 [10] 1/-1/-1->0->-1|-1->0->1/-1/-1 [11] 2/-1/-1->0->3|3->0->2/-1/-1
|
56 |
+
r7i4n1:63120:63191 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff00,000fffff
|
57 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 00 : 3[8a000] -> 0[1a000] via P2P/IPC
|
58 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 00 : 1[1c000] -> 2[88000] via P2P/IPC
|
59 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 00 : 0[1a000] -> 1[1c000] via P2P/IPC
|
60 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 00 : 3[8a000] -> 2[88000] via P2P/IPC
|
61 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 00 : 2[88000] -> 1[1c000] via P2P/IPC
|
62 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 00 : 1[1c000] -> 0[1a000] via P2P/IPC
|
63 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 01 : 3[8a000] -> 2[88000] via P2P/IPC
|
64 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 01 : 2[88000] -> 0[1a000] via P2P/IPC
|
65 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 01 : 0[1a000] -> 1[1c000] via P2P/IPC
|
66 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 01 : 1[1c000] -> 3[8a000] via P2P/IPC
|
67 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 01 : 0[1a000] -> 3[8a000] via P2P/IPC
|
68 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 01 : 3[8a000] -> 1[1c000] via P2P/IPC
|
69 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 01 : 0[1a000] -> 2[88000] via P2P/IPC
|
70 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 01 : 3[8a000] -> 0[1a000] via P2P/IPC
|
71 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 02 : 1[1c000] -> 0[1a000] via P2P/IPC
|
72 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 02 : 2[88000] -> 3[8a000] via P2P/IPC
|
73 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 02 : 3[8a000] -> 1[1c000] via P2P/IPC
|
74 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 02 : 0[1a000] -> 2[88000] via P2P/IPC
|
75 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 02 : 1[1c000] -> 3[8a000] via P2P/IPC
|
76 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 02 : 2[88000] -> 0[1a000] via P2P/IPC
|
77 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 02 : 3[8a000] -> 0[1a000] via P2P/IPC
|
78 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 03 : 1[1c000] -> 3[8a000] via P2P/IPC
|
79 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 02 : 0[1a000] -> 3[8a000] via P2P/IPC
|
80 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 03 : 2[88000] -> 1[1c000] via P2P/IPC
|
81 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 03 : 3[8a000] -> 0[1a000] via P2P/IPC
|
82 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 03 : 0[1a000] -> 2[88000] via P2P/IPC
|
83 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 03 : 1[1c000] -> 2[88000] via P2P/IPC
|
84 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 03 : 0[1a000] -> 1[1c000] via P2P/IPC
|
85 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 03 : 2[88000] -> 3[8a000] via P2P/IPC
|
86 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 03 : 1[1c000] -> 0[1a000] via P2P/IPC
|
87 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 03 : 3[8a000] -> 2[88000] via P2P/IPC
|
88 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 04 : 0[1a000] -> 3[8a000] via P2P/IPC
|
89 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 04 : 1[1c000] -> 2[88000] via P2P/IPC
|
90 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 04 : 3[8a000] -> 1[1c000] via P2P/IPC
|
91 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 04 : 2[88000] -> 0[1a000] via P2P/IPC
|
92 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 04 : 3[8a000] -> 2[88000] via P2P/IPC
|
93 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 04 : 1[1c000] -> 0[1a000] via P2P/IPC
|
94 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 04 : 2[88000] -> 1[1c000] via P2P/IPC
|
95 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 04 : 0[1a000] -> 1[1c000] via P2P/IPC
|
96 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 04 : 2[88000] -> 3[8a000] via P2P/IPC
|
97 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 05 : 0[1a000] -> 3[8a000] via P2P/IPC
|
98 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 05 : 1[1c000] -> 0[1a000] via P2P/IPC
|
99 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 05 : 3[8a000] -> 2[88000] via P2P/IPC
|
100 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 05 : 2[88000] -> 1[1c000] via P2P/IPC
|
101 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 05 : 3[8a000] -> 1[1c000] via P2P/IPC
|
102 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 05 : 2[88000] -> 0[1a000] via P2P/IPC
|
103 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 05 : 1[1c000] -> 3[8a000] via P2P/IPC
|
104 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 05 : 3[8a000] -> 0[1a000] via P2P/IPC
|
105 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 05 : 0[1a000] -> 2[88000] via P2P/IPC
|
106 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 06 : 1[1c000] -> 2[88000] via P2P/IPC
|
107 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 06 : 2[88000] -> 3[8a000] via P2P/IPC
|
108 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 06 : 3[8a000] -> 0[1a000] via P2P/IPC
|
109 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 06 : 0[1a000] -> 1[1c000] via P2P/IPC
|
110 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 06 : 3[8a000] -> 2[88000] via P2P/IPC
|
111 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 06 : 1[1c000] -> 0[1a000] via P2P/IPC
|
112 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 06 : 2[88000] -> 1[1c000] via P2P/IPC
|
113 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 07 : 3[8a000] -> 2[88000] via P2P/IPC
|
114 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 07 : 0[1a000] -> 1[1c000] via P2P/IPC
|
115 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 07 : 1[1c000] -> 3[8a000] via P2P/IPC
|
116 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 07 : 2[88000] -> 0[1a000] via P2P/IPC
|
117 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 07 : 0[1a000] -> 3[8a000] via P2P/IPC
|
118 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 07 : 3[8a000] -> 1[1c000] via P2P/IPC
|
119 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 07 : 0[1a000] -> 2[88000] via P2P/IPC
|
120 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 07 : 3[8a000] -> 0[1a000] via P2P/IPC
|
121 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 08 : 1[1c000] -> 0[1a000] via P2P/IPC
|
122 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 08 : 2[88000] -> 3[8a000] via P2P/IPC
|
123 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 08 : 0[1a000] -> 2[88000] via P2P/IPC
|
124 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 08 : 3[8a000] -> 1[1c000] via P2P/IPC
|
125 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 08 : 2[88000] -> 0[1a000] via P2P/IPC
|
126 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 08 : 1[1c000] -> 3[8a000] via P2P/IPC
|
127 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 08 : 3[8a000] -> 0[1a000] via P2P/IPC
|
128 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 09 : 1[1c000] -> 3[8a000] via P2P/IPC
|
129 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 08 : 0[1a000] -> 3[8a000] via P2P/IPC
|
130 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 09 : 2[88000] -> 1[1c000] via P2P/IPC
|
131 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 09 : 3[8a000] -> 0[1a000] via P2P/IPC
|
132 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 09 : 0[1a000] -> 2[88000] via P2P/IPC
|
133 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 09 : 1[1c000] -> 2[88000] via P2P/IPC
|
134 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 09 : 0[1a000] -> 1[1c000] via P2P/IPC
|
135 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 09 : 2[88000] -> 3[8a000] via P2P/IPC
|
136 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 09 : 1[1c000] -> 0[1a000] via P2P/IPC
|
137 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 09 : 3[8a000] -> 2[88000] via P2P/IPC
|
138 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 10 : 0[1a000] -> 3[8a000] via P2P/IPC
|
139 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 10 : 1[1c000] -> 2[88000] via P2P/IPC
|
140 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 10 : 2[88000] -> 0[1a000] via P2P/IPC
|
141 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 10 : 3[8a000] -> 1[1c000] via P2P/IPC
|
142 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 10 : 3[8a000] -> 2[88000] via P2P/IPC
|
143 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 10 : 1[1c000] -> 0[1a000] via P2P/IPC
|
144 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 10 : 2[88000] -> 1[1c000] via P2P/IPC
|
145 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 10 : 0[1a000] -> 1[1c000] via P2P/IPC
|
146 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 10 : 2[88000] -> 3[8a000] via P2P/IPC
|
147 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 11 : 1[1c000] -> 0[1a000] via P2P/IPC
|
148 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 11 : 0[1a000] -> 3[8a000] via P2P/IPC
|
149 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 11 : 3[8a000] -> 2[88000] via P2P/IPC
|
150 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 11 : 2[88000] -> 1[1c000] via P2P/IPC
|
151 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 11 : 3[8a000] -> 1[1c000] via P2P/IPC
|
152 |
+
r7i4n1:63122:63194 [2] NCCL INFO Channel 11 : 2[88000] -> 0[1a000] via P2P/IPC
|
153 |
+
r7i4n1:63121:63193 [1] NCCL INFO Channel 11 : 1[1c000] -> 3[8a000] via P2P/IPC
|
154 |
+
r7i4n1:63123:63192 [3] NCCL INFO Channel 11 : 3[8a000] -> 0[1a000] via P2P/IPC
|
155 |
+
r7i4n1:63120:63191 [0] NCCL INFO Channel 11 : 0[1a000] -> 2[88000] via P2P/IPC
|
156 |
+
r7i4n1:63121:63193 [1] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
|
157 |
+
r7i4n1:63121:63193 [1] NCCL INFO comm 0x148f80001060 rank 1 nranks 4 cudaDev 1 busId 1c000 - Init COMPLETE
|
158 |
+
r7i4n1:63122:63194 [2] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
|
159 |
+
r7i4n1:63122:63194 [2] NCCL INFO comm 0x152f00001060 rank 2 nranks 4 cudaDev 2 busId 88000 - Init COMPLETE
|
160 |
+
r7i4n1:63123:63192 [3] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
|
161 |
+
r7i4n1:63120:63191 [0] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
|
162 |
+
r7i4n1:63123:63192 [3] NCCL INFO comm 0x146050001060 rank 3 nranks 4 cudaDev 3 busId 8a000 - Init COMPLETE
|
163 |
+
r7i4n1:63120:63191 [0] NCCL INFO comm 0x14f24c001060 rank 0 nranks 4 cudaDev 0 busId 1a000 - Init COMPLETE
|
164 |
+
r7i4n1:63120:63120 [0] NCCL INFO Launch mode Parallel
|
165 |
+
ignore me 2
|
166 |
+
ignore me 2
|
167 |
+
ignore me 2
|
168 |
+
3:
|
169 |
+
duration: 0.6125 sec
|
170 |
+
algo throughput: 104487664227.6784 bps, 104.4877 Gbps
|
171 |
+
busbw: 78.3657 Gbps
|
172 |
+
0:
|
173 |
+
duration: 0.5584 sec
|
174 |
+
algo throughput: 114613183387.2373 bps, 114.6132 Gbps
|
175 |
+
busbw: 85.9599 Gbps
|
176 |
+
2:
|
177 |
+
duration: 0.5140 sec
|
178 |
+
algo throughput: 124513941981.7996 bps, 124.5139 Gbps
|
179 |
+
busbw: 93.3855 Gbps
|
180 |
+
ignore me 2
|
181 |
+
1:
|
182 |
+
duration: 0.6245 sec
|
183 |
+
algo throughput: 102486528362.0469 bps, 102.4865 Gbps
|
184 |
+
busbw: 76.8649 Gbps
|
185 |
+
ignore me 11
|
186 |
+
ignore me 11
|
187 |
+
ignore me 11
|
188 |
+
ignore me 11
|
189 |
+
1:
|
190 |
+
duration: 0.0479 sec
|
191 |
+
algo throughput: 1337346013047.7080 bps, 1337.3460 Gbps
|
192 |
+
busbw: 1003.0095 Gbps
|
193 |
+
2:
|
194 |
+
duration: 0.0482 sec
|
195 |
+
algo throughput: 1328071705904.8621 bps, 1328.0717 Gbps
|
196 |
+
busbw: 996.0538 Gbps
|
197 |
+
3:
|
198 |
+
duration: 0.0483 sec
|
199 |
+
algo throughput: 1325052362787.1750 bps, 1325.0524 Gbps
|
200 |
+
busbw: 993.7893 Gbps
|
201 |
+
0:
|
202 |
+
duration: 0.0483 sec
|
203 |
+
algo throughput: 1325619195876.0120 bps, 1325.6192 Gbps
|
204 |
+
busbw: 994.2144 Gbps
|
205 |
+
ignore me 45
|
206 |
+
ignore me 45
|
207 |
+
ignore me 45
|
208 |
+
ignore me 45
|
209 |
+
1:
|
210 |
+
duration: 0.0485 sec
|
211 |
+
algo throughput: 1319242278750.3755 bps, 1319.2423 Gbps
|
212 |
+
busbw: 989.4317 Gbps
|
213 |
+
3:
|
214 |
+
duration: 0.0485 sec
|
215 |
+
algo throughput: 1320339103321.9136 bps, 1320.3391 Gbps
|
216 |
+
busbw: 990.2543 Gbps
|
217 |
+
2:
|
218 |
+
duration: 0.0485 sec
|
219 |
+
algo throughput: 1318722904549.9961 bps, 1318.7229 Gbps
|
220 |
+
busbw: 989.0422 Gbps
|
221 |
+
0:
|
222 |
+
duration: 0.0485 sec
|
223 |
+
algo throughput: 1320313583319.3479 bps, 1320.3136 Gbps
|
224 |
+
busbw: 990.2352 Gbps
|
225 |
+
ignore me 183
|
226 |
+
ignore me 183
|
227 |
+
ignore me 183
|
228 |
+
ignore me 183
|
229 |
+
2:
|
230 |
+
duration: 0.0484 sec
|
231 |
+
algo throughput: 1322236494553.5015 bps, 1322.2365 Gbps
|
232 |
+
busbw: 991.6774 Gbps
|
233 |
+
0:
|
234 |
+
duration: 0.0484 sec
|
235 |
+
algo throughput: 1321797181142.1807 bps, 1321.7972 Gbps
|
236 |
+
busbw: 991.3479 Gbps
|
237 |
+
1:
|
238 |
+
duration: 0.0485 sec
|
239 |
+
algo throughput: 1318282723325.4265 bps, 1318.2827 Gbps
|
240 |
+
busbw: 988.7120 Gbps
|
241 |
+
3:
|
242 |
+
duration: 0.0485 sec
|
243 |
+
algo throughput: 1320550708735.8535 bps, 1320.5507 Gbps
|
244 |
+
busbw: 990.4130 Gbps
|
245 |
+
ignore me 733
|
246 |
+
ignore me 733
|
247 |
+
ignore me 733
|
248 |
+
1:
|
249 |
+
duration: 0.0483 sec
|
250 |
+
algo throughput: 1323715979433.6658 bps, 1323.7160 Gbps
|
251 |
+
busbw: 992.7870 Gbps
|
252 |
+
2:
|
253 |
+
duration: 0.0484 sec
|
254 |
+
algo throughput: 1322345035832.8503 bps, 1322.3450 Gbps
|
255 |
+
busbw: 991.7588 Gbps
|
256 |
+
ignore me 733
|
257 |
+
3:
|
258 |
+
duration: 0.0484 sec
|
259 |
+
algo throughput: 1323624408929.4016 bps, 1323.6244 Gbps
|
260 |
+
busbw: 992.7183 Gbps
|
261 |
+
0:
|
262 |
+
duration: 0.0485 sec
|
263 |
+
algo throughput: 1319272113636.8833 bps, 1319.2721 Gbps
|
264 |
+
busbw: 989.4541 Gbps
|
bigscience/experiments/decoder-only-lm/gpt2_deepspeed.sh
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATASET=openwebtext
|
2 |
+
SERIALIZATION_DIR=${ALL_CCFRWORK}/experiments/gpt2_repro
|
3 |
+
LOGGING_DIR=${ALL_CCFRWORK}/tensorboard/gpt2_repro
|
4 |
+
|
5 |
+
export CUDA_VISIBLE_DEVICES=0
|
6 |
+
|
7 |
+
#python scripts/run_clm.py \
|
8 |
+
deepspeed scripts/run_clm.py \
|
9 |
+
--deepspeed configs/deepspeed/ds_zero2.json \
|
10 |
+
--model_type gpt2 \
|
11 |
+
--tokenizer_name gpt2 \
|
12 |
+
--dataset_name openwebtext --block_size 1024 \
|
13 |
+
--preprocessing_num_workers 76 \
|
14 |
+
--group_by_length --length_column_name length \
|
15 |
+
--do_train --do_eval \
|
16 |
+
--max_steps 15000 \
|
17 |
+
--max_train_samples 10000000 \
|
18 |
+
--per_device_train_batch_size 4 --gradient_accumulation_steps 16 \
|
19 |
+
--per_device_eval_batch_size 8 \
|
20 |
+
--output_dir outputs --overwrite_output_dir \
|
21 |
+
--report_to tensorboard \
|
22 |
+
--logging_strategy steps --logging_first_step --logging_dir logs --logging_steps 20 \
|
23 |
+
--eval_steps 250 --evaluation_strategy steps \
|
24 |
+
--save_strategy steps --save_steps 500 --save_total_limit 31 \
|
25 |
+
--n_layer 3 --n_embd 128 --n_inner 128 --n_head 8
|
bigscience/experiments/decoder-only-lm/models/__init__.py
ADDED
File without changes
|
bigscience/experiments/decoder-only-lm/models/decoder_only_t5/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .configuration_decoder_only_t5 import DecoderOnlyT5Config
|
2 |
+
from .modeling_decoder_only_t5 import DecoderOnlyT5Model, DecoderOnlyT5LMHeadModel
|
bigscience/experiments/decoder-only-lm/models/decoder_only_t5/configuration_decoder_only_t5.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020, The T5 Authors and HuggingFace Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Decoder Only T5 model configuration """
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
# T5_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
# "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
|
25 |
+
# "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
|
26 |
+
# "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
|
27 |
+
# "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
|
28 |
+
# "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
|
29 |
+
# }
|
30 |
+
|
31 |
+
|
32 |
+
class DecoderOnlyT5Config(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a :class:`~transformers.T5Model` or a
|
35 |
+
:class:`~transformers.TFT5Model`. It is used to instantiate a T5 model according to the specified arguments,
|
36 |
+
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
|
37 |
+
to that of the T5 `t5-small <https://huggingface.co/t5-small>`__ architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
40 |
+
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
41 |
+
|
42 |
+
Arguments:
|
43 |
+
vocab_size (:obj:`int`, `optional`, defaults to 32128):
|
44 |
+
Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
|
45 |
+
:obj:`inputs_ids` passed when calling :class:`~transformers.T5Model` or :class:`~transformers.TFT5Model`.
|
46 |
+
d_model (:obj:`int`, `optional`, defaults to 512):
|
47 |
+
Size of the encoder layers and the pooler layer.
|
48 |
+
d_kv (:obj:`int`, `optional`, defaults to 64):
|
49 |
+
Size of the key, query, value projections per attention head. :obj:`d_kv` has to be equal to :obj:`d_model
|
50 |
+
// num_heads`.
|
51 |
+
d_ff (:obj:`int`, `optional`, defaults to 2048):
|
52 |
+
Size of the intermediate feed forward layer in each :obj:`T5Block`.
|
53 |
+
num_layers (:obj:`int`, `optional`, defaults to 6):
|
54 |
+
Number of hidden layers in the Transformer encoder.
|
55 |
+
num_decoder_layers (:obj:`int`, `optional`):
|
56 |
+
Number of hidden layers in the Transformer decoder. Will use the same value as :obj:`num_layers` if not
|
57 |
+
set.
|
58 |
+
num_heads (:obj:`int`, `optional`, defaults to 8):
|
59 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
60 |
+
relative_attention_num_buckets (:obj:`int`, `optional`, defaults to 32):
|
61 |
+
The number of buckets to use for each attention layer.
|
62 |
+
dropout_rate (:obj:`float`, `optional`, defaults to 0.1):
|
63 |
+
The ratio for all dropout layers.
|
64 |
+
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-6):
|
65 |
+
The epsilon used by the layer normalization layers.
|
66 |
+
initializer_factor (:obj:`float`, `optional`, defaults to 1):
|
67 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
68 |
+
testing).
|
69 |
+
feed_forward_proj (:obj:`string`, `optional`, defaults to :obj:`"relu"`):
|
70 |
+
Type of feed forward layer to be used. Should be one of :obj:`"relu"` or :obj:`"gated-gelu"`. T5v1.1 uses
|
71 |
+
the :obj:`"gated-gelu"` feed forward projection. Original T5 uses :obj:`"relu"`.
|
72 |
+
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
73 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
74 |
+
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
75 |
+
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
|
76 |
+
"""
|
77 |
+
model_type = "decoder_only_t5"
|
78 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
vocab_size=32128,
|
83 |
+
d_model=512,
|
84 |
+
d_kv=64,
|
85 |
+
d_ff=2048,
|
86 |
+
num_layers=6,
|
87 |
+
# num_decoder_layers=None,
|
88 |
+
num_heads=8,
|
89 |
+
relative_attention_num_buckets=32,
|
90 |
+
dropout_rate=0.1,
|
91 |
+
layer_norm_epsilon=1e-6,
|
92 |
+
initializer_factor=1.0,
|
93 |
+
feed_forward_proj="relu",
|
94 |
+
is_encoder_decoder=False,
|
95 |
+
use_cache=True,
|
96 |
+
pad_token_id=0,
|
97 |
+
eos_token_id=1,
|
98 |
+
gradient_checkpointing=False,
|
99 |
+
**kwargs
|
100 |
+
):
|
101 |
+
super().__init__(
|
102 |
+
pad_token_id=pad_token_id,
|
103 |
+
eos_token_id=eos_token_id,
|
104 |
+
is_encoder_decoder=is_encoder_decoder,
|
105 |
+
**kwargs,
|
106 |
+
)
|
107 |
+
self.vocab_size = vocab_size
|
108 |
+
self.d_model = d_model
|
109 |
+
self.d_kv = d_kv
|
110 |
+
self.d_ff = d_ff
|
111 |
+
self.num_layers = num_layers
|
112 |
+
# self.num_decoder_layers = (
|
113 |
+
# num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
114 |
+
# ) # default = symmetry
|
115 |
+
self.num_heads = num_heads
|
116 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
117 |
+
self.dropout_rate = dropout_rate
|
118 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
119 |
+
self.initializer_factor = initializer_factor
|
120 |
+
self.feed_forward_proj = feed_forward_proj
|
121 |
+
self.use_cache = use_cache
|
122 |
+
self.gradient_checkpointing = gradient_checkpointing
|
123 |
+
|
124 |
+
@property
|
125 |
+
def hidden_size(self):
|
126 |
+
return self.d_model
|
127 |
+
|
128 |
+
@property
|
129 |
+
def num_attention_heads(self):
|
130 |
+
return self.num_heads
|
131 |
+
|
132 |
+
@property
|
133 |
+
def num_hidden_layers(self):
|
134 |
+
return self.num_layers
|
bigscience/experiments/decoder-only-lm/models/decoder_only_t5/modeling_decoder_only_t5.py
ADDED
@@ -0,0 +1,1517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Decoder-only T5 model. It's quick and dirty so please don't mind the unused arguments."""
|
16 |
+
|
17 |
+
|
18 |
+
import copy
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import warnings
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import CrossEntropyLoss
|
27 |
+
from torch.utils.checkpoint import checkpoint
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.file_utils import (
|
31 |
+
DUMMY_INPUTS,
|
32 |
+
DUMMY_MASK,
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
replace_return_docstrings,
|
36 |
+
)
|
37 |
+
from transformers.modeling_outputs import (
|
38 |
+
BaseModelOutput,
|
39 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
40 |
+
CausalLMOutputWithCrossAttentions,
|
41 |
+
)
|
42 |
+
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
43 |
+
from transformers.utils import logging
|
44 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
45 |
+
from .configuration_decoder_only_t5 import DecoderOnlyT5Config
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CONFIG_FOR_DOC = "DecoderOnlyT5Config"
|
50 |
+
_TOKENIZER_FOR_DOC = "T5Tokenizer"
|
51 |
+
|
52 |
+
####################################################
|
53 |
+
# This dict contains ids and associated url
|
54 |
+
# for the pretrained weights provided with the models
|
55 |
+
####################################################
|
56 |
+
# T5_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
57 |
+
# "t5-small",
|
58 |
+
# "t5-base",
|
59 |
+
# "t5-large",
|
60 |
+
# "t5-3b",
|
61 |
+
# "t5-11b",
|
62 |
+
# # See all T5 models at https://huggingface.co/models?filter=t5
|
63 |
+
# ]
|
64 |
+
|
65 |
+
|
66 |
+
####################################################
|
67 |
+
# This is a conversion method from TF 1.0 to PyTorch
|
68 |
+
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
|
69 |
+
####################################################
|
70 |
+
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
|
71 |
+
"""Load tf checkpoints in a pytorch model."""
|
72 |
+
try:
|
73 |
+
import re
|
74 |
+
|
75 |
+
import numpy as np
|
76 |
+
import tensorflow as tf
|
77 |
+
except ImportError:
|
78 |
+
logger.error(
|
79 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
80 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
81 |
+
)
|
82 |
+
raise
|
83 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
84 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
85 |
+
# Load weights from TF model
|
86 |
+
init_vars = tf.train.list_variables(tf_path)
|
87 |
+
names = []
|
88 |
+
tf_weights = {}
|
89 |
+
for name, shape in init_vars:
|
90 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
91 |
+
array = tf.train.load_variable(tf_path, name)
|
92 |
+
names.append(name)
|
93 |
+
tf_weights[name] = array
|
94 |
+
|
95 |
+
for txt_name in names:
|
96 |
+
name = txt_name.split("/")
|
97 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
98 |
+
# which are not required for using pretrained model
|
99 |
+
if any(
|
100 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
101 |
+
for n in name
|
102 |
+
):
|
103 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
104 |
+
tf_weights.pop(txt_name, None)
|
105 |
+
continue
|
106 |
+
if "_slot_" in name[-1]:
|
107 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
108 |
+
tf_weights.pop(txt_name, None)
|
109 |
+
continue
|
110 |
+
pointer = model
|
111 |
+
array = tf_weights[txt_name]
|
112 |
+
|
113 |
+
for m_name in name:
|
114 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
115 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
116 |
+
else:
|
117 |
+
scope_names = [m_name]
|
118 |
+
if scope_names[0] in ["kernel", "scale", "embedding"]:
|
119 |
+
pointer = getattr(pointer, "weight")
|
120 |
+
elif scope_names[0] == "self_attention":
|
121 |
+
pointer = getattr(pointer, "layer")
|
122 |
+
pointer = pointer[0]
|
123 |
+
elif scope_names[0] == "enc_dec_attention":
|
124 |
+
pointer = getattr(pointer, "layer")
|
125 |
+
pointer = pointer[1]
|
126 |
+
elif scope_names[0] == "dense_relu_dense":
|
127 |
+
pointer = getattr(pointer, "layer")
|
128 |
+
pointer = pointer[2]
|
129 |
+
elif scope_names[0] == "rms_norm":
|
130 |
+
if hasattr(pointer, "layer_norm"):
|
131 |
+
pointer = getattr(pointer, "layer_norm")
|
132 |
+
elif hasattr(pointer, "final_layer_norm"):
|
133 |
+
pointer = getattr(pointer, "final_layer_norm")
|
134 |
+
elif scope_names[0] == "scale":
|
135 |
+
pointer = getattr(pointer, "weight")
|
136 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
137 |
+
pointer = getattr(pointer, "bias")
|
138 |
+
elif scope_names[0] == "squad":
|
139 |
+
pointer = getattr(pointer, "classifier")
|
140 |
+
elif scope_names[0] == "decoder" and name[1] == "logits":
|
141 |
+
continue
|
142 |
+
elif scope_names[0] == "logits":
|
143 |
+
pointer = getattr(pointer, "lm_head")
|
144 |
+
elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
|
145 |
+
pointer = getattr(pointer, f"wi_{scope_names[1]}")
|
146 |
+
continue
|
147 |
+
else:
|
148 |
+
try:
|
149 |
+
pointer = getattr(pointer, scope_names[0])
|
150 |
+
except AttributeError:
|
151 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
152 |
+
continue
|
153 |
+
if len(scope_names) >= 2:
|
154 |
+
num = int(scope_names[1])
|
155 |
+
pointer = pointer[num]
|
156 |
+
if scope_names[0] not in ["kernel", "scale", "embedding"]:
|
157 |
+
pointer = getattr(pointer, "weight")
|
158 |
+
if scope_names[0] != "embedding":
|
159 |
+
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
|
160 |
+
array = np.transpose(array)
|
161 |
+
try:
|
162 |
+
assert (
|
163 |
+
pointer.shape == array.shape
|
164 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
165 |
+
except AssertionError as e:
|
166 |
+
e.args += (pointer.shape, array.shape)
|
167 |
+
raise
|
168 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
169 |
+
pointer.data = torch.from_numpy(array.astype(np.float32))
|
170 |
+
tf_weights.pop(txt_name, None)
|
171 |
+
|
172 |
+
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
|
173 |
+
return model
|
174 |
+
|
175 |
+
|
176 |
+
####################################################
|
177 |
+
# PyTorch Models are constructed by sub-classing
|
178 |
+
# - torch.nn.Module for the layers and
|
179 |
+
# - PreTrainedModel for the models (it-self a sub-class of torch.nn.Module)
|
180 |
+
####################################################
|
181 |
+
PARALLELIZE_DOCSTRING = r"""
|
182 |
+
This is an experimental feature and is a subject to change at a moment's notice.
|
183 |
+
|
184 |
+
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
185 |
+
it will evenly distribute blocks across all devices.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
device_map (:obj:`Dict[int, list]`, optional, defaults to None):
|
189 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
190 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
191 |
+
have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
|
192 |
+
following number of attention modules:
|
193 |
+
|
194 |
+
- t5-small: 6
|
195 |
+
- t5-base: 12
|
196 |
+
- t5-large: 24
|
197 |
+
- t5-3b: 24
|
198 |
+
- t5-11b: 24
|
199 |
+
|
200 |
+
Example::
|
201 |
+
|
202 |
+
# Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules:
|
203 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-3b')
|
204 |
+
device_map = {0: [0, 1, 2],
|
205 |
+
|
206 |
+
1: [3, 4, 5, 6, 7, 8, 9],
|
207 |
+
2: [10, 11, 12, 13, 14, 15, 16],
|
208 |
+
3: [17, 18, 19, 20, 21, 22, 23]}
|
209 |
+
model.parallelize(device_map)
|
210 |
+
"""
|
211 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
212 |
+
Moves the model to cpu from a model parallel state.
|
213 |
+
|
214 |
+
Example::
|
215 |
+
|
216 |
+
# On a 4 GPU machine with t5-3b:
|
217 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-3b')
|
218 |
+
device_map = {0: [0, 1, 2],
|
219 |
+
|
220 |
+
1: [3, 4, 5, 6, 7, 8, 9],
|
221 |
+
2: [10, 11, 12, 13, 14, 15, 16],
|
222 |
+
3: [17, 18, 19, 20, 21, 22, 23]}
|
223 |
+
model.parallelize(device_map) # Splits the model across several devices
|
224 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
225 |
+
"""
|
226 |
+
|
227 |
+
|
228 |
+
class DecoderOnlyT5LayerNorm(nn.Module):
|
229 |
+
def __init__(self, hidden_size, eps=1e-6):
|
230 |
+
"""
|
231 |
+
Construct a layernorm module in the T5 style No bias and no subtraction of mean.
|
232 |
+
"""
|
233 |
+
super().__init__()
|
234 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
235 |
+
self.variance_epsilon = eps
|
236 |
+
|
237 |
+
def forward(self, hidden_states):
|
238 |
+
# layer norm should always be calculated in float32
|
239 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
240 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
241 |
+
|
242 |
+
# convert into float16 if necessary
|
243 |
+
if self.weight.dtype == torch.float16:
|
244 |
+
hidden_states = hidden_states.to(torch.float16)
|
245 |
+
return self.weight * hidden_states
|
246 |
+
|
247 |
+
|
248 |
+
class DecoderOnlyT5DenseReluDense(nn.Module):
|
249 |
+
def __init__(self, config):
|
250 |
+
super().__init__()
|
251 |
+
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
|
252 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
253 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
254 |
+
|
255 |
+
def forward(self, hidden_states):
|
256 |
+
hidden_states = self.wi(hidden_states)
|
257 |
+
hidden_states = F.relu(hidden_states)
|
258 |
+
hidden_states = self.dropout(hidden_states)
|
259 |
+
hidden_states = self.wo(hidden_states)
|
260 |
+
return hidden_states
|
261 |
+
|
262 |
+
|
263 |
+
class DecoderOnlyT5DenseGatedGeluDense(nn.Module):
|
264 |
+
def __init__(self, config):
|
265 |
+
super().__init__()
|
266 |
+
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
267 |
+
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
268 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
269 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
270 |
+
self.gelu_act = ACT2FN["gelu_new"]
|
271 |
+
|
272 |
+
def forward(self, hidden_states):
|
273 |
+
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
|
274 |
+
hidden_linear = self.wi_1(hidden_states)
|
275 |
+
hidden_states = hidden_gelu * hidden_linear
|
276 |
+
hidden_states = self.dropout(hidden_states)
|
277 |
+
hidden_states = self.wo(hidden_states)
|
278 |
+
return hidden_states
|
279 |
+
|
280 |
+
|
281 |
+
class DecoderOnlyT5LayerFF(nn.Module):
|
282 |
+
def __init__(self, config):
|
283 |
+
super().__init__()
|
284 |
+
if config.feed_forward_proj == "relu":
|
285 |
+
self.DenseReluDense = DecoderOnlyT5DenseReluDense(config)
|
286 |
+
elif config.feed_forward_proj == "gated-gelu":
|
287 |
+
self.DenseReluDense = DecoderOnlyT5DenseGatedGeluDense(config)
|
288 |
+
else:
|
289 |
+
raise ValueError(
|
290 |
+
f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`"
|
291 |
+
)
|
292 |
+
|
293 |
+
self.layer_norm = DecoderOnlyT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
294 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
295 |
+
|
296 |
+
def forward(self, hidden_states):
|
297 |
+
forwarded_states = self.layer_norm(hidden_states)
|
298 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
299 |
+
hidden_states = hidden_states + self.dropout(forwarded_states)
|
300 |
+
return hidden_states
|
301 |
+
|
302 |
+
|
303 |
+
class DecoderOnlyT5Attention(nn.Module):
|
304 |
+
def __init__(self, config: DecoderOnlyT5Config, has_relative_attention_bias=False):
|
305 |
+
super().__init__()
|
306 |
+
# self.is_decoder = config.is_decoder
|
307 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
308 |
+
|
309 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
310 |
+
self.d_model = config.d_model
|
311 |
+
self.key_value_proj_dim = config.d_kv
|
312 |
+
self.n_heads = config.num_heads
|
313 |
+
self.dropout = config.dropout_rate
|
314 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
315 |
+
|
316 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
317 |
+
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
318 |
+
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
319 |
+
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
320 |
+
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
321 |
+
|
322 |
+
if self.has_relative_attention_bias:
|
323 |
+
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
|
324 |
+
self.pruned_heads = set()
|
325 |
+
self.gradient_checkpointing = getattr(config, "gradient_checkpointing", False)
|
326 |
+
|
327 |
+
def prune_heads(self, heads):
|
328 |
+
if len(heads) == 0:
|
329 |
+
return
|
330 |
+
heads, index = find_pruneable_heads_and_indices(
|
331 |
+
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
|
332 |
+
)
|
333 |
+
# Prune linear layers
|
334 |
+
self.q = prune_linear_layer(self.q, index)
|
335 |
+
self.k = prune_linear_layer(self.k, index)
|
336 |
+
self.v = prune_linear_layer(self.v, index)
|
337 |
+
self.o = prune_linear_layer(self.o, index, dim=1)
|
338 |
+
# Update hyper params
|
339 |
+
self.n_heads = self.n_heads - len(heads)
|
340 |
+
self.inner_dim = self.key_value_proj_dim * self.n_heads
|
341 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
342 |
+
|
343 |
+
@staticmethod
|
344 |
+
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
345 |
+
"""
|
346 |
+
Adapted from Mesh Tensorflow:
|
347 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
348 |
+
|
349 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
350 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
351 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
352 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
353 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
354 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
355 |
+
|
356 |
+
Args:
|
357 |
+
relative_position: an int32 Tensor
|
358 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
359 |
+
num_buckets: an integer
|
360 |
+
max_distance: an integer
|
361 |
+
|
362 |
+
Returns:
|
363 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
364 |
+
"""
|
365 |
+
relative_buckets = 0
|
366 |
+
if bidirectional:
|
367 |
+
num_buckets //= 2
|
368 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
369 |
+
relative_position = torch.abs(relative_position)
|
370 |
+
else:
|
371 |
+
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
372 |
+
# now relative_position is in the range [0, inf)
|
373 |
+
|
374 |
+
# half of the buckets are for exact increments in positions
|
375 |
+
max_exact = num_buckets // 2
|
376 |
+
is_small = relative_position < max_exact
|
377 |
+
|
378 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
379 |
+
relative_postion_if_large = max_exact + (
|
380 |
+
torch.log(relative_position.float() / max_exact)
|
381 |
+
/ math.log(max_distance / max_exact)
|
382 |
+
* (num_buckets - max_exact)
|
383 |
+
).to(torch.long)
|
384 |
+
relative_postion_if_large = torch.min(
|
385 |
+
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
|
386 |
+
)
|
387 |
+
|
388 |
+
relative_buckets += torch.where(is_small, relative_position, relative_postion_if_large)
|
389 |
+
return relative_buckets
|
390 |
+
|
391 |
+
def compute_bias(self, query_length, key_length):
|
392 |
+
"""Compute binned relative position bias"""
|
393 |
+
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
|
394 |
+
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
|
395 |
+
relative_position = memory_position - context_position # shape (query_length, key_length)
|
396 |
+
relative_position_bucket = self._relative_position_bucket(
|
397 |
+
relative_position, # shape (query_length, key_length)
|
398 |
+
bidirectional=False,
|
399 |
+
num_buckets=self.relative_attention_num_buckets,
|
400 |
+
)
|
401 |
+
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
|
402 |
+
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
403 |
+
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
404 |
+
return values
|
405 |
+
|
406 |
+
def forward(
|
407 |
+
self,
|
408 |
+
hidden_states,
|
409 |
+
mask=None,
|
410 |
+
key_value_states=None,
|
411 |
+
position_bias=None,
|
412 |
+
past_key_value=None,
|
413 |
+
layer_head_mask=None,
|
414 |
+
query_length=None,
|
415 |
+
use_cache=False,
|
416 |
+
output_attentions=False,
|
417 |
+
):
|
418 |
+
"""
|
419 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
420 |
+
"""
|
421 |
+
# Input is (batch_size, seq_length, dim)
|
422 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
423 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
424 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
425 |
+
|
426 |
+
int_seq_length = int(seq_length)
|
427 |
+
|
428 |
+
real_seq_length = seq_length
|
429 |
+
|
430 |
+
if past_key_value is not None:
|
431 |
+
assert (
|
432 |
+
len(past_key_value) == 2
|
433 |
+
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
434 |
+
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
|
435 |
+
|
436 |
+
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
|
437 |
+
|
438 |
+
def shape(states):
|
439 |
+
"""projection"""
|
440 |
+
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
441 |
+
|
442 |
+
def unshape(states):
|
443 |
+
"""reshape"""
|
444 |
+
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
445 |
+
|
446 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
447 |
+
"""projects hidden states correctly to key/query states"""
|
448 |
+
if key_value_states is None:
|
449 |
+
# self-attn
|
450 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
451 |
+
hidden_states = shape(proj_layer(hidden_states))
|
452 |
+
elif past_key_value is None:
|
453 |
+
# cross-attn
|
454 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
455 |
+
hidden_states = shape(proj_layer(key_value_states))
|
456 |
+
|
457 |
+
if past_key_value is not None:
|
458 |
+
if key_value_states is None:
|
459 |
+
# self-attn
|
460 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
461 |
+
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
462 |
+
else:
|
463 |
+
# cross-attn
|
464 |
+
hidden_states = past_key_value
|
465 |
+
return hidden_states
|
466 |
+
|
467 |
+
# get query states
|
468 |
+
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
|
469 |
+
|
470 |
+
# get key/value states
|
471 |
+
key_states = project(
|
472 |
+
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
|
473 |
+
)
|
474 |
+
value_states = project(
|
475 |
+
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
|
476 |
+
)
|
477 |
+
|
478 |
+
# compute scores
|
479 |
+
scores = torch.matmul(
|
480 |
+
query_states, key_states.transpose(3, 2)
|
481 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
482 |
+
|
483 |
+
if position_bias is None:
|
484 |
+
if not self.has_relative_attention_bias:
|
485 |
+
position_bias = torch.zeros(
|
486 |
+
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
487 |
+
)
|
488 |
+
if self.training and self.gradient_checkpointing:
|
489 |
+
position_bias.requires_grad = True
|
490 |
+
else:
|
491 |
+
position_bias = self.compute_bias(real_seq_length, key_length)
|
492 |
+
|
493 |
+
# if key and values are already calculated
|
494 |
+
# we want only the last query position bias
|
495 |
+
if past_key_value is not None:
|
496 |
+
position_bias = position_bias[:, :, -int_seq_length:, :]
|
497 |
+
|
498 |
+
if mask is not None:
|
499 |
+
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
|
500 |
+
|
501 |
+
scores += position_bias
|
502 |
+
attn_weights = F.softmax(scores.float(), dim=-1).type_as(
|
503 |
+
scores
|
504 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
505 |
+
attn_weights = F.dropout(
|
506 |
+
attn_weights, p=self.dropout, training=self.training
|
507 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
508 |
+
|
509 |
+
# Mask heads if we want to
|
510 |
+
if layer_head_mask is not None:
|
511 |
+
attn_weights = attn_weights * layer_head_mask
|
512 |
+
|
513 |
+
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
|
514 |
+
attn_output = self.o(attn_output)
|
515 |
+
|
516 |
+
present_key_value_state = (key_states, value_states) if use_cache else None
|
517 |
+
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
518 |
+
|
519 |
+
if output_attentions:
|
520 |
+
outputs = outputs + (attn_weights,)
|
521 |
+
return outputs
|
522 |
+
|
523 |
+
|
524 |
+
class DecoderOnlyT5LayerSelfAttention(nn.Module):
|
525 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
526 |
+
super().__init__()
|
527 |
+
self.SelfAttention = DecoderOnlyT5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
|
528 |
+
self.layer_norm = DecoderOnlyT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
529 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
530 |
+
|
531 |
+
def forward(
|
532 |
+
self,
|
533 |
+
hidden_states,
|
534 |
+
attention_mask=None,
|
535 |
+
position_bias=None,
|
536 |
+
layer_head_mask=None,
|
537 |
+
past_key_value=None,
|
538 |
+
use_cache=False,
|
539 |
+
output_attentions=False,
|
540 |
+
):
|
541 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
542 |
+
attention_output = self.SelfAttention(
|
543 |
+
normed_hidden_states,
|
544 |
+
mask=attention_mask,
|
545 |
+
position_bias=position_bias,
|
546 |
+
layer_head_mask=layer_head_mask,
|
547 |
+
past_key_value=past_key_value,
|
548 |
+
use_cache=use_cache,
|
549 |
+
output_attentions=output_attentions,
|
550 |
+
)
|
551 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
552 |
+
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
|
553 |
+
return outputs
|
554 |
+
|
555 |
+
|
556 |
+
# class T5LayerCrossAttention(nn.Module):
|
557 |
+
# def __init__(self, config):
|
558 |
+
# super().__init__()
|
559 |
+
# self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
|
560 |
+
# self.layer_norm = DecoderOnlyT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
561 |
+
# self.dropout = nn.Dropout(config.dropout_rate)
|
562 |
+
|
563 |
+
# def forward(
|
564 |
+
# self,
|
565 |
+
# hidden_states,
|
566 |
+
# key_value_states,
|
567 |
+
# attention_mask=None,
|
568 |
+
# position_bias=None,
|
569 |
+
# layer_head_mask=None,
|
570 |
+
# past_key_value=None,
|
571 |
+
# use_cache=False,
|
572 |
+
# query_length=None,
|
573 |
+
# output_attentions=False,
|
574 |
+
# ):
|
575 |
+
# normed_hidden_states = self.layer_norm(hidden_states)
|
576 |
+
# attention_output = self.EncDecAttention(
|
577 |
+
# normed_hidden_states,
|
578 |
+
# mask=attention_mask,
|
579 |
+
# key_value_states=key_value_states,
|
580 |
+
# position_bias=position_bias,
|
581 |
+
# layer_head_mask=layer_head_mask,
|
582 |
+
# past_key_value=past_key_value,
|
583 |
+
# use_cache=use_cache,
|
584 |
+
# query_length=query_length,
|
585 |
+
# output_attentions=output_attentions,
|
586 |
+
# )
|
587 |
+
# layer_output = hidden_states + self.dropout(attention_output[0])
|
588 |
+
# outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
|
589 |
+
# return outputs
|
590 |
+
|
591 |
+
|
592 |
+
class T5Block(nn.Module):
|
593 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
594 |
+
super().__init__()
|
595 |
+
# self.is_decoder = config.is_decoder
|
596 |
+
self.layer = nn.ModuleList()
|
597 |
+
self.layer.append(DecoderOnlyT5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
|
598 |
+
# if self.is_decoder:
|
599 |
+
# self.layer.append(T5LayerCrossAttention(config))
|
600 |
+
|
601 |
+
self.layer.append(DecoderOnlyT5LayerFF(config))
|
602 |
+
|
603 |
+
def forward(
|
604 |
+
self,
|
605 |
+
hidden_states,
|
606 |
+
attention_mask=None,
|
607 |
+
position_bias=None,
|
608 |
+
encoder_hidden_states=None,
|
609 |
+
encoder_attention_mask=None,
|
610 |
+
encoder_decoder_position_bias=None,
|
611 |
+
layer_head_mask=None,
|
612 |
+
cross_attn_layer_head_mask=None,
|
613 |
+
past_key_value=None,
|
614 |
+
use_cache=False,
|
615 |
+
output_attentions=False,
|
616 |
+
return_dict=True,
|
617 |
+
):
|
618 |
+
|
619 |
+
if past_key_value is not None:
|
620 |
+
# assert self.is_decoder, "Only decoder can use `past_key_values`"
|
621 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
622 |
+
|
623 |
+
if len(past_key_value) != expected_num_past_key_values:
|
624 |
+
raise ValueError(
|
625 |
+
f"There should be {expected_num_past_key_values} past states. "
|
626 |
+
f"{'2 (past / key) for cross attention' if expected_num_past_key_values == 4 else ''}."
|
627 |
+
f"Got {len(past_key_value)} past key / value states"
|
628 |
+
)
|
629 |
+
|
630 |
+
self_attn_past_key_value = past_key_value[:2]
|
631 |
+
cross_attn_past_key_value = past_key_value[2:]
|
632 |
+
else:
|
633 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
634 |
+
|
635 |
+
self_attention_outputs = self.layer[0](
|
636 |
+
hidden_states,
|
637 |
+
attention_mask=attention_mask,
|
638 |
+
position_bias=position_bias,
|
639 |
+
layer_head_mask=layer_head_mask,
|
640 |
+
past_key_value=self_attn_past_key_value,
|
641 |
+
use_cache=use_cache,
|
642 |
+
output_attentions=output_attentions,
|
643 |
+
)
|
644 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
645 |
+
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
|
646 |
+
|
647 |
+
# clamp inf values to enable fp16 training
|
648 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
649 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
650 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
651 |
+
|
652 |
+
do_cross_attention = encoder_hidden_states is not None
|
653 |
+
if do_cross_attention:
|
654 |
+
# the actual query length is unknown for cross attention
|
655 |
+
# if using past key value states. Need to inject it here
|
656 |
+
if present_key_value_state is not None:
|
657 |
+
query_length = present_key_value_state[0].shape[2]
|
658 |
+
else:
|
659 |
+
query_length = None
|
660 |
+
|
661 |
+
cross_attention_outputs = self.layer[1](
|
662 |
+
hidden_states,
|
663 |
+
key_value_states=encoder_hidden_states,
|
664 |
+
attention_mask=encoder_attention_mask,
|
665 |
+
position_bias=encoder_decoder_position_bias,
|
666 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
667 |
+
past_key_value=cross_attn_past_key_value,
|
668 |
+
query_length=query_length,
|
669 |
+
use_cache=use_cache,
|
670 |
+
output_attentions=output_attentions,
|
671 |
+
)
|
672 |
+
hidden_states = cross_attention_outputs[0]
|
673 |
+
|
674 |
+
# clamp inf values to enable fp16 training
|
675 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
676 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
677 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
678 |
+
|
679 |
+
# Combine self attn and cross attn key value states
|
680 |
+
if present_key_value_state is not None:
|
681 |
+
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
|
682 |
+
|
683 |
+
# Keep cross-attention outputs and relative position weights
|
684 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
685 |
+
|
686 |
+
# Apply Feed Forward layer
|
687 |
+
hidden_states = self.layer[-1](hidden_states)
|
688 |
+
|
689 |
+
# clamp inf values to enable fp16 training
|
690 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
691 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
692 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
693 |
+
|
694 |
+
outputs = (hidden_states,)
|
695 |
+
|
696 |
+
if use_cache:
|
697 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
698 |
+
else:
|
699 |
+
outputs = outputs + attention_outputs
|
700 |
+
|
701 |
+
return outputs # hidden-states, present_key_value_states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
|
702 |
+
|
703 |
+
|
704 |
+
class DecoderOnlyT5PreTrainedModel(PreTrainedModel):
|
705 |
+
"""
|
706 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
707 |
+
models.
|
708 |
+
"""
|
709 |
+
|
710 |
+
config_class = DecoderOnlyT5Config
|
711 |
+
load_tf_weights = load_tf_weights_in_t5
|
712 |
+
base_model_prefix = "transformer"
|
713 |
+
is_parallelizable = True
|
714 |
+
|
715 |
+
@property
|
716 |
+
def dummy_inputs(self):
|
717 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
718 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
719 |
+
dummy_inputs = {
|
720 |
+
# "decoder_input_ids": input_ids,
|
721 |
+
"input_ids": input_ids,
|
722 |
+
# "decoder_attention_mask": input_mask,
|
723 |
+
}
|
724 |
+
return dummy_inputs
|
725 |
+
|
726 |
+
def _init_weights(self, module):
|
727 |
+
"""Initialize the weights"""
|
728 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
729 |
+
if isinstance(module, DecoderOnlyT5LayerNorm):
|
730 |
+
module.weight.data.fill_(factor * 1.0)
|
731 |
+
elif isinstance(module, (DecoderOnlyT5Model)): #, T5ForConditionalGeneration, T5EncoderModel)):
|
732 |
+
# Mesh TensorFlow embeddings initialization
|
733 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
734 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
735 |
+
elif isinstance(module, DecoderOnlyT5DenseReluDense):
|
736 |
+
# Mesh TensorFlow FF initialization
|
737 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
738 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
739 |
+
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
740 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
741 |
+
module.wi.bias.data.zero_()
|
742 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
743 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
744 |
+
module.wo.bias.data.zero_()
|
745 |
+
elif isinstance(module, DecoderOnlyT5DenseGatedGeluDense):
|
746 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
747 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
748 |
+
module.wi_0.bias.data.zero_()
|
749 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
750 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
751 |
+
module.wi_1.bias.data.zero_()
|
752 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
753 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
754 |
+
module.wo.bias.data.zero_()
|
755 |
+
elif isinstance(module, DecoderOnlyT5Attention):
|
756 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
757 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
758 |
+
d_model = self.config.d_model
|
759 |
+
key_value_proj_dim = self.config.d_kv
|
760 |
+
n_heads = self.config.num_heads
|
761 |
+
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
762 |
+
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
763 |
+
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
764 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
765 |
+
if module.has_relative_attention_bias:
|
766 |
+
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
767 |
+
|
768 |
+
# def _shift_right(self, input_ids):
|
769 |
+
# decoder_start_token_id = self.config.decoder_start_token_id
|
770 |
+
# pad_token_id = self.config.pad_token_id
|
771 |
+
|
772 |
+
# assert (
|
773 |
+
# decoder_start_token_id is not None
|
774 |
+
# ), "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. See T5 docs for more information"
|
775 |
+
|
776 |
+
# # shift inputs to the right
|
777 |
+
# if is_torch_fx_proxy(input_ids):
|
778 |
+
# # Item assignment is not supported natively for proxies.
|
779 |
+
# shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
780 |
+
# shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
781 |
+
# else:
|
782 |
+
# shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
783 |
+
# shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
784 |
+
# shifted_input_ids[..., 0] = decoder_start_token_id
|
785 |
+
|
786 |
+
# assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
|
787 |
+
# # replace possible -100 values in labels by `pad_token_id`
|
788 |
+
# shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
789 |
+
|
790 |
+
# assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values"
|
791 |
+
|
792 |
+
# return shifted_input_ids
|
793 |
+
|
794 |
+
|
795 |
+
class DecoderOnlyT5Stack(DecoderOnlyT5PreTrainedModel):
|
796 |
+
def __init__(self, config, embed_tokens=None):
|
797 |
+
super().__init__(config)
|
798 |
+
|
799 |
+
self.embed_tokens = embed_tokens
|
800 |
+
# self.is_decoder = config.is_decoder
|
801 |
+
|
802 |
+
self.block = nn.ModuleList(
|
803 |
+
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
804 |
+
)
|
805 |
+
self.final_layer_norm = DecoderOnlyT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
806 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
807 |
+
|
808 |
+
self.init_weights()
|
809 |
+
# Model parallel
|
810 |
+
self.model_parallel = False
|
811 |
+
self.device_map = None
|
812 |
+
|
813 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
814 |
+
def parallelize(self, device_map=None):
|
815 |
+
# Check validity of device_map
|
816 |
+
self.device_map = (
|
817 |
+
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
|
818 |
+
)
|
819 |
+
assert_device_map(self.device_map, len(self.block))
|
820 |
+
self.model_parallel = True
|
821 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
822 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
823 |
+
# Load onto devices
|
824 |
+
for k, v in self.device_map.items():
|
825 |
+
for layer in v:
|
826 |
+
cuda_device = "cuda:" + str(k)
|
827 |
+
self.block[layer] = self.block[layer].to(cuda_device)
|
828 |
+
|
829 |
+
# Set embed_tokens to first layer
|
830 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
831 |
+
# Set final layer norm to last device
|
832 |
+
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
|
833 |
+
|
834 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
835 |
+
def deparallelize(self):
|
836 |
+
self.model_parallel = False
|
837 |
+
self.device_map = None
|
838 |
+
self.first_device = "cpu"
|
839 |
+
self.last_device = "cpu"
|
840 |
+
for i in range(len(self.block)):
|
841 |
+
self.block[i] = self.block[i].to("cpu")
|
842 |
+
self.embed_tokens = self.embed_tokens.to("cpu")
|
843 |
+
self.final_layer_norm = self.final_layer_norm.to("cpu")
|
844 |
+
torch.cuda.empty_cache()
|
845 |
+
|
846 |
+
def get_input_embeddings(self):
|
847 |
+
return self.embed_tokens
|
848 |
+
|
849 |
+
def set_input_embeddings(self, new_embeddings):
|
850 |
+
self.embed_tokens = new_embeddings
|
851 |
+
|
852 |
+
def forward(
|
853 |
+
self,
|
854 |
+
input_ids=None,
|
855 |
+
attention_mask=None,
|
856 |
+
encoder_hidden_states=None,
|
857 |
+
encoder_attention_mask=None,
|
858 |
+
inputs_embeds=None,
|
859 |
+
head_mask=None,
|
860 |
+
cross_attn_head_mask=None,
|
861 |
+
past_key_values=None,
|
862 |
+
use_cache=None,
|
863 |
+
output_attentions=None,
|
864 |
+
output_hidden_states=None,
|
865 |
+
return_dict=None,
|
866 |
+
):
|
867 |
+
# Model parallel
|
868 |
+
if self.model_parallel:
|
869 |
+
torch.cuda.set_device(self.first_device)
|
870 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
871 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
872 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
873 |
+
output_hidden_states = (
|
874 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
875 |
+
)
|
876 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
877 |
+
|
878 |
+
if input_ids is not None and inputs_embeds is not None:
|
879 |
+
err_msg_prefix = ""
|
880 |
+
raise ValueError(
|
881 |
+
f"You cannot specify both {err_msg_prefix}inputs and {err_msg_prefix}inputs_embeds at the same time"
|
882 |
+
)
|
883 |
+
elif input_ids is not None:
|
884 |
+
input_shape = input_ids.size()
|
885 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
886 |
+
elif inputs_embeds is not None:
|
887 |
+
input_shape = inputs_embeds.size()[:-1]
|
888 |
+
else:
|
889 |
+
err_msg_prefix = ""
|
890 |
+
raise ValueError(f"You have to specify either {err_msg_prefix}inputs or {err_msg_prefix}inputs_embeds")
|
891 |
+
|
892 |
+
if inputs_embeds is None:
|
893 |
+
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
|
894 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
895 |
+
|
896 |
+
batch_size, seq_length = input_shape
|
897 |
+
|
898 |
+
# required mask seq length can be calculated via length of past
|
899 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
900 |
+
|
901 |
+
# if use_cache is True:
|
902 |
+
# assert self.is_decoder, f":obj:`use_cache` can only be set to `True` if {self} is used as a decoder"
|
903 |
+
|
904 |
+
if attention_mask is None:
|
905 |
+
attention_mask = torch.ones(batch_size, mask_seq_length).to(inputs_embeds.device)
|
906 |
+
if encoder_attention_mask is None and encoder_hidden_states is not None:
|
907 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
908 |
+
encoder_attention_mask = torch.ones(
|
909 |
+
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
|
910 |
+
)
|
911 |
+
|
912 |
+
# initialize past_key_values with `None` if past does not exist
|
913 |
+
if past_key_values is None:
|
914 |
+
past_key_values = [None] * len(self.block)
|
915 |
+
|
916 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
917 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
918 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, inputs_embeds.device)
|
919 |
+
|
920 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
921 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
922 |
+
if encoder_hidden_states is not None:
|
923 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
924 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
925 |
+
if encoder_attention_mask is None:
|
926 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
|
927 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
928 |
+
else:
|
929 |
+
encoder_extended_attention_mask = None
|
930 |
+
|
931 |
+
# Prepare head mask if needed
|
932 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
933 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
934 |
+
present_key_value_states = () if use_cache else None
|
935 |
+
all_hidden_states = () if output_hidden_states else None
|
936 |
+
all_attentions = () if output_attentions else None
|
937 |
+
all_cross_attentions = () if output_attentions else None
|
938 |
+
position_bias = None
|
939 |
+
encoder_decoder_position_bias = None
|
940 |
+
|
941 |
+
hidden_states = self.dropout(inputs_embeds)
|
942 |
+
|
943 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
944 |
+
layer_head_mask = head_mask[i]
|
945 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
946 |
+
# Model parallel
|
947 |
+
if self.model_parallel:
|
948 |
+
torch.cuda.set_device(hidden_states.device)
|
949 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
950 |
+
if attention_mask is not None:
|
951 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
952 |
+
if position_bias is not None:
|
953 |
+
position_bias = position_bias.to(hidden_states.device)
|
954 |
+
if encoder_hidden_states is not None:
|
955 |
+
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
|
956 |
+
if encoder_extended_attention_mask is not None:
|
957 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
|
958 |
+
if encoder_decoder_position_bias is not None:
|
959 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
|
960 |
+
if layer_head_mask is not None:
|
961 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
962 |
+
if cross_attn_layer_head_mask is not None:
|
963 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
|
964 |
+
if output_hidden_states:
|
965 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
966 |
+
|
967 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
968 |
+
if use_cache:
|
969 |
+
logger.warn(
|
970 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
971 |
+
"`use_cache=False`..."
|
972 |
+
)
|
973 |
+
use_cache = False
|
974 |
+
|
975 |
+
def create_custom_forward(module):
|
976 |
+
def custom_forward(*inputs):
|
977 |
+
return tuple(module(*inputs, use_cache, output_attentions))
|
978 |
+
|
979 |
+
return custom_forward
|
980 |
+
|
981 |
+
layer_outputs = checkpoint(
|
982 |
+
create_custom_forward(layer_module),
|
983 |
+
hidden_states,
|
984 |
+
extended_attention_mask,
|
985 |
+
position_bias,
|
986 |
+
encoder_hidden_states,
|
987 |
+
encoder_extended_attention_mask,
|
988 |
+
encoder_decoder_position_bias,
|
989 |
+
layer_head_mask,
|
990 |
+
cross_attn_layer_head_mask,
|
991 |
+
None, # past_key_value is always None with gradient checkpointing
|
992 |
+
)
|
993 |
+
else:
|
994 |
+
layer_outputs = layer_module(
|
995 |
+
hidden_states,
|
996 |
+
attention_mask=extended_attention_mask,
|
997 |
+
position_bias=position_bias,
|
998 |
+
encoder_hidden_states=encoder_hidden_states,
|
999 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1000 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
1001 |
+
layer_head_mask=layer_head_mask,
|
1002 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
1003 |
+
past_key_value=past_key_value,
|
1004 |
+
use_cache=use_cache,
|
1005 |
+
output_attentions=output_attentions,
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
# layer_outputs is a tuple with:
|
1009 |
+
# hidden-states, key-value-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
|
1010 |
+
if use_cache is False:
|
1011 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
1012 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
1013 |
+
|
1014 |
+
# We share the position biases between the layers - the first layer store them
|
1015 |
+
# layer_outputs = hidden-states, key-value-states (self-attention weights),
|
1016 |
+
# (self-attention position bias), (cross-attention weights), (cross-attention position bias)
|
1017 |
+
position_bias = layer_outputs[2]
|
1018 |
+
if encoder_hidden_states is not None:
|
1019 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
1020 |
+
# append next layer key value states
|
1021 |
+
if use_cache:
|
1022 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
1023 |
+
|
1024 |
+
if output_attentions:
|
1025 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
1026 |
+
# if self.is_decoder:
|
1027 |
+
# all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
1028 |
+
|
1029 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
1030 |
+
if self.model_parallel:
|
1031 |
+
for k, v in self.device_map.items():
|
1032 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
1033 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
1034 |
+
|
1035 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1036 |
+
hidden_states = self.dropout(hidden_states)
|
1037 |
+
|
1038 |
+
# Add last layer
|
1039 |
+
if output_hidden_states:
|
1040 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1041 |
+
|
1042 |
+
if not return_dict:
|
1043 |
+
return tuple(
|
1044 |
+
v
|
1045 |
+
for v in [
|
1046 |
+
hidden_states,
|
1047 |
+
present_key_value_states,
|
1048 |
+
all_hidden_states,
|
1049 |
+
all_attentions,
|
1050 |
+
all_cross_attentions,
|
1051 |
+
]
|
1052 |
+
if v is not None
|
1053 |
+
)
|
1054 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1055 |
+
last_hidden_state=hidden_states,
|
1056 |
+
past_key_values=present_key_value_states,
|
1057 |
+
hidden_states=all_hidden_states,
|
1058 |
+
attentions=all_attentions,
|
1059 |
+
cross_attentions=all_cross_attentions,
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
|
1063 |
+
T5_START_DOCSTRING = r"""
|
1064 |
+
|
1065 |
+
The T5 model was proposed in `Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
|
1066 |
+
<https://arxiv.org/abs/1910.10683>`__ by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
|
1067 |
+
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text
|
1068 |
+
denoising generative setting.
|
1069 |
+
|
1070 |
+
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
1071 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
1072 |
+
pruning heads etc.)
|
1073 |
+
|
1074 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
1075 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
1076 |
+
general usage and behavior.
|
1077 |
+
|
1078 |
+
Parameters:
|
1079 |
+
config (:class:`~transformers.T5Config`): Model configuration class with all the parameters of the model.
|
1080 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1081 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
1082 |
+
weights.
|
1083 |
+
"""
|
1084 |
+
|
1085 |
+
T5_INPUTS_DOCSTRING = r"""
|
1086 |
+
Args:
|
1087 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
|
1088 |
+
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
1089 |
+
should be able to pad the inputs on both the right and the left.
|
1090 |
+
|
1091 |
+
Indices can be obtained using :class:`~transformers.T5Tokenizer`. See
|
1092 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
1093 |
+
detail.
|
1094 |
+
|
1095 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
1096 |
+
|
1097 |
+
To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training
|
1098 |
+
<./t5.html#training>`__.
|
1099 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1100 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
1101 |
+
|
1102 |
+
- 1 for tokens that are **not masked**,
|
1103 |
+
- 0 for tokens that are **masked**.
|
1104 |
+
|
1105 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
1106 |
+
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
1107 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
1108 |
+
|
1109 |
+
Indices can be obtained using :class:`~transformers.T5Tokenizer`. See
|
1110 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
1111 |
+
details.
|
1112 |
+
|
1113 |
+
`What are decoder input IDs? <../glossary.html#decoder-input-ids>`__
|
1114 |
+
|
1115 |
+
T5 uses the :obj:`pad_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
|
1116 |
+
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
|
1117 |
+
:obj:`past_key_values`).
|
1118 |
+
|
1119 |
+
To know more on how to prepare :obj:`decoder_input_ids` for pretraining take a look at `T5 Training
|
1120 |
+
<./t5.html#training>`__.
|
1121 |
+
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
1122 |
+
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
|
1123 |
+
also be used by default.
|
1124 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
1125 |
+
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in ``[0,
|
1126 |
+
1]``:
|
1127 |
+
|
1128 |
+
- 1 indicates the head is **not masked**,
|
1129 |
+
- 0 indicates the head is **masked**.
|
1130 |
+
|
1131 |
+
decoder_head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
1132 |
+
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in ``[0,
|
1133 |
+
1]``:
|
1134 |
+
|
1135 |
+
- 1 indicates the head is **not masked**,
|
1136 |
+
- 0 indicates the head is **masked**.
|
1137 |
+
|
1138 |
+
cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
1139 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
|
1140 |
+
``[0, 1]``:
|
1141 |
+
|
1142 |
+
- 1 indicates the head is **not masked**,
|
1143 |
+
- 0 indicates the head is **masked**.
|
1144 |
+
|
1145 |
+
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`):
|
1146 |
+
Tuple consists of (:obj:`last_hidden_state`, :obj:`optional`: `hidden_states`, :obj:`optional`:
|
1147 |
+
`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)` is a
|
1148 |
+
sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of
|
1149 |
+
the decoder.
|
1150 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1151 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1152 |
+
|
1153 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1154 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1155 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1156 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1157 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
1158 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
1159 |
+
vectors than the model's internal embedding lookup matrix.
|
1160 |
+
decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`):
|
1161 |
+
Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded
|
1162 |
+
representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds`
|
1163 |
+
have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert
|
1164 |
+
:obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
1165 |
+
|
1166 |
+
If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds`
|
1167 |
+
takes the value of :obj:`inputs_embeds`.
|
1168 |
+
|
1169 |
+
use_cache (:obj:`bool`, `optional`):
|
1170 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1171 |
+
decoding (see :obj:`past_key_values`).
|
1172 |
+
|
1173 |
+
output_attentions (:obj:`bool`, `optional`):
|
1174 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
1175 |
+
tensors for more detail.
|
1176 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
1177 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
1178 |
+
more detail.
|
1179 |
+
return_dict (:obj:`bool`, `optional`):
|
1180 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
1181 |
+
"""
|
1182 |
+
|
1183 |
+
T5_ENCODER_INPUTS_DOCSTRING = r"""
|
1184 |
+
Args:
|
1185 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
|
1186 |
+
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
1187 |
+
should be able to pad the inputs on both the right and the left.
|
1188 |
+
|
1189 |
+
Indices can be obtained using :class:`~transformers.T5Tokenizer`. See
|
1190 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
1191 |
+
detail.
|
1192 |
+
|
1193 |
+
To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training
|
1194 |
+
<./t5.html#training>`__.
|
1195 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1196 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
1197 |
+
|
1198 |
+
- 1 for tokens that are **not masked**,
|
1199 |
+
- 0 for tokens that are **masked**.
|
1200 |
+
|
1201 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
1202 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
1203 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
1204 |
+
|
1205 |
+
- 1 indicates the head is **not masked**,
|
1206 |
+
- 0 indicates the head is **masked**.
|
1207 |
+
|
1208 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1209 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
1210 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
1211 |
+
vectors than the model's internal embedding lookup matrix.
|
1212 |
+
output_attentions (:obj:`bool`, `optional`):
|
1213 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
1214 |
+
tensors for more detail.
|
1215 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
1216 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
1217 |
+
more detail.
|
1218 |
+
return_dict (:obj:`bool`, `optional`):
|
1219 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
1220 |
+
"""
|
1221 |
+
|
1222 |
+
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1223 |
+
__HEAD_MASK_WARNING_MSG = """
|
1224 |
+
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
|
1225 |
+
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
|
1226 |
+
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
|
1227 |
+
num_heads)`.
|
1228 |
+
"""
|
1229 |
+
|
1230 |
+
|
1231 |
+
@add_start_docstrings(
|
1232 |
+
"The bare T5 Model transformer outputting raw hidden-states" "without any specific head on top.",
|
1233 |
+
T5_START_DOCSTRING,
|
1234 |
+
)
|
1235 |
+
class DecoderOnlyT5Model(DecoderOnlyT5PreTrainedModel):
|
1236 |
+
_keys_to_ignore_on_load_missing = [
|
1237 |
+
r"encoder\.embed_tokens\.weight",
|
1238 |
+
]
|
1239 |
+
|
1240 |
+
def __init__(self, config: DecoderOnlyT5Config):
|
1241 |
+
super().__init__(config)
|
1242 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1243 |
+
|
1244 |
+
encoder_config = copy.deepcopy(config)
|
1245 |
+
encoder_config.is_decoder = True
|
1246 |
+
encoder_config.use_cache = False
|
1247 |
+
encoder_config.is_encoder_decoder = False
|
1248 |
+
self.encoder = DecoderOnlyT5Stack(encoder_config, self.shared)
|
1249 |
+
|
1250 |
+
|
1251 |
+
self.init_weights()
|
1252 |
+
|
1253 |
+
# Model parallel
|
1254 |
+
self.model_parallel = False
|
1255 |
+
self.device_map = None
|
1256 |
+
|
1257 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1258 |
+
def parallelize(self, device_map=None):
|
1259 |
+
self.device_map = (
|
1260 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1261 |
+
if device_map is None
|
1262 |
+
else device_map
|
1263 |
+
)
|
1264 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1265 |
+
self.encoder.parallelize(self.device_map)
|
1266 |
+
self.model_parallel = True
|
1267 |
+
|
1268 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1269 |
+
def deparallelize(self):
|
1270 |
+
self.encoder.deparallelize()
|
1271 |
+
self.encoder = self.encoder.to("cpu")
|
1272 |
+
self.model_parallel = False
|
1273 |
+
self.device_map = None
|
1274 |
+
torch.cuda.empty_cache()
|
1275 |
+
|
1276 |
+
def get_input_embeddings(self):
|
1277 |
+
return self.shared
|
1278 |
+
|
1279 |
+
def set_input_embeddings(self, new_embeddings):
|
1280 |
+
self.shared = new_embeddings
|
1281 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1282 |
+
|
1283 |
+
def get_encoder(self):
|
1284 |
+
return self.encoder
|
1285 |
+
|
1286 |
+
|
1287 |
+
def _prune_heads(self, heads_to_prune):
|
1288 |
+
"""
|
1289 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1290 |
+
class PreTrainedModel
|
1291 |
+
"""
|
1292 |
+
for layer, heads in heads_to_prune.items():
|
1293 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1294 |
+
|
1295 |
+
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
1296 |
+
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
1297 |
+
def forward(
|
1298 |
+
self,
|
1299 |
+
input_ids=None,
|
1300 |
+
attention_mask=None,
|
1301 |
+
head_mask=None,
|
1302 |
+
encoder_outputs=None,
|
1303 |
+
inputs_embeds=None,
|
1304 |
+
output_attentions=None,
|
1305 |
+
output_hidden_states=None,
|
1306 |
+
return_dict=None,
|
1307 |
+
):
|
1308 |
+
r"""
|
1309 |
+
Returns:
|
1310 |
+
|
1311 |
+
Example::
|
1312 |
+
|
1313 |
+
>>> from transformers import T5Tokenizer, T5Model
|
1314 |
+
|
1315 |
+
>>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
1316 |
+
>>> model = T5Model.from_pretrained('t5-small')
|
1317 |
+
|
1318 |
+
>>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1
|
1319 |
+
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
1320 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
1321 |
+
|
1322 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1323 |
+
"""
|
1324 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1325 |
+
|
1326 |
+
encoder_outputs = self.encoder(
|
1327 |
+
input_ids=input_ids,
|
1328 |
+
attention_mask=attention_mask,
|
1329 |
+
inputs_embeds=inputs_embeds,
|
1330 |
+
head_mask=head_mask,
|
1331 |
+
output_attentions=output_attentions,
|
1332 |
+
output_hidden_states=output_hidden_states,
|
1333 |
+
return_dict=return_dict,
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
return encoder_outputs
|
1337 |
+
|
1338 |
+
@add_start_docstrings("""T5 Model with a `language modeling` head on top. """, T5_START_DOCSTRING)
|
1339 |
+
class DecoderOnlyT5LMHeadModel(DecoderOnlyT5PreTrainedModel):
|
1340 |
+
_keys_to_ignore_on_load_missing = [
|
1341 |
+
r"encoder\.embed_tokens\.weight",
|
1342 |
+
r"lm_head\.weight",
|
1343 |
+
]
|
1344 |
+
|
1345 |
+
def __init__(self, config):
|
1346 |
+
super().__init__(config)
|
1347 |
+
self.model_dim = config.d_model
|
1348 |
+
|
1349 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1350 |
+
|
1351 |
+
encoder_config = copy.deepcopy(config)
|
1352 |
+
encoder_config.is_decoder = True
|
1353 |
+
encoder_config.use_cache = False
|
1354 |
+
encoder_config.is_encoder_decoder = False
|
1355 |
+
self.encoder = DecoderOnlyT5Stack(encoder_config, self.shared)
|
1356 |
+
|
1357 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
1358 |
+
|
1359 |
+
self.init_weights()
|
1360 |
+
|
1361 |
+
# Model parallel
|
1362 |
+
self.model_parallel = False
|
1363 |
+
self.device_map = None
|
1364 |
+
|
1365 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1366 |
+
def parallelize(self, device_map=None):
|
1367 |
+
self.device_map = (
|
1368 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1369 |
+
if device_map is None
|
1370 |
+
else device_map
|
1371 |
+
)
|
1372 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1373 |
+
self.encoder.parallelize(self.device_map)
|
1374 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
1375 |
+
self.model_parallel = True
|
1376 |
+
|
1377 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1378 |
+
def deparallelize(self):
|
1379 |
+
self.encoder.deparallelize()
|
1380 |
+
self.encoder = self.encoder.to("cpu")
|
1381 |
+
self.lm_head = self.lm_head.to("cpu")
|
1382 |
+
self.model_parallel = False
|
1383 |
+
self.device_map = None
|
1384 |
+
torch.cuda.empty_cache()
|
1385 |
+
|
1386 |
+
def get_input_embeddings(self):
|
1387 |
+
return self.shared
|
1388 |
+
|
1389 |
+
def set_input_embeddings(self, new_embeddings):
|
1390 |
+
self.shared = new_embeddings
|
1391 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1392 |
+
|
1393 |
+
def set_output_embeddings(self, new_embeddings):
|
1394 |
+
self.lm_head = new_embeddings
|
1395 |
+
|
1396 |
+
def get_output_embeddings(self):
|
1397 |
+
return self.lm_head
|
1398 |
+
|
1399 |
+
def get_encoder(self):
|
1400 |
+
return self.encoder
|
1401 |
+
|
1402 |
+
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
1403 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1404 |
+
def forward(
|
1405 |
+
self,
|
1406 |
+
input_ids=None,
|
1407 |
+
attention_mask=None,
|
1408 |
+
head_mask=None,
|
1409 |
+
past_key_values=None,
|
1410 |
+
inputs_embeds=None,
|
1411 |
+
labels=None,
|
1412 |
+
use_cache=None,
|
1413 |
+
output_attentions=None,
|
1414 |
+
output_hidden_states=None,
|
1415 |
+
return_dict=None,
|
1416 |
+
):
|
1417 |
+
r"""
|
1418 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1419 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ...,
|
1420 |
+
config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for
|
1421 |
+
labels in ``[0, ..., config.vocab_size]``
|
1422 |
+
|
1423 |
+
Returns:
|
1424 |
+
|
1425 |
+
Examples::
|
1426 |
+
|
1427 |
+
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
|
1428 |
+
|
1429 |
+
>>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
1430 |
+
>>> model = T5ForConditionalGeneration.from_pretrained('t5-small')
|
1431 |
+
|
1432 |
+
>>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
|
1433 |
+
>>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='pt').input_ids
|
1434 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
1435 |
+
>>> loss = outputs.loss
|
1436 |
+
>>> logits = outputs.logits
|
1437 |
+
|
1438 |
+
>>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you ", return_tensors="pt").input_ids # Batch size 1
|
1439 |
+
>>> outputs = model.generate(input_ids)
|
1440 |
+
"""
|
1441 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1442 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1443 |
+
|
1444 |
+
encoder_outputs = self.encoder(
|
1445 |
+
input_ids=input_ids,
|
1446 |
+
past_key_values=past_key_values,
|
1447 |
+
attention_mask=attention_mask,
|
1448 |
+
inputs_embeds=inputs_embeds,
|
1449 |
+
head_mask=head_mask,
|
1450 |
+
use_cache=use_cache,
|
1451 |
+
output_attentions=output_attentions,
|
1452 |
+
output_hidden_states=output_hidden_states,
|
1453 |
+
return_dict=return_dict,
|
1454 |
+
)
|
1455 |
+
|
1456 |
+
hidden_states = encoder_outputs[0]
|
1457 |
+
|
1458 |
+
if self.model_parallel:
|
1459 |
+
torch.cuda.set_device(self.encoder.first_device)
|
1460 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1461 |
+
|
1462 |
+
lm_logits = self.lm_head(hidden_states)
|
1463 |
+
|
1464 |
+
loss = None
|
1465 |
+
if labels is not None:
|
1466 |
+
# Shift so that tokens < n predict n
|
1467 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1468 |
+
shift_labels = labels[..., 1:].contiguous()
|
1469 |
+
# Flatten the tokens
|
1470 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1471 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1472 |
+
|
1473 |
+
if not return_dict:
|
1474 |
+
output = (lm_logits,) + encoder_outputs[1:]
|
1475 |
+
return ((loss,) + output) if loss is not None else output
|
1476 |
+
|
1477 |
+
return CausalLMOutputWithCrossAttentions(
|
1478 |
+
loss=loss,
|
1479 |
+
logits=lm_logits,
|
1480 |
+
past_key_values=encoder_outputs.past_key_values,
|
1481 |
+
hidden_states=encoder_outputs.hidden_states,
|
1482 |
+
attentions=encoder_outputs.attentions,
|
1483 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
def prepare_inputs_for_generation(
|
1487 |
+
self,
|
1488 |
+
input_ids,
|
1489 |
+
past=None,
|
1490 |
+
attention_mask=None,
|
1491 |
+
head_mask=None,
|
1492 |
+
use_cache=None,
|
1493 |
+
encoder_outputs=None,
|
1494 |
+
**kwargs
|
1495 |
+
):
|
1496 |
+
|
1497 |
+
# cut decoder_input_ids if past is used
|
1498 |
+
if past is not None:
|
1499 |
+
input_ids = input_ids[:, -1:]
|
1500 |
+
|
1501 |
+
return {
|
1502 |
+
"input_ids": input_ids,
|
1503 |
+
"past_key_values": past,
|
1504 |
+
"attention_mask": attention_mask,
|
1505 |
+
"use_cache": use_cache,
|
1506 |
+
}
|
1507 |
+
|
1508 |
+
def _reorder_cache(past, beam_idx):
|
1509 |
+
"""
|
1510 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
1511 |
+
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
1512 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
1513 |
+
"""
|
1514 |
+
return tuple(
|
1515 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1516 |
+
for layer_past in past
|
1517 |
+
)
|
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n16-1832552.out
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n16.slurm
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=hf_ds_gpt2_base_n16
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=16
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:4 # number of gpus
|
9 |
+
#SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --error=%x-%j.out # error file name (same to watch just one file)
|
12 |
+
#SBATCH --account=six@gpu
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
export PYTHONUNBUFFERED=1
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-prod
|
18 |
+
|
19 |
+
nvidia-smi
|
20 |
+
|
21 |
+
cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
|
22 |
+
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
|
27 |
+
DATASET="stas/openwebtext-10k"
|
28 |
+
|
29 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
30 |
+
MASTER_PORT=6000
|
31 |
+
|
32 |
+
# adjust depending on the number of the nodes
|
33 |
+
|
34 |
+
NNODES=16
|
35 |
+
MICRO_BATCH_SIZE=4
|
36 |
+
|
37 |
+
# succeeded:
|
38 |
+
# MSIZE=30
|
39 |
+
# MSIZE=39
|
40 |
+
# MSIZE=52
|
41 |
+
# MSIZE=65 # @ MICRO_BATCH_SIZE=4
|
42 |
+
# MSIZE=81
|
43 |
+
|
44 |
+
MSIZE=97
|
45 |
+
|
46 |
+
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
|
47 |
+
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
|
48 |
+
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
|
49 |
+
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
|
50 |
+
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
|
51 |
+
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
|
52 |
+
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
|
53 |
+
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
|
54 |
+
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
|
55 |
+
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
|
56 |
+
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
|
57 |
+
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
|
58 |
+
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
|
59 |
+
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
|
60 |
+
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
|
61 |
+
else echo "invalid MSIZE: $MSIZE"
|
62 |
+
fi
|
63 |
+
|
64 |
+
|
65 |
+
GPUS_PER_NODE=4
|
66 |
+
NHEADS=32
|
67 |
+
SEQ_LEN=1024
|
68 |
+
VOCAB_SIZE=50257
|
69 |
+
|
70 |
+
export LAUNCHER="python -u -m torch.distributed.launch \
|
71 |
+
--nproc_per_node $GPUS_PER_NODE \
|
72 |
+
--nnodes $NNODES \
|
73 |
+
--master_addr $MASTER_ADDR \
|
74 |
+
--master_port $MASTER_PORT \
|
75 |
+
"
|
76 |
+
|
77 |
+
|
78 |
+
config_json="./ds_z3_cpu_offload.json"
|
79 |
+
cat <<EOT > $config_json
|
80 |
+
{
|
81 |
+
"fp16": {
|
82 |
+
"enabled": "auto",
|
83 |
+
"loss_scale": 0,
|
84 |
+
"loss_scale_window": 1000,
|
85 |
+
"initial_scale_power": 8,
|
86 |
+
"hysteresis": 2,
|
87 |
+
"min_loss_scale": 1
|
88 |
+
},
|
89 |
+
|
90 |
+
"optimizer": {
|
91 |
+
"type": "AdamW",
|
92 |
+
"params": {
|
93 |
+
"lr": "auto",
|
94 |
+
"betas": "auto",
|
95 |
+
"eps": "auto",
|
96 |
+
"weight_decay": "auto"
|
97 |
+
}
|
98 |
+
},
|
99 |
+
|
100 |
+
"scheduler": {
|
101 |
+
"type": "WarmupLR",
|
102 |
+
"params": {
|
103 |
+
"warmup_min_lr": "auto",
|
104 |
+
"warmup_max_lr": "auto",
|
105 |
+
"warmup_num_steps": "auto"
|
106 |
+
}
|
107 |
+
},
|
108 |
+
|
109 |
+
"zero_optimization": {
|
110 |
+
"stage": 3,
|
111 |
+
"offload_optimizer": {
|
112 |
+
"device": "cpu",
|
113 |
+
"pin_memory": true
|
114 |
+
},
|
115 |
+
"offload_param": {
|
116 |
+
"device": "cpu",
|
117 |
+
"pin_memory": true
|
118 |
+
},
|
119 |
+
"overlap_comm": true,
|
120 |
+
"contiguous_gradients": true,
|
121 |
+
"sub_group_size": 1e14,
|
122 |
+
"reduce_bucket_size": "auto",
|
123 |
+
"stage3_prefetch_bucket_size": "auto",
|
124 |
+
"stage3_param_persistence_threshold": "auto",
|
125 |
+
"stage3_max_live_parameters": 1e9,
|
126 |
+
"stage3_max_reuse_distance": 1e9,
|
127 |
+
"stage3_gather_fp16_weights_on_model_save": false
|
128 |
+
},
|
129 |
+
|
130 |
+
"gradient_accumulation_steps": "auto",
|
131 |
+
"gradient_clipping": "auto",
|
132 |
+
"steps_per_print": 2000,
|
133 |
+
"train_batch_size": "auto",
|
134 |
+
"train_micro_batch_size_per_gpu": "auto",
|
135 |
+
"wall_clock_breakdown": false
|
136 |
+
}
|
137 |
+
EOT
|
138 |
+
|
139 |
+
export PYTHONPATH=src
|
140 |
+
export HF_DATASETS_OFFLINE=1
|
141 |
+
export TRANSFORMERS_OFFLINE=1
|
142 |
+
export USE_TF=0
|
143 |
+
|
144 |
+
export CMD=" \
|
145 |
+
examples/pytorch/language-modeling/run_clm.py \
|
146 |
+
--model_type gpt2 \
|
147 |
+
--tokenizer_name gpt2 \
|
148 |
+
--config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
|
149 |
+
--dataset_name $DATASET \
|
150 |
+
--output_dir output_dir \
|
151 |
+
--overwrite_output_dir \
|
152 |
+
--do_train \
|
153 |
+
--max_train_samples 1000 \
|
154 |
+
--per_device_train_batch_size $MICRO_BATCH_SIZE \
|
155 |
+
--num_train_epochs 1 \
|
156 |
+
--warmup_steps 8 \
|
157 |
+
--fp16 \
|
158 |
+
--report_to none \
|
159 |
+
--deepspeed $config_json \
|
160 |
+
"
|
161 |
+
|
162 |
+
# clear old checkpoint as it'd mismatch while we sort things out
|
163 |
+
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
|
164 |
+
|
165 |
+
# model size
|
166 |
+
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
|
167 |
+
|
168 |
+
# to debug - add echo (it exits and prints what it would have launched)
|
169 |
+
clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_base_n16_bs4.txt
|
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n32.slurm
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=hf_ds_gpt2_base_n32
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=32
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:4 # number of gpus
|
9 |
+
#SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --error=%x-%j.out # error file name (same to watch just one file)
|
12 |
+
#SBATCH --account=six@gpu
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
export PYTHONUNBUFFERED=1
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-prod
|
18 |
+
|
19 |
+
nvidia-smi
|
20 |
+
|
21 |
+
cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
|
22 |
+
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
|
27 |
+
DATASET="stas/openwebtext-10k"
|
28 |
+
|
29 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
30 |
+
MASTER_PORT=6000
|
31 |
+
|
32 |
+
# adjust depending on the number of the nodes
|
33 |
+
|
34 |
+
NNODES=32
|
35 |
+
MICRO_BATCH_SIZE=4
|
36 |
+
|
37 |
+
# succeeded:
|
38 |
+
|
39 |
+
# to try
|
40 |
+
MSIZE=158
|
41 |
+
|
42 |
+
# failed
|
43 |
+
# MSIZE=181
|
44 |
+
|
45 |
+
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
|
46 |
+
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
|
47 |
+
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
|
48 |
+
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
|
49 |
+
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
|
50 |
+
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
|
51 |
+
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
|
52 |
+
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
|
53 |
+
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
|
54 |
+
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
|
55 |
+
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
|
56 |
+
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
|
57 |
+
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
|
58 |
+
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
|
59 |
+
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
|
60 |
+
else echo "invalid MSIZE: $MSIZE"
|
61 |
+
fi
|
62 |
+
|
63 |
+
|
64 |
+
GPUS_PER_NODE=4
|
65 |
+
NHEADS=32
|
66 |
+
SEQ_LEN=1024
|
67 |
+
VOCAB_SIZE=50257
|
68 |
+
|
69 |
+
export LAUNCHER="python -u -m torch.distributed.launch \
|
70 |
+
--nproc_per_node $GPUS_PER_NODE \
|
71 |
+
--nnodes $NNODES \
|
72 |
+
--master_addr $MASTER_ADDR \
|
73 |
+
--master_port $MASTER_PORT \
|
74 |
+
"
|
75 |
+
|
76 |
+
|
77 |
+
config_json="./ds_z3_cpu_offload.json"
|
78 |
+
cat <<EOT > $config_json
|
79 |
+
{
|
80 |
+
"fp16": {
|
81 |
+
"enabled": "auto",
|
82 |
+
"loss_scale": 0,
|
83 |
+
"loss_scale_window": 1000,
|
84 |
+
"initial_scale_power": 8,
|
85 |
+
"hysteresis": 2,
|
86 |
+
"min_loss_scale": 1
|
87 |
+
},
|
88 |
+
|
89 |
+
"optimizer": {
|
90 |
+
"type": "AdamW",
|
91 |
+
"params": {
|
92 |
+
"lr": "auto",
|
93 |
+
"betas": "auto",
|
94 |
+
"eps": "auto",
|
95 |
+
"weight_decay": "auto"
|
96 |
+
}
|
97 |
+
},
|
98 |
+
|
99 |
+
"scheduler": {
|
100 |
+
"type": "WarmupLR",
|
101 |
+
"params": {
|
102 |
+
"warmup_min_lr": "auto",
|
103 |
+
"warmup_max_lr": "auto",
|
104 |
+
"warmup_num_steps": "auto"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
|
108 |
+
"zero_optimization": {
|
109 |
+
"stage": 3,
|
110 |
+
"offload_optimizer": {
|
111 |
+
"device": "cpu",
|
112 |
+
"pin_memory": true
|
113 |
+
},
|
114 |
+
"offload_param": {
|
115 |
+
"device": "cpu",
|
116 |
+
"pin_memory": true
|
117 |
+
},
|
118 |
+
"overlap_comm": true,
|
119 |
+
"contiguous_gradients": true,
|
120 |
+
"sub_group_size": 1e14,
|
121 |
+
"reduce_bucket_size": "auto",
|
122 |
+
"stage3_prefetch_bucket_size": "auto",
|
123 |
+
"stage3_param_persistence_threshold": "auto",
|
124 |
+
"stage3_max_live_parameters": 1e9,
|
125 |
+
"stage3_max_reuse_distance": 1e9,
|
126 |
+
"stage3_gather_fp16_weights_on_model_save": false
|
127 |
+
},
|
128 |
+
|
129 |
+
"gradient_accumulation_steps": "auto",
|
130 |
+
"gradient_clipping": "auto",
|
131 |
+
"steps_per_print": 2000,
|
132 |
+
"train_batch_size": "auto",
|
133 |
+
"train_micro_batch_size_per_gpu": "auto",
|
134 |
+
"wall_clock_breakdown": false
|
135 |
+
}
|
136 |
+
EOT
|
137 |
+
|
138 |
+
export PYTHONPATH=src
|
139 |
+
export HF_DATASETS_OFFLINE=1
|
140 |
+
export TRANSFORMERS_OFFLINE=1
|
141 |
+
export USE_TF=0
|
142 |
+
|
143 |
+
export CMD=" \
|
144 |
+
examples/pytorch/language-modeling/run_clm.py \
|
145 |
+
--model_type gpt2 \
|
146 |
+
--tokenizer_name gpt2 \
|
147 |
+
--config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
|
148 |
+
--dataset_name $DATASET \
|
149 |
+
--output_dir output_dir \
|
150 |
+
--overwrite_output_dir \
|
151 |
+
--do_train \
|
152 |
+
--max_train_samples 1000 \
|
153 |
+
--per_device_train_batch_size $MICRO_BATCH_SIZE \
|
154 |
+
--num_train_epochs 1 \
|
155 |
+
--warmup_steps 8 \
|
156 |
+
--fp16 \
|
157 |
+
--report_to none \
|
158 |
+
--deepspeed $config_json \
|
159 |
+
"
|
160 |
+
|
161 |
+
# clear old checkpoint as it'd mismatch while we sort things out
|
162 |
+
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
|
163 |
+
|
164 |
+
# model size
|
165 |
+
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
|
166 |
+
|
167 |
+
# to debug - add echo (it exits and prints what it would have launched)
|
168 |
+
srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_base_n32_bs4.txt
|
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n4-1832555.out
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n4.slurm
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=hf_ds_gpt2_base_n4
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=4
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:4 # number of gpus
|
9 |
+
#SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --error=%x-%j.out # error file name (same to watch just one file)
|
12 |
+
#SBATCH --account=six@gpu
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
export PYTHONUNBUFFERED=1
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-prod
|
18 |
+
|
19 |
+
nvidia-smi
|
20 |
+
|
21 |
+
cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
|
22 |
+
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
|
27 |
+
DATASET="stas/openwebtext-10k"
|
28 |
+
|
29 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
30 |
+
MASTER_PORT=6000
|
31 |
+
|
32 |
+
# adjust depending on the number of the nodes
|
33 |
+
|
34 |
+
NNODES=4
|
35 |
+
MICRO_BATCH_SIZE=4
|
36 |
+
|
37 |
+
# succeeded:
|
38 |
+
|
39 |
+
# to try:
|
40 |
+
MSIZE=25
|
41 |
+
|
42 |
+
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
|
43 |
+
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
|
44 |
+
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
|
45 |
+
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
|
46 |
+
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
|
47 |
+
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
|
48 |
+
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
|
49 |
+
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
|
50 |
+
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
|
51 |
+
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
|
52 |
+
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
|
53 |
+
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
|
54 |
+
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
|
55 |
+
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
|
56 |
+
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
|
57 |
+
else echo "invalid MSIZE: $MSIZE"
|
58 |
+
fi
|
59 |
+
|
60 |
+
|
61 |
+
GPUS_PER_NODE=4
|
62 |
+
NHEADS=32
|
63 |
+
SEQ_LEN=1024
|
64 |
+
VOCAB_SIZE=50257
|
65 |
+
|
66 |
+
export LAUNCHER="python -u -m torch.distributed.launch \
|
67 |
+
--nproc_per_node $GPUS_PER_NODE \
|
68 |
+
--nnodes $NNODES \
|
69 |
+
--master_addr $MASTER_ADDR \
|
70 |
+
--master_port $MASTER_PORT \
|
71 |
+
"
|
72 |
+
|
73 |
+
|
74 |
+
config_json="./ds_z3_cpu_offload.json"
|
75 |
+
cat <<EOT > $config_json
|
76 |
+
{
|
77 |
+
"fp16": {
|
78 |
+
"enabled": "auto",
|
79 |
+
"loss_scale": 0,
|
80 |
+
"loss_scale_window": 1000,
|
81 |
+
"initial_scale_power": 8,
|
82 |
+
"hysteresis": 2,
|
83 |
+
"min_loss_scale": 1
|
84 |
+
},
|
85 |
+
|
86 |
+
"optimizer": {
|
87 |
+
"type": "AdamW",
|
88 |
+
"params": {
|
89 |
+
"lr": "auto",
|
90 |
+
"betas": "auto",
|
91 |
+
"eps": "auto",
|
92 |
+
"weight_decay": "auto"
|
93 |
+
}
|
94 |
+
},
|
95 |
+
|
96 |
+
"scheduler": {
|
97 |
+
"type": "WarmupLR",
|
98 |
+
"params": {
|
99 |
+
"warmup_min_lr": "auto",
|
100 |
+
"warmup_max_lr": "auto",
|
101 |
+
"warmup_num_steps": "auto"
|
102 |
+
}
|
103 |
+
},
|
104 |
+
|
105 |
+
"zero_optimization": {
|
106 |
+
"stage": 3,
|
107 |
+
"offload_optimizer": {
|
108 |
+
"device": "cpu",
|
109 |
+
"pin_memory": true
|
110 |
+
},
|
111 |
+
"offload_param": {
|
112 |
+
"device": "none"
|
113 |
+
},
|
114 |
+
"overlap_comm": true,
|
115 |
+
"contiguous_gradients": true,
|
116 |
+
"sub_group_size": 1e14,
|
117 |
+
"reduce_bucket_size": "auto",
|
118 |
+
"stage3_prefetch_bucket_size": "auto",
|
119 |
+
"stage3_param_persistence_threshold": "auto",
|
120 |
+
"stage3_max_live_parameters": 1e9,
|
121 |
+
"stage3_max_reuse_distance": 1e9,
|
122 |
+
"stage3_gather_fp16_weights_on_model_save": false
|
123 |
+
},
|
124 |
+
|
125 |
+
"gradient_accumulation_steps": "auto",
|
126 |
+
"gradient_clipping": "auto",
|
127 |
+
"steps_per_print": 2000,
|
128 |
+
"train_batch_size": "auto",
|
129 |
+
"train_micro_batch_size_per_gpu": "auto",
|
130 |
+
"wall_clock_breakdown": false
|
131 |
+
}
|
132 |
+
EOT
|
133 |
+
|
134 |
+
export PYTHONPATH=src
|
135 |
+
export HF_DATASETS_OFFLINE=1
|
136 |
+
export TRANSFORMERS_OFFLINE=1
|
137 |
+
export USE_TF=0
|
138 |
+
|
139 |
+
export CMD=" \
|
140 |
+
examples/pytorch/language-modeling/run_clm.py \
|
141 |
+
--model_type gpt2 \
|
142 |
+
--tokenizer_name gpt2 \
|
143 |
+
--config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
|
144 |
+
--dataset_name $DATASET \
|
145 |
+
--output_dir output_dir \
|
146 |
+
--overwrite_output_dir \
|
147 |
+
--do_train \
|
148 |
+
--max_train_samples 1000 \
|
149 |
+
--per_device_train_batch_size $MICRO_BATCH_SIZE \
|
150 |
+
--num_train_epochs 1 \
|
151 |
+
--warmup_steps 8 \
|
152 |
+
--fp16 \
|
153 |
+
--report_to none \
|
154 |
+
--deepspeed $config_json \
|
155 |
+
"
|
156 |
+
|
157 |
+
# clear old checkpoint as it'd mismatch while we sort things out
|
158 |
+
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
|
159 |
+
|
160 |
+
# model size
|
161 |
+
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
|
162 |
+
|
163 |
+
# to debug - add echo (it exits and prints what it would have launched)
|
164 |
+
srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD'
|
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n8-1832573.out
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n8.slurm
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=hf_ds_gpt2_base_n8
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=8
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:4 # number of gpus
|
9 |
+
#SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --error=%x-%j.out # error file name (same to watch just one file)
|
12 |
+
#SBATCH --account=six@gpu
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
export PYTHONUNBUFFERED=1
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-prod
|
18 |
+
|
19 |
+
nvidia-smi
|
20 |
+
|
21 |
+
cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
|
22 |
+
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
|
27 |
+
DATASET="stas/openwebtext-10k"
|
28 |
+
|
29 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
30 |
+
MASTER_PORT=6000
|
31 |
+
|
32 |
+
# adjust depending on the number of the nodes
|
33 |
+
|
34 |
+
NNODES=8
|
35 |
+
MICRO_BATCH_SIZE=4
|
36 |
+
|
37 |
+
# succeeded:
|
38 |
+
# MSIZE=30
|
39 |
+
#MSIZE=39
|
40 |
+
|
41 |
+
# to try
|
42 |
+
MSIZE=52
|
43 |
+
|
44 |
+
|
45 |
+
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
|
46 |
+
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
|
47 |
+
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
|
48 |
+
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
|
49 |
+
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
|
50 |
+
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
|
51 |
+
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
|
52 |
+
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
|
53 |
+
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
|
54 |
+
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
|
55 |
+
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
|
56 |
+
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
|
57 |
+
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
|
58 |
+
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
|
59 |
+
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
|
60 |
+
else echo "invalid MSIZE: $MSIZE"
|
61 |
+
fi
|
62 |
+
|
63 |
+
|
64 |
+
GPUS_PER_NODE=4
|
65 |
+
NHEADS=32
|
66 |
+
SEQ_LEN=1024
|
67 |
+
VOCAB_SIZE=50257
|
68 |
+
|
69 |
+
export LAUNCHER="python -u -m torch.distributed.launch \
|
70 |
+
--nproc_per_node $GPUS_PER_NODE \
|
71 |
+
--nnodes $NNODES \
|
72 |
+
--master_addr $MASTER_ADDR \
|
73 |
+
--master_port $MASTER_PORT \
|
74 |
+
"
|
75 |
+
|
76 |
+
|
77 |
+
config_json="./ds_z3_cpu_offload.json"
|
78 |
+
cat <<EOT > $config_json
|
79 |
+
{
|
80 |
+
"fp16": {
|
81 |
+
"enabled": "auto",
|
82 |
+
"loss_scale": 0,
|
83 |
+
"loss_scale_window": 1000,
|
84 |
+
"initial_scale_power": 8,
|
85 |
+
"hysteresis": 2,
|
86 |
+
"min_loss_scale": 1
|
87 |
+
},
|
88 |
+
|
89 |
+
"optimizer": {
|
90 |
+
"type": "AdamW",
|
91 |
+
"params": {
|
92 |
+
"lr": "auto",
|
93 |
+
"betas": "auto",
|
94 |
+
"eps": "auto",
|
95 |
+
"weight_decay": "auto"
|
96 |
+
}
|
97 |
+
},
|
98 |
+
|
99 |
+
"scheduler": {
|
100 |
+
"type": "WarmupLR",
|
101 |
+
"params": {
|
102 |
+
"warmup_min_lr": "auto",
|
103 |
+
"warmup_max_lr": "auto",
|
104 |
+
"warmup_num_steps": "auto"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
|
108 |
+
"zero_optimization": {
|
109 |
+
"stage": 3,
|
110 |
+
"offload_optimizer": {
|
111 |
+
"device": "cpu",
|
112 |
+
"pin_memory": true
|
113 |
+
},
|
114 |
+
"offload_param": {
|
115 |
+
"device": "cpu",
|
116 |
+
"pin_memory": true
|
117 |
+
},
|
118 |
+
"overlap_comm": true,
|
119 |
+
"contiguous_gradients": true,
|
120 |
+
"sub_group_size": 1e14,
|
121 |
+
"reduce_bucket_size": "auto",
|
122 |
+
"stage3_prefetch_bucket_size": "auto",
|
123 |
+
"stage3_param_persistence_threshold": "auto",
|
124 |
+
"stage3_max_live_parameters": 1e9,
|
125 |
+
"stage3_max_reuse_distance": 1e9,
|
126 |
+
"stage3_gather_fp16_weights_on_model_save": false
|
127 |
+
},
|
128 |
+
|
129 |
+
"gradient_accumulation_steps": "auto",
|
130 |
+
"gradient_clipping": "auto",
|
131 |
+
"steps_per_print": 2000,
|
132 |
+
"train_batch_size": "auto",
|
133 |
+
"train_micro_batch_size_per_gpu": "auto",
|
134 |
+
"wall_clock_breakdown": false
|
135 |
+
}
|
136 |
+
EOT
|
137 |
+
|
138 |
+
export PYTHONPATH=src
|
139 |
+
export HF_DATASETS_OFFLINE=1
|
140 |
+
export TRANSFORMERS_OFFLINE=1
|
141 |
+
export USE_TF=0
|
142 |
+
|
143 |
+
export CMD=" \
|
144 |
+
examples/pytorch/language-modeling/run_clm.py \
|
145 |
+
--model_type gpt2 \
|
146 |
+
--tokenizer_name gpt2 \
|
147 |
+
--config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
|
148 |
+
--dataset_name $DATASET \
|
149 |
+
--output_dir output_dir \
|
150 |
+
--overwrite_output_dir \
|
151 |
+
--do_train \
|
152 |
+
--max_train_samples 1000 \
|
153 |
+
--per_device_train_batch_size $MICRO_BATCH_SIZE \
|
154 |
+
--num_train_epochs 1 \
|
155 |
+
--warmup_steps 8 \
|
156 |
+
--fp16 \
|
157 |
+
--report_to none \
|
158 |
+
--deepspeed $config_json \
|
159 |
+
"
|
160 |
+
|
161 |
+
# clear old checkpoint as it'd mismatch while we sort things out
|
162 |
+
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
|
163 |
+
|
164 |
+
# model size
|
165 |
+
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
|
166 |
+
|
167 |
+
# to debug - add echo (it exits and prints what it would have launched)
|
168 |
+
srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_base_n16_bs4.txt
|
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_perf_n16.slurm
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=hf_ds_gpt2_perf_n16
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=16
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:4 # number of gpus
|
9 |
+
#SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --error=%x-%j.out # error file name (same to watch just one file)
|
12 |
+
#SBATCH --account=six@gpu
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
export PYTHONUNBUFFERED=1
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-prod
|
18 |
+
|
19 |
+
nvidia-smi
|
20 |
+
|
21 |
+
cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
|
22 |
+
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
|
27 |
+
DATASET="stas/openwebtext-10k"
|
28 |
+
|
29 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
30 |
+
MASTER_PORT=6000
|
31 |
+
|
32 |
+
# adjust depending on the number of the nodes
|
33 |
+
|
34 |
+
NNODES=16
|
35 |
+
MICRO_BATCH_SIZE=10 # 10 is 99% gpu
|
36 |
+
|
37 |
+
# succeeded:
|
38 |
+
MSIZE=52
|
39 |
+
|
40 |
+
|
41 |
+
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
|
42 |
+
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
|
43 |
+
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
|
44 |
+
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
|
45 |
+
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
|
46 |
+
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
|
47 |
+
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
|
48 |
+
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
|
49 |
+
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
|
50 |
+
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
|
51 |
+
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
|
52 |
+
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
|
53 |
+
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
|
54 |
+
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
|
55 |
+
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
|
56 |
+
else echo "invalid MSIZE: $MSIZE"
|
57 |
+
fi
|
58 |
+
|
59 |
+
|
60 |
+
GPUS_PER_NODE=4
|
61 |
+
NHEADS=32
|
62 |
+
SEQ_LEN=1024
|
63 |
+
VOCAB_SIZE=50257
|
64 |
+
|
65 |
+
export LAUNCHER="python -u -m torch.distributed.launch \
|
66 |
+
--nproc_per_node $GPUS_PER_NODE \
|
67 |
+
--nnodes $NNODES \
|
68 |
+
--master_addr $MASTER_ADDR \
|
69 |
+
--master_port $MASTER_PORT \
|
70 |
+
"
|
71 |
+
|
72 |
+
|
73 |
+
config_json="./ds_z3_cpu_offload.json"
|
74 |
+
cat <<EOT > $config_json
|
75 |
+
{
|
76 |
+
"fp16": {
|
77 |
+
"enabled": "auto",
|
78 |
+
"loss_scale": 0,
|
79 |
+
"loss_scale_window": 1000,
|
80 |
+
"initial_scale_power": 8,
|
81 |
+
"hysteresis": 2,
|
82 |
+
"min_loss_scale": 1
|
83 |
+
},
|
84 |
+
|
85 |
+
"optimizer": {
|
86 |
+
"type": "AdamW",
|
87 |
+
"params": {
|
88 |
+
"lr": "auto",
|
89 |
+
"betas": "auto",
|
90 |
+
"eps": "auto",
|
91 |
+
"weight_decay": "auto"
|
92 |
+
}
|
93 |
+
},
|
94 |
+
|
95 |
+
"scheduler": {
|
96 |
+
"type": "WarmupLR",
|
97 |
+
"params": {
|
98 |
+
"warmup_min_lr": "auto",
|
99 |
+
"warmup_max_lr": "auto",
|
100 |
+
"warmup_num_steps": "auto"
|
101 |
+
}
|
102 |
+
},
|
103 |
+
|
104 |
+
"zero_optimization": {
|
105 |
+
"stage": 3,
|
106 |
+
"offload_optimizer": {
|
107 |
+
"device": "none"
|
108 |
+
},
|
109 |
+
"offload_param": {
|
110 |
+
"device": "none"
|
111 |
+
},
|
112 |
+
"overlap_comm": true,
|
113 |
+
"contiguous_gradients": true,
|
114 |
+
"sub_group_size": 1e14,
|
115 |
+
"reduce_bucket_size": "auto",
|
116 |
+
"stage3_prefetch_bucket_size": "auto",
|
117 |
+
"stage3_param_persistence_threshold": "auto",
|
118 |
+
"stage3_max_live_parameters": 1e9,
|
119 |
+
"stage3_max_reuse_distance": 1e9,
|
120 |
+
"stage3_gather_fp16_weights_on_model_save": false
|
121 |
+
},
|
122 |
+
|
123 |
+
"gradient_accumulation_steps": "auto",
|
124 |
+
"gradient_clipping": "auto",
|
125 |
+
"steps_per_print": 2000,
|
126 |
+
"train_batch_size": "auto",
|
127 |
+
"train_micro_batch_size_per_gpu": "auto",
|
128 |
+
"wall_clock_breakdown": false
|
129 |
+
}
|
130 |
+
EOT
|
131 |
+
|
132 |
+
export PYTHONPATH=src
|
133 |
+
export HF_DATASETS_OFFLINE=1
|
134 |
+
export TRANSFORMERS_OFFLINE=1
|
135 |
+
export USE_TF=0
|
136 |
+
|
137 |
+
# new arg to start using
|
138 |
+
# --log_on_each_node 0 \
|
139 |
+
|
140 |
+
export CMD=" \
|
141 |
+
examples/pytorch/language-modeling/run_clm.py \
|
142 |
+
--model_type gpt2 \
|
143 |
+
--tokenizer_name gpt2 \
|
144 |
+
--config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
|
145 |
+
--dataset_name $DATASET \
|
146 |
+
--output_dir output_dir \
|
147 |
+
--overwrite_output_dir \
|
148 |
+
--do_train \
|
149 |
+
--max_train_samples 1000 \
|
150 |
+
--per_device_train_batch_size $MICRO_BATCH_SIZE \
|
151 |
+
--num_train_epochs 1 \
|
152 |
+
--warmup_steps 8 \
|
153 |
+
--fp16 \
|
154 |
+
--report_to none \
|
155 |
+
--deepspeed $config_json \
|
156 |
+
"
|
157 |
+
|
158 |
+
# clear old checkpoint as it'd mismatch while we sort things out
|
159 |
+
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
|
160 |
+
|
161 |
+
# model size
|
162 |
+
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
|
163 |
+
|
164 |
+
# make sure no zombies have been left behind from previous runs
|
165 |
+
export PKILL="pkill python"
|
166 |
+
|
167 |
+
echo $CMD
|
168 |
+
# to debug - add echo (it exits and prints what it would have launched)
|
169 |
+
clear; srun --jobid $SLURM_JOBID bash -c '$PKILL; $LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_perf_n16_bs4.out
|