applied-ai-018 commited on
Commit
436b925
·
verified ·
1 Parent(s): fab4c2c

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. bigscience/evaluation/README.md +7 -0
  2. bigscience/evaluation/results/tr1/Tr1-13B-harness-eval.json +165 -0
  3. bigscience/evaluation/results/tr11/README.md +11 -0
  4. bigscience/evaluation/results/tr11/bloom1b3/bslmeval.json +2938 -0
  5. bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-13-19-23-37.json +701 -0
  6. bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-15-11-47-34.json +0 -0
  7. bigscience/evaluation/results/tr11/bloom1b3/humaneval_temp06.json +1 -0
  8. bigscience/evaluation/results/tr11/bloom1b3/humaneval_temp08.json +1 -0
  9. bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/concat.py +103 -0
  10. bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-12-23-19-06.json +0 -0
  11. bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-13-10-19.json +0 -0
  12. bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-20-09-16.json +1255 -0
  13. bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-evalharness-results_lm-eval_global_step337250_2022-07-13-09-55-04.json +172 -0
  14. bigscience/evaluation/results/tr11/bloom2b5/humaneval_temp06.json +1 -0
  15. bigscience/evaluation/results/tr11/bloom2b5/mdtable.txt +143 -0
  16. bigscience/evaluation/results/tr11/get_templates.sh +27 -0
  17. bigscience/evaluation/results/tr12/tr12a-1B3-oscar-en-filtered_agg.json +0 -0
  18. bigscience/evaluation/results/tr12/tr12b-1B3-oscar-en-filtered-dedup_agg.json +0 -0
  19. bigscience/evaluation/results/tr13/download_bslmeval.slurm +37 -0
  20. bigscience/evaluation/results/tr13/results_to_csv.py +72 -0
  21. bigscience/evaluation/results/tr3/README.md +1 -0
  22. bigscience/evaluation/results/tr3/switch_tokenizer_to_t5_for_tr3e.sh +6 -0
  23. bigscience/evaluation/results/tr3/tr3d-1B3-oscar-checkpoints_agg.json +0 -0
  24. bigscience/evaluation/utilities/download_all_models.py +47 -0
  25. bigscience/evaluation/utilities/download_all_models.slurm +26 -0
  26. bigscience/evaluation/utilities/export_results_through_training_to_wandb.py +86 -0
  27. bigscience/evaluation/utilities/find_checkpoints_at_token_intervals.py +27 -0
  28. bigscience/evaluation/utilities/plot_all_eval.py +45 -0
  29. bigscience/experiments/bandwidth/README.md +117 -0
  30. bigscience/experiments/bandwidth/all_reduce_bench-32gb-n4.slurm +20 -0
  31. bigscience/experiments/bandwidth/all_reduce_bench-32gb-n4.txt +850 -0
  32. bigscience/experiments/bandwidth/all_reduce_bench-a100-n4.slurm +24 -0
  33. bigscience/experiments/bandwidth/all_reduce_bench-a100-n4.txt +1424 -0
  34. bigscience/experiments/bandwidth/all_reduce_bench.py +66 -0
  35. bigscience/experiments/bandwidth/n16_32gb_all_reduce_bench.txt +0 -0
  36. bigscience/experiments/bandwidth/n1_16gb_all_reduce_bench.txt +264 -0
  37. bigscience/experiments/bandwidth/n1_32gb_all_reduce_bench.txt +264 -0
  38. bigscience/experiments/decoder-only-lm/gpt2_deepspeed.sh +25 -0
  39. bigscience/experiments/decoder-only-lm/models/__init__.py +0 -0
  40. bigscience/experiments/decoder-only-lm/models/decoder_only_t5/__init__.py +2 -0
  41. bigscience/experiments/decoder-only-lm/models/decoder_only_t5/configuration_decoder_only_t5.py +134 -0
  42. bigscience/experiments/decoder-only-lm/models/decoder_only_t5/modeling_decoder_only_t5.py +1517 -0
  43. bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n16-1832552.out +0 -0
  44. bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n16.slurm +169 -0
  45. bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n32.slurm +168 -0
  46. bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n4-1832555.out +0 -0
  47. bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n4.slurm +164 -0
  48. bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n8-1832573.out +0 -0
  49. bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n8.slurm +168 -0
  50. bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_perf_n16.slurm +169 -0
bigscience/evaluation/README.md ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # Evaluation
2
+
3
+ This folder contains scripts and results for intermediate evaluation, mostly based on zero-shot prompting performance. Most are performed with Eleuther AI's [LM eval harness](https://github.com/EleutherAI/lm-evaluation-harness).
4
+
5
+ Evaluated models:
6
+ - BLOOM (tr11 / The `bigscience/bloom` model in 176B / 6B3 / 2B5 / 1B3 / 750M / 350M variants)
7
+ - [13B](https://github.com/bigscience-workshop/bigscience/blob/master/evaluation/Tr1-13B-harness-eval.json)
bigscience/evaluation/results/tr1/Tr1-13B-harness-eval.json ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada": {
4
+ "ppl": 5.020137688328123,
5
+ "ppl_stderr": 0.11575351197990837,
6
+ "acc": 0.634193673588201,
7
+ "acc_stderr": 0.006710403442216892
8
+ },
9
+ "winogrande": {
10
+ "acc": 0.6471981057616417,
11
+ "acc_stderr": 0.013429728101788954
12
+ },
13
+ "hellaswag": {
14
+ "acc": 0.5416251742680741,
15
+ "acc_stderr": 0.004972460206842306,
16
+ "acc_norm": 0.7162915753833897,
17
+ "acc_norm_stderr": 0.004498757194493409
18
+ },
19
+ "piqa": {
20
+ "acc": 0.7769314472252449,
21
+ "acc_stderr": 0.009713057213018522,
22
+ "acc_norm": 0.7878128400435256,
23
+ "acc_norm_stderr": 0.009539299828174046
24
+ },
25
+ "cola": {
26
+ "mcc": 0.05586916675965605,
27
+ "mcc_stderr": 0.034250689348891604
28
+ },
29
+ "mnli": {
30
+ "acc": 0.3959246051961284,
31
+ "acc_stderr": 0.004936609703575665
32
+ },
33
+ "mnli_mismatched": {
34
+ "acc": 0.3984947111472742,
35
+ "acc_stderr": 0.004937784794740595
36
+ },
37
+ "mrpc": {
38
+ "acc": 0.6764705882352942,
39
+ "acc_stderr": 0.023189113109403536,
40
+ "f1": 0.8058823529411765,
41
+ "f1_stderr": 0.016598529068410604
42
+ },
43
+ "rte": {
44
+ "acc": 0.5234657039711191,
45
+ "acc_stderr": 0.03006330041190266
46
+ },
47
+ "qnli": {
48
+ "acc": 0.5171151382024529,
49
+ "acc_stderr": 0.006761445834294947
50
+ },
51
+ "qqp": {
52
+ "acc": 0.36772198862231015,
53
+ "acc_stderr": 0.0023981002797098354,
54
+ "f1": 0.532523819102829,
55
+ "f1_stderr": 0.0025759259415034795
56
+ },
57
+ "sst": {
58
+ "acc": 0.5137614678899083,
59
+ "acc_stderr": 0.01693543564494107
60
+ },
61
+ "wnli": {
62
+ "acc": 0.18309859154929578,
63
+ "acc_stderr": 0.046225147349214284
64
+ },
65
+ "boolq": {
66
+ "acc": 0.5868501529051988,
67
+ "acc_stderr": 0.008612117547803569
68
+ },
69
+ "copa": {
70
+ "acc": 0.88,
71
+ "acc_stderr": 0.03265986323710906
72
+ },
73
+ "multirc": {
74
+ "acc": 0.017838405036726127,
75
+ "acc_stderr": 0.00428993794671089
76
+ },
77
+ "record": {
78
+ "f1": 0.885354285714286,
79
+ "f1_stderr": 0.00314773987203575,
80
+ "em": 0.8783,
81
+ "em_stderr": 0.003269553486028481
82
+ },
83
+ "wic": {
84
+ "acc": 0.49843260188087773,
85
+ "acc_stderr": 0.019810623954060382
86
+ },
87
+ "wsc": {
88
+ "acc": 0.5,
89
+ "acc_stderr": 0.04926646390821466
90
+ },
91
+ "prost": {
92
+ "acc": 0.28047608881298036,
93
+ "acc_stderr": 0.003282038627279345,
94
+ "acc_norm": 0.2830380017079419,
95
+ "acc_norm_stderr": 0.003291119066155946
96
+ },
97
+ "mc_taco": {
98
+ "em": 0.12612612612612611,
99
+ "f1": 0.4965489467730623
100
+ },
101
+ "pubmedqa": {
102
+ "acc": 0.615,
103
+ "acc_stderr": 0.015395194445410805
104
+ },
105
+ "sciq": {
106
+ "acc": 0.895,
107
+ "acc_stderr": 0.009698921026024957,
108
+ "acc_norm": 0.815,
109
+ "acc_norm_stderr": 0.012285191326386693
110
+ },
111
+ "triviaqa": {
112
+ "acc": 0.13294440024750287,
113
+ "acc_stderr": 0.0031921904944669202
114
+ },
115
+ "arc_easy": {
116
+ "acc": 0.6813973063973064,
117
+ "acc_stderr": 0.009560775507673364,
118
+ "acc_norm": 0.6001683501683501,
119
+ "acc_norm_stderr": 0.010051788039412911
120
+ },
121
+ "arc_challenge": {
122
+ "acc": 0.3216723549488055,
123
+ "acc_stderr": 0.013650488084494164,
124
+ "acc_norm": 0.34215017064846415,
125
+ "acc_norm_stderr": 0.013864152159177275
126
+ },
127
+ "logiqa": {
128
+ "acc": 0.23195084485407066,
129
+ "acc_stderr": 0.0165552524979259,
130
+ "acc_norm": 0.2749615975422427,
131
+ "acc_norm_stderr": 0.01751297178222522
132
+ },
133
+ "openbookqa": {
134
+ "acc": 0.294,
135
+ "acc_stderr": 0.020395095484936603,
136
+ "acc_norm": 0.412,
137
+ "acc_norm_stderr": 0.022033677993740865
138
+ },
139
+ "race": {
140
+ "acc": 0.3741626794258373,
141
+ "acc_stderr": 0.014976513181619648
142
+ },
143
+ "headqa": {
144
+ "acc": 0.22283005105762219,
145
+ "acc_stderr": 0.007948594863726302,
146
+ "acc_norm": 0.26258205689277897,
147
+ "acc_norm_stderr": 0.00840494460823324
148
+ },
149
+ "mathqa": {
150
+ "acc": 0.2375209380234506,
151
+ "acc_stderr": 0.0077905030438074,
152
+ "acc_norm": 0.23450586264656617,
153
+ "acc_norm_stderr": 0.007756188894243557
154
+ },
155
+ "webqs": {
156
+ "acc": 0.0265748031496063,
157
+ "acc_stderr": 0.003568875174120304
158
+ },
159
+ "wikitext": {
160
+ "word_perplexity": 12.921754196505068,
161
+ "byte_perplexity": 1.6136995247803747,
162
+ "bits_per_byte": 0.4785293844744369
163
+ }
164
+ }
165
+ }
bigscience/evaluation/results/tr11/README.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BigScience BLOOM Evaluation Results
2
+
3
+ This folder contains evaluation results of the BLOOM model family.
4
+
5
+ ## Evaluation Procedure
6
+
7
+ - bslmeval files were created using the below:
8
+ - https://github.com/bigscience-workshop/Megatron-DeepSpeed/pull/291
9
+ - https://github.com/bigscience-workshop/lm-evaluation-harness
10
+ - humaneval files were created using the HumanEval code dataset with the below:
11
+ - https://github.com/loubnabnl/bloom-code-evaluation
bigscience/evaluation/results/tr11/bloom1b3/bslmeval.json ADDED
@@ -0,0 +1,2938 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "2022-07-13-11-29-13": {
5
+ "acc": 0.23464163822525597,
6
+ "acc_norm": 0.26791808873720135,
7
+ "acc_norm_stderr": 0.012942030195136423,
8
+ "acc_stderr": 0.012383873560768673
9
+ }
10
+ },
11
+ "arc_easy": {
12
+ "2022-07-13-11-29-13": {
13
+ "acc": 0.5631313131313131,
14
+ "acc_norm": 0.4810606060606061,
15
+ "acc_norm_stderr": 0.010252420496894487,
16
+ "acc_stderr": 0.010177672928157678
17
+ }
18
+ },
19
+ "axb+GPT-3 style": {
20
+ "2022-07-15-11-47-34": {
21
+ "acc": 0.4855072463768116,
22
+ "acc_norm": 0.5878623188405797,
23
+ "acc_norm_stderr": 0.014820785339690506,
24
+ "acc_stderr": 0.015048725939283577,
25
+ "prompt_name": "GPT-3 style",
26
+ "task_name": "axb"
27
+ }
28
+ },
29
+ "axb+MNLI crowdsource": {
30
+ "2022-07-15-11-47-34": {
31
+ "acc": 0.447463768115942,
32
+ "acc_norm": 0.4166666666666667,
33
+ "acc_norm_stderr": 0.014844481058991162,
34
+ "acc_stderr": 0.0149717153798021,
35
+ "prompt_name": "MNLI crowdsource",
36
+ "task_name": "axb"
37
+ }
38
+ },
39
+ "axb+based on the previous passage": {
40
+ "2022-07-15-11-47-34": {
41
+ "acc": 0.4846014492753623,
42
+ "acc_norm": 0.4166666666666667,
43
+ "acc_norm_stderr": 0.014844481058991162,
44
+ "acc_stderr": 0.015047910329698355,
45
+ "prompt_name": "based on the previous passage",
46
+ "task_name": "axb"
47
+ }
48
+ },
49
+ "axb+can we infer": {
50
+ "2022-07-15-11-47-34": {
51
+ "acc": 0.421195652173913,
52
+ "acc_norm": 0.4166666666666667,
53
+ "acc_norm_stderr": 0.014844481058991162,
54
+ "acc_stderr": 0.014866888213508284,
55
+ "prompt_name": "can we infer",
56
+ "task_name": "axb"
57
+ }
58
+ },
59
+ "axb+does it follow that": {
60
+ "2022-07-15-11-47-34": {
61
+ "acc": 0.4375,
62
+ "acc_norm": 0.4166666666666667,
63
+ "acc_norm_stderr": 0.014844481058991162,
64
+ "acc_stderr": 0.014936970932375573,
65
+ "prompt_name": "does it follow that",
66
+ "task_name": "axb"
67
+ }
68
+ },
69
+ "axb+does this imply": {
70
+ "2022-07-15-11-47-34": {
71
+ "acc": 0.5353260869565217,
72
+ "acc_norm": 0.4166666666666667,
73
+ "acc_norm_stderr": 0.014844481058991162,
74
+ "acc_stderr": 0.015017429208641943,
75
+ "prompt_name": "does this imply",
76
+ "task_name": "axb"
77
+ }
78
+ },
79
+ "axb+guaranteed true": {
80
+ "2022-07-15-11-47-34": {
81
+ "acc": 0.44655797101449274,
82
+ "acc_norm": 0.4166666666666667,
83
+ "acc_norm_stderr": 0.014844481058991162,
84
+ "acc_stderr": 0.014968808595500557,
85
+ "prompt_name": "guaranteed true",
86
+ "task_name": "axb"
87
+ }
88
+ },
89
+ "axb+justified in saying": {
90
+ "2022-07-15-11-47-34": {
91
+ "acc": 0.4365942028985507,
92
+ "acc_norm": 0.4166666666666667,
93
+ "acc_norm_stderr": 0.014844481058991162,
94
+ "acc_stderr": 0.014933509475434285,
95
+ "prompt_name": "justified in saying",
96
+ "task_name": "axb"
97
+ }
98
+ },
99
+ "axb+must be true": {
100
+ "2022-07-15-11-47-34": {
101
+ "acc": 0.4266304347826087,
102
+ "acc_norm": 0.4166666666666667,
103
+ "acc_norm_stderr": 0.014844481058991162,
104
+ "acc_stderr": 0.014892084059444173,
105
+ "prompt_name": "must be true",
106
+ "task_name": "axb"
107
+ }
108
+ },
109
+ "axb+should assume": {
110
+ "2022-07-15-11-47-34": {
111
+ "acc": 0.5163043478260869,
112
+ "acc_norm": 0.4157608695652174,
113
+ "acc_norm_stderr": 0.014839845193003246,
114
+ "acc_stderr": 0.015047045240919796,
115
+ "prompt_name": "should assume",
116
+ "task_name": "axb"
117
+ }
118
+ },
119
+ "axg+GPT-3 style": {
120
+ "2022-07-15-11-47-34": {
121
+ "acc": 0.4803370786516854,
122
+ "acc_norm": 0.5,
123
+ "acc_norm_stderr": 0.026537244621713762,
124
+ "acc_stderr": 0.02651671646679541,
125
+ "parity": 0.9606741573033708,
126
+ "parity_stderr": 0.01460967112412074,
127
+ "prompt_name": "GPT-3 style",
128
+ "task_name": "axg"
129
+ }
130
+ },
131
+ "axg+MNLI crowdsource": {
132
+ "2022-07-15-11-47-34": {
133
+ "acc": 0.5140449438202247,
134
+ "acc_norm": 0.5,
135
+ "acc_norm_stderr": 0.026537244621713762,
136
+ "acc_stderr": 0.026526773058212952,
137
+ "parity": 0.9719101123595506,
138
+ "parity_stderr": 0.012419422972302346,
139
+ "prompt_name": "MNLI crowdsource",
140
+ "task_name": "axg"
141
+ }
142
+ },
143
+ "axg+based on the previous passage": {
144
+ "2022-07-15-11-47-34": {
145
+ "acc": 0.5,
146
+ "acc_norm": 0.5,
147
+ "acc_norm_stderr": 0.026537244621713762,
148
+ "acc_stderr": 0.026537244621713762,
149
+ "parity": 0.9662921348314607,
150
+ "parity_stderr": 0.013565419020002358,
151
+ "prompt_name": "based on the previous passage",
152
+ "task_name": "axg"
153
+ }
154
+ },
155
+ "axg+can we infer": {
156
+ "2022-07-15-11-47-34": {
157
+ "acc": 0.5,
158
+ "acc_norm": 0.5,
159
+ "acc_norm_stderr": 0.026537244621713762,
160
+ "acc_stderr": 0.026537244621713762,
161
+ "parity": 0.9887640449438202,
162
+ "parity_stderr": 0.007922544664164389,
163
+ "prompt_name": "can we infer",
164
+ "task_name": "axg"
165
+ }
166
+ },
167
+ "axg+does it follow that": {
168
+ "2022-07-15-11-47-34": {
169
+ "acc": 0.5,
170
+ "acc_norm": 0.5,
171
+ "acc_norm_stderr": 0.026537244621713762,
172
+ "acc_stderr": 0.026537244621713762,
173
+ "parity": 1.0,
174
+ "parity_stderr": 0.0,
175
+ "prompt_name": "does it follow that",
176
+ "task_name": "axg"
177
+ }
178
+ },
179
+ "axg+does this imply": {
180
+ "2022-07-15-11-47-34": {
181
+ "acc": 0.49719101123595505,
182
+ "acc_norm": 0.5,
183
+ "acc_norm_stderr": 0.026537244621713762,
184
+ "acc_stderr": 0.026536825838510643,
185
+ "parity": 0.9831460674157303,
186
+ "parity_stderr": 0.009675491064988365,
187
+ "prompt_name": "does this imply",
188
+ "task_name": "axg"
189
+ }
190
+ },
191
+ "axg+guaranteed true": {
192
+ "2022-07-15-11-47-34": {
193
+ "acc": 0.48314606741573035,
194
+ "acc_norm": 0.5,
195
+ "acc_norm_stderr": 0.026537244621713762,
196
+ "acc_stderr": 0.026522164260489825,
197
+ "parity": 0.9887640449438202,
198
+ "parity_stderr": 0.007922544664164387,
199
+ "prompt_name": "guaranteed true",
200
+ "task_name": "axg"
201
+ }
202
+ },
203
+ "axg+justified in saying": {
204
+ "2022-07-15-11-47-34": {
205
+ "acc": 0.5,
206
+ "acc_norm": 0.5,
207
+ "acc_norm_stderr": 0.026537244621713762,
208
+ "acc_stderr": 0.026537244621713762,
209
+ "parity": 0.9887640449438202,
210
+ "parity_stderr": 0.007922544664164385,
211
+ "prompt_name": "justified in saying",
212
+ "task_name": "axg"
213
+ }
214
+ },
215
+ "axg+must be true": {
216
+ "2022-07-15-11-47-34": {
217
+ "acc": 0.4803370786516854,
218
+ "acc_norm": 0.5,
219
+ "acc_norm_stderr": 0.026537244621713762,
220
+ "acc_stderr": 0.026516716466795417,
221
+ "parity": 0.9719101123595506,
222
+ "parity_stderr": 0.012419422972302347,
223
+ "prompt_name": "must be true",
224
+ "task_name": "axg"
225
+ }
226
+ },
227
+ "axg+should assume": {
228
+ "2022-07-15-11-47-34": {
229
+ "acc": 0.49719101123595505,
230
+ "acc_norm": 0.5,
231
+ "acc_norm_stderr": 0.026537244621713762,
232
+ "acc_stderr": 0.026536825838510643,
233
+ "parity": 0.949438202247191,
234
+ "parity_stderr": 0.016468648928151884,
235
+ "prompt_name": "should assume",
236
+ "task_name": "axg"
237
+ }
238
+ },
239
+ "boolq": {
240
+ "2022-07-13-11-29-13": {
241
+ "acc": 0.617737003058104,
242
+ "acc_stderr": 0.008499149690449272
243
+ }
244
+ },
245
+ "boolq+GPT-3 Style": {
246
+ "2022-07-15-11-47-34": {
247
+ "acc": 0.5896024464831804,
248
+ "acc_norm": 0.6211009174311927,
249
+ "acc_norm_stderr": 0.008484678718565017,
250
+ "acc_stderr": 0.008603488048617526,
251
+ "prompt_name": "GPT-3 Style",
252
+ "task_name": "boolq"
253
+ }
254
+ },
255
+ "boolq+I wonder\u2026": {
256
+ "2022-07-15-11-47-34": {
257
+ "acc": 0.563914373088685,
258
+ "acc_norm": 0.6217125382262997,
259
+ "acc_norm_stderr": 0.00848200113393099,
260
+ "acc_stderr": 0.008673312776324934,
261
+ "prompt_name": "I wonder\u2026",
262
+ "task_name": "boolq"
263
+ }
264
+ },
265
+ "boolq+after_reading": {
266
+ "2022-07-15-11-47-34": {
267
+ "acc": 0.6217125382262997,
268
+ "acc_norm": 0.3804281345565749,
269
+ "acc_norm_stderr": 0.008491310027059626,
270
+ "acc_stderr": 0.00848200113393099,
271
+ "prompt_name": "after_reading",
272
+ "task_name": "boolq"
273
+ }
274
+ },
275
+ "boolq+based on the following passage": {
276
+ "2022-07-15-11-47-34": {
277
+ "acc": 0.3798165137614679,
278
+ "acc_norm": 0.6012232415902141,
279
+ "acc_norm_stderr": 0.008563973987729906,
280
+ "acc_stderr": 0.008488668235778644,
281
+ "prompt_name": "based on the following passage",
282
+ "task_name": "boolq"
283
+ }
284
+ },
285
+ "boolq+based on the previous passage": {
286
+ "2022-07-15-11-47-34": {
287
+ "acc": 0.6146788990825688,
288
+ "acc_norm": 0.6217125382262997,
289
+ "acc_norm_stderr": 0.00848200113393099,
290
+ "acc_stderr": 0.008511930879680635,
291
+ "prompt_name": "based on the previous passage",
292
+ "task_name": "boolq"
293
+ }
294
+ },
295
+ "boolq+could you tell me\u2026": {
296
+ "2022-07-15-11-47-34": {
297
+ "acc": 0.5840978593272171,
298
+ "acc_norm": 0.6217125382262997,
299
+ "acc_norm_stderr": 0.00848200113393099,
300
+ "acc_stderr": 0.008620469604001,
301
+ "prompt_name": "could you tell me\u2026",
302
+ "task_name": "boolq"
303
+ }
304
+ },
305
+ "boolq+exam": {
306
+ "2022-07-15-11-47-34": {
307
+ "acc": 0.6220183486238532,
308
+ "acc_norm": 0.6217125382262997,
309
+ "acc_norm_stderr": 0.00848200113393099,
310
+ "acc_stderr": 0.008480656964585267,
311
+ "prompt_name": "exam",
312
+ "task_name": "boolq"
313
+ }
314
+ },
315
+ "boolq+exercise": {
316
+ "2022-07-15-11-47-34": {
317
+ "acc": 0.6217125382262997,
318
+ "acc_norm": 0.46788990825688076,
319
+ "acc_norm_stderr": 0.0087270030269178,
320
+ "acc_stderr": 0.00848200113393099,
321
+ "prompt_name": "exercise",
322
+ "task_name": "boolq"
323
+ }
324
+ },
325
+ "boolq+valid_binary": {
326
+ "2022-07-15-11-47-34": {
327
+ "acc": 0.491131498470948,
328
+ "acc_norm": 0.37370030581039754,
329
+ "acc_norm_stderr": 0.008461461177104003,
330
+ "acc_stderr": 0.008743679265456042,
331
+ "prompt_name": "valid_binary",
332
+ "task_name": "boolq"
333
+ }
334
+ },
335
+ "boolq+yes_no_question": {
336
+ "2022-07-15-11-47-34": {
337
+ "acc": 0.5951070336391437,
338
+ "acc_norm": 0.6217125382262997,
339
+ "acc_norm_stderr": 0.00848200113393099,
340
+ "acc_stderr": 0.008585393347962319,
341
+ "prompt_name": "yes_no_question",
342
+ "task_name": "boolq"
343
+ }
344
+ },
345
+ "cb+GPT-3 style": {
346
+ "2022-07-15-11-47-34": {
347
+ "acc": 0.42857142857142855,
348
+ "acc_stderr": 0.06672848092813057,
349
+ "f1": 0.21956970232832299,
350
+ "prompt_name": "GPT-3 style",
351
+ "task_name": "cb"
352
+ }
353
+ },
354
+ "cb+MNLI crowdsource": {
355
+ "2022-07-15-11-47-34": {
356
+ "acc": 0.42857142857142855,
357
+ "acc_stderr": 0.06672848092813057,
358
+ "f1": 0.21956970232832299,
359
+ "prompt_name": "MNLI crowdsource",
360
+ "task_name": "cb"
361
+ }
362
+ },
363
+ "cb+always/sometimes/never": {
364
+ "2022-07-15-11-47-34": {
365
+ "acc": 0.08928571428571429,
366
+ "acc_stderr": 0.038450387280282494,
367
+ "f1": 0.054644808743169404,
368
+ "prompt_name": "always/sometimes/never",
369
+ "task_name": "cb"
370
+ }
371
+ },
372
+ "cb+based on the previous passage": {
373
+ "2022-07-15-11-47-34": {
374
+ "acc": 0.35714285714285715,
375
+ "acc_stderr": 0.06460957383809221,
376
+ "f1": 0.2094181249110827,
377
+ "prompt_name": "based on the previous passage",
378
+ "task_name": "cb"
379
+ }
380
+ },
381
+ "cb+can we infer": {
382
+ "2022-07-15-11-47-34": {
383
+ "acc": 0.25,
384
+ "acc_stderr": 0.058387420812114225,
385
+ "f1": 0.15483870967741933,
386
+ "prompt_name": "can we infer",
387
+ "task_name": "cb"
388
+ }
389
+ },
390
+ "cb+claim true/false/inconclusive": {
391
+ "2022-07-15-11-47-34": {
392
+ "acc": 0.42857142857142855,
393
+ "acc_stderr": 0.06672848092813057,
394
+ "f1": 0.21956970232832299,
395
+ "prompt_name": "claim true/false/inconclusive",
396
+ "task_name": "cb"
397
+ }
398
+ },
399
+ "cb+consider always/sometimes/never": {
400
+ "2022-07-15-11-47-34": {
401
+ "acc": 0.08928571428571429,
402
+ "acc_stderr": 0.038450387280282494,
403
+ "f1": 0.054644808743169404,
404
+ "prompt_name": "consider always/sometimes/never",
405
+ "task_name": "cb"
406
+ }
407
+ },
408
+ "cb+does it follow that": {
409
+ "2022-07-15-11-47-34": {
410
+ "acc": 0.30357142857142855,
411
+ "acc_stderr": 0.06199938655510754,
412
+ "f1": 0.2613574165298303,
413
+ "prompt_name": "does it follow that",
414
+ "task_name": "cb"
415
+ }
416
+ },
417
+ "cb+does this imply": {
418
+ "2022-07-15-11-47-34": {
419
+ "acc": 0.10714285714285714,
420
+ "acc_stderr": 0.0417053005800816,
421
+ "f1": 0.11222753854332802,
422
+ "prompt_name": "does this imply",
423
+ "task_name": "cb"
424
+ }
425
+ },
426
+ "cb+guaranteed true": {
427
+ "2022-07-15-11-47-34": {
428
+ "acc": 0.21428571428571427,
429
+ "acc_stderr": 0.055328333517248834,
430
+ "f1": 0.15883777239709443,
431
+ "prompt_name": "guaranteed true",
432
+ "task_name": "cb"
433
+ }
434
+ },
435
+ "cb+guaranteed/possible/impossible": {
436
+ "2022-07-15-11-47-34": {
437
+ "acc": 0.10714285714285714,
438
+ "acc_stderr": 0.0417053005800816,
439
+ "f1": 0.07871939736346516,
440
+ "prompt_name": "guaranteed/possible/impossible",
441
+ "task_name": "cb"
442
+ }
443
+ },
444
+ "cb+justified in saying": {
445
+ "2022-07-15-11-47-34": {
446
+ "acc": 0.21428571428571427,
447
+ "acc_stderr": 0.055328333517248834,
448
+ "f1": 0.1623009758602979,
449
+ "prompt_name": "justified in saying",
450
+ "task_name": "cb"
451
+ }
452
+ },
453
+ "cb+must be true": {
454
+ "2022-07-15-11-47-34": {
455
+ "acc": 0.19642857142857142,
456
+ "acc_stderr": 0.05357142857142859,
457
+ "f1": 0.1384656508954825,
458
+ "prompt_name": "must be true",
459
+ "task_name": "cb"
460
+ }
461
+ },
462
+ "cb+should assume": {
463
+ "2022-07-15-11-47-34": {
464
+ "acc": 0.19642857142857142,
465
+ "acc_stderr": 0.05357142857142858,
466
+ "f1": 0.14613935969868175,
467
+ "prompt_name": "should assume",
468
+ "task_name": "cb"
469
+ }
470
+ },
471
+ "cb+take the following as truth": {
472
+ "2022-07-15-11-47-34": {
473
+ "acc": 0.4107142857142857,
474
+ "acc_stderr": 0.06633634150359538,
475
+ "f1": 0.1940928270042194,
476
+ "prompt_name": "take the following as truth",
477
+ "task_name": "cb"
478
+ }
479
+ },
480
+ "cola+Following sentence acceptable": {
481
+ "2022-07-15-11-47-34": {
482
+ "acc": 0.6625119846596357,
483
+ "acc_norm": 0.31064237775647174,
484
+ "acc_norm_stderr": 0.014335695984672221,
485
+ "acc_stderr": 0.014648467353878477,
486
+ "prompt_name": "Following sentence acceptable",
487
+ "task_name": "cola"
488
+ }
489
+ },
490
+ "cola+Make sense yes no": {
491
+ "2022-07-15-11-47-34": {
492
+ "acc": 0.3710450623202301,
493
+ "acc_norm": 0.6903163950143816,
494
+ "acc_norm_stderr": 0.014323506235950028,
495
+ "acc_stderr": 0.01496543118537874,
496
+ "prompt_name": "Make sense yes no",
497
+ "task_name": "cola"
498
+ }
499
+ },
500
+ "cola+Previous sentence acceptable": {
501
+ "2022-07-15-11-47-34": {
502
+ "acc": 0.6864813039309684,
503
+ "acc_norm": 0.6912751677852349,
504
+ "acc_norm_stderr": 0.014311244461311299,
505
+ "acc_stderr": 0.014371834902632595,
506
+ "prompt_name": "Previous sentence acceptable",
507
+ "task_name": "cola"
508
+ }
509
+ },
510
+ "cola+editing": {
511
+ "2022-07-15-11-47-34": {
512
+ "acc": 0.46596356663470756,
513
+ "acc_norm": 0.6912751677852349,
514
+ "acc_norm_stderr": 0.014311244461311299,
515
+ "acc_stderr": 0.015453525186655532,
516
+ "prompt_name": "editing",
517
+ "task_name": "cola"
518
+ }
519
+ },
520
+ "cola+is_this_correct": {
521
+ "2022-07-15-11-47-34": {
522
+ "acc": 0.6893576222435283,
523
+ "acc_norm": 0.6912751677852349,
524
+ "acc_norm_stderr": 0.014311244461311299,
525
+ "acc_stderr": 0.014335695984672223,
526
+ "prompt_name": "is_this_correct",
527
+ "task_name": "cola"
528
+ }
529
+ },
530
+ "copa": {
531
+ "2022-07-13-11-29-13": {
532
+ "acc": 0.7,
533
+ "acc_stderr": 0.046056618647183814
534
+ }
535
+ },
536
+ "copa+C1 or C2? premise, so/because\u2026": {
537
+ "2022-07-15-11-47-34": {
538
+ "acc": 0.65,
539
+ "acc_norm": 0.57,
540
+ "acc_norm_stderr": 0.049756985195624284,
541
+ "acc_stderr": 0.047937248544110196,
542
+ "prompt_name": "C1 or C2? premise, so/because\u2026",
543
+ "task_name": "copa"
544
+ }
545
+ },
546
+ "copa+best_option": {
547
+ "2022-07-15-11-47-34": {
548
+ "acc": 0.52,
549
+ "acc_norm": 0.49,
550
+ "acc_norm_stderr": 0.05024183937956911,
551
+ "acc_stderr": 0.050211673156867795,
552
+ "prompt_name": "best_option",
553
+ "task_name": "copa"
554
+ }
555
+ },
556
+ "copa+cause_effect": {
557
+ "2022-07-15-11-47-34": {
558
+ "acc": 0.56,
559
+ "acc_norm": 0.45,
560
+ "acc_norm_stderr": 0.05,
561
+ "acc_stderr": 0.04988876515698589,
562
+ "prompt_name": "cause_effect",
563
+ "task_name": "copa"
564
+ }
565
+ },
566
+ "copa+choose": {
567
+ "2022-07-15-11-47-34": {
568
+ "acc": 0.53,
569
+ "acc_norm": 0.46,
570
+ "acc_norm_stderr": 0.05009082659620333,
571
+ "acc_stderr": 0.05016135580465919,
572
+ "prompt_name": "choose",
573
+ "task_name": "copa"
574
+ }
575
+ },
576
+ "copa+exercise": {
577
+ "2022-07-15-11-47-34": {
578
+ "acc": 0.54,
579
+ "acc_norm": 0.48,
580
+ "acc_norm_stderr": 0.050211673156867795,
581
+ "acc_stderr": 0.05009082659620332,
582
+ "prompt_name": "exercise",
583
+ "task_name": "copa"
584
+ }
585
+ },
586
+ "copa+i_am_hesitating": {
587
+ "2022-07-15-11-47-34": {
588
+ "acc": 0.56,
589
+ "acc_norm": 0.48,
590
+ "acc_norm_stderr": 0.050211673156867795,
591
+ "acc_stderr": 0.04988876515698589,
592
+ "prompt_name": "i_am_hesitating",
593
+ "task_name": "copa"
594
+ }
595
+ },
596
+ "copa+more likely": {
597
+ "2022-07-15-11-47-34": {
598
+ "acc": 0.53,
599
+ "acc_norm": 0.49,
600
+ "acc_norm_stderr": 0.05024183937956911,
601
+ "acc_stderr": 0.05016135580465919,
602
+ "prompt_name": "more likely",
603
+ "task_name": "copa"
604
+ }
605
+ },
606
+ "copa+plausible_alternatives": {
607
+ "2022-07-15-11-47-34": {
608
+ "acc": 0.56,
609
+ "acc_norm": 0.53,
610
+ "acc_norm_stderr": 0.05016135580465919,
611
+ "acc_stderr": 0.04988876515698589,
612
+ "prompt_name": "plausible_alternatives",
613
+ "task_name": "copa"
614
+ }
615
+ },
616
+ "crows_pairs_english+1": {
617
+ "2022-07-12-22-45-57": {
618
+ "acc": 0.49552772808586765,
619
+ "acc_norm": 0.49552772808586765,
620
+ "acc_norm_stderr": 0.012212810647205384,
621
+ "acc_stderr": 0.012212810647205384,
622
+ "prompt_name": "1",
623
+ "task_name": "crows_pairs_english"
624
+ }
625
+ },
626
+ "crows_pairs_english+2": {
627
+ "2022-07-12-22-45-57": {
628
+ "acc": 0.4883720930232558,
629
+ "acc_norm": 0.4883720930232558,
630
+ "acc_norm_stderr": 0.012209996095069646,
631
+ "acc_stderr": 0.012209996095069646,
632
+ "prompt_name": "2",
633
+ "task_name": "crows_pairs_english"
634
+ }
635
+ },
636
+ "crows_pairs_english+3": {
637
+ "2022-07-12-22-45-57": {
638
+ "acc": 0.5163983303518187,
639
+ "acc_norm": 0.4836016696481813,
640
+ "acc_norm_stderr": 0.012206729011137944,
641
+ "acc_stderr": 0.012206729011137944,
642
+ "prompt_name": "3",
643
+ "task_name": "crows_pairs_english"
644
+ }
645
+ },
646
+ "crows_pairs_english+4": {
647
+ "2022-07-12-22-45-57": {
648
+ "acc": 0.4919499105545617,
649
+ "acc_norm": 0.4919499105545617,
650
+ "acc_norm_stderr": 0.01221171617623539,
651
+ "acc_stderr": 0.01221171617623539,
652
+ "prompt_name": "4",
653
+ "task_name": "crows_pairs_english"
654
+ }
655
+ },
656
+ "crows_pairs_english+A_preference": {
657
+ "2022-07-12-22-45-57": {
658
+ "acc": 0.5104353011329755,
659
+ "acc_norm": 0.5104353011329755,
660
+ "acc_norm_stderr": 0.012210638982043397,
661
+ "acc_stderr": 0.012210638982043397,
662
+ "prompt_name": "A_preference",
663
+ "task_name": "crows_pairs_english"
664
+ }
665
+ },
666
+ "crows_pairs_english+A_stereotype_true": {
667
+ "2022-07-12-22-45-57": {
668
+ "acc": 0.4907573047107931,
669
+ "acc_norm": 0.5062611806797853,
670
+ "acc_norm_stderr": 0.012212341600228735,
671
+ "acc_stderr": 0.012211212339167695,
672
+ "prompt_name": "A_stereotype_true",
673
+ "task_name": "crows_pairs_english"
674
+ }
675
+ },
676
+ "crows_pairs_french+1_fr": {
677
+ "2022-07-12-22-45-57": {
678
+ "acc": 0.48598688133571855,
679
+ "acc_norm": 0.48598688133571855,
680
+ "acc_norm_stderr": 0.012208501686447066,
681
+ "acc_stderr": 0.012208501686447066,
682
+ "prompt_name": "1_fr",
683
+ "task_name": "crows_pairs_french"
684
+ }
685
+ },
686
+ "crows_pairs_french+2_fr": {
687
+ "2022-07-12-22-45-57": {
688
+ "acc": 0.49850924269528923,
689
+ "acc_norm": 0.49850924269528923,
690
+ "acc_norm_stderr": 0.01221324493389968,
691
+ "acc_stderr": 0.01221324493389968,
692
+ "prompt_name": "2_fr",
693
+ "task_name": "crows_pairs_french"
694
+ }
695
+ },
696
+ "crows_pairs_french+3_fr": {
697
+ "2022-07-12-22-45-57": {
698
+ "acc": 0.49612403100775193,
699
+ "acc_norm": 0.49612403100775193,
700
+ "acc_norm_stderr": 0.012212932249036454,
701
+ "acc_stderr": 0.012212932249036454,
702
+ "prompt_name": "3_fr",
703
+ "task_name": "crows_pairs_french"
704
+ }
705
+ },
706
+ "crows_pairs_french+4_fr": {
707
+ "2022-07-12-22-45-57": {
708
+ "acc": 0.5313059033989267,
709
+ "acc_norm": 0.5313059033989267,
710
+ "acc_norm_stderr": 0.012189336188399829,
711
+ "acc_stderr": 0.012189336188399829,
712
+ "prompt_name": "4_fr",
713
+ "task_name": "crows_pairs_french"
714
+ }
715
+ },
716
+ "crows_pairs_french+A_preference_fr": {
717
+ "2022-07-12-22-45-57": {
718
+ "acc": 0.4847942754919499,
719
+ "acc_norm": 0.4847942754919499,
720
+ "acc_norm_stderr": 0.01220765013925874,
721
+ "acc_stderr": 0.01220765013925874,
722
+ "prompt_name": "A_preference_fr",
723
+ "task_name": "crows_pairs_french"
724
+ }
725
+ },
726
+ "crows_pairs_french+A_reality_check_fr": {
727
+ "2022-07-12-22-45-57": {
728
+ "acc": 0.505664877757901,
729
+ "acc_norm": 0.505664877757901,
730
+ "acc_norm_stderr": 0.012212515323431717,
731
+ "acc_stderr": 0.012212515323431717,
732
+ "prompt_name": "A_reality_check_fr",
733
+ "task_name": "crows_pairs_french"
734
+ }
735
+ },
736
+ "crows_pairs_french+A_stereotype_true_fr": {
737
+ "2022-07-12-22-45-57": {
738
+ "acc": 0.5020870602265951,
739
+ "acc_norm": 0.5020870602265951,
740
+ "acc_norm_stderr": 0.012213192820312026,
741
+ "acc_stderr": 0.012213192820312026,
742
+ "prompt_name": "A_stereotype_true_fr",
743
+ "task_name": "crows_pairs_french"
744
+ }
745
+ },
746
+ "diabla+Is the error present? (same lang)": {
747
+ "2022-07-12-22-45-57": {
748
+ "acc": 0.07741823242867084,
749
+ "acc_norm": 0.07741823242867084,
750
+ "acc_norm_stderr": 0.0035253599064790993,
751
+ "acc_stderr": 0.0035253599064790993,
752
+ "prompt_name": "Is the error present? (same lang)",
753
+ "task_name": "diabla"
754
+ }
755
+ },
756
+ "diabla+Which is automatic?": {
757
+ "2022-07-12-22-45-57": {
758
+ "acc": 0.4966945024356298,
759
+ "acc_norm": 0.4966945024356298,
760
+ "acc_norm_stderr": 0.0065953813991735995,
761
+ "acc_stderr": 0.0065953813991735995,
762
+ "prompt_name": "Which is automatic?",
763
+ "task_name": "diabla"
764
+ }
765
+ },
766
+ "gsarti/flores_101_afr+null": {
767
+ "2022-07-14-10-03-25": {
768
+ "bits_per_byte": 2.8175051369933213,
769
+ "byte_perplexity": 7.049422805555328,
770
+ "prompt_name": "null",
771
+ "task_name": "gsarti/flores_101_afr",
772
+ "word_perplexity": 139324.0466654445
773
+ }
774
+ },
775
+ "gsarti/flores_101_amh+null": {
776
+ "2022-07-14-10-03-25": {
777
+ "bits_per_byte": 2.0608666814101815,
778
+ "byte_perplexity": 4.172368790188039,
779
+ "prompt_name": "null",
780
+ "task_name": "gsarti/flores_101_amh",
781
+ "word_perplexity": 105036774.30501972
782
+ }
783
+ },
784
+ "gsarti/flores_101_ara+null": {
785
+ "2022-07-14-10-03-25": {
786
+ "bits_per_byte": 0.8797352167688847,
787
+ "byte_perplexity": 1.8400375612633983,
788
+ "prompt_name": "null",
789
+ "task_name": "gsarti/flores_101_ara",
790
+ "word_perplexity": 674.8640314665696
791
+ }
792
+ },
793
+ "gsarti/flores_101_asm+null": {
794
+ "2022-07-14-10-03-25": {
795
+ "bits_per_byte": 2.458711333673663,
796
+ "byte_perplexity": 5.497254736157445,
797
+ "prompt_name": "null",
798
+ "task_name": "gsarti/flores_101_asm",
799
+ "word_perplexity": 6763188828222.085
800
+ }
801
+ },
802
+ "gsarti/flores_101_ast+null": {
803
+ "2022-07-14-10-03-25": {
804
+ "bits_per_byte": 2.0909386784329675,
805
+ "byte_perplexity": 4.260251728273795,
806
+ "prompt_name": "null",
807
+ "task_name": "gsarti/flores_101_ast",
808
+ "word_perplexity": 10657.272913539553
809
+ }
810
+ },
811
+ "gsarti/flores_101_azj+null": {
812
+ "2022-07-14-10-03-25": {
813
+ "bits_per_byte": 2.9432455349850195,
814
+ "byte_perplexity": 7.691396328945705,
815
+ "prompt_name": "null",
816
+ "task_name": "gsarti/flores_101_azj",
817
+ "word_perplexity": 45923924.18878753
818
+ }
819
+ },
820
+ "gsarti/flores_101_bel+null": {
821
+ "2022-07-14-10-03-25": {
822
+ "bits_per_byte": 1.914816732584341,
823
+ "byte_perplexity": 3.7706591215465943,
824
+ "prompt_name": "null",
825
+ "task_name": "gsarti/flores_101_bel",
826
+ "word_perplexity": 23935692.781315073
827
+ }
828
+ },
829
+ "gsarti/flores_101_ben+null": {
830
+ "2022-07-14-10-03-25": {
831
+ "bits_per_byte": 2.3432036318231058,
832
+ "byte_perplexity": 5.074281765515423,
833
+ "prompt_name": "null",
834
+ "task_name": "gsarti/flores_101_ben",
835
+ "word_perplexity": 2480418685142.412
836
+ }
837
+ },
838
+ "gsarti/flores_101_bos+null": {
839
+ "2022-07-14-10-03-25": {
840
+ "bits_per_byte": 2.665248069942796,
841
+ "byte_perplexity": 6.343363734045183,
842
+ "prompt_name": "null",
843
+ "task_name": "gsarti/flores_101_bos",
844
+ "word_perplexity": 229622.13691086147
845
+ }
846
+ },
847
+ "gsarti/flores_101_bul+null": {
848
+ "2022-07-14-10-03-25": {
849
+ "bits_per_byte": 1.5136770683283687,
850
+ "byte_perplexity": 2.8553687444403257,
851
+ "prompt_name": "null",
852
+ "task_name": "gsarti/flores_101_bul",
853
+ "word_perplexity": 194851.13344620814
854
+ }
855
+ },
856
+ "gsarti/flores_101_cat+null": {
857
+ "2022-07-14-10-03-25": {
858
+ "bits_per_byte": 1.2376904653775254,
859
+ "byte_perplexity": 2.358207169698056,
860
+ "prompt_name": "null",
861
+ "task_name": "gsarti/flores_101_cat",
862
+ "word_perplexity": 179.13123174533087
863
+ }
864
+ },
865
+ "gsarti/flores_101_ceb+null": {
866
+ "2022-07-14-10-03-25": {
867
+ "bits_per_byte": 2.7858604115174295,
868
+ "byte_perplexity": 6.896481056329736,
869
+ "prompt_name": "null",
870
+ "task_name": "gsarti/flores_101_ceb",
871
+ "word_perplexity": 113330.67154113152
872
+ }
873
+ },
874
+ "gsarti/flores_101_ces+null": {
875
+ "2022-07-14-10-03-25": {
876
+ "bits_per_byte": 2.6150694333085327,
877
+ "byte_perplexity": 6.126526835715164,
878
+ "prompt_name": "null",
879
+ "task_name": "gsarti/flores_101_ces",
880
+ "word_perplexity": 625101.1441414964
881
+ }
882
+ },
883
+ "gsarti/flores_101_ckb+null": {
884
+ "2022-07-14-12-00-55": {
885
+ "bits_per_byte": 1.9421776126623524,
886
+ "byte_perplexity": 3.842852526862475,
887
+ "prompt_name": "null",
888
+ "task_name": "gsarti/flores_101_ckb",
889
+ "word_perplexity": 11104497.438038943
890
+ }
891
+ },
892
+ "gsarti/flores_101_cym+null": {
893
+ "2022-07-14-12-00-55": {
894
+ "bits_per_byte": 3.8470317241534553,
895
+ "byte_perplexity": 14.390369428021707,
896
+ "prompt_name": "null",
897
+ "task_name": "gsarti/flores_101_cym",
898
+ "word_perplexity": 5900331.966242436
899
+ }
900
+ },
901
+ "gsarti/flores_101_dan+null": {
902
+ "2022-07-14-10-03-25": {
903
+ "bits_per_byte": 2.5307665257708245,
904
+ "byte_perplexity": 5.778786323448377,
905
+ "prompt_name": "null",
906
+ "task_name": "gsarti/flores_101_dan",
907
+ "word_perplexity": 71695.50336412797
908
+ }
909
+ },
910
+ "gsarti/flores_101_deu+null": {
911
+ "2022-07-14-10-03-25": {
912
+ "bits_per_byte": 1.7492158999678582,
913
+ "byte_perplexity": 3.361758059911202,
914
+ "prompt_name": "null",
915
+ "task_name": "gsarti/flores_101_deu",
916
+ "word_perplexity": 5647.282599404732
917
+ }
918
+ },
919
+ "gsarti/flores_101_ell+null": {
920
+ "2022-07-14-10-03-25": {
921
+ "bits_per_byte": 1.3862374641150543,
922
+ "byte_perplexity": 2.6139607239932805,
923
+ "prompt_name": "null",
924
+ "task_name": "gsarti/flores_101_ell",
925
+ "word_perplexity": 102751.5248402687
926
+ }
927
+ },
928
+ "gsarti/flores_101_eng+null": {
929
+ "2022-07-14-10-03-25": {
930
+ "bits_per_byte": 1.0435427545613876,
931
+ "byte_perplexity": 2.061283234268159,
932
+ "prompt_name": "null",
933
+ "task_name": "gsarti/flores_101_eng",
934
+ "word_perplexity": 75.56480997823662
935
+ }
936
+ },
937
+ "gsarti/flores_101_est+null": {
938
+ "2022-07-14-10-03-25": {
939
+ "bits_per_byte": 3.340809503762674,
940
+ "byte_perplexity": 10.131736127467489,
941
+ "prompt_name": "null",
942
+ "task_name": "gsarti/flores_101_est",
943
+ "word_perplexity": 92602633.82439691
944
+ }
945
+ },
946
+ "gsarti/flores_101_fas+null": {
947
+ "2022-07-14-12-00-55": {
948
+ "bits_per_byte": 1.6586730625582675,
949
+ "byte_perplexity": 3.1572599808371367,
950
+ "prompt_name": "null",
951
+ "task_name": "gsarti/flores_101_fas",
952
+ "word_perplexity": 59965.98383842629
953
+ }
954
+ },
955
+ "gsarti/flores_101_fin+null": {
956
+ "2022-07-14-10-03-25": {
957
+ "bits_per_byte": 2.9093822743068216,
958
+ "byte_perplexity": 7.5129644427067355,
959
+ "prompt_name": "null",
960
+ "task_name": "gsarti/flores_101_fin",
961
+ "word_perplexity": 91621886.60145952
962
+ }
963
+ },
964
+ "gsarti/flores_101_fra+null": {
965
+ "2022-07-14-10-03-25": {
966
+ "bits_per_byte": 1.0127395726746855,
967
+ "byte_perplexity": 2.0177390037335385,
968
+ "prompt_name": "null",
969
+ "task_name": "gsarti/flores_101_fra",
970
+ "word_perplexity": 89.45884576931464
971
+ }
972
+ },
973
+ "gsarti/flores_101_ful+null": {
974
+ "2022-07-14-10-03-25": {
975
+ "bits_per_byte": 3.561969238361191,
976
+ "byte_perplexity": 11.810263420287875,
977
+ "prompt_name": "null",
978
+ "task_name": "gsarti/flores_101_ful",
979
+ "word_perplexity": 908715.1423017589
980
+ }
981
+ },
982
+ "gsarti/flores_101_gle+null": {
983
+ "2022-07-14-10-03-25": {
984
+ "bits_per_byte": 3.2798070331865063,
985
+ "byte_perplexity": 9.712259930753122,
986
+ "prompt_name": "null",
987
+ "task_name": "gsarti/flores_101_gle",
988
+ "word_perplexity": 1548851.5929806433
989
+ }
990
+ },
991
+ "gsarti/flores_101_glg+null": {
992
+ "2022-07-14-10-03-25": {
993
+ "bits_per_byte": 1.6877168009728167,
994
+ "byte_perplexity": 3.2214647330840154,
995
+ "prompt_name": "null",
996
+ "task_name": "gsarti/flores_101_glg",
997
+ "word_perplexity": 1537.3193913761668
998
+ }
999
+ },
1000
+ "gsarti/flores_101_guj+null": {
1001
+ "2022-07-14-10-03-25": {
1002
+ "bits_per_byte": 2.357806609400009,
1003
+ "byte_perplexity": 5.125904532570054,
1004
+ "prompt_name": "null",
1005
+ "task_name": "gsarti/flores_101_guj",
1006
+ "word_perplexity": 133216198508.6925
1007
+ }
1008
+ },
1009
+ "gsarti/flores_101_hau+null": {
1010
+ "2022-07-14-10-03-25": {
1011
+ "bits_per_byte": 3.4659038057537184,
1012
+ "byte_perplexity": 11.049458818357667,
1013
+ "prompt_name": "null",
1014
+ "task_name": "gsarti/flores_101_hau",
1015
+ "word_perplexity": 730749.6449046461
1016
+ }
1017
+ },
1018
+ "gsarti/flores_101_heb+null": {
1019
+ "2022-07-14-10-03-25": {
1020
+ "bits_per_byte": 1.8889611054621571,
1021
+ "byte_perplexity": 3.7036842387723694,
1022
+ "prompt_name": "null",
1023
+ "task_name": "gsarti/flores_101_heb",
1024
+ "word_perplexity": 880255.4148832298
1025
+ }
1026
+ },
1027
+ "gsarti/flores_101_hin+null": {
1028
+ "2022-07-14-10-03-25": {
1029
+ "bits_per_byte": 2.195760704215568,
1030
+ "byte_perplexity": 4.581311639568996,
1031
+ "prompt_name": "null",
1032
+ "task_name": "gsarti/flores_101_hin",
1033
+ "word_perplexity": 453226793.5348556
1034
+ }
1035
+ },
1036
+ "gsarti/flores_101_hrv+null": {
1037
+ "2022-07-14-10-03-25": {
1038
+ "bits_per_byte": 2.7016816564307984,
1039
+ "byte_perplexity": 6.50559790827845,
1040
+ "prompt_name": "null",
1041
+ "task_name": "gsarti/flores_101_hrv",
1042
+ "word_perplexity": 307789.1462790266
1043
+ }
1044
+ },
1045
+ "gsarti/flores_101_hun+null": {
1046
+ "2022-07-14-10-03-25": {
1047
+ "bits_per_byte": 2.8470581600253615,
1048
+ "byte_perplexity": 7.19531655942431,
1049
+ "prompt_name": "null",
1050
+ "task_name": "gsarti/flores_101_hun",
1051
+ "word_perplexity": 8545882.19823639
1052
+ }
1053
+ },
1054
+ "gsarti/flores_101_hye+null": {
1055
+ "2022-07-14-10-03-25": {
1056
+ "bits_per_byte": 1.906169044483402,
1057
+ "byte_perplexity": 3.7481249397064547,
1058
+ "prompt_name": "null",
1059
+ "task_name": "gsarti/flores_101_hye",
1060
+ "word_perplexity": 99262887.01092263
1061
+ }
1062
+ },
1063
+ "gsarti/flores_101_ibo+null": {
1064
+ "2022-07-14-10-03-25": {
1065
+ "bits_per_byte": 2.6012385649422316,
1066
+ "byte_perplexity": 6.06807351892086,
1067
+ "prompt_name": "null",
1068
+ "task_name": "gsarti/flores_101_ibo",
1069
+ "word_perplexity": 99576.38125028457
1070
+ }
1071
+ },
1072
+ "gsarti/flores_101_ind+null": {
1073
+ "2022-07-14-10-03-25": {
1074
+ "bits_per_byte": 1.1501325666473412,
1075
+ "byte_perplexity": 2.2193428661828962,
1076
+ "prompt_name": "null",
1077
+ "task_name": "gsarti/flores_101_ind",
1078
+ "word_perplexity": 299.41864562936706
1079
+ }
1080
+ },
1081
+ "gsarti/flores_101_isl+null": {
1082
+ "2022-07-14-10-03-25": {
1083
+ "bits_per_byte": 3.1394769822824644,
1084
+ "byte_perplexity": 8.812045732299993,
1085
+ "prompt_name": "null",
1086
+ "task_name": "gsarti/flores_101_isl",
1087
+ "word_perplexity": 3947458.536983725
1088
+ }
1089
+ },
1090
+ "gsarti/flores_101_ita+null": {
1091
+ "2022-07-14-10-03-25": {
1092
+ "bits_per_byte": 1.695253347487448,
1093
+ "byte_perplexity": 3.238337491305615,
1094
+ "prompt_name": "null",
1095
+ "task_name": "gsarti/flores_101_ita",
1096
+ "word_perplexity": 1951.0663459405935
1097
+ }
1098
+ },
1099
+ "gsarti/flores_101_jav+null": {
1100
+ "2022-07-14-10-03-25": {
1101
+ "bits_per_byte": 2.899297993680408,
1102
+ "byte_perplexity": 7.460632752007581,
1103
+ "prompt_name": "null",
1104
+ "task_name": "gsarti/flores_101_jav",
1105
+ "word_perplexity": 956961.3940329206
1106
+ }
1107
+ },
1108
+ "gsarti/flores_101_jpn+null": {
1109
+ "2022-07-14-10-03-25": {
1110
+ "bits_per_byte": 1.539549942005635,
1111
+ "byte_perplexity": 2.907038023970581,
1112
+ "prompt_name": "null",
1113
+ "task_name": "gsarti/flores_101_jpn",
1114
+ "word_perplexity": 6.0024027118732196e+69
1115
+ }
1116
+ },
1117
+ "gsarti/flores_101_kam+null": {
1118
+ "2022-07-14-10-03-25": {
1119
+ "bits_per_byte": 3.515626316920499,
1120
+ "byte_perplexity": 11.436917146974627,
1121
+ "prompt_name": "null",
1122
+ "task_name": "gsarti/flores_101_kam",
1123
+ "word_perplexity": 4288601.196402131
1124
+ }
1125
+ },
1126
+ "gsarti/flores_101_kan+null": {
1127
+ "2022-07-14-10-03-25": {
1128
+ "bits_per_byte": 2.3991591199422513,
1129
+ "byte_perplexity": 5.274956219477929,
1130
+ "prompt_name": "null",
1131
+ "task_name": "gsarti/flores_101_kan",
1132
+ "word_perplexity": 5.3861539364992216e+16
1133
+ }
1134
+ },
1135
+ "gsarti/flores_101_kat+null": {
1136
+ "2022-07-14-10-03-25": {
1137
+ "bits_per_byte": 1.3325401608568794,
1138
+ "byte_perplexity": 2.5184571084900518,
1139
+ "prompt_name": "null",
1140
+ "task_name": "gsarti/flores_101_kat",
1141
+ "word_perplexity": 1133105340.614723
1142
+ }
1143
+ },
1144
+ "gsarti/flores_101_kaz+null": {
1145
+ "2022-07-14-10-03-25": {
1146
+ "bits_per_byte": 1.845791322405974,
1147
+ "byte_perplexity": 3.5945005448756477,
1148
+ "prompt_name": "null",
1149
+ "task_name": "gsarti/flores_101_kaz",
1150
+ "word_perplexity": 89537342.10068764
1151
+ }
1152
+ },
1153
+ "gsarti/flores_101_kea+null": {
1154
+ "2022-07-14-10-03-25": {
1155
+ "bits_per_byte": 3.2143692668645976,
1156
+ "byte_perplexity": 9.281572608888562,
1157
+ "prompt_name": "null",
1158
+ "task_name": "gsarti/flores_101_kea",
1159
+ "word_perplexity": 438558.0012817139
1160
+ }
1161
+ },
1162
+ "gsarti/flores_101_kir+null": {
1163
+ "2022-07-14-12-00-55": {
1164
+ "bits_per_byte": 1.9511242166700078,
1165
+ "byte_perplexity": 3.8667573034119127,
1166
+ "prompt_name": "null",
1167
+ "task_name": "gsarti/flores_101_kir",
1168
+ "word_perplexity": 235337758.18519488
1169
+ }
1170
+ },
1171
+ "gsarti/flores_101_kor+null": {
1172
+ "2022-07-14-12-00-55": {
1173
+ "bits_per_byte": 2.023500324792833,
1174
+ "byte_perplexity": 4.065690303705374,
1175
+ "prompt_name": "null",
1176
+ "task_name": "gsarti/flores_101_kor",
1177
+ "word_perplexity": 1684949.6449262113
1178
+ }
1179
+ },
1180
+ "gsarti/flores_101_lao+null": {
1181
+ "2022-07-14-12-00-55": {
1182
+ "bits_per_byte": 1.6376750107826055,
1183
+ "byte_perplexity": 3.1116396826339545,
1184
+ "prompt_name": "null",
1185
+ "task_name": "gsarti/flores_101_lao",
1186
+ "word_perplexity": 3.0817754157127624e+28
1187
+ }
1188
+ },
1189
+ "gsarti/flores_101_lav+null": {
1190
+ "2022-07-14-12-00-55": {
1191
+ "bits_per_byte": 3.075865182775687,
1192
+ "byte_perplexity": 8.431943399753028,
1193
+ "prompt_name": "null",
1194
+ "task_name": "gsarti/flores_101_lav",
1195
+ "word_perplexity": 20692036.880855087
1196
+ }
1197
+ },
1198
+ "gsarti/flores_101_lin+null": {
1199
+ "2022-07-14-12-00-55": {
1200
+ "bits_per_byte": 3.018221991102226,
1201
+ "byte_perplexity": 8.10168498947524,
1202
+ "prompt_name": "null",
1203
+ "task_name": "gsarti/flores_101_lin",
1204
+ "word_perplexity": 259077.7174090486
1205
+ }
1206
+ },
1207
+ "gsarti/flores_101_lit+null": {
1208
+ "2022-07-14-12-00-55": {
1209
+ "bits_per_byte": 3.0526165270213905,
1210
+ "byte_perplexity": 8.297153789252596,
1211
+ "prompt_name": "null",
1212
+ "task_name": "gsarti/flores_101_lit",
1213
+ "word_perplexity": 22011900.13997282
1214
+ }
1215
+ },
1216
+ "gsarti/flores_101_ltz+null": {
1217
+ "2022-07-14-12-00-55": {
1218
+ "bits_per_byte": 3.2407955989852377,
1219
+ "byte_perplexity": 9.453152958003827,
1220
+ "prompt_name": "null",
1221
+ "task_name": "gsarti/flores_101_ltz",
1222
+ "word_perplexity": 6731220.931729273
1223
+ }
1224
+ },
1225
+ "gsarti/flores_101_lug+null": {
1226
+ "2022-07-14-10-03-25": {
1227
+ "bits_per_byte": 3.2150119431528754,
1228
+ "byte_perplexity": 9.285708185212261,
1229
+ "prompt_name": "null",
1230
+ "task_name": "gsarti/flores_101_lug",
1231
+ "word_perplexity": 32046806.791237485
1232
+ }
1233
+ },
1234
+ "gsarti/flores_101_luo+null": {
1235
+ "2022-07-14-12-00-55": {
1236
+ "bits_per_byte": 3.609093857404177,
1237
+ "byte_perplexity": 12.202407052163576,
1238
+ "prompt_name": "null",
1239
+ "task_name": "gsarti/flores_101_luo",
1240
+ "word_perplexity": 1485111.1306447538
1241
+ }
1242
+ },
1243
+ "gsarti/flores_101_mal+null": {
1244
+ "2022-07-14-12-00-55": {
1245
+ "bits_per_byte": 2.1588237245178132,
1246
+ "byte_perplexity": 4.465506197375413,
1247
+ "prompt_name": "null",
1248
+ "task_name": "gsarti/flores_101_mal",
1249
+ "word_perplexity": 4.8990954217696134e+17
1250
+ }
1251
+ },
1252
+ "gsarti/flores_101_mar+null": {
1253
+ "2022-07-14-12-00-55": {
1254
+ "bits_per_byte": 2.454064685835334,
1255
+ "byte_perplexity": 5.479577601103449,
1256
+ "prompt_name": "null",
1257
+ "task_name": "gsarti/flores_101_mar",
1258
+ "word_perplexity": 53348101396468.1
1259
+ }
1260
+ },
1261
+ "gsarti/flores_101_mkd+null": {
1262
+ "2022-07-14-12-00-55": {
1263
+ "bits_per_byte": 1.6388651004482695,
1264
+ "byte_perplexity": 3.11420755589491,
1265
+ "prompt_name": "null",
1266
+ "task_name": "gsarti/flores_101_mkd",
1267
+ "word_perplexity": 513306.31562258815
1268
+ }
1269
+ },
1270
+ "gsarti/flores_101_mlt+null": {
1271
+ "2022-07-14-12-00-55": {
1272
+ "bits_per_byte": 4.014730236310589,
1273
+ "byte_perplexity": 16.164200382975334,
1274
+ "prompt_name": "null",
1275
+ "task_name": "gsarti/flores_101_mlt",
1276
+ "word_perplexity": 3271065298.9525104
1277
+ }
1278
+ },
1279
+ "gsarti/flores_101_mon+null": {
1280
+ "2022-07-14-12-00-55": {
1281
+ "bits_per_byte": 1.8368760183021453,
1282
+ "byte_perplexity": 3.5723563966116956,
1283
+ "prompt_name": "null",
1284
+ "task_name": "gsarti/flores_101_mon",
1285
+ "word_perplexity": 11967156.496346941
1286
+ }
1287
+ },
1288
+ "gsarti/flores_101_mri+null": {
1289
+ "2022-07-14-12-00-55": {
1290
+ "bits_per_byte": 3.037967287223778,
1291
+ "byte_perplexity": 8.213330128288407,
1292
+ "prompt_name": "null",
1293
+ "task_name": "gsarti/flores_101_mri",
1294
+ "word_perplexity": 42667.84366725716
1295
+ }
1296
+ },
1297
+ "gsarti/flores_101_msa+null": {
1298
+ "2022-07-14-12-00-55": {
1299
+ "bits_per_byte": 1.4109363519680242,
1300
+ "byte_perplexity": 2.659096901190639,
1301
+ "prompt_name": "null",
1302
+ "task_name": "gsarti/flores_101_msa",
1303
+ "word_perplexity": 1188.7251531670374
1304
+ }
1305
+ },
1306
+ "gsarti/flores_101_mya+null": {
1307
+ "2022-07-14-10-03-25": {
1308
+ "bits_per_byte": 1.4101030557435918,
1309
+ "byte_perplexity": 2.657561458464019,
1310
+ "prompt_name": "null",
1311
+ "task_name": "gsarti/flores_101_mya",
1312
+ "word_perplexity": 5.887577237013639e+18
1313
+ }
1314
+ },
1315
+ "gsarti/flores_101_nld+null": {
1316
+ "2022-07-14-10-03-25": {
1317
+ "bits_per_byte": 2.1813098607926804,
1318
+ "byte_perplexity": 4.535651709856251,
1319
+ "prompt_name": "null",
1320
+ "task_name": "gsarti/flores_101_nld",
1321
+ "word_perplexity": 13951.877058430618
1322
+ }
1323
+ },
1324
+ "gsarti/flores_101_nob+null": {
1325
+ "2022-07-14-12-00-55": {
1326
+ "bits_per_byte": 2.561165630453858,
1327
+ "byte_perplexity": 5.901843358131797,
1328
+ "prompt_name": "null",
1329
+ "task_name": "gsarti/flores_101_nob",
1330
+ "word_perplexity": 64134.3587194621
1331
+ }
1332
+ },
1333
+ "gsarti/flores_101_npi+null": {
1334
+ "2022-07-14-12-00-55": {
1335
+ "bits_per_byte": 2.361386302448311,
1336
+ "byte_perplexity": 5.138638996619111,
1337
+ "prompt_name": "null",
1338
+ "task_name": "gsarti/flores_101_npi",
1339
+ "word_perplexity": 7452421298650.788
1340
+ }
1341
+ },
1342
+ "gsarti/flores_101_nso+null": {
1343
+ "2022-07-14-12-00-55": {
1344
+ "bits_per_byte": 3.150046187635368,
1345
+ "byte_perplexity": 8.876839962509171,
1346
+ "prompt_name": "null",
1347
+ "task_name": "gsarti/flores_101_nso",
1348
+ "word_perplexity": 133251.3907730927
1349
+ }
1350
+ },
1351
+ "gsarti/flores_101_nya+null": {
1352
+ "2022-07-14-12-00-55": {
1353
+ "bits_per_byte": 3.166160871838487,
1354
+ "byte_perplexity": 8.97654874419086,
1355
+ "prompt_name": "null",
1356
+ "task_name": "gsarti/flores_101_nya",
1357
+ "word_perplexity": 13237249.320560299
1358
+ }
1359
+ },
1360
+ "gsarti/flores_101_oci+null": {
1361
+ "2022-07-14-12-00-55": {
1362
+ "bits_per_byte": 2.3544826611123932,
1363
+ "byte_perplexity": 5.114108118049416,
1364
+ "prompt_name": "null",
1365
+ "task_name": "gsarti/flores_101_oci",
1366
+ "word_perplexity": 29786.57326210068
1367
+ }
1368
+ },
1369
+ "gsarti/flores_101_orm+null": {
1370
+ "2022-07-14-12-00-55": {
1371
+ "bits_per_byte": 3.7457001993717243,
1372
+ "byte_perplexity": 13.414303089263644,
1373
+ "prompt_name": "null",
1374
+ "task_name": "gsarti/flores_101_orm",
1375
+ "word_perplexity": 1286222337.8393624
1376
+ }
1377
+ },
1378
+ "gsarti/flores_101_ory+null": {
1379
+ "2022-07-14-12-00-55": {
1380
+ "bits_per_byte": 2.3466784891528936,
1381
+ "byte_perplexity": 5.086518347981296,
1382
+ "prompt_name": "null",
1383
+ "task_name": "gsarti/flores_101_ory",
1384
+ "word_perplexity": 8232620282886.167
1385
+ }
1386
+ },
1387
+ "gsarti/flores_101_pan+null": {
1388
+ "2022-07-14-12-00-55": {
1389
+ "bits_per_byte": 2.3255600077385723,
1390
+ "byte_perplexity": 5.012603107956229,
1391
+ "prompt_name": "null",
1392
+ "task_name": "gsarti/flores_101_pan",
1393
+ "word_perplexity": 2003582065.835696
1394
+ }
1395
+ },
1396
+ "gsarti/flores_101_pol+null": {
1397
+ "2022-07-14-12-00-55": {
1398
+ "bits_per_byte": 2.3688414865658434,
1399
+ "byte_perplexity": 5.165261846492578,
1400
+ "prompt_name": "null",
1401
+ "task_name": "gsarti/flores_101_pol",
1402
+ "word_perplexity": 239703.75452947227
1403
+ }
1404
+ },
1405
+ "gsarti/flores_101_por+null": {
1406
+ "2022-07-14-12-00-55": {
1407
+ "bits_per_byte": 1.0087385096181816,
1408
+ "byte_perplexity": 2.012150908931838,
1409
+ "prompt_name": "null",
1410
+ "task_name": "gsarti/flores_101_por",
1411
+ "word_perplexity": 78.66129921108659
1412
+ }
1413
+ },
1414
+ "gsarti/flores_101_pus+null": {
1415
+ "2022-07-14-12-00-55": {
1416
+ "bits_per_byte": 2.2173729850313615,
1417
+ "byte_perplexity": 4.650458574106675,
1418
+ "prompt_name": "null",
1419
+ "task_name": "gsarti/flores_101_pus",
1420
+ "word_perplexity": 200303.57214724104
1421
+ }
1422
+ },
1423
+ "gsarti/flores_101_ron+null": {
1424
+ "2022-07-14-12-00-55": {
1425
+ "bits_per_byte": 2.486356022105963,
1426
+ "byte_perplexity": 5.603607947317877,
1427
+ "prompt_name": "null",
1428
+ "task_name": "gsarti/flores_101_ron",
1429
+ "word_perplexity": 80490.92705368399
1430
+ }
1431
+ },
1432
+ "gsarti/flores_101_rus+null": {
1433
+ "2022-07-14-12-00-55": {
1434
+ "bits_per_byte": 1.095728414417906,
1435
+ "byte_perplexity": 2.1372096174466697,
1436
+ "prompt_name": "null",
1437
+ "task_name": "gsarti/flores_101_rus",
1438
+ "word_perplexity": 22038.65288574451
1439
+ }
1440
+ },
1441
+ "gsarti/flores_101_slk+null": {
1442
+ "2022-07-14-12-00-55": {
1443
+ "bits_per_byte": 2.8667803584469502,
1444
+ "byte_perplexity": 7.294354718439043,
1445
+ "prompt_name": "null",
1446
+ "task_name": "gsarti/flores_101_slk",
1447
+ "word_perplexity": 1873211.2703176092
1448
+ }
1449
+ },
1450
+ "gsarti/flores_101_slv+null": {
1451
+ "2022-07-14-12-00-55": {
1452
+ "bits_per_byte": 2.894935550489075,
1453
+ "byte_perplexity": 7.438107250941839,
1454
+ "prompt_name": "null",
1455
+ "task_name": "gsarti/flores_101_slv",
1456
+ "word_perplexity": 609965.8362492598
1457
+ }
1458
+ },
1459
+ "gsarti/flores_101_sna+null": {
1460
+ "2022-07-14-12-00-55": {
1461
+ "bits_per_byte": 3.226698783453375,
1462
+ "byte_perplexity": 9.361234419948593,
1463
+ "prompt_name": "null",
1464
+ "task_name": "gsarti/flores_101_sna",
1465
+ "word_perplexity": 151658287.08006003
1466
+ }
1467
+ },
1468
+ "gsarti/flores_101_snd+null": {
1469
+ "2022-07-14-12-00-55": {
1470
+ "bits_per_byte": 2.505484320885354,
1471
+ "byte_perplexity": 5.678399375652783,
1472
+ "prompt_name": "null",
1473
+ "task_name": "gsarti/flores_101_snd",
1474
+ "word_perplexity": 2195879.0537875695
1475
+ }
1476
+ },
1477
+ "gsarti/flores_101_som+null": {
1478
+ "2022-07-14-12-00-55": {
1479
+ "bits_per_byte": 3.6579492747174616,
1480
+ "byte_perplexity": 12.622705630414286,
1481
+ "prompt_name": "null",
1482
+ "task_name": "gsarti/flores_101_som",
1483
+ "word_perplexity": 12921970.127169678
1484
+ }
1485
+ },
1486
+ "gsarti/flores_101_spa+null": {
1487
+ "2022-07-14-12-00-55": {
1488
+ "bits_per_byte": 0.9441289779054047,
1489
+ "byte_perplexity": 1.9240269109386998,
1490
+ "prompt_name": "null",
1491
+ "task_name": "gsarti/flores_101_spa",
1492
+ "word_perplexity": 55.14408503293887
1493
+ }
1494
+ },
1495
+ "gsarti/flores_101_srp+null": {
1496
+ "2022-07-14-12-00-55": {
1497
+ "bits_per_byte": 1.6091583939601046,
1498
+ "byte_perplexity": 3.050738229673983,
1499
+ "prompt_name": "null",
1500
+ "task_name": "gsarti/flores_101_srp",
1501
+ "word_perplexity": 359037.4163692842
1502
+ }
1503
+ },
1504
+ "gsarti/flores_101_swe+null": {
1505
+ "2022-07-14-12-00-55": {
1506
+ "bits_per_byte": 2.4943222333483153,
1507
+ "byte_perplexity": 5.634635291846611,
1508
+ "prompt_name": "null",
1509
+ "task_name": "gsarti/flores_101_swe",
1510
+ "word_perplexity": 104567.9891705103
1511
+ }
1512
+ },
1513
+ "gsarti/flores_101_swh+null": {
1514
+ "2022-07-14-12-00-55": {
1515
+ "bits_per_byte": 1.9721156771582438,
1516
+ "byte_perplexity": 3.923430589092355,
1517
+ "prompt_name": "null",
1518
+ "task_name": "gsarti/flores_101_swh",
1519
+ "word_perplexity": 6985.646204087442
1520
+ }
1521
+ },
1522
+ "gsarti/flores_101_tam+null": {
1523
+ "2022-07-14-12-00-55": {
1524
+ "bits_per_byte": 2.0999329236632325,
1525
+ "byte_perplexity": 4.286894531607389,
1526
+ "prompt_name": "null",
1527
+ "task_name": "gsarti/flores_101_tam",
1528
+ "word_perplexity": 4220234444737767.0
1529
+ }
1530
+ },
1531
+ "gsarti/flores_101_tel+null": {
1532
+ "2022-07-14-12-00-55": {
1533
+ "bits_per_byte": 2.549014618212334,
1534
+ "byte_perplexity": 5.852344181819556,
1535
+ "prompt_name": "null",
1536
+ "task_name": "gsarti/flores_101_tel",
1537
+ "word_perplexity": 7315913985648022.0
1538
+ }
1539
+ },
1540
+ "gsarti/flores_101_tgk+null": {
1541
+ "2022-07-14-12-00-55": {
1542
+ "bits_per_byte": 1.9399053923480125,
1543
+ "byte_perplexity": 3.836804862794101,
1544
+ "prompt_name": "null",
1545
+ "task_name": "gsarti/flores_101_tgk",
1546
+ "word_perplexity": 10003619.893239152
1547
+ }
1548
+ },
1549
+ "gsarti/flores_101_tgl+null": {
1550
+ "2022-07-14-10-03-25": {
1551
+ "bits_per_byte": 2.645461413001105,
1552
+ "byte_perplexity": 6.256957969905079,
1553
+ "prompt_name": "null",
1554
+ "task_name": "gsarti/flores_101_tgl",
1555
+ "word_perplexity": 87554.31770184237
1556
+ }
1557
+ },
1558
+ "gsarti/flores_101_tha+null": {
1559
+ "2022-07-14-12-00-55": {
1560
+ "bits_per_byte": 1.2979178211163922,
1561
+ "byte_perplexity": 2.458737675753546,
1562
+ "prompt_name": "null",
1563
+ "task_name": "gsarti/flores_101_tha",
1564
+ "word_perplexity": 6.85384626099906e+32
1565
+ }
1566
+ },
1567
+ "gsarti/flores_101_tur+null": {
1568
+ "2022-07-14-12-00-55": {
1569
+ "bits_per_byte": 2.4123830232149,
1570
+ "byte_perplexity": 5.323529328304652,
1571
+ "prompt_name": "null",
1572
+ "task_name": "gsarti/flores_101_tur",
1573
+ "word_perplexity": 1230000.8194755162
1574
+ }
1575
+ },
1576
+ "gsarti/flores_101_ukr+null": {
1577
+ "2022-07-14-12-00-55": {
1578
+ "bits_per_byte": 1.5282644195953918,
1579
+ "byte_perplexity": 2.8843863497020608,
1580
+ "prompt_name": "null",
1581
+ "task_name": "gsarti/flores_101_ukr",
1582
+ "word_perplexity": 780615.9486315987
1583
+ }
1584
+ },
1585
+ "gsarti/flores_101_umb+null": {
1586
+ "2022-07-14-12-00-55": {
1587
+ "bits_per_byte": 3.710219475046473,
1588
+ "byte_perplexity": 13.088423907901921,
1589
+ "prompt_name": "null",
1590
+ "task_name": "gsarti/flores_101_umb",
1591
+ "word_perplexity": 346118506.64866126
1592
+ }
1593
+ },
1594
+ "gsarti/flores_101_urd+null": {
1595
+ "2022-07-14-12-00-55": {
1596
+ "bits_per_byte": 1.0075988539165108,
1597
+ "byte_perplexity": 2.010562039704537,
1598
+ "prompt_name": "null",
1599
+ "task_name": "gsarti/flores_101_urd",
1600
+ "word_perplexity": 335.1943886252716
1601
+ }
1602
+ },
1603
+ "gsarti/flores_101_uzb+null": {
1604
+ "2022-07-14-12-00-55": {
1605
+ "bits_per_byte": 3.69831120498359,
1606
+ "byte_perplexity": 12.980834294137205,
1607
+ "prompt_name": "null",
1608
+ "task_name": "gsarti/flores_101_uzb",
1609
+ "word_perplexity": 1248263505.2751954
1610
+ }
1611
+ },
1612
+ "gsarti/flores_101_vie+null": {
1613
+ "2022-07-14-12-00-55": {
1614
+ "bits_per_byte": 0.8461114961807352,
1615
+ "byte_perplexity": 1.7976491760484148,
1616
+ "prompt_name": "null",
1617
+ "task_name": "gsarti/flores_101_vie",
1618
+ "word_perplexity": 33.51752264232948
1619
+ }
1620
+ },
1621
+ "gsarti/flores_101_wol+null": {
1622
+ "2022-07-14-12-00-55": {
1623
+ "bits_per_byte": 3.332383415073327,
1624
+ "byte_perplexity": 10.072733993132132,
1625
+ "prompt_name": "null",
1626
+ "task_name": "gsarti/flores_101_wol",
1627
+ "word_perplexity": 199684.7010180392
1628
+ }
1629
+ },
1630
+ "gsarti/flores_101_xho+null": {
1631
+ "2022-07-14-12-00-55": {
1632
+ "bits_per_byte": 3.0428982143908727,
1633
+ "byte_perplexity": 8.241450154294917,
1634
+ "prompt_name": "null",
1635
+ "task_name": "gsarti/flores_101_xho",
1636
+ "word_perplexity": 141017733.33017766
1637
+ }
1638
+ },
1639
+ "gsarti/flores_101_yor+null": {
1640
+ "2022-07-14-12-00-55": {
1641
+ "bits_per_byte": 2.62429549091613,
1642
+ "byte_perplexity": 6.165831615133067,
1643
+ "prompt_name": "null",
1644
+ "task_name": "gsarti/flores_101_yor",
1645
+ "word_perplexity": 171980.641422536
1646
+ }
1647
+ },
1648
+ "gsarti/flores_101_zho_simpl+null": {
1649
+ "2022-07-14-10-03-25": {
1650
+ "bits_per_byte": 1.2156521449449949,
1651
+ "byte_perplexity": 2.322457417595381,
1652
+ "prompt_name": "null",
1653
+ "task_name": "gsarti/flores_101_zho_simpl",
1654
+ "word_perplexity": 1.0554528210220222e+21
1655
+ }
1656
+ },
1657
+ "gsarti/flores_101_zho_trad+null": {
1658
+ "2022-07-14-10-03-25": {
1659
+ "bits_per_byte": 1.3622834584784203,
1660
+ "byte_perplexity": 2.5709177552415134,
1661
+ "prompt_name": "null",
1662
+ "task_name": "gsarti/flores_101_zho_trad",
1663
+ "word_perplexity": 4.787781515987923e+24
1664
+ }
1665
+ },
1666
+ "gsarti/flores_101_zul+null": {
1667
+ "2022-07-14-12-00-55": {
1668
+ "bits_per_byte": 3.2020451216662975,
1669
+ "byte_perplexity": 9.202622963132773,
1670
+ "prompt_name": "null",
1671
+ "task_name": "gsarti/flores_101_zul",
1672
+ "word_perplexity": 998742068.9481835
1673
+ }
1674
+ },
1675
+ "headqa": {
1676
+ "2022-07-13-11-29-13": {
1677
+ "acc": 0.25419401896425964,
1678
+ "acc_norm": 0.29576951130561635,
1679
+ "acc_norm_stderr": 0.008717251898361422,
1680
+ "acc_stderr": 0.008316509290190668
1681
+ }
1682
+ },
1683
+ "hellaswag": {
1684
+ "2022-07-13-11-29-13": {
1685
+ "acc": 0.37621987651862177,
1686
+ "acc_norm": 0.46564429396534557,
1687
+ "acc_norm_stderr": 0.004977988452502641,
1688
+ "acc_stderr": 0.004834461997944872
1689
+ }
1690
+ },
1691
+ "lambada": {
1692
+ "2022-07-13-11-29-13": {
1693
+ "acc": 0.46322530564719583,
1694
+ "acc_stderr": 0.006947110835634445,
1695
+ "ppl": 12.583447597222621,
1696
+ "ppl_stderr": 0.4021518609838198
1697
+ }
1698
+ },
1699
+ "logiqa": {
1700
+ "2022-07-13-11-29-13": {
1701
+ "acc": 0.21658986175115208,
1702
+ "acc_norm": 0.28110599078341014,
1703
+ "acc_norm_stderr": 0.017632374626460005,
1704
+ "acc_stderr": 0.016156860583178303
1705
+ }
1706
+ },
1707
+ "mathqa": {
1708
+ "2022-07-13-11-29-13": {
1709
+ "acc": 0.2489112227805695,
1710
+ "acc_norm": 0.2422110552763819,
1711
+ "acc_norm_stderr": 0.007842810183504986,
1712
+ "acc_stderr": 0.007915319798861361
1713
+ }
1714
+ },
1715
+ "mc_taco": {
1716
+ "2022-07-13-11-29-13": {
1717
+ "em": 0.12537537537537538,
1718
+ "f1": 0.4747075325110886
1719
+ }
1720
+ },
1721
+ "mnli+GPT-3 style": {
1722
+ "2022-07-12-22-45-57": {
1723
+ "acc": 0.3564951604686704,
1724
+ "acc_norm": 0.335303107488538,
1725
+ "acc_norm_stderr": 0.004765490263584639,
1726
+ "acc_stderr": 0.004834813222301984,
1727
+ "prompt_name": "GPT-3 style",
1728
+ "task_name": "mnli"
1729
+ }
1730
+ },
1731
+ "mnli+MNLI crowdsource": {
1732
+ "2022-07-12-22-45-57": {
1733
+ "acc": 0.3548650025471218,
1734
+ "acc_norm": 0.37982679572083544,
1735
+ "acc_norm_stderr": 0.004899212442097964,
1736
+ "acc_stderr": 0.004829852406948984,
1737
+ "prompt_name": "MNLI crowdsource",
1738
+ "task_name": "mnli"
1739
+ }
1740
+ },
1741
+ "mnli+always/sometimes/never": {
1742
+ "2022-07-12-22-45-57": {
1743
+ "acc": 0.31920529801324504,
1744
+ "acc_norm": 0.31818644931227713,
1745
+ "acc_norm_stderr": 0.004701653585969693,
1746
+ "acc_stderr": 0.004705655206722177,
1747
+ "prompt_name": "always/sometimes/never",
1748
+ "task_name": "mnli"
1749
+ }
1750
+ },
1751
+ "mnli+based on the previous passage": {
1752
+ "2022-07-12-22-45-57": {
1753
+ "acc": 0.34070300560366784,
1754
+ "acc_norm": 0.33245033112582784,
1755
+ "acc_norm_stderr": 0.004755346314564714,
1756
+ "acc_stderr": 0.004784157883834768,
1757
+ "prompt_name": "based on the previous passage",
1758
+ "task_name": "mnli"
1759
+ }
1760
+ },
1761
+ "mnli+can we infer": {
1762
+ "2022-07-12-22-45-57": {
1763
+ "acc": 0.36271013754457465,
1764
+ "acc_norm": 0.3392766174223128,
1765
+ "acc_norm_stderr": 0.004779294320017342,
1766
+ "acc_stderr": 0.004853167998709484,
1767
+ "prompt_name": "can we infer",
1768
+ "task_name": "mnli"
1769
+ }
1770
+ },
1771
+ "mnli+claim true/false/inconclusive": {
1772
+ "2022-07-12-22-45-57": {
1773
+ "acc": 0.35384615384615387,
1774
+ "acc_norm": 0.3169638308711156,
1775
+ "acc_norm_stderr": 0.004696817414398099,
1776
+ "acc_stderr": 0.004826720820135633,
1777
+ "prompt_name": "claim true/false/inconclusive",
1778
+ "task_name": "mnli"
1779
+ }
1780
+ },
1781
+ "mnli+consider always/sometimes/never": {
1782
+ "2022-07-12-22-45-57": {
1783
+ "acc": 0.3183902190524707,
1784
+ "acc_norm": 0.31818644931227713,
1785
+ "acc_norm_stderr": 0.004701653585969693,
1786
+ "acc_stderr": 0.004702455981984395,
1787
+ "prompt_name": "consider always/sometimes/never",
1788
+ "task_name": "mnli"
1789
+ }
1790
+ },
1791
+ "mnli+does it follow that": {
1792
+ "2022-07-12-22-45-57": {
1793
+ "acc": 0.3784004075394804,
1794
+ "acc_norm": 0.3499745287824758,
1795
+ "acc_norm_stderr": 0.004814601860231488,
1796
+ "acc_stderr": 0.00489562485968904,
1797
+ "prompt_name": "does it follow that",
1798
+ "task_name": "mnli"
1799
+ }
1800
+ },
1801
+ "mnli+does this imply": {
1802
+ "2022-07-12-22-45-57": {
1803
+ "acc": 0.33224656138563424,
1804
+ "acc_norm": 0.31920529801324504,
1805
+ "acc_norm_stderr": 0.004705655206722178,
1806
+ "acc_stderr": 0.004754614244749308,
1807
+ "prompt_name": "does this imply",
1808
+ "task_name": "mnli"
1809
+ }
1810
+ },
1811
+ "mnli+guaranteed true": {
1812
+ "2022-07-12-22-45-57": {
1813
+ "acc": 0.35731023942944473,
1814
+ "acc_norm": 0.3398879266428935,
1815
+ "acc_norm_stderr": 0.004781384619510542,
1816
+ "acc_stderr": 0.004837270730680468,
1817
+ "prompt_name": "guaranteed true",
1818
+ "task_name": "mnli"
1819
+ }
1820
+ },
1821
+ "mnli+guaranteed/possible/impossible": {
1822
+ "2022-07-12-22-45-57": {
1823
+ "acc": 0.32317880794701986,
1824
+ "acc_norm": 0.3390728476821192,
1825
+ "acc_norm_stderr": 0.004778595579555236,
1826
+ "acc_stderr": 0.004721015048648592,
1827
+ "prompt_name": "guaranteed/possible/impossible",
1828
+ "task_name": "mnli"
1829
+ }
1830
+ },
1831
+ "mnli+justified in saying": {
1832
+ "2022-07-12-22-45-57": {
1833
+ "acc": 0.3611818644931228,
1834
+ "acc_norm": 0.33438614365766683,
1835
+ "acc_norm_stderr": 0.004762251055102503,
1836
+ "acc_stderr": 0.0048487362318538965,
1837
+ "prompt_name": "justified in saying",
1838
+ "task_name": "mnli"
1839
+ }
1840
+ },
1841
+ "mnli+must be true": {
1842
+ "2022-07-12-22-45-57": {
1843
+ "acc": 0.3532348446255731,
1844
+ "acc_norm": 0.3400916963830871,
1845
+ "acc_norm_stderr": 0.004782079413482068,
1846
+ "acc_stderr": 0.004824830369595005,
1847
+ "prompt_name": "must be true",
1848
+ "task_name": "mnli"
1849
+ }
1850
+ },
1851
+ "mnli+should assume": {
1852
+ "2022-07-12-22-45-57": {
1853
+ "acc": 0.3532348446255731,
1854
+ "acc_norm": 0.32236372898624555,
1855
+ "acc_norm_stderr": 0.004717896188851781,
1856
+ "acc_stderr": 0.004824830369595005,
1857
+ "prompt_name": "should assume",
1858
+ "task_name": "mnli"
1859
+ }
1860
+ },
1861
+ "mnli+take the following as truth": {
1862
+ "2022-07-12-22-45-57": {
1863
+ "acc": 0.3540499235863474,
1864
+ "acc_norm": 0.32654100866021396,
1865
+ "acc_norm_stderr": 0.004733707466562015,
1866
+ "acc_stderr": 0.004827349052909375,
1867
+ "prompt_name": "take the following as truth",
1868
+ "task_name": "mnli"
1869
+ }
1870
+ },
1871
+ "mnli_mismatched+GPT-3 style": {
1872
+ "2022-07-12-22-45-57": {
1873
+ "acc": 0.3558787632221318,
1874
+ "acc_norm": 0.3365541090317331,
1875
+ "acc_norm_stderr": 0.0047657510794410825,
1876
+ "acc_stderr": 0.004828764189286043,
1877
+ "prompt_name": "GPT-3 style",
1878
+ "task_name": "mnli_mismatched"
1879
+ }
1880
+ },
1881
+ "mnli_mismatched+MNLI crowdsource": {
1882
+ "2022-07-12-22-45-57": {
1883
+ "acc": 0.3524206672091131,
1884
+ "acc_norm": 0.3876118795768918,
1885
+ "acc_norm_stderr": 0.004913750149712027,
1886
+ "acc_stderr": 0.004818127922877737,
1887
+ "prompt_name": "MNLI crowdsource",
1888
+ "task_name": "mnli_mismatched"
1889
+ }
1890
+ },
1891
+ "mnli_mismatched+always/sometimes/never": {
1892
+ "2022-07-12-22-45-57": {
1893
+ "acc": 0.3187550854353133,
1894
+ "acc_norm": 0.318246541903987,
1895
+ "acc_norm_stderr": 0.004697823254367764,
1896
+ "acc_stderr": 0.004699821349212815,
1897
+ "prompt_name": "always/sometimes/never",
1898
+ "task_name": "mnli_mismatched"
1899
+ }
1900
+ },
1901
+ "mnli_mismatched+based on the previous passage": {
1902
+ "2022-07-12-22-45-57": {
1903
+ "acc": 0.3442839707078926,
1904
+ "acc_norm": 0.3240439381611066,
1905
+ "acc_norm_stderr": 0.00472022103875238,
1906
+ "acc_stderr": 0.004792007109263922,
1907
+ "prompt_name": "based on the previous passage",
1908
+ "task_name": "mnli_mismatched"
1909
+ }
1910
+ },
1911
+ "mnli_mismatched+can we infer": {
1912
+ "2022-07-12-22-45-57": {
1913
+ "acc": 0.3628966639544345,
1914
+ "acc_norm": 0.33909682668836455,
1915
+ "acc_norm_stderr": 0.0047745443668395,
1916
+ "acc_stderr": 0.004849506876045877,
1917
+ "prompt_name": "can we infer",
1918
+ "task_name": "mnli_mismatched"
1919
+ }
1920
+ },
1921
+ "mnli_mismatched+claim true/false/inconclusive": {
1922
+ "2022-07-12-22-45-57": {
1923
+ "acc": 0.3517087062652563,
1924
+ "acc_norm": 0.31550040683482505,
1925
+ "acc_norm_stderr": 0.004686921836958016,
1926
+ "acc_stderr": 0.004815903833418159,
1927
+ "prompt_name": "claim true/false/inconclusive",
1928
+ "task_name": "mnli_mismatched"
1929
+ }
1930
+ },
1931
+ "mnli_mismatched+consider always/sometimes/never": {
1932
+ "2022-07-12-22-45-57": {
1933
+ "acc": 0.318246541903987,
1934
+ "acc_norm": 0.318246541903987,
1935
+ "acc_norm_stderr": 0.004697823254367764,
1936
+ "acc_stderr": 0.004697823254367764,
1937
+ "prompt_name": "consider always/sometimes/never",
1938
+ "task_name": "mnli_mismatched"
1939
+ }
1940
+ },
1941
+ "mnli_mismatched+does it follow that": {
1942
+ "2022-07-12-22-45-57": {
1943
+ "acc": 0.38923921887713586,
1944
+ "acc_norm": 0.34926769731489016,
1945
+ "acc_norm_stderr": 0.004808189163919754,
1946
+ "acc_stderr": 0.004917507365149974,
1947
+ "prompt_name": "does it follow that",
1948
+ "task_name": "mnli_mismatched"
1949
+ }
1950
+ },
1951
+ "mnli_mismatched+does this imply": {
1952
+ "2022-07-12-22-45-57": {
1953
+ "acc": 0.3233319772172498,
1954
+ "acc_norm": 0.3184499593165175,
1955
+ "acc_norm_stderr": 0.0046986232661144,
1956
+ "acc_stderr": 0.0047175151956513625,
1957
+ "prompt_name": "does this imply",
1958
+ "task_name": "mnli_mismatched"
1959
+ }
1960
+ },
1961
+ "mnli_mismatched+guaranteed true": {
1962
+ "2022-07-12-22-45-57": {
1963
+ "acc": 0.36208299430431246,
1964
+ "acc_norm": 0.3303498779495525,
1965
+ "acc_norm_stderr": 0.004743645253038162,
1966
+ "acc_stderr": 0.00484715944530685,
1967
+ "prompt_name": "guaranteed true",
1968
+ "task_name": "mnli_mismatched"
1969
+ }
1970
+ },
1971
+ "mnli_mismatched+guaranteed/possible/impossible": {
1972
+ "2022-07-12-22-45-57": {
1973
+ "acc": 0.32048413344182264,
1974
+ "acc_norm": 0.33848657445077296,
1975
+ "acc_norm_stderr": 0.004772448023078353,
1976
+ "acc_stderr": 0.004706566719294992,
1977
+ "prompt_name": "guaranteed/possible/impossible",
1978
+ "task_name": "mnli_mismatched"
1979
+ }
1980
+ },
1981
+ "mnli_mismatched+justified in saying": {
1982
+ "2022-07-12-22-45-57": {
1983
+ "acc": 0.371033360455655,
1984
+ "acc_norm": 0.32648494711147275,
1985
+ "acc_norm_stderr": 0.004729403696523803,
1986
+ "acc_stderr": 0.004872158826748743,
1987
+ "prompt_name": "justified in saying",
1988
+ "task_name": "mnli_mismatched"
1989
+ }
1990
+ },
1991
+ "mnli_mismatched+must be true": {
1992
+ "2022-07-12-22-45-57": {
1993
+ "acc": 0.3565907241659886,
1994
+ "acc_norm": 0.3373677786818552,
1995
+ "acc_norm_stderr": 0.004768581700693004,
1996
+ "acc_stderr": 0.004830919845456573,
1997
+ "prompt_name": "must be true",
1998
+ "task_name": "mnli_mismatched"
1999
+ }
2000
+ },
2001
+ "mnli_mismatched+should assume": {
2002
+ "2022-07-12-22-45-57": {
2003
+ "acc": 0.35740439381611067,
2004
+ "acc_norm": 0.32231489015459724,
2005
+ "acc_norm_stderr": 0.0047136280360736155,
2006
+ "acc_stderr": 0.0048333692129862065,
2007
+ "prompt_name": "should assume",
2008
+ "task_name": "mnli_mismatched"
2009
+ }
2010
+ },
2011
+ "mnli_mismatched+take the following as truth": {
2012
+ "2022-07-12-22-45-57": {
2013
+ "acc": 0.3522172497965826,
2014
+ "acc_norm": 0.3263832384052075,
2015
+ "acc_norm_stderr": 0.004729024000627127,
2016
+ "acc_stderr": 0.004817493665633715,
2017
+ "prompt_name": "take the following as truth",
2018
+ "task_name": "mnli_mismatched"
2019
+ }
2020
+ },
2021
+ "mrpc": {
2022
+ "2022-07-13-11-29-13": {
2023
+ "acc": 0.6813725490196079,
2024
+ "acc_stderr": 0.023095996571841474,
2025
+ "f1": 0.8104956268221574,
2026
+ "f1_stderr": 0.016329211455484924
2027
+ }
2028
+ },
2029
+ "multirc": {
2030
+ "2022-07-13-11-29-13": {
2031
+ "acc": 0.011542497376705142,
2032
+ "acc_stderr": 0.003461867320927179
2033
+ }
2034
+ },
2035
+ "multirc+I was going to say\u2026": {
2036
+ "2022-07-12-22-45-57": {
2037
+ "acc": 0.5082508250825083,
2038
+ "acc_norm": 0.4280115511551155,
2039
+ "acc_norm_stderr": 0.007106976252751536,
2040
+ "acc_stderr": 0.007180825220905937,
2041
+ "prompt_name": "I was going to say\u2026",
2042
+ "task_name": "multirc"
2043
+ }
2044
+ },
2045
+ "multirc+Would it be good to answer\u2026": {
2046
+ "2022-07-12-22-45-57": {
2047
+ "acc": 0.45173267326732675,
2048
+ "acc_norm": 0.4278052805280528,
2049
+ "acc_norm_stderr": 0.007106544557507229,
2050
+ "acc_stderr": 0.007148261386088041,
2051
+ "prompt_name": "Would it be good to answer\u2026",
2052
+ "task_name": "multirc"
2053
+ }
2054
+ },
2055
+ "multirc+confirm": {
2056
+ "2022-07-12-22-45-57": {
2057
+ "acc": 0.4280115511551155,
2058
+ "acc_norm": 0.4280115511551155,
2059
+ "acc_norm_stderr": 0.007106976252751536,
2060
+ "acc_stderr": 0.007106976252751536,
2061
+ "prompt_name": "confirm",
2062
+ "task_name": "multirc"
2063
+ }
2064
+ },
2065
+ "multirc+correct": {
2066
+ "2022-07-12-22-45-57": {
2067
+ "acc": 0.5532178217821783,
2068
+ "acc_norm": 0.4643151815181518,
2069
+ "acc_norm_stderr": 0.00716348904876326,
2070
+ "acc_stderr": 0.007141007544074806,
2071
+ "prompt_name": "correct",
2072
+ "task_name": "multirc"
2073
+ }
2074
+ },
2075
+ "multirc+decide_valid": {
2076
+ "2022-07-12-22-45-57": {
2077
+ "acc": 0.5107260726072608,
2078
+ "acc_norm": 0.4280115511551155,
2079
+ "acc_norm_stderr": 0.007106976252751536,
2080
+ "acc_stderr": 0.007180150402551771,
2081
+ "prompt_name": "decide_valid",
2082
+ "task_name": "multirc"
2083
+ }
2084
+ },
2085
+ "multirc+found_this_answer": {
2086
+ "2022-07-12-22-45-57": {
2087
+ "acc": 0.4278052805280528,
2088
+ "acc_norm": 0.4280115511551155,
2089
+ "acc_norm_stderr": 0.007106976252751536,
2090
+ "acc_stderr": 0.007106544557507229,
2091
+ "prompt_name": "found_this_answer",
2092
+ "task_name": "multirc"
2093
+ }
2094
+ },
2095
+ "multirc+grading": {
2096
+ "2022-07-12-22-45-57": {
2097
+ "acc": 0.429042904290429,
2098
+ "acc_norm": 0.4280115511551155,
2099
+ "acc_norm_stderr": 0.007106976252751536,
2100
+ "acc_stderr": 0.007109115814226985,
2101
+ "prompt_name": "grading",
2102
+ "task_name": "multirc"
2103
+ }
2104
+ },
2105
+ "multirc+is the correct answer\u2026": {
2106
+ "2022-07-12-22-45-57": {
2107
+ "acc": 0.4498762376237624,
2108
+ "acc_norm": 0.4273927392739274,
2109
+ "acc_norm_stderr": 0.007105677382236137,
2110
+ "acc_stderr": 0.0071456249799065185,
2111
+ "prompt_name": "is the correct answer\u2026",
2112
+ "task_name": "multirc"
2113
+ }
2114
+ },
2115
+ "multirc+is\u2026 a correct answer?": {
2116
+ "2022-07-12-22-45-57": {
2117
+ "acc": 0.4278052805280528,
2118
+ "acc_norm": 0.4280115511551155,
2119
+ "acc_norm_stderr": 0.007106976252751536,
2120
+ "acc_stderr": 0.007106544557507229,
2121
+ "prompt_name": "is\u2026 a correct answer?",
2122
+ "task_name": "multirc"
2123
+ }
2124
+ },
2125
+ "multirc+paragraph\u2026 question\u2026 is it\u2026 ?": {
2126
+ "2022-07-12-22-45-57": {
2127
+ "acc": 0.5030940594059405,
2128
+ "acc_norm": 0.42883663366336633,
2129
+ "acc_norm_stderr": 0.007108690423137722,
2130
+ "acc_stderr": 0.007181665598939583,
2131
+ "prompt_name": "paragraph\u2026 question\u2026 is it\u2026 ?",
2132
+ "task_name": "multirc"
2133
+ }
2134
+ },
2135
+ "openbookqa": {
2136
+ "2022-07-13-11-29-13": {
2137
+ "acc": 0.214,
2138
+ "acc_norm": 0.298,
2139
+ "acc_norm_stderr": 0.020475118092988978,
2140
+ "acc_stderr": 0.01835979750238702
2141
+ }
2142
+ },
2143
+ "piqa": {
2144
+ "2022-07-13-11-29-13": {
2145
+ "acc": 0.6871599564744287,
2146
+ "acc_norm": 0.7002176278563657,
2147
+ "acc_norm_stderr": 0.010689686967138092,
2148
+ "acc_stderr": 0.010817714425701112
2149
+ }
2150
+ },
2151
+ "prost": {
2152
+ "2022-07-13-11-29-13": {
2153
+ "acc": 0.23505550811272416,
2154
+ "acc_norm": 0.2670260461144321,
2155
+ "acc_norm_stderr": 0.0032321702981822874,
2156
+ "acc_stderr": 0.0030979423271461875
2157
+ }
2158
+ },
2159
+ "pubmedqa": {
2160
+ "2022-07-13-11-29-13": {
2161
+ "acc": 0.56,
2162
+ "acc_stderr": 0.015704987954361798
2163
+ }
2164
+ },
2165
+ "qnli": {
2166
+ "2022-07-13-11-29-13": {
2167
+ "acc": 0.4962474830679114,
2168
+ "acc_stderr": 0.006765220016415222
2169
+ }
2170
+ },
2171
+ "qqp": {
2172
+ "2022-07-13-11-29-13": {
2173
+ "acc": 0.3681424684640119,
2174
+ "acc_stderr": 0.0023986729832071816,
2175
+ "f1": 0.5381138352498734,
2176
+ "f1_stderr": 0.002555831569895799
2177
+ }
2178
+ },
2179
+ "qqp+answer": {
2180
+ "2022-07-12-22-45-57": {
2181
+ "acc": 0.40558990848379917,
2182
+ "acc_norm": 0.36816720257234725,
2183
+ "acc_norm_stderr": 0.002398706610614492,
2184
+ "acc_stderr": 0.002441969063495092,
2185
+ "prompt_name": "answer",
2186
+ "task_name": "qqp"
2187
+ }
2188
+ },
2189
+ "qqp+duplicate": {
2190
+ "2022-07-12-22-45-57": {
2191
+ "acc": 0.3788523373732377,
2192
+ "acc_norm": 0.36816720257234725,
2193
+ "acc_norm_stderr": 0.002398706610614492,
2194
+ "acc_stderr": 0.002412603277723025,
2195
+ "prompt_name": "duplicate",
2196
+ "task_name": "qqp"
2197
+ }
2198
+ },
2199
+ "qqp+duplicate or not": {
2200
+ "2022-07-13-19-23-37": {
2201
+ "acc": 0.5761315854563444,
2202
+ "acc_norm": 0.6318327974276527,
2203
+ "acc_norm_stderr": 0.002398706610614492,
2204
+ "acc_stderr": 0.0024577056660753426,
2205
+ "prompt_name": "duplicate or not",
2206
+ "task_name": "qqp"
2207
+ }
2208
+ },
2209
+ "qqp+meaning": {
2210
+ "2022-07-13-19-23-37": {
2211
+ "acc": 0.3681424684640119,
2212
+ "acc_norm": 0.36816720257234725,
2213
+ "acc_norm_stderr": 0.002398706610614492,
2214
+ "acc_stderr": 0.0023986729832071916,
2215
+ "prompt_name": "meaning",
2216
+ "task_name": "qqp"
2217
+ }
2218
+ },
2219
+ "qqp+quora": {
2220
+ "2022-07-13-19-23-37": {
2221
+ "acc": 0.36821667078901804,
2222
+ "acc_norm": 0.36816720257234725,
2223
+ "acc_norm_stderr": 0.002398706610614492,
2224
+ "acc_stderr": 0.0023987738450886556,
2225
+ "prompt_name": "quora",
2226
+ "task_name": "qqp"
2227
+ }
2228
+ },
2229
+ "qqp+same thing": {
2230
+ "2022-07-13-19-23-37": {
2231
+ "acc": 0.5099431115508286,
2232
+ "acc_norm": 0.36816720257234725,
2233
+ "acc_norm_stderr": 0.002398706610614492,
2234
+ "acc_stderr": 0.002486208885430481,
2235
+ "prompt_name": "same thing",
2236
+ "task_name": "qqp"
2237
+ }
2238
+ },
2239
+ "race": {
2240
+ "2022-07-13-11-29-13": {
2241
+ "acc": 0.3320574162679426,
2242
+ "acc_stderr": 0.014575582129545914
2243
+ }
2244
+ },
2245
+ "rte": {
2246
+ "2022-07-13-11-29-13": {
2247
+ "acc": 0.5342960288808665,
2248
+ "acc_stderr": 0.030025579819366426
2249
+ }
2250
+ },
2251
+ "rte+does the claim\u2026 follow the fact\u2026": {
2252
+ "2022-07-13-19-23-37": {
2253
+ "acc": 0.4729241877256318,
2254
+ "acc_norm": 0.5270758122743683,
2255
+ "acc_norm_stderr": 0.0300523034631437,
2256
+ "acc_stderr": 0.030052303463143706,
2257
+ "prompt_name": "does the claim\u2026 follow the fact\u2026",
2258
+ "task_name": "rte"
2259
+ }
2260
+ },
2261
+ "rte+entailment explained": {
2262
+ "2022-07-13-19-23-37": {
2263
+ "acc": 0.49458483754512633,
2264
+ "acc_norm": 0.4729241877256318,
2265
+ "acc_norm_stderr": 0.0300523034631437,
2266
+ "acc_stderr": 0.030094698123239966,
2267
+ "prompt_name": "entailment explained",
2268
+ "task_name": "rte"
2269
+ }
2270
+ },
2271
+ "rte+imply": {
2272
+ "2022-07-13-19-23-37": {
2273
+ "acc": 0.48375451263537905,
2274
+ "acc_norm": 0.5270758122743683,
2275
+ "acc_norm_stderr": 0.0300523034631437,
2276
+ "acc_stderr": 0.030080573208738064,
2277
+ "prompt_name": "imply",
2278
+ "task_name": "rte"
2279
+ }
2280
+ },
2281
+ "rte+imply separated": {
2282
+ "2022-07-13-19-23-37": {
2283
+ "acc": 0.45126353790613716,
2284
+ "acc_norm": 0.5270758122743683,
2285
+ "acc_norm_stderr": 0.0300523034631437,
2286
+ "acc_stderr": 0.029953149241808943,
2287
+ "prompt_name": "imply separated",
2288
+ "task_name": "rte"
2289
+ }
2290
+ },
2291
+ "rte+mean": {
2292
+ "2022-07-13-19-23-37": {
2293
+ "acc": 0.48014440433212996,
2294
+ "acc_norm": 0.5270758122743683,
2295
+ "acc_norm_stderr": 0.0300523034631437,
2296
+ "acc_stderr": 0.030072723167317194,
2297
+ "prompt_name": "mean",
2298
+ "task_name": "rte"
2299
+ }
2300
+ },
2301
+ "sciq": {
2302
+ "2022-07-13-11-29-13": {
2303
+ "acc": 0.853,
2304
+ "acc_norm": 0.771,
2305
+ "acc_norm_stderr": 0.013294199326613609,
2306
+ "acc_stderr": 0.011203415395160335
2307
+ }
2308
+ },
2309
+ "sst": {
2310
+ "2022-07-13-11-29-13": {
2311
+ "acc": 0.6823394495412844,
2312
+ "acc_stderr": 0.015775124845202545
2313
+ }
2314
+ },
2315
+ "sst+following positive negative": {
2316
+ "2022-07-13-19-23-37": {
2317
+ "acc": 0.8061926605504587,
2318
+ "acc_norm": 0.8061926605504587,
2319
+ "acc_norm_stderr": 0.013393542261521812,
2320
+ "acc_stderr": 0.013393542261521812,
2321
+ "prompt_name": "following positive negative",
2322
+ "task_name": "sst"
2323
+ }
2324
+ },
2325
+ "sst+happy or mad": {
2326
+ "2022-07-13-19-23-37": {
2327
+ "acc": 0.5091743119266054,
2328
+ "acc_norm": 0.5091743119266054,
2329
+ "acc_norm_stderr": 0.01693900152535154,
2330
+ "acc_stderr": 0.01693900152535154,
2331
+ "prompt_name": "happy or mad",
2332
+ "task_name": "sst"
2333
+ }
2334
+ },
2335
+ "sst+positive negative after": {
2336
+ "2022-07-13-19-23-37": {
2337
+ "acc": 0.6204128440366973,
2338
+ "acc_norm": 0.6204128440366973,
2339
+ "acc_norm_stderr": 0.016443227556688766,
2340
+ "acc_stderr": 0.016443227556688766,
2341
+ "prompt_name": "positive negative after",
2342
+ "task_name": "sst"
2343
+ }
2344
+ },
2345
+ "sst+review": {
2346
+ "2022-07-13-19-23-37": {
2347
+ "acc": 0.5091743119266054,
2348
+ "acc_norm": 0.5091743119266054,
2349
+ "acc_norm_stderr": 0.01693900152535154,
2350
+ "acc_stderr": 0.01693900152535154,
2351
+ "prompt_name": "review",
2352
+ "task_name": "sst"
2353
+ }
2354
+ },
2355
+ "sst+said": {
2356
+ "2022-07-13-19-23-37": {
2357
+ "acc": 0.4908256880733945,
2358
+ "acc_norm": 0.5091743119266054,
2359
+ "acc_norm_stderr": 0.01693900152535154,
2360
+ "acc_stderr": 0.01693900152535154,
2361
+ "prompt_name": "said",
2362
+ "task_name": "sst"
2363
+ }
2364
+ },
2365
+ "triviaqa": {
2366
+ "2022-07-13-11-29-13": {
2367
+ "acc": 0.0313798285158667,
2368
+ "acc_stderr": 0.0016392014864795154
2369
+ }
2370
+ },
2371
+ "webqs": {
2372
+ "2022-07-13-11-29-13": {
2373
+ "acc": 0.012795275590551181,
2374
+ "acc_stderr": 0.0024938680596856277
2375
+ }
2376
+ },
2377
+ "wic": {
2378
+ "2022-07-13-11-29-13": {
2379
+ "acc": 0.5,
2380
+ "acc_stderr": 0.01981072129375818
2381
+ }
2382
+ },
2383
+ "wic+GPT-3-prompt": {
2384
+ "2022-07-14-10-03-25": {
2385
+ "acc": 0.5,
2386
+ "acc_norm": 0.5,
2387
+ "acc_norm_stderr": 0.01981072129375818,
2388
+ "acc_stderr": 0.01981072129375818,
2389
+ "prompt_name": "GPT-3-prompt",
2390
+ "task_name": "wic"
2391
+ }
2392
+ },
2393
+ "wic+GPT-3-prompt-with-label": {
2394
+ "2022-07-14-10-03-25": {
2395
+ "acc": 0.49216300940438873,
2396
+ "acc_norm": 0.5,
2397
+ "acc_norm_stderr": 0.01981072129375818,
2398
+ "acc_stderr": 0.019808287657813832,
2399
+ "prompt_name": "GPT-3-prompt-with-label",
2400
+ "task_name": "wic"
2401
+ }
2402
+ },
2403
+ "wic+affirmation_true_or_false": {
2404
+ "2022-07-14-10-03-25": {
2405
+ "acc": 0.5,
2406
+ "acc_norm": 0.5078369905956113,
2407
+ "acc_norm_stderr": 0.019808287657813832,
2408
+ "acc_stderr": 0.01981072129375818,
2409
+ "prompt_name": "affirmation_true_or_false",
2410
+ "task_name": "wic"
2411
+ }
2412
+ },
2413
+ "wic+grammar_homework": {
2414
+ "2022-07-14-10-03-25": {
2415
+ "acc": 0.5094043887147336,
2416
+ "acc_norm": 0.49843260188087773,
2417
+ "acc_norm_stderr": 0.019810623954060382,
2418
+ "acc_stderr": 0.019807216763271497,
2419
+ "prompt_name": "grammar_homework",
2420
+ "task_name": "wic"
2421
+ }
2422
+ },
2423
+ "wic+polysemous": {
2424
+ "2022-07-14-10-03-25": {
2425
+ "acc": 0.512539184952978,
2426
+ "acc_norm": 0.49843260188087773,
2427
+ "acc_norm_stderr": 0.019810623954060382,
2428
+ "acc_stderr": 0.019804490588592596,
2429
+ "prompt_name": "polysemous",
2430
+ "task_name": "wic"
2431
+ }
2432
+ },
2433
+ "wic+question-context": {
2434
+ "2022-07-14-10-03-25": {
2435
+ "acc": 0.5266457680250783,
2436
+ "acc_norm": 0.5031347962382445,
2437
+ "acc_norm_stderr": 0.019810331932097542,
2438
+ "acc_stderr": 0.019782570188812167,
2439
+ "prompt_name": "question-context",
2440
+ "task_name": "wic"
2441
+ }
2442
+ },
2443
+ "wic+question-context-meaning": {
2444
+ "2022-07-14-10-03-25": {
2445
+ "acc": 0.5438871473354232,
2446
+ "acc_norm": 0.5015673981191222,
2447
+ "acc_norm_stderr": 0.019810623954060382,
2448
+ "acc_stderr": 0.019734259601993404,
2449
+ "prompt_name": "question-context-meaning",
2450
+ "task_name": "wic"
2451
+ }
2452
+ },
2453
+ "wic+question-context-meaning-with-label": {
2454
+ "2022-07-14-10-03-25": {
2455
+ "acc": 0.5156739811912225,
2456
+ "acc_norm": 0.5015673981191222,
2457
+ "acc_norm_stderr": 0.019810623954060382,
2458
+ "acc_stderr": 0.019800984955347847,
2459
+ "prompt_name": "question-context-meaning-with-label",
2460
+ "task_name": "wic"
2461
+ }
2462
+ },
2463
+ "wic+same_sense": {
2464
+ "2022-07-14-10-03-25": {
2465
+ "acc": 0.5047021943573667,
2466
+ "acc_norm": 0.5,
2467
+ "acc_norm_stderr": 0.01981072129375818,
2468
+ "acc_stderr": 0.019809845219259763,
2469
+ "prompt_name": "same_sense",
2470
+ "task_name": "wic"
2471
+ }
2472
+ },
2473
+ "wic+similar-sense": {
2474
+ "2022-07-14-10-03-25": {
2475
+ "acc": 0.542319749216301,
2476
+ "acc_norm": 0.5,
2477
+ "acc_norm_stderr": 0.01981072129375818,
2478
+ "acc_stderr": 0.01973963328373276,
2479
+ "prompt_name": "similar-sense",
2480
+ "task_name": "wic"
2481
+ }
2482
+ },
2483
+ "winogrande": {
2484
+ "2022-07-13-11-29-13": {
2485
+ "acc": 0.5730071033938438,
2486
+ "acc_stderr": 0.013901878072575058
2487
+ }
2488
+ },
2489
+ "wnli": {
2490
+ "2022-07-13-11-29-13": {
2491
+ "acc": 0.43661971830985913,
2492
+ "acc_stderr": 0.0592793555841297
2493
+ }
2494
+ },
2495
+ "wnli+confident": {
2496
+ "2022-07-14-10-03-25": {
2497
+ "acc": 0.43661971830985913,
2498
+ "acc_norm": 0.43661971830985913,
2499
+ "acc_norm_stderr": 0.0592793555841297,
2500
+ "acc_stderr": 0.0592793555841297,
2501
+ "prompt_name": "confident",
2502
+ "task_name": "wnli"
2503
+ }
2504
+ },
2505
+ "wnli+entailment explained": {
2506
+ "2022-07-14-10-03-25": {
2507
+ "acc": 0.39436619718309857,
2508
+ "acc_norm": 0.43661971830985913,
2509
+ "acc_norm_stderr": 0.0592793555841297,
2510
+ "acc_stderr": 0.058412510854444266,
2511
+ "prompt_name": "entailment explained",
2512
+ "task_name": "wnli"
2513
+ }
2514
+ },
2515
+ "wnli+imply": {
2516
+ "2022-07-14-10-03-25": {
2517
+ "acc": 0.4225352112676056,
2518
+ "acc_norm": 0.43661971830985913,
2519
+ "acc_norm_stderr": 0.0592793555841297,
2520
+ "acc_stderr": 0.05903984205682581,
2521
+ "prompt_name": "imply",
2522
+ "task_name": "wnli"
2523
+ }
2524
+ },
2525
+ "wnli+justified": {
2526
+ "2022-07-14-10-03-25": {
2527
+ "acc": 0.43661971830985913,
2528
+ "acc_norm": 0.43661971830985913,
2529
+ "acc_norm_stderr": 0.0592793555841297,
2530
+ "acc_stderr": 0.0592793555841297,
2531
+ "prompt_name": "justified",
2532
+ "task_name": "wnli"
2533
+ }
2534
+ },
2535
+ "wnli+mean": {
2536
+ "2022-07-14-10-03-25": {
2537
+ "acc": 0.6619718309859155,
2538
+ "acc_norm": 0.43661971830985913,
2539
+ "acc_norm_stderr": 0.0592793555841297,
2540
+ "acc_stderr": 0.05653887739133513,
2541
+ "prompt_name": "mean",
2542
+ "task_name": "wnli"
2543
+ }
2544
+ },
2545
+ "wsc": {
2546
+ "2022-07-13-11-29-13": {
2547
+ "acc": 0.36538461538461536,
2548
+ "acc_stderr": 0.0474473339327792
2549
+ }
2550
+ },
2551
+ "wsc+GPT-3 Style": {
2552
+ "2022-07-14-10-03-25": {
2553
+ "acc": 0.36538461538461536,
2554
+ "acc_norm": 0.36538461538461536,
2555
+ "acc_norm_stderr": 0.0474473339327792,
2556
+ "acc_stderr": 0.0474473339327792,
2557
+ "prompt_name": "GPT-3 Style",
2558
+ "task_name": "wsc"
2559
+ }
2560
+ },
2561
+ "wsc+I think they mean": {
2562
+ "2022-07-14-10-03-25": {
2563
+ "acc": 0.36538461538461536,
2564
+ "acc_norm": 0.36538461538461536,
2565
+ "acc_norm_stderr": 0.0474473339327792,
2566
+ "acc_stderr": 0.0474473339327792,
2567
+ "prompt_name": "I think they mean",
2568
+ "task_name": "wsc"
2569
+ }
2570
+ },
2571
+ "wsc+Who or what is/are": {
2572
+ "2022-07-14-10-03-25": {
2573
+ "acc": 0.40384615384615385,
2574
+ "acc_norm": 0.36538461538461536,
2575
+ "acc_norm_stderr": 0.0474473339327792,
2576
+ "acc_stderr": 0.048346889526540184,
2577
+ "prompt_name": "Who or what is/are",
2578
+ "task_name": "wsc"
2579
+ }
2580
+ },
2581
+ "wsc+by p they mean": {
2582
+ "2022-07-14-10-03-25": {
2583
+ "acc": 0.36538461538461536,
2584
+ "acc_norm": 0.36538461538461536,
2585
+ "acc_norm_stderr": 0.0474473339327792,
2586
+ "acc_stderr": 0.0474473339327792,
2587
+ "prompt_name": "by p they mean",
2588
+ "task_name": "wsc"
2589
+ }
2590
+ },
2591
+ "wsc+does p stand for": {
2592
+ "2022-07-14-10-03-25": {
2593
+ "acc": 0.375,
2594
+ "acc_norm": 0.36538461538461536,
2595
+ "acc_norm_stderr": 0.0474473339327792,
2596
+ "acc_stderr": 0.04770204856076104,
2597
+ "prompt_name": "does p stand for",
2598
+ "task_name": "wsc"
2599
+ }
2600
+ },
2601
+ "wsc+does the pronoun refer to": {
2602
+ "2022-07-14-10-03-25": {
2603
+ "acc": 0.5480769230769231,
2604
+ "acc_norm": 0.36538461538461536,
2605
+ "acc_norm_stderr": 0.0474473339327792,
2606
+ "acc_stderr": 0.049038186969314335,
2607
+ "prompt_name": "does the pronoun refer to",
2608
+ "task_name": "wsc"
2609
+ }
2610
+ },
2611
+ "wsc+in other words": {
2612
+ "2022-07-14-10-03-25": {
2613
+ "acc": 0.36538461538461536,
2614
+ "acc_norm": 0.5288461538461539,
2615
+ "acc_norm_stderr": 0.04918440626354964,
2616
+ "acc_stderr": 0.0474473339327792,
2617
+ "prompt_name": "in other words",
2618
+ "task_name": "wsc"
2619
+ }
2620
+ },
2621
+ "wsc+p is/are r": {
2622
+ "2022-07-14-10-03-25": {
2623
+ "acc": 0.36538461538461536,
2624
+ "acc_norm": 0.34615384615384615,
2625
+ "acc_norm_stderr": 0.04687634642174987,
2626
+ "acc_stderr": 0.0474473339327792,
2627
+ "prompt_name": "p is/are r",
2628
+ "task_name": "wsc"
2629
+ }
2630
+ },
2631
+ "wsc+replaced with": {
2632
+ "2022-07-14-10-03-25": {
2633
+ "acc": 0.6153846153846154,
2634
+ "acc_norm": 0.36538461538461536,
2635
+ "acc_norm_stderr": 0.0474473339327792,
2636
+ "acc_stderr": 0.047936688680750406,
2637
+ "prompt_name": "replaced with",
2638
+ "task_name": "wsc"
2639
+ }
2640
+ },
2641
+ "wsc+the pronoun refers to": {
2642
+ "2022-07-14-10-03-25": {
2643
+ "acc": 0.36538461538461536,
2644
+ "acc_norm": 0.5865384615384616,
2645
+ "acc_norm_stderr": 0.04852294969729053,
2646
+ "acc_stderr": 0.0474473339327792,
2647
+ "prompt_name": "the pronoun refers to",
2648
+ "task_name": "wsc"
2649
+ }
2650
+ }
2651
+ },
2652
+ "versions": {
2653
+ "arc_challenge": 0,
2654
+ "arc_easy": 0,
2655
+ "axb+GPT-3 style": 0,
2656
+ "axb+MNLI crowdsource": 0,
2657
+ "axb+based on the previous passage": 0,
2658
+ "axb+can we infer": 0,
2659
+ "axb+does it follow that": 0,
2660
+ "axb+does this imply": 0,
2661
+ "axb+guaranteed true": 0,
2662
+ "axb+justified in saying": 0,
2663
+ "axb+must be true": 0,
2664
+ "axb+should assume": 0,
2665
+ "axg+GPT-3 style": 0,
2666
+ "axg+MNLI crowdsource": 0,
2667
+ "axg+based on the previous passage": 0,
2668
+ "axg+can we infer": 0,
2669
+ "axg+does it follow that": 0,
2670
+ "axg+does this imply": 0,
2671
+ "axg+guaranteed true": 0,
2672
+ "axg+justified in saying": 0,
2673
+ "axg+must be true": 0,
2674
+ "axg+should assume": 0,
2675
+ "boolq": 1,
2676
+ "boolq+GPT-3 Style": 0,
2677
+ "boolq+I wonder\u2026": 0,
2678
+ "boolq+after_reading": 0,
2679
+ "boolq+based on the following passage": 0,
2680
+ "boolq+based on the previous passage": 0,
2681
+ "boolq+could you tell me\u2026": 0,
2682
+ "boolq+exam": 0,
2683
+ "boolq+exercise": 0,
2684
+ "boolq+valid_binary": 0,
2685
+ "boolq+yes_no_question": 0,
2686
+ "cb+GPT-3 style": 0,
2687
+ "cb+MNLI crowdsource": 0,
2688
+ "cb+always/sometimes/never": 0,
2689
+ "cb+based on the previous passage": 0,
2690
+ "cb+can we infer": 0,
2691
+ "cb+claim true/false/inconclusive": 0,
2692
+ "cb+consider always/sometimes/never": 0,
2693
+ "cb+does it follow that": 0,
2694
+ "cb+does this imply": 0,
2695
+ "cb+guaranteed true": 0,
2696
+ "cb+guaranteed/possible/impossible": 0,
2697
+ "cb+justified in saying": 0,
2698
+ "cb+must be true": 0,
2699
+ "cb+should assume": 0,
2700
+ "cb+take the following as truth": 0,
2701
+ "cola+Following sentence acceptable": 0,
2702
+ "cola+Make sense yes no": 0,
2703
+ "cola+Previous sentence acceptable": 0,
2704
+ "cola+editing": 0,
2705
+ "cola+is_this_correct": 0,
2706
+ "copa": 0,
2707
+ "copa+C1 or C2? premise, so/because\u2026": 0,
2708
+ "copa+best_option": 0,
2709
+ "copa+cause_effect": 0,
2710
+ "copa+choose": 0,
2711
+ "copa+exercise": 0,
2712
+ "copa+i_am_hesitating": 0,
2713
+ "copa+more likely": 0,
2714
+ "copa+plausible_alternatives": 0,
2715
+ "crows_pairs_english+1": 0,
2716
+ "crows_pairs_english+2": 0,
2717
+ "crows_pairs_english+3": 0,
2718
+ "crows_pairs_english+4": 0,
2719
+ "crows_pairs_english+A_preference": 0,
2720
+ "crows_pairs_english+A_reality_check": 0,
2721
+ "crows_pairs_english+A_stereotype_true": 0,
2722
+ "crows_pairs_french+1_fr": 0,
2723
+ "crows_pairs_french+2_fr": 0,
2724
+ "crows_pairs_french+3_fr": 0,
2725
+ "crows_pairs_french+4_fr": 0,
2726
+ "crows_pairs_french+A_preference_fr": 0,
2727
+ "crows_pairs_french+A_reality_check_fr": 0,
2728
+ "crows_pairs_french+A_stereotype_true_fr": 0,
2729
+ "diabla+Is the error present? (same lang)": 0,
2730
+ "diabla+Which is automatic?": 0,
2731
+ "gsarti/flores_101_afr+null": 0,
2732
+ "gsarti/flores_101_amh+null": 0,
2733
+ "gsarti/flores_101_ara+null": 0,
2734
+ "gsarti/flores_101_asm+null": 0,
2735
+ "gsarti/flores_101_ast+null": 0,
2736
+ "gsarti/flores_101_azj+null": 0,
2737
+ "gsarti/flores_101_bel+null": 0,
2738
+ "gsarti/flores_101_ben+null": 0,
2739
+ "gsarti/flores_101_bos+null": 0,
2740
+ "gsarti/flores_101_bul+null": 0,
2741
+ "gsarti/flores_101_cat+null": 0,
2742
+ "gsarti/flores_101_ceb+null": 0,
2743
+ "gsarti/flores_101_ces+null": 0,
2744
+ "gsarti/flores_101_ckb+null": 0,
2745
+ "gsarti/flores_101_cym+null": 0,
2746
+ "gsarti/flores_101_dan+null": 0,
2747
+ "gsarti/flores_101_deu+null": 0,
2748
+ "gsarti/flores_101_ell+null": 0,
2749
+ "gsarti/flores_101_eng+null": 0,
2750
+ "gsarti/flores_101_est+null": 0,
2751
+ "gsarti/flores_101_fas+null": 0,
2752
+ "gsarti/flores_101_fin+null": 0,
2753
+ "gsarti/flores_101_fra+null": 0,
2754
+ "gsarti/flores_101_ful+null": 0,
2755
+ "gsarti/flores_101_gle+null": 0,
2756
+ "gsarti/flores_101_glg+null": 0,
2757
+ "gsarti/flores_101_guj+null": 0,
2758
+ "gsarti/flores_101_hau+null": 0,
2759
+ "gsarti/flores_101_heb+null": 0,
2760
+ "gsarti/flores_101_hin+null": 0,
2761
+ "gsarti/flores_101_hrv+null": 0,
2762
+ "gsarti/flores_101_hun+null": 0,
2763
+ "gsarti/flores_101_hye+null": 0,
2764
+ "gsarti/flores_101_ibo+null": 0,
2765
+ "gsarti/flores_101_ind+null": 0,
2766
+ "gsarti/flores_101_isl+null": 0,
2767
+ "gsarti/flores_101_ita+null": 0,
2768
+ "gsarti/flores_101_jav+null": 0,
2769
+ "gsarti/flores_101_jpn+null": 0,
2770
+ "gsarti/flores_101_kam+null": 0,
2771
+ "gsarti/flores_101_kan+null": 0,
2772
+ "gsarti/flores_101_kat+null": 0,
2773
+ "gsarti/flores_101_kaz+null": 0,
2774
+ "gsarti/flores_101_kea+null": 0,
2775
+ "gsarti/flores_101_kir+null": 0,
2776
+ "gsarti/flores_101_kor+null": 0,
2777
+ "gsarti/flores_101_lao+null": 0,
2778
+ "gsarti/flores_101_lav+null": 0,
2779
+ "gsarti/flores_101_lin+null": 0,
2780
+ "gsarti/flores_101_lit+null": 0,
2781
+ "gsarti/flores_101_ltz+null": 0,
2782
+ "gsarti/flores_101_lug+null": 0,
2783
+ "gsarti/flores_101_luo+null": 0,
2784
+ "gsarti/flores_101_mal+null": 0,
2785
+ "gsarti/flores_101_mar+null": 0,
2786
+ "gsarti/flores_101_mkd+null": 0,
2787
+ "gsarti/flores_101_mlt+null": 0,
2788
+ "gsarti/flores_101_mon+null": 0,
2789
+ "gsarti/flores_101_mri+null": 0,
2790
+ "gsarti/flores_101_msa+null": 0,
2791
+ "gsarti/flores_101_mya+null": 0,
2792
+ "gsarti/flores_101_nld+null": 0,
2793
+ "gsarti/flores_101_nob+null": 0,
2794
+ "gsarti/flores_101_npi+null": 0,
2795
+ "gsarti/flores_101_nso+null": 0,
2796
+ "gsarti/flores_101_nya+null": 0,
2797
+ "gsarti/flores_101_oci+null": 0,
2798
+ "gsarti/flores_101_orm+null": 0,
2799
+ "gsarti/flores_101_ory+null": 0,
2800
+ "gsarti/flores_101_pan+null": 0,
2801
+ "gsarti/flores_101_pol+null": 0,
2802
+ "gsarti/flores_101_por+null": 0,
2803
+ "gsarti/flores_101_pus+null": 0,
2804
+ "gsarti/flores_101_ron+null": 0,
2805
+ "gsarti/flores_101_rus+null": 0,
2806
+ "gsarti/flores_101_slk+null": 0,
2807
+ "gsarti/flores_101_slv+null": 0,
2808
+ "gsarti/flores_101_sna+null": 0,
2809
+ "gsarti/flores_101_snd+null": 0,
2810
+ "gsarti/flores_101_som+null": 0,
2811
+ "gsarti/flores_101_spa+null": 0,
2812
+ "gsarti/flores_101_srp+null": 0,
2813
+ "gsarti/flores_101_swe+null": 0,
2814
+ "gsarti/flores_101_swh+null": 0,
2815
+ "gsarti/flores_101_tam+null": 0,
2816
+ "gsarti/flores_101_tel+null": 0,
2817
+ "gsarti/flores_101_tgk+null": 0,
2818
+ "gsarti/flores_101_tgl+null": 0,
2819
+ "gsarti/flores_101_tha+null": 0,
2820
+ "gsarti/flores_101_tur+null": 0,
2821
+ "gsarti/flores_101_ukr+null": 0,
2822
+ "gsarti/flores_101_umb+null": 0,
2823
+ "gsarti/flores_101_urd+null": 0,
2824
+ "gsarti/flores_101_uzb+null": 0,
2825
+ "gsarti/flores_101_vie+null": 0,
2826
+ "gsarti/flores_101_wol+null": 0,
2827
+ "gsarti/flores_101_xho+null": 0,
2828
+ "gsarti/flores_101_yor+null": 0,
2829
+ "gsarti/flores_101_zho_simpl+null": 0,
2830
+ "gsarti/flores_101_zho_trad+null": 0,
2831
+ "gsarti/flores_101_zul+null": 0,
2832
+ "headqa": 0,
2833
+ "hellaswag": 0,
2834
+ "lambada": 0,
2835
+ "logiqa": 0,
2836
+ "mathqa": 0,
2837
+ "mc_taco": 0,
2838
+ "mnli+GPT-3 style": 0,
2839
+ "mnli+MNLI crowdsource": 0,
2840
+ "mnli+always/sometimes/never": 0,
2841
+ "mnli+based on the previous passage": 0,
2842
+ "mnli+can we infer": 0,
2843
+ "mnli+claim true/false/inconclusive": 0,
2844
+ "mnli+consider always/sometimes/never": 0,
2845
+ "mnli+does it follow that": 0,
2846
+ "mnli+does this imply": 0,
2847
+ "mnli+guaranteed true": 0,
2848
+ "mnli+guaranteed/possible/impossible": 0,
2849
+ "mnli+justified in saying": 0,
2850
+ "mnli+must be true": 0,
2851
+ "mnli+should assume": 0,
2852
+ "mnli+take the following as truth": 0,
2853
+ "mnli_mismatched+GPT-3 style": 0,
2854
+ "mnli_mismatched+MNLI crowdsource": 0,
2855
+ "mnli_mismatched+always/sometimes/never": 0,
2856
+ "mnli_mismatched+based on the previous passage": 0,
2857
+ "mnli_mismatched+can we infer": 0,
2858
+ "mnli_mismatched+claim true/false/inconclusive": 0,
2859
+ "mnli_mismatched+consider always/sometimes/never": 0,
2860
+ "mnli_mismatched+does it follow that": 0,
2861
+ "mnli_mismatched+does this imply": 0,
2862
+ "mnli_mismatched+guaranteed true": 0,
2863
+ "mnli_mismatched+guaranteed/possible/impossible": 0,
2864
+ "mnli_mismatched+justified in saying": 0,
2865
+ "mnli_mismatched+must be true": 0,
2866
+ "mnli_mismatched+should assume": 0,
2867
+ "mnli_mismatched+take the following as truth": 0,
2868
+ "mrpc": 0,
2869
+ "multirc": 1,
2870
+ "multirc+I was going to say\u2026": 0,
2871
+ "multirc+Would it be good to answer\u2026": 0,
2872
+ "multirc+confirm": 0,
2873
+ "multirc+correct": 0,
2874
+ "multirc+decide_valid": 0,
2875
+ "multirc+found_this_answer": 0,
2876
+ "multirc+grading": 0,
2877
+ "multirc+is the correct answer\u2026": 0,
2878
+ "multirc+is\u2026 a correct answer?": 0,
2879
+ "multirc+paragraph\u2026 question\u2026 is it\u2026 ?": 0,
2880
+ "openbookqa": 0,
2881
+ "piqa": 0,
2882
+ "prost": 0,
2883
+ "pubmedqa": 0,
2884
+ "qnli": 0,
2885
+ "qqp": 0,
2886
+ "qqp+answer": 0,
2887
+ "qqp+duplicate": 0,
2888
+ "qqp+duplicate or not": 0,
2889
+ "qqp+meaning": 0,
2890
+ "qqp+quora": 0,
2891
+ "qqp+same thing": 0,
2892
+ "race": 1,
2893
+ "rte": 0,
2894
+ "rte+does the claim\u2026 follow the fact\u2026": 0,
2895
+ "rte+entailment explained": 0,
2896
+ "rte+imply": 0,
2897
+ "rte+imply separated": 0,
2898
+ "rte+mean": 0,
2899
+ "sciq": 0,
2900
+ "sst": 0,
2901
+ "sst+following positive negative": 0,
2902
+ "sst+happy or mad": 0,
2903
+ "sst+positive negative after": 0,
2904
+ "sst+review": 0,
2905
+ "sst+said": 0,
2906
+ "triviaqa": 0,
2907
+ "webqs": 0,
2908
+ "wic": 0,
2909
+ "wic+GPT-3-prompt": 0,
2910
+ "wic+GPT-3-prompt-with-label": 0,
2911
+ "wic+affirmation_true_or_false": 0,
2912
+ "wic+grammar_homework": 0,
2913
+ "wic+polysemous": 0,
2914
+ "wic+question-context": 0,
2915
+ "wic+question-context-meaning": 0,
2916
+ "wic+question-context-meaning-with-label": 0,
2917
+ "wic+same_sense": 0,
2918
+ "wic+similar-sense": 0,
2919
+ "winogrande": 0,
2920
+ "wnli": 1,
2921
+ "wnli+confident": 1,
2922
+ "wnli+entailment explained": 1,
2923
+ "wnli+imply": 1,
2924
+ "wnli+justified": 1,
2925
+ "wnli+mean": 1,
2926
+ "wsc": 0,
2927
+ "wsc+GPT-3 Style": 0,
2928
+ "wsc+I think they mean": 0,
2929
+ "wsc+Who or what is/are": 0,
2930
+ "wsc+by p they mean": 0,
2931
+ "wsc+does p stand for": 0,
2932
+ "wsc+does the pronoun refer to": 0,
2933
+ "wsc+in other words": 0,
2934
+ "wsc+p is/are r": 0,
2935
+ "wsc+replaced with": 0,
2936
+ "wsc+the pronoun refers to": 0
2937
+ }
2938
+ }
bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-13-19-23-37.json ADDED
@@ -0,0 +1,701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "qqp",
5
+ "prompt_name": "answer",
6
+ "acc": 0.40558990848379917,
7
+ "fixed_answer_choice_list": [
8
+ "no",
9
+ "yes"
10
+ ],
11
+ "dataset_path": "glue",
12
+ "dataset_name": "qqp",
13
+ "subset": null,
14
+ "prompt_id": "c0182cd1-c7ac-4abe-829f-4651536af951",
15
+ "prompt_jinja": "Can an answer to \"{{question1}}\" also be used to answer \"{{question2}}\"? ||| {{ answer_choices[label] }}",
16
+ "prompt_original_task": false,
17
+ "comment": "",
18
+ "acc_stderr": 0.002441969063495092
19
+ },
20
+ {
21
+ "task_name": "qqp",
22
+ "prompt_name": "answer",
23
+ "acc_norm": 0.36816720257234725,
24
+ "fixed_answer_choice_list": [
25
+ "no",
26
+ "yes"
27
+ ],
28
+ "dataset_path": "glue",
29
+ "dataset_name": "qqp",
30
+ "subset": null,
31
+ "prompt_id": "c0182cd1-c7ac-4abe-829f-4651536af951",
32
+ "prompt_jinja": "Can an answer to \"{{question1}}\" also be used to answer \"{{question2}}\"? ||| {{ answer_choices[label] }}",
33
+ "prompt_original_task": false,
34
+ "comment": "",
35
+ "acc_norm_stderr": 0.002398706610614492
36
+ },
37
+ {
38
+ "task_name": "qqp",
39
+ "prompt_name": "duplicate",
40
+ "acc": 0.3788523373732377,
41
+ "fixed_answer_choice_list": [
42
+ "no",
43
+ "yes"
44
+ ],
45
+ "dataset_path": "glue",
46
+ "dataset_name": "qqp",
47
+ "subset": null,
48
+ "prompt_id": "fd244bd3-ca3b-4e4f-9722-fd006c50e157",
49
+ "prompt_jinja": "I received the questions \"{{question1}}\" and \"{{question2}}\". Are they duplicates? ||| {{ answer_choices[label] }}",
50
+ "prompt_original_task": true,
51
+ "comment": "",
52
+ "acc_stderr": 0.002412603277723025
53
+ },
54
+ {
55
+ "task_name": "qqp",
56
+ "prompt_name": "duplicate",
57
+ "acc_norm": 0.36816720257234725,
58
+ "fixed_answer_choice_list": [
59
+ "no",
60
+ "yes"
61
+ ],
62
+ "dataset_path": "glue",
63
+ "dataset_name": "qqp",
64
+ "subset": null,
65
+ "prompt_id": "fd244bd3-ca3b-4e4f-9722-fd006c50e157",
66
+ "prompt_jinja": "I received the questions \"{{question1}}\" and \"{{question2}}\". Are they duplicates? ||| {{ answer_choices[label] }}",
67
+ "prompt_original_task": true,
68
+ "comment": "",
69
+ "acc_norm_stderr": 0.002398706610614492
70
+ },
71
+ {
72
+ "task_name": "qqp",
73
+ "prompt_name": "duplicate or not",
74
+ "acc": 0.5761315854563444,
75
+ "fixed_answer_choice_list": [
76
+ "not duplicates",
77
+ "duplicates"
78
+ ],
79
+ "dataset_path": "glue",
80
+ "dataset_name": "qqp",
81
+ "subset": null,
82
+ "prompt_id": "94972071-a726-42a3-a726-13f414b65e67",
83
+ "prompt_jinja": "{{question1}}\n{{question2}}\nPick one: These questions are \"{{\"duplicates\"}}\" or \"{{\"not duplicates\"}}\".\n|||\n{{ answer_choices[label] }}",
84
+ "prompt_original_task": true,
85
+ "comment": "",
86
+ "acc_stderr": 0.0024577056660753426
87
+ },
88
+ {
89
+ "task_name": "qqp",
90
+ "prompt_name": "duplicate or not",
91
+ "acc_norm": 0.6318327974276527,
92
+ "fixed_answer_choice_list": [
93
+ "not duplicates",
94
+ "duplicates"
95
+ ],
96
+ "dataset_path": "glue",
97
+ "dataset_name": "qqp",
98
+ "subset": null,
99
+ "prompt_id": "94972071-a726-42a3-a726-13f414b65e67",
100
+ "prompt_jinja": "{{question1}}\n{{question2}}\nPick one: These questions are \"{{\"duplicates\"}}\" or \"{{\"not duplicates\"}}\".\n|||\n{{ answer_choices[label] }}",
101
+ "prompt_original_task": true,
102
+ "comment": "",
103
+ "acc_norm_stderr": 0.002398706610614492
104
+ },
105
+ {
106
+ "task_name": "qqp",
107
+ "prompt_name": "meaning",
108
+ "acc": 0.3681424684640119,
109
+ "fixed_answer_choice_list": [
110
+ "No",
111
+ "Yes"
112
+ ],
113
+ "dataset_path": "glue",
114
+ "dataset_name": "qqp",
115
+ "subset": null,
116
+ "prompt_id": "c0724198-97e7-44a1-89d8-c51e97ce0b04",
117
+ "prompt_jinja": "Question 1: {{question1}}\nQuestion 2: {{question2}}\n\nDo these two questions convey the same meaning? Yes or no? ||| {{answer_choices[label]}}",
118
+ "prompt_original_task": true,
119
+ "comment": "",
120
+ "acc_stderr": 0.0023986729832071916
121
+ },
122
+ {
123
+ "task_name": "qqp",
124
+ "prompt_name": "meaning",
125
+ "acc_norm": 0.36816720257234725,
126
+ "fixed_answer_choice_list": [
127
+ "No",
128
+ "Yes"
129
+ ],
130
+ "dataset_path": "glue",
131
+ "dataset_name": "qqp",
132
+ "subset": null,
133
+ "prompt_id": "c0724198-97e7-44a1-89d8-c51e97ce0b04",
134
+ "prompt_jinja": "Question 1: {{question1}}\nQuestion 2: {{question2}}\n\nDo these two questions convey the same meaning? Yes or no? ||| {{answer_choices[label]}}",
135
+ "prompt_original_task": true,
136
+ "comment": "",
137
+ "acc_norm_stderr": 0.002398706610614492
138
+ },
139
+ {
140
+ "task_name": "qqp",
141
+ "prompt_name": "quora",
142
+ "acc": 0.36821667078901804,
143
+ "fixed_answer_choice_list": [
144
+ "no",
145
+ "yes"
146
+ ],
147
+ "dataset_path": "glue",
148
+ "dataset_name": "qqp",
149
+ "subset": null,
150
+ "prompt_id": "8e711799-a57c-4941-833b-466bedfb80ad",
151
+ "prompt_jinja": "I'm an administrator on the website Quora. There are two posts, one that asks \"{{question1}}\" and another that asks \"{{question2}}\". I can merge questions if they are asking the same thing. Can I merge these two questions? ||| {{ answer_choices[label] }}",
152
+ "prompt_original_task": true,
153
+ "comment": "",
154
+ "acc_stderr": 0.0023987738450886556
155
+ },
156
+ {
157
+ "task_name": "qqp",
158
+ "prompt_name": "quora",
159
+ "acc_norm": 0.36816720257234725,
160
+ "fixed_answer_choice_list": [
161
+ "no",
162
+ "yes"
163
+ ],
164
+ "dataset_path": "glue",
165
+ "dataset_name": "qqp",
166
+ "subset": null,
167
+ "prompt_id": "8e711799-a57c-4941-833b-466bedfb80ad",
168
+ "prompt_jinja": "I'm an administrator on the website Quora. There are two posts, one that asks \"{{question1}}\" and another that asks \"{{question2}}\". I can merge questions if they are asking the same thing. Can I merge these two questions? ||| {{ answer_choices[label] }}",
169
+ "prompt_original_task": true,
170
+ "comment": "",
171
+ "acc_norm_stderr": 0.002398706610614492
172
+ },
173
+ {
174
+ "task_name": "qqp",
175
+ "prompt_name": "same thing",
176
+ "acc": 0.5099431115508286,
177
+ "fixed_answer_choice_list": [
178
+ "no",
179
+ "yes"
180
+ ],
181
+ "dataset_path": "glue",
182
+ "dataset_name": "qqp",
183
+ "subset": null,
184
+ "prompt_id": "a45ad5cd-a3ba-4ab2-a728-a9ea0f27102b",
185
+ "prompt_jinja": "Are the questions \"{{question1}}\" and \"{{question2}}\" asking the same thing? ||| {{ answer_choices[label] }}",
186
+ "prompt_original_task": true,
187
+ "comment": "",
188
+ "acc_stderr": 0.002486208885430481
189
+ },
190
+ {
191
+ "task_name": "qqp",
192
+ "prompt_name": "same thing",
193
+ "acc_norm": 0.36816720257234725,
194
+ "fixed_answer_choice_list": [
195
+ "no",
196
+ "yes"
197
+ ],
198
+ "dataset_path": "glue",
199
+ "dataset_name": "qqp",
200
+ "subset": null,
201
+ "prompt_id": "a45ad5cd-a3ba-4ab2-a728-a9ea0f27102b",
202
+ "prompt_jinja": "Are the questions \"{{question1}}\" and \"{{question2}}\" asking the same thing? ||| {{ answer_choices[label] }}",
203
+ "prompt_original_task": true,
204
+ "comment": "",
205
+ "acc_norm_stderr": 0.002398706610614492
206
+ },
207
+ {
208
+ "task_name": "rte",
209
+ "prompt_name": "does the claim\u2026 follow the fact\u2026",
210
+ "acc": 0.4729241877256318,
211
+ "fixed_answer_choice_list": [
212
+ "yes",
213
+ "no"
214
+ ],
215
+ "dataset_path": "glue",
216
+ "dataset_name": "rte",
217
+ "subset": null,
218
+ "prompt_id": "4ee6ff27-de63-4e7b-a9d4-82a17eba407a",
219
+ "prompt_jinja": "Does the claim \"{{sentence2}}\" follow from the fact that \"{{sentence1}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
220
+ "prompt_original_task": true,
221
+ "comment": "",
222
+ "acc_stderr": 0.030052303463143706
223
+ },
224
+ {
225
+ "task_name": "rte",
226
+ "prompt_name": "does the claim\u2026 follow the fact\u2026",
227
+ "acc_norm": 0.5270758122743683,
228
+ "fixed_answer_choice_list": [
229
+ "yes",
230
+ "no"
231
+ ],
232
+ "dataset_path": "glue",
233
+ "dataset_name": "rte",
234
+ "subset": null,
235
+ "prompt_id": "4ee6ff27-de63-4e7b-a9d4-82a17eba407a",
236
+ "prompt_jinja": "Does the claim \"{{sentence2}}\" follow from the fact that \"{{sentence1}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
237
+ "prompt_original_task": true,
238
+ "comment": "",
239
+ "acc_norm_stderr": 0.0300523034631437
240
+ },
241
+ {
242
+ "task_name": "rte",
243
+ "prompt_name": "entailment explained",
244
+ "acc": 0.49458483754512633,
245
+ "fixed_answer_choice_list": [
246
+ "entailment",
247
+ "not entailment"
248
+ ],
249
+ "dataset_path": "glue",
250
+ "dataset_name": "rte",
251
+ "subset": null,
252
+ "prompt_id": "9e2b4267-ec23-44c8-b82a-107e2c890fec",
253
+ "prompt_jinja": "We say that one sentence \"{{\"entails\"}}\" another sentence when the first sentence implies the second sentence. Consider the following two sentences:\n{{sentence1}}\n{{sentence2}}\nIs the relationship from the first to the second sentence \"{{\"entailment\"}}\" or \"{{\"not entailment\"}}\"?\n|||\n{{answer_choices[label]}}",
254
+ "prompt_original_task": true,
255
+ "comment": "",
256
+ "acc_stderr": 0.030094698123239966
257
+ },
258
+ {
259
+ "task_name": "rte",
260
+ "prompt_name": "entailment explained",
261
+ "acc_norm": 0.4729241877256318,
262
+ "fixed_answer_choice_list": [
263
+ "entailment",
264
+ "not entailment"
265
+ ],
266
+ "dataset_path": "glue",
267
+ "dataset_name": "rte",
268
+ "subset": null,
269
+ "prompt_id": "9e2b4267-ec23-44c8-b82a-107e2c890fec",
270
+ "prompt_jinja": "We say that one sentence \"{{\"entails\"}}\" another sentence when the first sentence implies the second sentence. Consider the following two sentences:\n{{sentence1}}\n{{sentence2}}\nIs the relationship from the first to the second sentence \"{{\"entailment\"}}\" or \"{{\"not entailment\"}}\"?\n|||\n{{answer_choices[label]}}",
271
+ "prompt_original_task": true,
272
+ "comment": "",
273
+ "acc_norm_stderr": 0.0300523034631437
274
+ },
275
+ {
276
+ "task_name": "rte",
277
+ "prompt_name": "imply",
278
+ "acc": 0.48375451263537905,
279
+ "fixed_answer_choice_list": [
280
+ "yes",
281
+ "no"
282
+ ],
283
+ "dataset_path": "glue",
284
+ "dataset_name": "rte",
285
+ "subset": null,
286
+ "prompt_id": "c8dfc879-40f2-412d-be1e-4cd70107f6e6",
287
+ "prompt_jinja": "Does \"{{sentence1}}\" imply that \"{{sentence2}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
288
+ "prompt_original_task": true,
289
+ "comment": "",
290
+ "acc_stderr": 0.030080573208738064
291
+ },
292
+ {
293
+ "task_name": "rte",
294
+ "prompt_name": "imply",
295
+ "acc_norm": 0.5270758122743683,
296
+ "fixed_answer_choice_list": [
297
+ "yes",
298
+ "no"
299
+ ],
300
+ "dataset_path": "glue",
301
+ "dataset_name": "rte",
302
+ "subset": null,
303
+ "prompt_id": "c8dfc879-40f2-412d-be1e-4cd70107f6e6",
304
+ "prompt_jinja": "Does \"{{sentence1}}\" imply that \"{{sentence2}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
305
+ "prompt_original_task": true,
306
+ "comment": "",
307
+ "acc_norm_stderr": 0.0300523034631437
308
+ },
309
+ {
310
+ "task_name": "rte",
311
+ "prompt_name": "imply separated",
312
+ "acc": 0.45126353790613716,
313
+ "fixed_answer_choice_list": [
314
+ "yes",
315
+ "no"
316
+ ],
317
+ "dataset_path": "glue",
318
+ "dataset_name": "rte",
319
+ "subset": null,
320
+ "prompt_id": "f56ffced-9b16-431a-8a17-501e63cddf73",
321
+ "prompt_jinja": "{{sentence1}}\nDoes this imply\n{{sentence2}}\nPlease answer {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
322
+ "prompt_original_task": true,
323
+ "comment": "",
324
+ "acc_stderr": 0.029953149241808943
325
+ },
326
+ {
327
+ "task_name": "rte",
328
+ "prompt_name": "imply separated",
329
+ "acc_norm": 0.5270758122743683,
330
+ "fixed_answer_choice_list": [
331
+ "yes",
332
+ "no"
333
+ ],
334
+ "dataset_path": "glue",
335
+ "dataset_name": "rte",
336
+ "subset": null,
337
+ "prompt_id": "f56ffced-9b16-431a-8a17-501e63cddf73",
338
+ "prompt_jinja": "{{sentence1}}\nDoes this imply\n{{sentence2}}\nPlease answer {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
339
+ "prompt_original_task": true,
340
+ "comment": "",
341
+ "acc_norm_stderr": 0.0300523034631437
342
+ },
343
+ {
344
+ "task_name": "rte",
345
+ "prompt_name": "mean",
346
+ "acc": 0.48014440433212996,
347
+ "fixed_answer_choice_list": [
348
+ "yes",
349
+ "no"
350
+ ],
351
+ "dataset_path": "glue",
352
+ "dataset_name": "rte",
353
+ "subset": null,
354
+ "prompt_id": "03a7ae07-5ddd-46c4-92f3-2152223d44ec",
355
+ "prompt_jinja": "{{sentence1}}\nDoes this mean that \"{{sentence2}}\" is true? {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
356
+ "prompt_original_task": true,
357
+ "comment": "",
358
+ "acc_stderr": 0.030072723167317194
359
+ },
360
+ {
361
+ "task_name": "rte",
362
+ "prompt_name": "mean",
363
+ "acc_norm": 0.5270758122743683,
364
+ "fixed_answer_choice_list": [
365
+ "yes",
366
+ "no"
367
+ ],
368
+ "dataset_path": "glue",
369
+ "dataset_name": "rte",
370
+ "subset": null,
371
+ "prompt_id": "03a7ae07-5ddd-46c4-92f3-2152223d44ec",
372
+ "prompt_jinja": "{{sentence1}}\nDoes this mean that \"{{sentence2}}\" is true? {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
373
+ "prompt_original_task": true,
374
+ "comment": "",
375
+ "acc_norm_stderr": 0.0300523034631437
376
+ },
377
+ {
378
+ "task_name": "sst",
379
+ "prompt_name": "following positive negative",
380
+ "acc": 0.8061926605504587,
381
+ "fixed_answer_choice_list": [
382
+ "negative",
383
+ "positive"
384
+ ],
385
+ "dataset_path": "glue",
386
+ "dataset_name": "sst2",
387
+ "subset": null,
388
+ "prompt_id": "63c6b2be-8ecd-42ad-88c7-0d1dc1a8323a",
389
+ "prompt_jinja": "Does the following sentence have a {{\"positive\"}} or {{\"negative\"}} sentiment?\n{{sentence}}\n|||\n{{ answer_choices[label] }}",
390
+ "prompt_original_task": true,
391
+ "comment": "",
392
+ "acc_stderr": 0.013393542261521812
393
+ },
394
+ {
395
+ "task_name": "sst",
396
+ "prompt_name": "following positive negative",
397
+ "acc_norm": 0.8061926605504587,
398
+ "fixed_answer_choice_list": [
399
+ "negative",
400
+ "positive"
401
+ ],
402
+ "dataset_path": "glue",
403
+ "dataset_name": "sst2",
404
+ "subset": null,
405
+ "prompt_id": "63c6b2be-8ecd-42ad-88c7-0d1dc1a8323a",
406
+ "prompt_jinja": "Does the following sentence have a {{\"positive\"}} or {{\"negative\"}} sentiment?\n{{sentence}}\n|||\n{{ answer_choices[label] }}",
407
+ "prompt_original_task": true,
408
+ "comment": "",
409
+ "acc_norm_stderr": 0.013393542261521812
410
+ },
411
+ {
412
+ "task_name": "sst",
413
+ "prompt_name": "happy or mad",
414
+ "acc": 0.5091743119266054,
415
+ "fixed_answer_choice_list": [
416
+ "bad",
417
+ "good"
418
+ ],
419
+ "dataset_path": "glue",
420
+ "dataset_name": "sst2",
421
+ "subset": null,
422
+ "prompt_id": "6dd74cd5-e074-4612-9e96-c17ca88c3bc4",
423
+ "prompt_jinja": "Someone sent me an email with the sentence \"{{sentence}}\". Do you think they are feeling {{\"good\"}} or {{\"bad\"}}? ||| {{ answer_choices[label] }}",
424
+ "prompt_original_task": true,
425
+ "comment": "",
426
+ "acc_stderr": 0.01693900152535154
427
+ },
428
+ {
429
+ "task_name": "sst",
430
+ "prompt_name": "happy or mad",
431
+ "acc_norm": 0.5091743119266054,
432
+ "fixed_answer_choice_list": [
433
+ "bad",
434
+ "good"
435
+ ],
436
+ "dataset_path": "glue",
437
+ "dataset_name": "sst2",
438
+ "subset": null,
439
+ "prompt_id": "6dd74cd5-e074-4612-9e96-c17ca88c3bc4",
440
+ "prompt_jinja": "Someone sent me an email with the sentence \"{{sentence}}\". Do you think they are feeling {{\"good\"}} or {{\"bad\"}}? ||| {{ answer_choices[label] }}",
441
+ "prompt_original_task": true,
442
+ "comment": "",
443
+ "acc_norm_stderr": 0.01693900152535154
444
+ },
445
+ {
446
+ "task_name": "sst",
447
+ "prompt_name": "positive negative after",
448
+ "acc": 0.6204128440366973,
449
+ "fixed_answer_choice_list": [
450
+ "negative",
451
+ "positive"
452
+ ],
453
+ "dataset_path": "glue",
454
+ "dataset_name": "sst2",
455
+ "subset": null,
456
+ "prompt_id": "11d1c505-9232-4c35-82a4-4c3642843e2e",
457
+ "prompt_jinja": "{{sentence}}\nQuestion: Was that sentence {{\"positive\"}} or {{\"negative\"}}? Answer: ||| {{ answer_choices[label] }}",
458
+ "prompt_original_task": true,
459
+ "comment": "",
460
+ "acc_stderr": 0.016443227556688766
461
+ },
462
+ {
463
+ "task_name": "sst",
464
+ "prompt_name": "positive negative after",
465
+ "acc_norm": 0.6204128440366973,
466
+ "fixed_answer_choice_list": [
467
+ "negative",
468
+ "positive"
469
+ ],
470
+ "dataset_path": "glue",
471
+ "dataset_name": "sst2",
472
+ "subset": null,
473
+ "prompt_id": "11d1c505-9232-4c35-82a4-4c3642843e2e",
474
+ "prompt_jinja": "{{sentence}}\nQuestion: Was that sentence {{\"positive\"}} or {{\"negative\"}}? Answer: ||| {{ answer_choices[label] }}",
475
+ "prompt_original_task": true,
476
+ "comment": "",
477
+ "acc_norm_stderr": 0.016443227556688766
478
+ },
479
+ {
480
+ "task_name": "sst",
481
+ "prompt_name": "review",
482
+ "acc": 0.5091743119266054,
483
+ "fixed_answer_choice_list": [
484
+ "negative",
485
+ "positive"
486
+ ],
487
+ "dataset_path": "glue",
488
+ "dataset_name": "sst2",
489
+ "subset": null,
490
+ "prompt_id": "228fcae7-7f4c-4e3c-9ac4-e49b26bc103d",
491
+ "prompt_jinja": "I'm reading a review that says \"{{sentence}}\".\n\nDo you think the review is {{\"positive\"}} or {{\"negative\"}}? ||| {{ answer_choices[label] }}",
492
+ "prompt_original_task": true,
493
+ "comment": "",
494
+ "acc_stderr": 0.01693900152535154
495
+ },
496
+ {
497
+ "task_name": "sst",
498
+ "prompt_name": "review",
499
+ "acc_norm": 0.5091743119266054,
500
+ "fixed_answer_choice_list": [
501
+ "negative",
502
+ "positive"
503
+ ],
504
+ "dataset_path": "glue",
505
+ "dataset_name": "sst2",
506
+ "subset": null,
507
+ "prompt_id": "228fcae7-7f4c-4e3c-9ac4-e49b26bc103d",
508
+ "prompt_jinja": "I'm reading a review that says \"{{sentence}}\".\n\nDo you think the review is {{\"positive\"}} or {{\"negative\"}}? ||| {{ answer_choices[label] }}",
509
+ "prompt_original_task": true,
510
+ "comment": "",
511
+ "acc_norm_stderr": 0.01693900152535154
512
+ },
513
+ {
514
+ "task_name": "sst",
515
+ "prompt_name": "said",
516
+ "acc": 0.4908256880733945,
517
+ "fixed_answer_choice_list": [
518
+ "sad",
519
+ "happy"
520
+ ],
521
+ "dataset_path": "glue",
522
+ "dataset_name": "sst2",
523
+ "subset": null,
524
+ "prompt_id": "5aa0cea9-0f8d-454d-b25b-b0d4cda273b8",
525
+ "prompt_jinja": "Someone just said to me \"{{sentence}}\".\n\nDo you think they are {{\"sad\"}} or {{\"happy\"}}? ||| {{ answer_choices[label] }}",
526
+ "prompt_original_task": true,
527
+ "comment": "",
528
+ "acc_stderr": 0.01693900152535154
529
+ },
530
+ {
531
+ "task_name": "sst",
532
+ "prompt_name": "said",
533
+ "acc_norm": 0.5091743119266054,
534
+ "fixed_answer_choice_list": [
535
+ "sad",
536
+ "happy"
537
+ ],
538
+ "dataset_path": "glue",
539
+ "dataset_name": "sst2",
540
+ "subset": null,
541
+ "prompt_id": "5aa0cea9-0f8d-454d-b25b-b0d4cda273b8",
542
+ "prompt_jinja": "Someone just said to me \"{{sentence}}\".\n\nDo you think they are {{\"sad\"}} or {{\"happy\"}}? ||| {{ answer_choices[label] }}",
543
+ "prompt_original_task": true,
544
+ "comment": "",
545
+ "acc_norm_stderr": 0.01693900152535154
546
+ }
547
+ ],
548
+ "versions": {
549
+ "qqp+answer": 0,
550
+ "qqp+duplicate": 0,
551
+ "qqp+duplicate or not": 0,
552
+ "qqp+meaning": 0,
553
+ "qqp+quora": 0,
554
+ "qqp+same thing": 0,
555
+ "rte+does the claim\u2026 follow the fact\u2026": 0,
556
+ "rte+entailment explained": 0,
557
+ "rte+imply": 0,
558
+ "rte+imply separated": 0,
559
+ "rte+mean": 0,
560
+ "sst+following positive negative": 0,
561
+ "sst+happy or mad": 0,
562
+ "sst+positive negative after": 0,
563
+ "sst+review": 0,
564
+ "sst+said": 0
565
+ },
566
+ "table_results": {
567
+ "qqp+answer": {
568
+ "task_name": "qqp",
569
+ "prompt_name": "answer",
570
+ "acc": 0.40558990848379917,
571
+ "acc_stderr": 0.002441969063495092,
572
+ "acc_norm": 0.36816720257234725,
573
+ "acc_norm_stderr": 0.002398706610614492
574
+ },
575
+ "qqp+duplicate": {
576
+ "task_name": "qqp",
577
+ "prompt_name": "duplicate",
578
+ "acc": 0.3788523373732377,
579
+ "acc_stderr": 0.002412603277723025,
580
+ "acc_norm": 0.36816720257234725,
581
+ "acc_norm_stderr": 0.002398706610614492
582
+ },
583
+ "qqp+duplicate or not": {
584
+ "task_name": "qqp",
585
+ "prompt_name": "duplicate or not",
586
+ "acc": 0.5761315854563444,
587
+ "acc_stderr": 0.0024577056660753426,
588
+ "acc_norm": 0.6318327974276527,
589
+ "acc_norm_stderr": 0.002398706610614492
590
+ },
591
+ "qqp+meaning": {
592
+ "task_name": "qqp",
593
+ "prompt_name": "meaning",
594
+ "acc": 0.3681424684640119,
595
+ "acc_stderr": 0.0023986729832071916,
596
+ "acc_norm": 0.36816720257234725,
597
+ "acc_norm_stderr": 0.002398706610614492
598
+ },
599
+ "qqp+quora": {
600
+ "task_name": "qqp",
601
+ "prompt_name": "quora",
602
+ "acc": 0.36821667078901804,
603
+ "acc_stderr": 0.0023987738450886556,
604
+ "acc_norm": 0.36816720257234725,
605
+ "acc_norm_stderr": 0.002398706610614492
606
+ },
607
+ "qqp+same thing": {
608
+ "task_name": "qqp",
609
+ "prompt_name": "same thing",
610
+ "acc": 0.5099431115508286,
611
+ "acc_stderr": 0.002486208885430481,
612
+ "acc_norm": 0.36816720257234725,
613
+ "acc_norm_stderr": 0.002398706610614492
614
+ },
615
+ "rte+does the claim\u2026 follow the fact\u2026": {
616
+ "task_name": "rte",
617
+ "prompt_name": "does the claim\u2026 follow the fact\u2026",
618
+ "acc": 0.4729241877256318,
619
+ "acc_stderr": 0.030052303463143706,
620
+ "acc_norm": 0.5270758122743683,
621
+ "acc_norm_stderr": 0.0300523034631437
622
+ },
623
+ "rte+entailment explained": {
624
+ "task_name": "rte",
625
+ "prompt_name": "entailment explained",
626
+ "acc": 0.49458483754512633,
627
+ "acc_stderr": 0.030094698123239966,
628
+ "acc_norm": 0.4729241877256318,
629
+ "acc_norm_stderr": 0.0300523034631437
630
+ },
631
+ "rte+imply": {
632
+ "task_name": "rte",
633
+ "prompt_name": "imply",
634
+ "acc": 0.48375451263537905,
635
+ "acc_stderr": 0.030080573208738064,
636
+ "acc_norm": 0.5270758122743683,
637
+ "acc_norm_stderr": 0.0300523034631437
638
+ },
639
+ "rte+imply separated": {
640
+ "task_name": "rte",
641
+ "prompt_name": "imply separated",
642
+ "acc": 0.45126353790613716,
643
+ "acc_stderr": 0.029953149241808943,
644
+ "acc_norm": 0.5270758122743683,
645
+ "acc_norm_stderr": 0.0300523034631437
646
+ },
647
+ "rte+mean": {
648
+ "task_name": "rte",
649
+ "prompt_name": "mean",
650
+ "acc": 0.48014440433212996,
651
+ "acc_stderr": 0.030072723167317194,
652
+ "acc_norm": 0.5270758122743683,
653
+ "acc_norm_stderr": 0.0300523034631437
654
+ },
655
+ "sst+following positive negative": {
656
+ "task_name": "sst",
657
+ "prompt_name": "following positive negative",
658
+ "acc": 0.8061926605504587,
659
+ "acc_stderr": 0.013393542261521812,
660
+ "acc_norm": 0.8061926605504587,
661
+ "acc_norm_stderr": 0.013393542261521812
662
+ },
663
+ "sst+happy or mad": {
664
+ "task_name": "sst",
665
+ "prompt_name": "happy or mad",
666
+ "acc": 0.5091743119266054,
667
+ "acc_stderr": 0.01693900152535154,
668
+ "acc_norm": 0.5091743119266054,
669
+ "acc_norm_stderr": 0.01693900152535154
670
+ },
671
+ "sst+positive negative after": {
672
+ "task_name": "sst",
673
+ "prompt_name": "positive negative after",
674
+ "acc": 0.6204128440366973,
675
+ "acc_stderr": 0.016443227556688766,
676
+ "acc_norm": 0.6204128440366973,
677
+ "acc_norm_stderr": 0.016443227556688766
678
+ },
679
+ "sst+review": {
680
+ "task_name": "sst",
681
+ "prompt_name": "review",
682
+ "acc": 0.5091743119266054,
683
+ "acc_stderr": 0.01693900152535154,
684
+ "acc_norm": 0.5091743119266054,
685
+ "acc_norm_stderr": 0.01693900152535154
686
+ },
687
+ "sst+said": {
688
+ "task_name": "sst",
689
+ "prompt_name": "said",
690
+ "acc": 0.4908256880733945,
691
+ "acc_stderr": 0.01693900152535154,
692
+ "acc_norm": 0.5091743119266054,
693
+ "acc_norm_stderr": 0.01693900152535154
694
+ }
695
+ },
696
+ "config": {
697
+ "adaptive_seq_len": true,
698
+ "num_fewshot": 0,
699
+ "bootstrap_iters": 100000
700
+ }
701
+ }
bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-15-11-47-34.json ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/evaluation/results/tr11/bloom1b3/humaneval_temp06.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"pass@1": 0.031249999999999993, "pass@10": 0.07447701667197712, "pass@100": 0.1253791767704454}
bigscience/evaluation/results/tr11/bloom1b3/humaneval_temp08.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"pass@1": 0.023475609756097564, "pass@10": 0.06591235746713595, "pass@100": 0.12748827115496364}
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/concat.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import re
4
+ from pathlib import Path
5
+ from re import Pattern
6
+ from typing import List, Dict
7
+
8
+
9
+ def get_args():
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument("--results-dir", required=True, type=Path, help="Path to the list of results")
12
+ parser.add_argument("--concatenate-output-file", required=True, type=Path, help="Path to store the final output file")
13
+ return parser.parse_args()
14
+
15
+ MODEL = "tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step337250"
16
+ # MODEL = "global_step95000"
17
+ RESULTS_REGEX = re.compile(rf"(eai|bs)_results_lm-eval_{MODEL}_(\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2})_backup\.json")
18
+ RESULTS_REGEX = re.compile(rf"{MODEL}_*.json")
19
+ #tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-10-03-25.json
20
+ def get_all_files_that_match_results_in_folder(root_folder: Path) -> List[Path]:
21
+ json_files = []
22
+ for folder in root_folder.iterdir():
23
+ if folder.is_dir():
24
+ json_files += get_all_files_that_match_results_in_folder(folder)
25
+ else:
26
+ # it's actually a file
27
+ file = folder
28
+
29
+ #match = RESULTS_REGEX.match(file.name)
30
+
31
+ if not str(file.name).endswith("json"):
32
+ continue
33
+ else:
34
+ json_files.append(file)
35
+ return json_files
36
+
37
+ def sort_dict(dictionary: Dict) -> Dict:
38
+ results = {}
39
+
40
+ for key, value in sorted(dictionary.items()):
41
+ new_value = value
42
+
43
+ if isinstance(value, dict):
44
+ new_value = sort_dict(new_value)
45
+ elif isinstance(value, list):
46
+ new_value = sorted(value)
47
+
48
+ results[key] = new_value
49
+
50
+ return results
51
+
52
+ def main():
53
+ args = get_args()
54
+
55
+ # Get all json files
56
+ json_files = get_all_files_that_match_results_in_folder(args.results_dir)
57
+ print("GOT", json_files)
58
+ # Merge all json files
59
+ final_result = {
60
+ "results": {},
61
+ "versions": {}
62
+ }
63
+ for file in json_files:
64
+ with open(file, "r") as fi:
65
+ task_result = json.load(fi)
66
+
67
+ #match = RESULTS_REGEX.match(file.name)
68
+ #assert match is not None
69
+ prefix = "bs" if "bs" in file.name else "eai"#match.group(1)
70
+ datetime_string = file.name[file.name.index("global_step337250_") + len("global_step337250_"):].replace(".json", "")#match.group(2)
71
+
72
+ if prefix == "eai":
73
+ results_key = "results"
74
+ elif prefix == "bs":
75
+ results_key = "table_results"
76
+ else:
77
+ raise ValueError(f"Unsupported key: {prefix}")
78
+
79
+ for key, value in task_result[results_key].items():
80
+ if key not in final_result["results"]:
81
+ final_result["results"][key] = {
82
+ datetime_string: value
83
+ }
84
+ #else:
85
+ # assert datetime_string not in final_result["results"][key]
86
+ # final_result["results"][key][datetime_string] = value
87
+
88
+ for key, value in task_result["versions"].items():
89
+ final_result["versions"][key] = value
90
+
91
+ # We sort dict, better for serialization
92
+ print(final_result)
93
+ final_result = sort_dict(final_result)
94
+
95
+ # Save result
96
+ with open(args.concatenate_output_file, "w") as fo:
97
+ json.dump(final_result, fo, indent=2)
98
+
99
+ pass
100
+
101
+ if __name__ == "__main__":
102
+ main()
103
+
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-12-23-19-06.json ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-13-10-19.json ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-20-09-16.json ADDED
@@ -0,0 +1,1255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "gsarti/flores_101_kor",
5
+ "prompt_name": null,
6
+ "word_perplexity": 1199924.6918920355
7
+ },
8
+ {
9
+ "task_name": "gsarti/flores_101_kor",
10
+ "prompt_name": null,
11
+ "byte_perplexity": 3.932884847226212
12
+ },
13
+ {
14
+ "task_name": "gsarti/flores_101_kor",
15
+ "prompt_name": null,
16
+ "bits_per_byte": 1.9755879455567535
17
+ },
18
+ {
19
+ "task_name": "gsarti/flores_101_kir",
20
+ "prompt_name": null,
21
+ "word_perplexity": 140474672.36703426
22
+ },
23
+ {
24
+ "task_name": "gsarti/flores_101_kir",
25
+ "prompt_name": null,
26
+ "byte_perplexity": 3.729278369847201
27
+ },
28
+ {
29
+ "task_name": "gsarti/flores_101_kir",
30
+ "prompt_name": null,
31
+ "bits_per_byte": 1.8988964902756764
32
+ },
33
+ {
34
+ "task_name": "gsarti/flores_101_lao",
35
+ "prompt_name": null,
36
+ "word_perplexity": 6.1350041352351446e+26
37
+ },
38
+ {
39
+ "task_name": "gsarti/flores_101_lao",
40
+ "prompt_name": null,
41
+ "byte_perplexity": 2.9077314760849924
42
+ },
43
+ {
44
+ "task_name": "gsarti/flores_101_lao",
45
+ "prompt_name": null,
46
+ "bits_per_byte": 1.5398940450457603
47
+ },
48
+ {
49
+ "task_name": "gsarti/flores_101_lav",
50
+ "prompt_name": null,
51
+ "word_perplexity": 10925745.685132286
52
+ },
53
+ {
54
+ "task_name": "gsarti/flores_101_lav",
55
+ "prompt_name": null,
56
+ "byte_perplexity": 7.777221919194806
57
+ },
58
+ {
59
+ "task_name": "gsarti/flores_101_lav",
60
+ "prompt_name": null,
61
+ "bits_per_byte": 2.959254905963978
62
+ },
63
+ {
64
+ "task_name": "gsarti/flores_101_lin",
65
+ "prompt_name": null,
66
+ "word_perplexity": 166841.83897098716
67
+ },
68
+ {
69
+ "task_name": "gsarti/flores_101_lin",
70
+ "prompt_name": null,
71
+ "byte_perplexity": 7.524842908050988
72
+ },
73
+ {
74
+ "task_name": "gsarti/flores_101_lin",
75
+ "prompt_name": null,
76
+ "bits_per_byte": 2.9116614638468965
77
+ },
78
+ {
79
+ "task_name": "gsarti/flores_101_lit",
80
+ "prompt_name": null,
81
+ "word_perplexity": 8532364.031813102
82
+ },
83
+ {
84
+ "task_name": "gsarti/flores_101_lit",
85
+ "prompt_name": null,
86
+ "byte_perplexity": 7.369179434621725
87
+ },
88
+ {
89
+ "task_name": "gsarti/flores_101_lit",
90
+ "prompt_name": null,
91
+ "bits_per_byte": 2.88150398275188
92
+ },
93
+ {
94
+ "task_name": "gsarti/flores_101_luo",
95
+ "prompt_name": null,
96
+ "word_perplexity": 1335199.656768974
97
+ },
98
+ {
99
+ "task_name": "gsarti/flores_101_luo",
100
+ "prompt_name": null,
101
+ "byte_perplexity": 11.975963093623681
102
+ },
103
+ {
104
+ "task_name": "gsarti/flores_101_luo",
105
+ "prompt_name": null,
106
+ "bits_per_byte": 3.5820697754437467
107
+ },
108
+ {
109
+ "task_name": "gsarti/flores_101_ltz",
110
+ "prompt_name": null,
111
+ "word_perplexity": 4081613.1281958995
112
+ },
113
+ {
114
+ "task_name": "gsarti/flores_101_ltz",
115
+ "prompt_name": null,
116
+ "byte_perplexity": 8.801059747949214
117
+ },
118
+ {
119
+ "task_name": "gsarti/flores_101_ltz",
120
+ "prompt_name": null,
121
+ "bits_per_byte": 3.1376772511430198
122
+ },
123
+ {
124
+ "task_name": "gsarti/flores_101_mkd",
125
+ "prompt_name": null,
126
+ "word_perplexity": 291548.6603872499
127
+ },
128
+ {
129
+ "task_name": "gsarti/flores_101_mkd",
130
+ "prompt_name": null,
131
+ "byte_perplexity": 2.9656732291754087
132
+ },
133
+ {
134
+ "task_name": "gsarti/flores_101_mkd",
135
+ "prompt_name": null,
136
+ "bits_per_byte": 1.5683596441110415
137
+ },
138
+ {
139
+ "task_name": "gsarti/flores_101_msa",
140
+ "prompt_name": null,
141
+ "word_perplexity": 931.4191160965655
142
+ },
143
+ {
144
+ "task_name": "gsarti/flores_101_msa",
145
+ "prompt_name": null,
146
+ "byte_perplexity": 2.5710001772665634
147
+ },
148
+ {
149
+ "task_name": "gsarti/flores_101_msa",
150
+ "prompt_name": null,
151
+ "bits_per_byte": 1.3623297096432079
152
+ },
153
+ {
154
+ "task_name": "gsarti/flores_101_mal",
155
+ "prompt_name": null,
156
+ "word_perplexity": 1.207348615509252e+18
157
+ },
158
+ {
159
+ "task_name": "gsarti/flores_101_mal",
160
+ "prompt_name": null,
161
+ "byte_perplexity": 4.615948455160037
162
+ },
163
+ {
164
+ "task_name": "gsarti/flores_101_mal",
165
+ "prompt_name": null,
166
+ "bits_per_byte": 2.2066271139530245
167
+ },
168
+ {
169
+ "task_name": "gsarti/flores_101_mlt",
170
+ "prompt_name": null,
171
+ "word_perplexity": 1820552051.5260184
172
+ },
173
+ {
174
+ "task_name": "gsarti/flores_101_mlt",
175
+ "prompt_name": null,
176
+ "byte_perplexity": 15.004773437665275
177
+ },
178
+ {
179
+ "task_name": "gsarti/flores_101_mlt",
180
+ "prompt_name": null,
181
+ "bits_per_byte": 3.9073496302297994
182
+ },
183
+ {
184
+ "task_name": "gsarti/flores_101_mri",
185
+ "prompt_name": null,
186
+ "word_perplexity": 26466.98082941409
187
+ },
188
+ {
189
+ "task_name": "gsarti/flores_101_mri",
190
+ "prompt_name": null,
191
+ "byte_perplexity": 7.474035895661322
192
+ },
193
+ {
194
+ "task_name": "gsarti/flores_101_mri",
195
+ "prompt_name": null,
196
+ "bits_per_byte": 2.9018874925878335
197
+ },
198
+ {
199
+ "task_name": "gsarti/flores_101_mar",
200
+ "prompt_name": null,
201
+ "word_perplexity": 54017030487867.64
202
+ },
203
+ {
204
+ "task_name": "gsarti/flores_101_mar",
205
+ "prompt_name": null,
206
+ "byte_perplexity": 5.483253482821379
207
+ },
208
+ {
209
+ "task_name": "gsarti/flores_101_mar",
210
+ "prompt_name": null,
211
+ "bits_per_byte": 2.4550321688665875
212
+ },
213
+ {
214
+ "task_name": "gsarti/flores_101_mon",
215
+ "prompt_name": null,
216
+ "word_perplexity": 6612951.176601774
217
+ },
218
+ {
219
+ "task_name": "gsarti/flores_101_mon",
220
+ "prompt_name": null,
221
+ "byte_perplexity": 3.410598542315402
222
+ },
223
+ {
224
+ "task_name": "gsarti/flores_101_mon",
225
+ "prompt_name": null,
226
+ "bits_per_byte": 1.7700249469487581
227
+ },
228
+ {
229
+ "task_name": "gsarti/flores_101_npi",
230
+ "prompt_name": null,
231
+ "word_perplexity": 9218412485042.457
232
+ },
233
+ {
234
+ "task_name": "gsarti/flores_101_npi",
235
+ "prompt_name": null,
236
+ "byte_perplexity": 5.199342701937889
237
+ },
238
+ {
239
+ "task_name": "gsarti/flores_101_npi",
240
+ "prompt_name": null,
241
+ "bits_per_byte": 2.3783292500628397
242
+ },
243
+ {
244
+ "task_name": "gsarti/flores_101_nso",
245
+ "prompt_name": null,
246
+ "word_perplexity": 84236.45826211123
247
+ },
248
+ {
249
+ "task_name": "gsarti/flores_101_nso",
250
+ "prompt_name": null,
251
+ "byte_perplexity": 8.154626800955667
252
+ },
253
+ {
254
+ "task_name": "gsarti/flores_101_nso",
255
+ "prompt_name": null,
256
+ "bits_per_byte": 3.027618853058479
257
+ },
258
+ {
259
+ "task_name": "gsarti/flores_101_nob",
260
+ "prompt_name": null,
261
+ "word_perplexity": 36969.51682419191
262
+ },
263
+ {
264
+ "task_name": "gsarti/flores_101_nob",
265
+ "prompt_name": null,
266
+ "byte_perplexity": 5.402763169129877
267
+ },
268
+ {
269
+ "task_name": "gsarti/flores_101_nob",
270
+ "prompt_name": null,
271
+ "bits_per_byte": 2.4336974426149056
272
+ },
273
+ {
274
+ "task_name": "gsarti/flores_101_nya",
275
+ "prompt_name": null,
276
+ "word_perplexity": 6609896.030066139
277
+ },
278
+ {
279
+ "task_name": "gsarti/flores_101_nya",
280
+ "prompt_name": null,
281
+ "byte_perplexity": 8.179860208369393
282
+ },
283
+ {
284
+ "task_name": "gsarti/flores_101_nya",
285
+ "prompt_name": null,
286
+ "bits_per_byte": 3.0320761881040017
287
+ },
288
+ {
289
+ "task_name": "gsarti/flores_101_oci",
290
+ "prompt_name": null,
291
+ "word_perplexity": 21641.316763505896
292
+ },
293
+ {
294
+ "task_name": "gsarti/flores_101_oci",
295
+ "prompt_name": null,
296
+ "byte_perplexity": 4.8617357393685845
297
+ },
298
+ {
299
+ "task_name": "gsarti/flores_101_oci",
300
+ "prompt_name": null,
301
+ "bits_per_byte": 2.2814714775164466
302
+ },
303
+ {
304
+ "task_name": "gsarti/flores_101_ory",
305
+ "prompt_name": null,
306
+ "word_perplexity": 11873283711992.748
307
+ },
308
+ {
309
+ "task_name": "gsarti/flores_101_ory",
310
+ "prompt_name": null,
311
+ "byte_perplexity": 5.189421861225964
312
+ },
313
+ {
314
+ "task_name": "gsarti/flores_101_ory",
315
+ "prompt_name": null,
316
+ "bits_per_byte": 2.375573820972048
317
+ },
318
+ {
319
+ "task_name": "gsarti/flores_101_orm",
320
+ "prompt_name": null,
321
+ "word_perplexity": 944722910.1683049
322
+ },
323
+ {
324
+ "task_name": "gsarti/flores_101_orm",
325
+ "prompt_name": null,
326
+ "byte_perplexity": 12.911595421079408
327
+ },
328
+ {
329
+ "task_name": "gsarti/flores_101_orm",
330
+ "prompt_name": null,
331
+ "bits_per_byte": 3.690595373136525
332
+ },
333
+ {
334
+ "task_name": "gsarti/flores_101_pus",
335
+ "prompt_name": null,
336
+ "word_perplexity": 153261.38659736273
337
+ },
338
+ {
339
+ "task_name": "gsarti/flores_101_pus",
340
+ "prompt_name": null,
341
+ "byte_perplexity": 4.4963371422771585
342
+ },
343
+ {
344
+ "task_name": "gsarti/flores_101_pus",
345
+ "prompt_name": null,
346
+ "bits_per_byte": 2.1687502151085742
347
+ },
348
+ {
349
+ "task_name": "gsarti/flores_101_fas",
350
+ "prompt_name": null,
351
+ "word_perplexity": 44174.10652942002
352
+ },
353
+ {
354
+ "task_name": "gsarti/flores_101_fas",
355
+ "prompt_name": null,
356
+ "byte_perplexity": 3.058009097116482
357
+ },
358
+ {
359
+ "task_name": "gsarti/flores_101_fas",
360
+ "prompt_name": null,
361
+ "bits_per_byte": 1.6125926985055565
362
+ },
363
+ {
364
+ "task_name": "gsarti/flores_101_pol",
365
+ "prompt_name": null,
366
+ "word_perplexity": 104253.80848720921
367
+ },
368
+ {
369
+ "task_name": "gsarti/flores_101_pol",
370
+ "prompt_name": null,
371
+ "byte_perplexity": 4.625550458479643
372
+ },
373
+ {
374
+ "task_name": "gsarti/flores_101_pol",
375
+ "prompt_name": null,
376
+ "bits_per_byte": 2.2096250621616695
377
+ },
378
+ {
379
+ "task_name": "gsarti/flores_101_por",
380
+ "prompt_name": null,
381
+ "word_perplexity": 70.12185258792593
382
+ },
383
+ {
384
+ "task_name": "gsarti/flores_101_por",
385
+ "prompt_name": null,
386
+ "byte_perplexity": 1.9754515986213523
387
+ },
388
+ {
389
+ "task_name": "gsarti/flores_101_por",
390
+ "prompt_name": null,
391
+ "bits_per_byte": 0.9821824986646657
392
+ },
393
+ {
394
+ "task_name": "gsarti/flores_101_pan",
395
+ "prompt_name": null,
396
+ "word_perplexity": 847925284.3968099
397
+ },
398
+ {
399
+ "task_name": "gsarti/flores_101_pan",
400
+ "prompt_name": null,
401
+ "byte_perplexity": 4.698477289331806
402
+ },
403
+ {
404
+ "task_name": "gsarti/flores_101_pan",
405
+ "prompt_name": null,
406
+ "bits_per_byte": 2.2321932752863454
407
+ },
408
+ {
409
+ "task_name": "gsarti/flores_101_ron",
410
+ "prompt_name": null,
411
+ "word_perplexity": 36440.61611845943
412
+ },
413
+ {
414
+ "task_name": "gsarti/flores_101_ron",
415
+ "prompt_name": null,
416
+ "byte_perplexity": 4.965456830031304
417
+ },
418
+ {
419
+ "task_name": "gsarti/flores_101_ron",
420
+ "prompt_name": null,
421
+ "bits_per_byte": 2.31192645412871
422
+ },
423
+ {
424
+ "task_name": "gsarti/flores_101_rus",
425
+ "prompt_name": null,
426
+ "word_perplexity": 12717.27557342625
427
+ },
428
+ {
429
+ "task_name": "gsarti/flores_101_rus",
430
+ "prompt_name": null,
431
+ "byte_perplexity": 2.0498020542445303
432
+ },
433
+ {
434
+ "task_name": "gsarti/flores_101_rus",
435
+ "prompt_name": null,
436
+ "bits_per_byte": 1.0354845979511649
437
+ },
438
+ {
439
+ "task_name": "gsarti/flores_101_srp",
440
+ "prompt_name": null,
441
+ "word_perplexity": 179094.36755355867
442
+ },
443
+ {
444
+ "task_name": "gsarti/flores_101_srp",
445
+ "prompt_name": null,
446
+ "byte_perplexity": 2.871214785885079
447
+ },
448
+ {
449
+ "task_name": "gsarti/flores_101_srp",
450
+ "prompt_name": null,
451
+ "bits_per_byte": 1.5216612577275341
452
+ },
453
+ {
454
+ "task_name": "gsarti/flores_101_sna",
455
+ "prompt_name": null,
456
+ "word_perplexity": 64794029.630749054
457
+ },
458
+ {
459
+ "task_name": "gsarti/flores_101_sna",
460
+ "prompt_name": null,
461
+ "byte_perplexity": 8.462166771382726
462
+ },
463
+ {
464
+ "task_name": "gsarti/flores_101_sna",
465
+ "prompt_name": null,
466
+ "bits_per_byte": 3.0810271184378166
467
+ },
468
+ {
469
+ "task_name": "gsarti/flores_101_snd",
470
+ "prompt_name": null,
471
+ "word_perplexity": 1593844.7987764536
472
+ },
473
+ {
474
+ "task_name": "gsarti/flores_101_snd",
475
+ "prompt_name": null,
476
+ "byte_perplexity": 5.466066951221973
477
+ },
478
+ {
479
+ "task_name": "gsarti/flores_101_snd",
480
+ "prompt_name": null,
481
+ "bits_per_byte": 2.450503130846187
482
+ },
483
+ {
484
+ "task_name": "gsarti/flores_101_slk",
485
+ "prompt_name": null,
486
+ "word_perplexity": 766753.5771631876
487
+ },
488
+ {
489
+ "task_name": "gsarti/flores_101_slk",
490
+ "prompt_name": null,
491
+ "byte_perplexity": 6.450822127057479
492
+ },
493
+ {
494
+ "task_name": "gsarti/flores_101_slk",
495
+ "prompt_name": null,
496
+ "bits_per_byte": 2.6894830369770566
497
+ },
498
+ {
499
+ "task_name": "gsarti/flores_101_slv",
500
+ "prompt_name": null,
501
+ "word_perplexity": 281495.6973621906
502
+ },
503
+ {
504
+ "task_name": "gsarti/flores_101_slv",
505
+ "prompt_name": null,
506
+ "byte_perplexity": 6.620252120186232
507
+ },
508
+ {
509
+ "task_name": "gsarti/flores_101_slv",
510
+ "prompt_name": null,
511
+ "bits_per_byte": 2.726886160479057
512
+ },
513
+ {
514
+ "task_name": "gsarti/flores_101_som",
515
+ "prompt_name": null,
516
+ "word_perplexity": 9117591.536991648
517
+ },
518
+ {
519
+ "task_name": "gsarti/flores_101_som",
520
+ "prompt_name": null,
521
+ "byte_perplexity": 11.95918054093392
522
+ },
523
+ {
524
+ "task_name": "gsarti/flores_101_som",
525
+ "prompt_name": null,
526
+ "bits_per_byte": 3.5800466324138576
527
+ },
528
+ {
529
+ "task_name": "gsarti/flores_101_ckb",
530
+ "prompt_name": null,
531
+ "word_perplexity": 7641937.513844287
532
+ },
533
+ {
534
+ "task_name": "gsarti/flores_101_ckb",
535
+ "prompt_name": null,
536
+ "byte_perplexity": 3.7255124939234765
537
+ },
538
+ {
539
+ "task_name": "gsarti/flores_101_ckb",
540
+ "prompt_name": null,
541
+ "bits_per_byte": 1.8974389011678956
542
+ },
543
+ {
544
+ "task_name": "gsarti/flores_101_spa",
545
+ "prompt_name": null,
546
+ "word_perplexity": 50.48600403475257
547
+ },
548
+ {
549
+ "task_name": "gsarti/flores_101_spa",
550
+ "prompt_name": null,
551
+ "byte_perplexity": 1.8965140104323535
552
+ },
553
+ {
554
+ "task_name": "gsarti/flores_101_spa",
555
+ "prompt_name": null,
556
+ "bits_per_byte": 0.9233500295317635
557
+ },
558
+ {
559
+ "task_name": "gsarti/flores_101_swh",
560
+ "prompt_name": null,
561
+ "word_perplexity": 4756.310957867697
562
+ },
563
+ {
564
+ "task_name": "gsarti/flores_101_swh",
565
+ "prompt_name": null,
566
+ "byte_perplexity": 3.6973091886730676
567
+ },
568
+ {
569
+ "task_name": "gsarti/flores_101_swh",
570
+ "prompt_name": null,
571
+ "bits_per_byte": 1.8864756944079395
572
+ },
573
+ {
574
+ "task_name": "gsarti/flores_101_swe",
575
+ "prompt_name": null,
576
+ "word_perplexity": 50609.194691403645
577
+ },
578
+ {
579
+ "task_name": "gsarti/flores_101_swe",
580
+ "prompt_name": null,
581
+ "byte_perplexity": 5.054972008155866
582
+ },
583
+ {
584
+ "task_name": "gsarti/flores_101_swe",
585
+ "prompt_name": null,
586
+ "bits_per_byte": 2.3377031032447033
587
+ },
588
+ {
589
+ "task_name": "gsarti/flores_101_tgk",
590
+ "prompt_name": null,
591
+ "word_perplexity": 4653242.643384356
592
+ },
593
+ {
594
+ "task_name": "gsarti/flores_101_tgk",
595
+ "prompt_name": null,
596
+ "byte_perplexity": 3.5994818827380426
597
+ },
598
+ {
599
+ "task_name": "gsarti/flores_101_tgk",
600
+ "prompt_name": null,
601
+ "bits_per_byte": 1.847789256832959
602
+ },
603
+ {
604
+ "task_name": "gsarti/flores_101_tam",
605
+ "prompt_name": null,
606
+ "word_perplexity": 1.7375636861561886e+16
607
+ },
608
+ {
609
+ "task_name": "gsarti/flores_101_tam",
610
+ "prompt_name": null,
611
+ "byte_perplexity": 4.539493400469833
612
+ },
613
+ {
614
+ "task_name": "gsarti/flores_101_tam",
615
+ "prompt_name": null,
616
+ "bits_per_byte": 2.182531304254031
617
+ },
618
+ {
619
+ "task_name": "gsarti/flores_101_tel",
620
+ "prompt_name": null,
621
+ "word_perplexity": 6240250468604343.0
622
+ },
623
+ {
624
+ "task_name": "gsarti/flores_101_tel",
625
+ "prompt_name": null,
626
+ "byte_perplexity": 5.807499987508966
627
+ },
628
+ {
629
+ "task_name": "gsarti/flores_101_tel",
630
+ "prompt_name": null,
631
+ "bits_per_byte": 2.537917245931069
632
+ },
633
+ {
634
+ "task_name": "gsarti/flores_101_tha",
635
+ "prompt_name": null,
636
+ "word_perplexity": 2.7023221906004898e+31
637
+ },
638
+ {
639
+ "task_name": "gsarti/flores_101_tha",
640
+ "prompt_name": null,
641
+ "byte_perplexity": 2.365940201944242
642
+ },
643
+ {
644
+ "task_name": "gsarti/flores_101_tha",
645
+ "prompt_name": null,
646
+ "bits_per_byte": 1.242413610681628
647
+ },
648
+ {
649
+ "task_name": "gsarti/flores_101_tur",
650
+ "prompt_name": null,
651
+ "word_perplexity": 598170.0194818947
652
+ },
653
+ {
654
+ "task_name": "gsarti/flores_101_tur",
655
+ "prompt_name": null,
656
+ "byte_perplexity": 4.885014749844601
657
+ },
658
+ {
659
+ "task_name": "gsarti/flores_101_tur",
660
+ "prompt_name": null,
661
+ "bits_per_byte": 2.288362918282818
662
+ },
663
+ {
664
+ "task_name": "gsarti/flores_101_ukr",
665
+ "prompt_name": null,
666
+ "word_perplexity": 375312.1511987307
667
+ },
668
+ {
669
+ "task_name": "gsarti/flores_101_ukr",
670
+ "prompt_name": null,
671
+ "byte_perplexity": 2.7240934990288483
672
+ },
673
+ {
674
+ "task_name": "gsarti/flores_101_ukr",
675
+ "prompt_name": null,
676
+ "bits_per_byte": 1.445776221804572
677
+ },
678
+ {
679
+ "task_name": "gsarti/flores_101_umb",
680
+ "prompt_name": null,
681
+ "word_perplexity": 286182026.84727985
682
+ },
683
+ {
684
+ "task_name": "gsarti/flores_101_umb",
685
+ "prompt_name": null,
686
+ "byte_perplexity": 12.766915508610673
687
+ },
688
+ {
689
+ "task_name": "gsarti/flores_101_umb",
690
+ "prompt_name": null,
691
+ "bits_per_byte": 3.6743381063848357
692
+ },
693
+ {
694
+ "task_name": "gsarti/flores_101_urd",
695
+ "prompt_name": null,
696
+ "word_perplexity": 294.7473718166965
697
+ },
698
+ {
699
+ "task_name": "gsarti/flores_101_urd",
700
+ "prompt_name": null,
701
+ "byte_perplexity": 1.9797467071381232
702
+ },
703
+ {
704
+ "task_name": "gsarti/flores_101_urd",
705
+ "prompt_name": null,
706
+ "bits_per_byte": 0.9853158607436239
707
+ },
708
+ {
709
+ "task_name": "gsarti/flores_101_uzb",
710
+ "prompt_name": null,
711
+ "word_perplexity": 657971096.5030558
712
+ },
713
+ {
714
+ "task_name": "gsarti/flores_101_uzb",
715
+ "prompt_name": null,
716
+ "byte_perplexity": 12.002337637722146
717
+ },
718
+ {
719
+ "task_name": "gsarti/flores_101_uzb",
720
+ "prompt_name": null,
721
+ "bits_per_byte": 3.5852435148799184
722
+ },
723
+ {
724
+ "task_name": "gsarti/flores_101_vie",
725
+ "prompt_name": null,
726
+ "word_perplexity": 30.113286809710246
727
+ },
728
+ {
729
+ "task_name": "gsarti/flores_101_vie",
730
+ "prompt_name": null,
731
+ "byte_perplexity": 1.76578415476397
732
+ },
733
+ {
734
+ "task_name": "gsarti/flores_101_vie",
735
+ "prompt_name": null,
736
+ "bits_per_byte": 0.8203090021691818
737
+ },
738
+ {
739
+ "task_name": "gsarti/flores_101_cym",
740
+ "prompt_name": null,
741
+ "word_perplexity": 2638019.4579179045
742
+ },
743
+ {
744
+ "task_name": "gsarti/flores_101_cym",
745
+ "prompt_name": null,
746
+ "byte_perplexity": 12.539424151448149
747
+ },
748
+ {
749
+ "task_name": "gsarti/flores_101_cym",
750
+ "prompt_name": null,
751
+ "bits_per_byte": 3.6483991915978407
752
+ },
753
+ {
754
+ "task_name": "gsarti/flores_101_wol",
755
+ "prompt_name": null,
756
+ "word_perplexity": 119795.78671768666
757
+ },
758
+ {
759
+ "task_name": "gsarti/flores_101_wol",
760
+ "prompt_name": null,
761
+ "byte_perplexity": 9.144285650306488
762
+ },
763
+ {
764
+ "task_name": "gsarti/flores_101_wol",
765
+ "prompt_name": null,
766
+ "bits_per_byte": 3.1928704713393357
767
+ },
768
+ {
769
+ "task_name": "gsarti/flores_101_xho",
770
+ "prompt_name": null,
771
+ "word_perplexity": 54307092.21333007
772
+ },
773
+ {
774
+ "task_name": "gsarti/flores_101_xho",
775
+ "prompt_name": null,
776
+ "byte_perplexity": 7.403240538286952
777
+ },
778
+ {
779
+ "task_name": "gsarti/flores_101_xho",
780
+ "prompt_name": null,
781
+ "bits_per_byte": 2.8881569038733983
782
+ },
783
+ {
784
+ "task_name": "gsarti/flores_101_yor",
785
+ "prompt_name": null,
786
+ "word_perplexity": 130267.12232132205
787
+ },
788
+ {
789
+ "task_name": "gsarti/flores_101_yor",
790
+ "prompt_name": null,
791
+ "byte_perplexity": 5.91272037551173
792
+ },
793
+ {
794
+ "task_name": "gsarti/flores_101_yor",
795
+ "prompt_name": null,
796
+ "bits_per_byte": 2.5638220507535796
797
+ },
798
+ {
799
+ "task_name": "gsarti/flores_101_zul",
800
+ "prompt_name": null,
801
+ "word_perplexity": 493606524.8156374
802
+ },
803
+ {
804
+ "task_name": "gsarti/flores_101_zul",
805
+ "prompt_name": null,
806
+ "byte_perplexity": 8.53353320693145
807
+ },
808
+ {
809
+ "task_name": "gsarti/flores_101_zul",
810
+ "prompt_name": null,
811
+ "bits_per_byte": 3.0931431957905224
812
+ }
813
+ ],
814
+ "versions": {
815
+ "gsarti/flores_101_kor+null": 0,
816
+ "gsarti/flores_101_kir+null": 0,
817
+ "gsarti/flores_101_lao+null": 0,
818
+ "gsarti/flores_101_lav+null": 0,
819
+ "gsarti/flores_101_lin+null": 0,
820
+ "gsarti/flores_101_lit+null": 0,
821
+ "gsarti/flores_101_luo+null": 0,
822
+ "gsarti/flores_101_ltz+null": 0,
823
+ "gsarti/flores_101_mkd+null": 0,
824
+ "gsarti/flores_101_msa+null": 0,
825
+ "gsarti/flores_101_mal+null": 0,
826
+ "gsarti/flores_101_mlt+null": 0,
827
+ "gsarti/flores_101_mri+null": 0,
828
+ "gsarti/flores_101_mar+null": 0,
829
+ "gsarti/flores_101_mon+null": 0,
830
+ "gsarti/flores_101_npi+null": 0,
831
+ "gsarti/flores_101_nso+null": 0,
832
+ "gsarti/flores_101_nob+null": 0,
833
+ "gsarti/flores_101_nya+null": 0,
834
+ "gsarti/flores_101_oci+null": 0,
835
+ "gsarti/flores_101_ory+null": 0,
836
+ "gsarti/flores_101_orm+null": 0,
837
+ "gsarti/flores_101_pus+null": 0,
838
+ "gsarti/flores_101_fas+null": 0,
839
+ "gsarti/flores_101_pol+null": 0,
840
+ "gsarti/flores_101_por+null": 0,
841
+ "gsarti/flores_101_pan+null": 0,
842
+ "gsarti/flores_101_ron+null": 0,
843
+ "gsarti/flores_101_rus+null": 0,
844
+ "gsarti/flores_101_srp+null": 0,
845
+ "gsarti/flores_101_sna+null": 0,
846
+ "gsarti/flores_101_snd+null": 0,
847
+ "gsarti/flores_101_slk+null": 0,
848
+ "gsarti/flores_101_slv+null": 0,
849
+ "gsarti/flores_101_som+null": 0,
850
+ "gsarti/flores_101_ckb+null": 0,
851
+ "gsarti/flores_101_spa+null": 0,
852
+ "gsarti/flores_101_swh+null": 0,
853
+ "gsarti/flores_101_swe+null": 0,
854
+ "gsarti/flores_101_tgk+null": 0,
855
+ "gsarti/flores_101_tam+null": 0,
856
+ "gsarti/flores_101_tel+null": 0,
857
+ "gsarti/flores_101_tha+null": 0,
858
+ "gsarti/flores_101_tur+null": 0,
859
+ "gsarti/flores_101_ukr+null": 0,
860
+ "gsarti/flores_101_umb+null": 0,
861
+ "gsarti/flores_101_urd+null": 0,
862
+ "gsarti/flores_101_uzb+null": 0,
863
+ "gsarti/flores_101_vie+null": 0,
864
+ "gsarti/flores_101_cym+null": 0,
865
+ "gsarti/flores_101_wol+null": 0,
866
+ "gsarti/flores_101_xho+null": 0,
867
+ "gsarti/flores_101_yor+null": 0,
868
+ "gsarti/flores_101_zul+null": 0
869
+ },
870
+ "table_results": {
871
+ "gsarti/flores_101_kor+null": {
872
+ "task_name": "gsarti/flores_101_kor",
873
+ "prompt_name": "null",
874
+ "word_perplexity": 1199924.6918920355,
875
+ "byte_perplexity": 3.932884847226212,
876
+ "bits_per_byte": 1.9755879455567535
877
+ },
878
+ "gsarti/flores_101_kir+null": {
879
+ "task_name": "gsarti/flores_101_kir",
880
+ "prompt_name": "null",
881
+ "word_perplexity": 140474672.36703426,
882
+ "byte_perplexity": 3.729278369847201,
883
+ "bits_per_byte": 1.8988964902756764
884
+ },
885
+ "gsarti/flores_101_lao+null": {
886
+ "task_name": "gsarti/flores_101_lao",
887
+ "prompt_name": "null",
888
+ "word_perplexity": 6.1350041352351446e+26,
889
+ "byte_perplexity": 2.9077314760849924,
890
+ "bits_per_byte": 1.5398940450457603
891
+ },
892
+ "gsarti/flores_101_lav+null": {
893
+ "task_name": "gsarti/flores_101_lav",
894
+ "prompt_name": "null",
895
+ "word_perplexity": 10925745.685132286,
896
+ "byte_perplexity": 7.777221919194806,
897
+ "bits_per_byte": 2.959254905963978
898
+ },
899
+ "gsarti/flores_101_lin+null": {
900
+ "task_name": "gsarti/flores_101_lin",
901
+ "prompt_name": "null",
902
+ "word_perplexity": 166841.83897098716,
903
+ "byte_perplexity": 7.524842908050988,
904
+ "bits_per_byte": 2.9116614638468965
905
+ },
906
+ "gsarti/flores_101_lit+null": {
907
+ "task_name": "gsarti/flores_101_lit",
908
+ "prompt_name": "null",
909
+ "word_perplexity": 8532364.031813102,
910
+ "byte_perplexity": 7.369179434621725,
911
+ "bits_per_byte": 2.88150398275188
912
+ },
913
+ "gsarti/flores_101_luo+null": {
914
+ "task_name": "gsarti/flores_101_luo",
915
+ "prompt_name": "null",
916
+ "word_perplexity": 1335199.656768974,
917
+ "byte_perplexity": 11.975963093623681,
918
+ "bits_per_byte": 3.5820697754437467
919
+ },
920
+ "gsarti/flores_101_ltz+null": {
921
+ "task_name": "gsarti/flores_101_ltz",
922
+ "prompt_name": "null",
923
+ "word_perplexity": 4081613.1281958995,
924
+ "byte_perplexity": 8.801059747949214,
925
+ "bits_per_byte": 3.1376772511430198
926
+ },
927
+ "gsarti/flores_101_mkd+null": {
928
+ "task_name": "gsarti/flores_101_mkd",
929
+ "prompt_name": "null",
930
+ "word_perplexity": 291548.6603872499,
931
+ "byte_perplexity": 2.9656732291754087,
932
+ "bits_per_byte": 1.5683596441110415
933
+ },
934
+ "gsarti/flores_101_msa+null": {
935
+ "task_name": "gsarti/flores_101_msa",
936
+ "prompt_name": "null",
937
+ "word_perplexity": 931.4191160965655,
938
+ "byte_perplexity": 2.5710001772665634,
939
+ "bits_per_byte": 1.3623297096432079
940
+ },
941
+ "gsarti/flores_101_mal+null": {
942
+ "task_name": "gsarti/flores_101_mal",
943
+ "prompt_name": "null",
944
+ "word_perplexity": 1.207348615509252e+18,
945
+ "byte_perplexity": 4.615948455160037,
946
+ "bits_per_byte": 2.2066271139530245
947
+ },
948
+ "gsarti/flores_101_mlt+null": {
949
+ "task_name": "gsarti/flores_101_mlt",
950
+ "prompt_name": "null",
951
+ "word_perplexity": 1820552051.5260184,
952
+ "byte_perplexity": 15.004773437665275,
953
+ "bits_per_byte": 3.9073496302297994
954
+ },
955
+ "gsarti/flores_101_mri+null": {
956
+ "task_name": "gsarti/flores_101_mri",
957
+ "prompt_name": "null",
958
+ "word_perplexity": 26466.98082941409,
959
+ "byte_perplexity": 7.474035895661322,
960
+ "bits_per_byte": 2.9018874925878335
961
+ },
962
+ "gsarti/flores_101_mar+null": {
963
+ "task_name": "gsarti/flores_101_mar",
964
+ "prompt_name": "null",
965
+ "word_perplexity": 54017030487867.64,
966
+ "byte_perplexity": 5.483253482821379,
967
+ "bits_per_byte": 2.4550321688665875
968
+ },
969
+ "gsarti/flores_101_mon+null": {
970
+ "task_name": "gsarti/flores_101_mon",
971
+ "prompt_name": "null",
972
+ "word_perplexity": 6612951.176601774,
973
+ "byte_perplexity": 3.410598542315402,
974
+ "bits_per_byte": 1.7700249469487581
975
+ },
976
+ "gsarti/flores_101_npi+null": {
977
+ "task_name": "gsarti/flores_101_npi",
978
+ "prompt_name": "null",
979
+ "word_perplexity": 9218412485042.457,
980
+ "byte_perplexity": 5.199342701937889,
981
+ "bits_per_byte": 2.3783292500628397
982
+ },
983
+ "gsarti/flores_101_nso+null": {
984
+ "task_name": "gsarti/flores_101_nso",
985
+ "prompt_name": "null",
986
+ "word_perplexity": 84236.45826211123,
987
+ "byte_perplexity": 8.154626800955667,
988
+ "bits_per_byte": 3.027618853058479
989
+ },
990
+ "gsarti/flores_101_nob+null": {
991
+ "task_name": "gsarti/flores_101_nob",
992
+ "prompt_name": "null",
993
+ "word_perplexity": 36969.51682419191,
994
+ "byte_perplexity": 5.402763169129877,
995
+ "bits_per_byte": 2.4336974426149056
996
+ },
997
+ "gsarti/flores_101_nya+null": {
998
+ "task_name": "gsarti/flores_101_nya",
999
+ "prompt_name": "null",
1000
+ "word_perplexity": 6609896.030066139,
1001
+ "byte_perplexity": 8.179860208369393,
1002
+ "bits_per_byte": 3.0320761881040017
1003
+ },
1004
+ "gsarti/flores_101_oci+null": {
1005
+ "task_name": "gsarti/flores_101_oci",
1006
+ "prompt_name": "null",
1007
+ "word_perplexity": 21641.316763505896,
1008
+ "byte_perplexity": 4.8617357393685845,
1009
+ "bits_per_byte": 2.2814714775164466
1010
+ },
1011
+ "gsarti/flores_101_ory+null": {
1012
+ "task_name": "gsarti/flores_101_ory",
1013
+ "prompt_name": "null",
1014
+ "word_perplexity": 11873283711992.748,
1015
+ "byte_perplexity": 5.189421861225964,
1016
+ "bits_per_byte": 2.375573820972048
1017
+ },
1018
+ "gsarti/flores_101_orm+null": {
1019
+ "task_name": "gsarti/flores_101_orm",
1020
+ "prompt_name": "null",
1021
+ "word_perplexity": 944722910.1683049,
1022
+ "byte_perplexity": 12.911595421079408,
1023
+ "bits_per_byte": 3.690595373136525
1024
+ },
1025
+ "gsarti/flores_101_pus+null": {
1026
+ "task_name": "gsarti/flores_101_pus",
1027
+ "prompt_name": "null",
1028
+ "word_perplexity": 153261.38659736273,
1029
+ "byte_perplexity": 4.4963371422771585,
1030
+ "bits_per_byte": 2.1687502151085742
1031
+ },
1032
+ "gsarti/flores_101_fas+null": {
1033
+ "task_name": "gsarti/flores_101_fas",
1034
+ "prompt_name": "null",
1035
+ "word_perplexity": 44174.10652942002,
1036
+ "byte_perplexity": 3.058009097116482,
1037
+ "bits_per_byte": 1.6125926985055565
1038
+ },
1039
+ "gsarti/flores_101_pol+null": {
1040
+ "task_name": "gsarti/flores_101_pol",
1041
+ "prompt_name": "null",
1042
+ "word_perplexity": 104253.80848720921,
1043
+ "byte_perplexity": 4.625550458479643,
1044
+ "bits_per_byte": 2.2096250621616695
1045
+ },
1046
+ "gsarti/flores_101_por+null": {
1047
+ "task_name": "gsarti/flores_101_por",
1048
+ "prompt_name": "null",
1049
+ "word_perplexity": 70.12185258792593,
1050
+ "byte_perplexity": 1.9754515986213523,
1051
+ "bits_per_byte": 0.9821824986646657
1052
+ },
1053
+ "gsarti/flores_101_pan+null": {
1054
+ "task_name": "gsarti/flores_101_pan",
1055
+ "prompt_name": "null",
1056
+ "word_perplexity": 847925284.3968099,
1057
+ "byte_perplexity": 4.698477289331806,
1058
+ "bits_per_byte": 2.2321932752863454
1059
+ },
1060
+ "gsarti/flores_101_ron+null": {
1061
+ "task_name": "gsarti/flores_101_ron",
1062
+ "prompt_name": "null",
1063
+ "word_perplexity": 36440.61611845943,
1064
+ "byte_perplexity": 4.965456830031304,
1065
+ "bits_per_byte": 2.31192645412871
1066
+ },
1067
+ "gsarti/flores_101_rus+null": {
1068
+ "task_name": "gsarti/flores_101_rus",
1069
+ "prompt_name": "null",
1070
+ "word_perplexity": 12717.27557342625,
1071
+ "byte_perplexity": 2.0498020542445303,
1072
+ "bits_per_byte": 1.0354845979511649
1073
+ },
1074
+ "gsarti/flores_101_srp+null": {
1075
+ "task_name": "gsarti/flores_101_srp",
1076
+ "prompt_name": "null",
1077
+ "word_perplexity": 179094.36755355867,
1078
+ "byte_perplexity": 2.871214785885079,
1079
+ "bits_per_byte": 1.5216612577275341
1080
+ },
1081
+ "gsarti/flores_101_sna+null": {
1082
+ "task_name": "gsarti/flores_101_sna",
1083
+ "prompt_name": "null",
1084
+ "word_perplexity": 64794029.630749054,
1085
+ "byte_perplexity": 8.462166771382726,
1086
+ "bits_per_byte": 3.0810271184378166
1087
+ },
1088
+ "gsarti/flores_101_snd+null": {
1089
+ "task_name": "gsarti/flores_101_snd",
1090
+ "prompt_name": "null",
1091
+ "word_perplexity": 1593844.7987764536,
1092
+ "byte_perplexity": 5.466066951221973,
1093
+ "bits_per_byte": 2.450503130846187
1094
+ },
1095
+ "gsarti/flores_101_slk+null": {
1096
+ "task_name": "gsarti/flores_101_slk",
1097
+ "prompt_name": "null",
1098
+ "word_perplexity": 766753.5771631876,
1099
+ "byte_perplexity": 6.450822127057479,
1100
+ "bits_per_byte": 2.6894830369770566
1101
+ },
1102
+ "gsarti/flores_101_slv+null": {
1103
+ "task_name": "gsarti/flores_101_slv",
1104
+ "prompt_name": "null",
1105
+ "word_perplexity": 281495.6973621906,
1106
+ "byte_perplexity": 6.620252120186232,
1107
+ "bits_per_byte": 2.726886160479057
1108
+ },
1109
+ "gsarti/flores_101_som+null": {
1110
+ "task_name": "gsarti/flores_101_som",
1111
+ "prompt_name": "null",
1112
+ "word_perplexity": 9117591.536991648,
1113
+ "byte_perplexity": 11.95918054093392,
1114
+ "bits_per_byte": 3.5800466324138576
1115
+ },
1116
+ "gsarti/flores_101_ckb+null": {
1117
+ "task_name": "gsarti/flores_101_ckb",
1118
+ "prompt_name": "null",
1119
+ "word_perplexity": 7641937.513844287,
1120
+ "byte_perplexity": 3.7255124939234765,
1121
+ "bits_per_byte": 1.8974389011678956
1122
+ },
1123
+ "gsarti/flores_101_spa+null": {
1124
+ "task_name": "gsarti/flores_101_spa",
1125
+ "prompt_name": "null",
1126
+ "word_perplexity": 50.48600403475257,
1127
+ "byte_perplexity": 1.8965140104323535,
1128
+ "bits_per_byte": 0.9233500295317635
1129
+ },
1130
+ "gsarti/flores_101_swh+null": {
1131
+ "task_name": "gsarti/flores_101_swh",
1132
+ "prompt_name": "null",
1133
+ "word_perplexity": 4756.310957867697,
1134
+ "byte_perplexity": 3.6973091886730676,
1135
+ "bits_per_byte": 1.8864756944079395
1136
+ },
1137
+ "gsarti/flores_101_swe+null": {
1138
+ "task_name": "gsarti/flores_101_swe",
1139
+ "prompt_name": "null",
1140
+ "word_perplexity": 50609.194691403645,
1141
+ "byte_perplexity": 5.054972008155866,
1142
+ "bits_per_byte": 2.3377031032447033
1143
+ },
1144
+ "gsarti/flores_101_tgk+null": {
1145
+ "task_name": "gsarti/flores_101_tgk",
1146
+ "prompt_name": "null",
1147
+ "word_perplexity": 4653242.643384356,
1148
+ "byte_perplexity": 3.5994818827380426,
1149
+ "bits_per_byte": 1.847789256832959
1150
+ },
1151
+ "gsarti/flores_101_tam+null": {
1152
+ "task_name": "gsarti/flores_101_tam",
1153
+ "prompt_name": "null",
1154
+ "word_perplexity": 1.7375636861561886e+16,
1155
+ "byte_perplexity": 4.539493400469833,
1156
+ "bits_per_byte": 2.182531304254031
1157
+ },
1158
+ "gsarti/flores_101_tel+null": {
1159
+ "task_name": "gsarti/flores_101_tel",
1160
+ "prompt_name": "null",
1161
+ "word_perplexity": 6240250468604343.0,
1162
+ "byte_perplexity": 5.807499987508966,
1163
+ "bits_per_byte": 2.537917245931069
1164
+ },
1165
+ "gsarti/flores_101_tha+null": {
1166
+ "task_name": "gsarti/flores_101_tha",
1167
+ "prompt_name": "null",
1168
+ "word_perplexity": 2.7023221906004898e+31,
1169
+ "byte_perplexity": 2.365940201944242,
1170
+ "bits_per_byte": 1.242413610681628
1171
+ },
1172
+ "gsarti/flores_101_tur+null": {
1173
+ "task_name": "gsarti/flores_101_tur",
1174
+ "prompt_name": "null",
1175
+ "word_perplexity": 598170.0194818947,
1176
+ "byte_perplexity": 4.885014749844601,
1177
+ "bits_per_byte": 2.288362918282818
1178
+ },
1179
+ "gsarti/flores_101_ukr+null": {
1180
+ "task_name": "gsarti/flores_101_ukr",
1181
+ "prompt_name": "null",
1182
+ "word_perplexity": 375312.1511987307,
1183
+ "byte_perplexity": 2.7240934990288483,
1184
+ "bits_per_byte": 1.445776221804572
1185
+ },
1186
+ "gsarti/flores_101_umb+null": {
1187
+ "task_name": "gsarti/flores_101_umb",
1188
+ "prompt_name": "null",
1189
+ "word_perplexity": 286182026.84727985,
1190
+ "byte_perplexity": 12.766915508610673,
1191
+ "bits_per_byte": 3.6743381063848357
1192
+ },
1193
+ "gsarti/flores_101_urd+null": {
1194
+ "task_name": "gsarti/flores_101_urd",
1195
+ "prompt_name": "null",
1196
+ "word_perplexity": 294.7473718166965,
1197
+ "byte_perplexity": 1.9797467071381232,
1198
+ "bits_per_byte": 0.9853158607436239
1199
+ },
1200
+ "gsarti/flores_101_uzb+null": {
1201
+ "task_name": "gsarti/flores_101_uzb",
1202
+ "prompt_name": "null",
1203
+ "word_perplexity": 657971096.5030558,
1204
+ "byte_perplexity": 12.002337637722146,
1205
+ "bits_per_byte": 3.5852435148799184
1206
+ },
1207
+ "gsarti/flores_101_vie+null": {
1208
+ "task_name": "gsarti/flores_101_vie",
1209
+ "prompt_name": "null",
1210
+ "word_perplexity": 30.113286809710246,
1211
+ "byte_perplexity": 1.76578415476397,
1212
+ "bits_per_byte": 0.8203090021691818
1213
+ },
1214
+ "gsarti/flores_101_cym+null": {
1215
+ "task_name": "gsarti/flores_101_cym",
1216
+ "prompt_name": "null",
1217
+ "word_perplexity": 2638019.4579179045,
1218
+ "byte_perplexity": 12.539424151448149,
1219
+ "bits_per_byte": 3.6483991915978407
1220
+ },
1221
+ "gsarti/flores_101_wol+null": {
1222
+ "task_name": "gsarti/flores_101_wol",
1223
+ "prompt_name": "null",
1224
+ "word_perplexity": 119795.78671768666,
1225
+ "byte_perplexity": 9.144285650306488,
1226
+ "bits_per_byte": 3.1928704713393357
1227
+ },
1228
+ "gsarti/flores_101_xho+null": {
1229
+ "task_name": "gsarti/flores_101_xho",
1230
+ "prompt_name": "null",
1231
+ "word_perplexity": 54307092.21333007,
1232
+ "byte_perplexity": 7.403240538286952,
1233
+ "bits_per_byte": 2.8881569038733983
1234
+ },
1235
+ "gsarti/flores_101_yor+null": {
1236
+ "task_name": "gsarti/flores_101_yor",
1237
+ "prompt_name": "null",
1238
+ "word_perplexity": 130267.12232132205,
1239
+ "byte_perplexity": 5.91272037551173,
1240
+ "bits_per_byte": 2.5638220507535796
1241
+ },
1242
+ "gsarti/flores_101_zul+null": {
1243
+ "task_name": "gsarti/flores_101_zul",
1244
+ "prompt_name": "null",
1245
+ "word_perplexity": 493606524.8156374,
1246
+ "byte_perplexity": 8.53353320693145,
1247
+ "bits_per_byte": 3.0931431957905224
1248
+ }
1249
+ },
1250
+ "config": {
1251
+ "adaptive_seq_len": true,
1252
+ "num_fewshot": 0,
1253
+ "bootstrap_iters": 100000
1254
+ }
1255
+ }
bigscience/evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-evalharness-results_lm-eval_global_step337250_2022-07-13-09-55-04.json ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc": 0.27986348122866894,
5
+ "acc_stderr": 0.013119040897725922,
6
+ "acc_norm": 0.3054607508532423,
7
+ "acc_norm_stderr": 0.013460080478002498
8
+ },
9
+ "arc_easy": {
10
+ "acc": 0.5946969696969697,
11
+ "acc_stderr": 0.010074093589739182,
12
+ "acc_norm": 0.5324074074074074,
13
+ "acc_norm_stderr": 0.010238210368801902
14
+ },
15
+ "boolq": {
16
+ "acc": 0.6165137614678899,
17
+ "acc_stderr": 0.008504304838837027
18
+ },
19
+ "copa": {
20
+ "acc": 0.74,
21
+ "acc_stderr": 0.04408440022768078
22
+ },
23
+ "headqa": {
24
+ "acc": 0.26440554339897887,
25
+ "acc_stderr": 0.008423643607316284,
26
+ "acc_norm": 0.3099927060539752,
27
+ "acc_norm_stderr": 0.008833810133604958
28
+ },
29
+ "hellaswag": {
30
+ "acc": 0.41236805417247563,
31
+ "acc_stderr": 0.004912547040132878,
32
+ "acc_norm": 0.527185819557857,
33
+ "acc_norm_stderr": 0.0049824003689396615
34
+ },
35
+ "lambada": {
36
+ "ppl": 9.094305394880015,
37
+ "ppl_stderr": 0.2651922806718523,
38
+ "acc": 0.5181447700368718,
39
+ "acc_stderr": 0.0069613892910728266
40
+ },
41
+ "logiqa": {
42
+ "acc": 0.2073732718894009,
43
+ "acc_stderr": 0.015902084913876333,
44
+ "acc_norm": 0.29185867895545314,
45
+ "acc_norm_stderr": 0.017831570553971925
46
+ },
47
+ "mathqa": {
48
+ "acc": 0.24958123953098826,
49
+ "acc_stderr": 0.007922429819042544,
50
+ "acc_norm": 0.2492462311557789,
51
+ "acc_norm_stderr": 0.007918877981680667
52
+ },
53
+ "mc_taco": {
54
+ "em": 0.11936936936936937,
55
+ "f1": 0.4957122298258418
56
+ },
57
+ "mrpc": {
58
+ "acc": 0.5857843137254902,
59
+ "acc_stderr": 0.02441658575130785,
60
+ "f1": 0.6998223801065719,
61
+ "f1_stderr": 0.021967079752819446
62
+ },
63
+ "multirc": {
64
+ "acc": 0.012591815320041973,
65
+ "acc_stderr": 0.0036138827653638874
66
+ },
67
+ "openbookqa": {
68
+ "acc": 0.216,
69
+ "acc_stderr": 0.01842190906141194,
70
+ "acc_norm": 0.322,
71
+ "acc_norm_stderr": 0.020916668330019882
72
+ },
73
+ "piqa": {
74
+ "acc": 0.7078346028291621,
75
+ "acc_stderr": 0.010610252174513661,
76
+ "acc_norm": 0.705114254624592,
77
+ "acc_norm_stderr": 0.010639030620156982
78
+ },
79
+ "prost": {
80
+ "acc": 0.22683603757472245,
81
+ "acc_stderr": 0.003059602302050251,
82
+ "acc_norm": 0.26371690862510677,
83
+ "acc_norm_stderr": 0.003219323004106053
84
+ },
85
+ "pubmedqa": {
86
+ "acc": 0.616,
87
+ "acc_stderr": 0.01538768276189707
88
+ },
89
+ "qnli": {
90
+ "acc": 0.5072304594545122,
91
+ "acc_stderr": 0.006764703129634549
92
+ },
93
+ "qqp": {
94
+ "acc": 0.38211723967350975,
95
+ "acc_stderr": 0.0024166004681771985,
96
+ "f1": 0.5301408768597062,
97
+ "f1_stderr": 0.002619199330934276
98
+ },
99
+ "race": {
100
+ "acc": 0.3521531100478469,
101
+ "acc_stderr": 0.014782629897202264
102
+ },
103
+ "rte": {
104
+ "acc": 0.5631768953068592,
105
+ "acc_stderr": 0.029855247390314945
106
+ },
107
+ "sciq": {
108
+ "acc": 0.892,
109
+ "acc_stderr": 0.009820001651345703,
110
+ "acc_norm": 0.817,
111
+ "acc_norm_stderr": 0.012233587399477823
112
+ },
113
+ "sst": {
114
+ "acc": 0.49426605504587157,
115
+ "acc_stderr": 0.01694073961990489
116
+ },
117
+ "triviaqa": {
118
+ "acc": 0.041633518960487934,
119
+ "acc_stderr": 0.0018780954895624524
120
+ },
121
+ "webqs": {
122
+ "acc": 0.01673228346456693,
123
+ "acc_stderr": 0.0028461549169432184
124
+ },
125
+ "wic": {
126
+ "acc": 0.49843260188087773,
127
+ "acc_stderr": 0.019810623954060382
128
+ },
129
+ "winogrande": {
130
+ "acc": 0.5864246250986582,
131
+ "acc_stderr": 0.013840971763195303
132
+ },
133
+ "wnli": {
134
+ "acc": 0.4507042253521127,
135
+ "acc_stderr": 0.05947027187737998
136
+ },
137
+ "wsc": {
138
+ "acc": 0.375,
139
+ "acc_stderr": 0.04770204856076104
140
+ }
141
+ },
142
+ "versions": {
143
+ "arc_challenge": 0,
144
+ "arc_easy": 0,
145
+ "boolq": 1,
146
+ "copa": 0,
147
+ "headqa": 0,
148
+ "hellaswag": 0,
149
+ "lambada": 0,
150
+ "logiqa": 0,
151
+ "mathqa": 0,
152
+ "mc_taco": 0,
153
+ "mrpc": 0,
154
+ "multirc": 1,
155
+ "openbookqa": 0,
156
+ "piqa": 0,
157
+ "prost": 0,
158
+ "pubmedqa": 0,
159
+ "qnli": 0,
160
+ "qqp": 0,
161
+ "race": 1,
162
+ "rte": 0,
163
+ "sciq": 0,
164
+ "sst": 0,
165
+ "triviaqa": 0,
166
+ "webqs": 0,
167
+ "wic": 0,
168
+ "winogrande": 0,
169
+ "wnli": 1,
170
+ "wsc": 0
171
+ }
172
+ }
bigscience/evaluation/results/tr11/bloom2b5/humaneval_temp06.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"pass@1": 0.04460365853658537, "pass@10": 0.11354616672373204, "pass@100": 0.1866822927112951}
bigscience/evaluation/results/tr11/bloom2b5/mdtable.txt ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ | Task | Language | Metric | BLOOM-2B5 |
2
+ |:----|:----|:----|:----:|
3
+ | arc_challenge | eng | acc ↑ | 0.28 |
4
+ | arc_easy | eng | acc ↑ | 0.595 |
5
+ | axb (Median of 10 prompts) | eng | acc ↑ | 0.443 |
6
+ | axg (Median of 10 prompts) | eng | acc ↑ | 0.5 |
7
+ | boolq (Median of 11 prompts) | eng | acc ↑ | 0.617 |
8
+ | cb (Median of 15 prompts) | eng | acc ↑ | 0.304 |
9
+ | cola (Median of 5 prompts) | eng | acc ↑ | 0.611 |
10
+ | copa (Median of 9 prompts) | eng | acc ↑ | 0.63 |
11
+ | crows_pairs_english (Median of 6 prompts) | eng | acc ↑ | 0.497 |
12
+ | crows_pairs_french (Median of 7 prompts) | fra | acc ↑ | 0.503 |
13
+ | diabla (Median of 2 prompts) | eng | acc ↑ | 0.289 |
14
+ | gsarti/flores_101_afr | afr | byte_perplexity ↓ | 6.501 |
15
+ | gsarti/flores_101_amh | amh | byte_perplexity ↓ | 3.973 |
16
+ | gsarti/flores_101_ara | ara | byte_perplexity ↓ | 1.808 |
17
+ | gsarti/flores_101_asm | asm | byte_perplexity ↓ | 5.699 |
18
+ | gsarti/flores_101_ast | ast | byte_perplexity ↓ | 3.925 |
19
+ | gsarti/flores_101_azj | azj | byte_perplexity ↓ | 6.943 |
20
+ | gsarti/flores_101_bel | bel | byte_perplexity ↓ | 3.614 |
21
+ | gsarti/flores_101_ben | ben | byte_perplexity ↓ | 5.121 |
22
+ | gsarti/flores_101_bos | bos | byte_perplexity ↓ | 5.653 |
23
+ | gsarti/flores_101_bul | bul | byte_perplexity ↓ | 2.701 |
24
+ | gsarti/flores_101_cat | cat | byte_perplexity ↓ | 2.305 |
25
+ | gsarti/flores_101_ceb | ceb | byte_perplexity ↓ | 6.291 |
26
+ | gsarti/flores_101_ces | ces | byte_perplexity ↓ | 5.447 |
27
+ | gsarti/flores_101_ckb | ckb | byte_perplexity ↓ | 3.726 |
28
+ | gsarti/flores_101_cym | cym | byte_perplexity ↓ | 12.539 |
29
+ | gsarti/flores_101_dan | dan | byte_perplexity ↓ | 5.183 |
30
+ | gsarti/flores_101_deu | deu | byte_perplexity ↓ | 3.118 |
31
+ | gsarti/flores_101_ell | ell | byte_perplexity ↓ | 2.468 |
32
+ | gsarti/flores_101_eng | eng | byte_perplexity ↓ | 2.019 |
33
+ | gsarti/flores_101_est | est | byte_perplexity ↓ | 9.117 |
34
+ | gsarti/flores_101_fas | fas | byte_perplexity ↓ | 3.058 |
35
+ | gsarti/flores_101_fin | fin | byte_perplexity ↓ | 6.847 |
36
+ | gsarti/flores_101_fra | fra | byte_perplexity ↓ | 1.998 |
37
+ | gsarti/flores_101_ful | ful | byte_perplexity ↓ | 11.466 |
38
+ | gsarti/flores_101_gle | gle | byte_perplexity ↓ | 8.681 |
39
+ | gsarti/flores_101_glg | glg | byte_perplexity ↓ | 3.03 |
40
+ | gsarti/flores_101_guj | guj | byte_perplexity ↓ | 4.955 |
41
+ | gsarti/flores_101_hau | hau | byte_perplexity ↓ | 10.758 |
42
+ | gsarti/flores_101_heb | heb | byte_perplexity ↓ | 3.6 |
43
+ | gsarti/flores_101_hin | hin | byte_perplexity ↓ | 4.713 |
44
+ | gsarti/flores_101_hrv | hrv | byte_perplexity ↓ | 5.822 |
45
+ | gsarti/flores_101_hun | hun | byte_perplexity ↓ | 6.44 |
46
+ | gsarti/flores_101_hye | hye | byte_perplexity ↓ | 3.658 |
47
+ | gsarti/flores_101_ibo | ibo | byte_perplexity ↓ | 5.565 |
48
+ | gsarti/flores_101_ind | ind | byte_perplexity ↓ | 2.16 |
49
+ | gsarti/flores_101_isl | isl | byte_perplexity ↓ | 8.082 |
50
+ | gsarti/flores_101_ita | ita | byte_perplexity ↓ | 2.969 |
51
+ | gsarti/flores_101_jav | jav | byte_perplexity ↓ | 7.057 |
52
+ | gsarti/flores_101_jpn | jpn | byte_perplexity ↓ | 2.776 |
53
+ | gsarti/flores_101_kam | kam | byte_perplexity ↓ | 11.073 |
54
+ | gsarti/flores_101_kan | kan | byte_perplexity ↓ | 5.552 |
55
+ | gsarti/flores_101_kat | kat | byte_perplexity ↓ | 2.523 |
56
+ | gsarti/flores_101_kaz | kaz | byte_perplexity ↓ | 3.39 |
57
+ | gsarti/flores_101_kea | kea | byte_perplexity ↓ | 8.919 |
58
+ | gsarti/flores_101_kir | kir | byte_perplexity ↓ | 3.729 |
59
+ | gsarti/flores_101_kor | kor | byte_perplexity ↓ | 3.933 |
60
+ | gsarti/flores_101_lao | lao | byte_perplexity ↓ | 2.908 |
61
+ | gsarti/flores_101_lav | lav | byte_perplexity ↓ | 7.777 |
62
+ | gsarti/flores_101_lin | lin | byte_perplexity ↓ | 7.525 |
63
+ | gsarti/flores_101_lit | lit | byte_perplexity ↓ | 7.369 |
64
+ | gsarti/flores_101_ltz | ltz | byte_perplexity ↓ | 8.801 |
65
+ | gsarti/flores_101_lug | lug | byte_perplexity ↓ | 8.483 |
66
+ | gsarti/flores_101_luo | luo | byte_perplexity ↓ | 11.976 |
67
+ | gsarti/flores_101_mal | mal | byte_perplexity ↓ | 4.616 |
68
+ | gsarti/flores_101_mar | mar | byte_perplexity ↓ | 5.483 |
69
+ | gsarti/flores_101_mkd | mkd | byte_perplexity ↓ | 2.966 |
70
+ | gsarti/flores_101_mlt | mlt | byte_perplexity ↓ | 15.005 |
71
+ | gsarti/flores_101_mon | mon | byte_perplexity ↓ | 3.411 |
72
+ | gsarti/flores_101_mri | mri | byte_perplexity ↓ | 7.474 |
73
+ | gsarti/flores_101_msa | msa | byte_perplexity ↓ | 2.571 |
74
+ | gsarti/flores_101_mya | mya | byte_perplexity ↓ | 2.414 |
75
+ | gsarti/flores_101_nld | nld | byte_perplexity ↓ | 4.128 |
76
+ | gsarti/flores_101_nob | nob | byte_perplexity ↓ | 5.403 |
77
+ | gsarti/flores_101_npi | npi | byte_perplexity ↓ | 5.199 |
78
+ | gsarti/flores_101_nso | nso | byte_perplexity ↓ | 8.155 |
79
+ | gsarti/flores_101_nya | nya | byte_perplexity ↓ | 8.18 |
80
+ | gsarti/flores_101_oci | oci | byte_perplexity ↓ | 4.862 |
81
+ | gsarti/flores_101_orm | orm | byte_perplexity ↓ | 12.912 |
82
+ | gsarti/flores_101_ory | ory | byte_perplexity ↓ | 5.189 |
83
+ | gsarti/flores_101_pan | pan | byte_perplexity ↓ | 4.698 |
84
+ | gsarti/flores_101_pol | pol | byte_perplexity ↓ | 4.626 |
85
+ | gsarti/flores_101_por | por | byte_perplexity ↓ | 1.975 |
86
+ | gsarti/flores_101_pus | pus | byte_perplexity ↓ | 4.496 |
87
+ | gsarti/flores_101_ron | ron | byte_perplexity ↓ | 4.965 |
88
+ | gsarti/flores_101_rus | rus | byte_perplexity ↓ | 2.05 |
89
+ | gsarti/flores_101_slk | slk | byte_perplexity ↓ | 6.451 |
90
+ | gsarti/flores_101_slv | slv | byte_perplexity ↓ | 6.62 |
91
+ | gsarti/flores_101_sna | sna | byte_perplexity ↓ | 8.462 |
92
+ | gsarti/flores_101_snd | snd | byte_perplexity ↓ | 5.466 |
93
+ | gsarti/flores_101_som | som | byte_perplexity ↓ | 11.959 |
94
+ | gsarti/flores_101_spa | spa | byte_perplexity ↓ | 1.897 |
95
+ | gsarti/flores_101_srp | srp | byte_perplexity ↓ | 2.871 |
96
+ | gsarti/flores_101_swe | swe | byte_perplexity ↓ | 5.055 |
97
+ | gsarti/flores_101_swh | swh | byte_perplexity ↓ | 3.697 |
98
+ | gsarti/flores_101_tam | tam | byte_perplexity ↓ | 4.539 |
99
+ | gsarti/flores_101_tel | tel | byte_perplexity ↓ | 5.807 |
100
+ | gsarti/flores_101_tgk | tgk | byte_perplexity ↓ | 3.599 |
101
+ | gsarti/flores_101_tgl | tgl | byte_perplexity ↓ | 5.667 |
102
+ | gsarti/flores_101_tha | tha | byte_perplexity ↓ | 2.366 |
103
+ | gsarti/flores_101_tur | tur | byte_perplexity ↓ | 4.885 |
104
+ | gsarti/flores_101_ukr | ukr | byte_perplexity ↓ | 2.724 |
105
+ | gsarti/flores_101_umb | umb | byte_perplexity ↓ | 12.767 |
106
+ | gsarti/flores_101_urd | urd | byte_perplexity ↓ | 1.98 |
107
+ | gsarti/flores_101_uzb | uzb | byte_perplexity ↓ | 12.002 |
108
+ | gsarti/flores_101_vie | vie | byte_perplexity ↓ | 1.766 |
109
+ | gsarti/flores_101_wol | wol | byte_perplexity ↓ | 9.144 |
110
+ | gsarti/flores_101_xho | xho | byte_perplexity ↓ | 7.403 |
111
+ | gsarti/flores_101_yor | yor | byte_perplexity ↓ | 5.913 |
112
+ | gsarti/flores_101_zho_simpl | zho_simpl | byte_perplexity ↓ | 2.277 |
113
+ | gsarti/flores_101_zho_trad | zho_trad | byte_perplexity ↓ | 2.518 |
114
+ | gsarti/flores_101_zul | zul | byte_perplexity ↓ | 8.534 |
115
+ | headqa | esp | acc ↑ | 0.264 |
116
+ | hellaswag | eng | acc ↑ | 0.412 |
117
+ | logiqa | eng | acc ↑ | 0.207 |
118
+ | mathqa | eng | acc ↑ | 0.25 |
119
+ | mc_taco | eng | em ↑ | 0.119 |
120
+ | mnli (Median of 15 prompts) | eng | acc ↑ | 0.355 |
121
+ | mnli_mismatched (Median of 15 prompts) | eng | acc ↑ | 0.352 |
122
+ | mrpc | eng | acc ↑ | 0.586 |
123
+ | multirc (Median of 11 prompts) | eng | acc ↑ | 0.538 |
124
+ | openbookqa | eng | acc ↑ | 0.216 |
125
+ | piqa | eng | acc ↑ | 0.708 |
126
+ | prost | eng | acc ↑ | 0.227 |
127
+ | pubmedqa | eng | acc ↑ | 0.616 |
128
+ | qnli | eng | acc ↑ | 0.507 |
129
+ | qqp (Median of 7 prompts) | eng | acc ↑ | 0.384 |
130
+ | race | eng | acc ↑ | 0.352 |
131
+ | rte (Median of 6 prompts) | eng | acc ↑ | 0.477 |
132
+ | sciq | eng | acc ↑ | 0.892 |
133
+ | sst (Median of 6 prompts) | eng | acc ↑ | 0.518 |
134
+ | triviaqa | eng | acc ↑ | 0.042 |
135
+ | tydiqa_primary (Median of 24 prompts) | eng | acc ↑ | 0.301 |
136
+ | webqs | eng | acc ↑ | 0.017 |
137
+ | wic (Median of 11 prompts) | eng | acc ↑ | 0.502 |
138
+ | winogrande | eng | acc ↑ | 0.586 |
139
+ | wnli (Median of 6 prompts) | eng | acc ↑ | 0.472 |
140
+ | wsc (Median of 11 prompts) | eng | acc ↑ | 0.442 |
141
+ | humaneval | python | pass@1 ↑ | 0.155 |
142
+ | humaneval | python | pass@10 ↑ | 0.322 |
143
+ | humaneval | python | pass@100 ↑ | 0.555 |
bigscience/evaluation/results/tr11/get_templates.sh ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DATASETS_AND_CONFIGS=(
2
+ piaf,None,None
3
+ GEM/wiki_lingua,ar,ar
4
+ GEM/wiki_lingua,en,en
5
+ GEM/wiki_lingua,es,es
6
+ GEM/wiki_lingua,fr,fr
7
+ GEM/wiki_lingua,hi,hi
8
+ GEM/wiki_lingua,id,id
9
+ GEM/wiki_lingua,pt,pt
10
+ GEM/wiki_lingua,vi,vi
11
+ GEM/wiki_lingua,zh,zh
12
+ GEM/web_nlg,en,en
13
+ GEM/web_nlg,ru,ru
14
+ wmt14,fr-en,fr-en
15
+ )
16
+
17
+ # Unique ones: 0 1 2 5 6 7 8 9 10 11
18
+ for val in {0..12}; do
19
+ DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$val]}
20
+ IFS=',' read dataset_name dataset_config_name template_config_name <<< "${DATASET_AND_CONFIG}"
21
+ echo $dataset_config_name
22
+ python evaluation/results/tr13/tzeroeval/get_templates.py \
23
+ --dataset_name $dataset_name \
24
+ --dataset_config_name $dataset_config_name \
25
+ --template_config_name $template_config_name
26
+ done
27
+
bigscience/evaluation/results/tr12/tr12a-1B3-oscar-en-filtered_agg.json ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/evaluation/results/tr12/tr12b-1B3-oscar-en-filtered-dedup_agg.json ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/evaluation/results/tr13/download_bslmeval.slurm ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=download-bslmeval
3
+ #SBATCH --partition=prepost
4
+ #SBATCH --nodes=1
5
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
6
+ #SBATCH --cpus-per-task=10 # number of cores per tasks
7
+ #SBATCH --hint=nomultithread # we get physical cores not logical
8
+ #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
9
+ #SBATCH --output=%x-%j.out # output file name
10
+ #SBATCH --account=six@cpu
11
+
12
+ set -x -e
13
+
14
+ echo "START TIME: $(date)"
15
+
16
+ source $six_ALL_CCFRWORK/start-py38-pt111
17
+ conda activate muennighofflmeval
18
+
19
+ #export HF_DATASETS_OFFLINE=1
20
+ #export TRANSFORMERS_OFFLINE=1
21
+
22
+ export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
23
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
24
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
25
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
26
+ export TOKENIZERS_PARALLELISM=false
27
+
28
+ cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/lm-evaluation-harness
29
+
30
+ # GEM/web_nlg_en,GEM/web_nlg_en_challenge_test_numbers,GEM/web_nlg_en_challenge_test_scramble,GEM/web_nlg_en_challenge_validation_sample,GEM/web_nlg_ru,GEM/web_nlg_ru_challenge_test_scramble,GEM/web_nlg_ru_challenge_validation_sample,GEM/wiki_auto_asset_turk_challenge_test_asset_backtranslation,GEM/wiki_auto_asset_turk_challenge_test_asset_bfp02,GEM/wiki_auto_asset_turk_challenge_test_asset_bfp05,GEM/wiki_auto_asset_turk_challenge_test_asset_nopunc,GEM/wiki_auto_asset_turk_challenge_test_turk_backtranslation,GEM/wiki_auto_asset_turk_challenge_test_turk_bfp02,GEM/wiki_auto_asset_turk_challenge_test_turk_bfp05,GEM/wiki_auto_asset_turk_challenge_test_turk_nopunc,GEM/wiki_auto_asset_turk_test_asset,GEM/wiki_auto_asset_turk_test_turk,GEM/wiki_lingua_ar,GEM/wiki_lingua_cs,GEM/wiki_lingua_de,GEM/wiki_lingua_en,GEM/wiki_lingua_es,GEM/wiki_lingua_fr,GEM/wiki_lingua_hi,GEM/wiki_lingua_id,GEM/wiki_lingua_it,GEM/wiki_lingua_ja,GEM/wiki_lingua_ko,GEM/wiki_lingua_nl,GEM/wiki_lingua_pt,GEM/wiki_lingua_ru,GEM/wiki_lingua_th,GEM/wiki_lingua_tr,GEM/wiki_lingua_vi,GEM/wiki_lingua_zh,gem_xsum,gem_xsum_challenge_sample,gem_xsum_challenge_test_backtranslation,gem_xsum_challenge_test_bfp_02,gem_xsum_challenge_test_bfp_05,gem_xsum_challenge_test_covid,gem_xsum_challenge_test_nopunc \
31
+ python3 main.py --model hf-causal \
32
+ --model_args pretrained=hf-internal-testing/tiny-random-gpt2,use_accelerate=True,tokenizer=hf-internal-testing/tiny-random-gpt2,dtype=float16 \
33
+ --tasks wmt14_fr_en,wmt19_ru_en,wmt19_zh_en \
34
+ --device cuda \
35
+ --limit 1 \
36
+ --no_cache \
37
+ --num_fewshot 0
bigscience/evaluation/results/tr13/results_to_csv.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # this script converts results.json:
4
+ #
5
+ # "results": {
6
+ # "arc_challenge": {
7
+ # "acc": 0.24232081911262798,
8
+ # "acc_stderr": 0.01252159329580012,
9
+ # "acc_norm": 0.2764505119453925,
10
+ # "acc_norm_stderr": 0.013069662474252425
11
+ # },
12
+ #
13
+ # into a format expected by a spreadsheet, which is:
14
+ #
15
+ # task metric value err
16
+ # arc_challenge acc xxx yyy
17
+ # arc_challenge acc_norm xxx yyy
18
+ # arc_challenge f1 xxx yyy
19
+ #
20
+ # usage:
21
+ # report-to-csv.py results.json
22
+
23
+
24
+ import sys
25
+ import statistics
26
+ import json
27
+ import io
28
+ import csv
29
+
30
+ results_file = sys.argv[1]
31
+
32
+ csv_file = results_file.replace("json", "csv")
33
+
34
+ print(f"Converting {results_file} to {csv_file}")
35
+
36
+ with io.open(results_file, 'r', encoding='utf-8') as f:
37
+ raw_results = json.load(f)
38
+
39
+ results = {}
40
+ for ds_name, v in sorted(raw_results.items()):
41
+ results[ds_name.split("/")[-1]] = v
42
+
43
+ with io.open(csv_file, 'w', encoding='utf-8') as f:
44
+
45
+ writer = csv.writer(f)
46
+ writer.writerow(["dataset", "prompt", "metric", "value"])
47
+ medians = []
48
+ for ds_name, v in sorted(results.items()):
49
+ acc_scores, bleu_scores, rouge2_fmeasure = [], [], []
50
+ for prompt_name, res in sorted(v.items()):
51
+ # T0 Eval
52
+ if "evaluation" in res:
53
+ for metric, value in sorted(res["evaluation"].items()):
54
+ writer.writerow([ds_name, prompt_name, metric, value])
55
+ if metric == "accuracy":
56
+ acc_scores.append(value)
57
+ # LM Eval Harness Generation
58
+ elif "bleu" in res:
59
+ # Make sure BLEU is 0-1 not 0-100
60
+ writer.writerow([ds_name, prompt_name, "bleu", res["bleu"] / 100])
61
+ bleu_scores.append(res["bleu"] / 100)
62
+
63
+ if acc_scores:
64
+ median = statistics.median(acc_scores)
65
+ medians.append(median)
66
+ writer.writerow([ds_name, "median", "accuracy", median])
67
+ elif bleu_scores:
68
+ median = statistics.median(bleu_scores)
69
+ medians.append(median)
70
+ writer.writerow([ds_name, "median", "bleu", median])
71
+ if medians:
72
+ writer.writerow(["multiple", "average", "multiple", statistics.mean(medians)])
bigscience/evaluation/results/tr3/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ We're interested in understanding when zero shot capabilities appear.
bigscience/evaluation/results/tr3/switch_tokenizer_to_t5_for_tr3e.sh ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ export GIT_LFS_SKIP_SMUDGE=1
2
+ git clone https://huggingface.co/bigscience/tr3e-1B3-c4-checkpoints
3
+ cd tr3e-1B3-c4-checkpoints
4
+ $six_ALL_CCFRWORK/code/bigscience/tools/hub-sync.py --repo-path . --patterns '*bogus*'
5
+ git branch -a | sort -V | perl -lne 'm|(global_step\d+)| && print qx[git checkout $1; perl -pi -e "s|\\"tokenizer_class\\": null|\\"tokenizer_class\\": \\"T5Tokenizer\\"|" config.json; git commit -m "Fix tokenizer_class to use T5 tokenizer" .; git push --set-upstream origin $1]'
6
+ export GIT_LFS_SKIP_SMUDGE=0
bigscience/evaluation/results/tr3/tr3d-1B3-oscar-checkpoints_agg.json ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/evaluation/utilities/download_all_models.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from argparse import ArgumentParser
2
+ from multiprocessing import Pool
3
+
4
+ from requests import HTTPError
5
+ from transformers import AutoModel, AutoTokenizer
6
+
7
+ def get_args():
8
+ parser = ArgumentParser()
9
+ # --experiments bigscience/tr3d-1B3-oscar-checkpoints,bigscience/tr3e-1B3-c4-checkpoints,bigscience/tr3m-1B3-pile-checkpoints
10
+ parser.add_argument('--experiments', type=lambda s: s.split(','), required=True, help='Experiments we want to download.')
11
+ # --steps 19500,28500,37500,48000,57000,66000,76500,85500,94500,105000,114000
12
+ parser.add_argument('--steps', type=lambda s: [int(item) for item in s.split(',')], required=True, help='Steps we should download the model checkpoints')
13
+ return parser.parse_args()
14
+
15
+ def _load_model(pretrain:str, revision: str):
16
+ try:
17
+ AutoModel.from_pretrained(pretrain, revision=revision)
18
+ AutoTokenizer.from_pretrained(pretrain, revision=revision)
19
+ return f"Loaded: {{pretrain:{pretrain}, revision:{revision}}}"
20
+ except HTTPError:
21
+ return f"Failed to load: {{pretrain:{pretrain}, revision:{revision}}}"
22
+
23
+ def load_model(kwargs):
24
+ return _load_model(**kwargs)
25
+
26
+ def main():
27
+ args = get_args()
28
+ pretrains = args.experiments
29
+ steps = args.steps
30
+ revisions = [f"global_step{step}" for step in steps]
31
+
32
+ # with Pool(10) as pool:
33
+ # results = pool.imap(
34
+ # load_model,
35
+ # [{"pretrain": pretrain, "revision": revision} for pretrain in pretrains for revision in revisions],
36
+ # chunksize=1
37
+ # )
38
+ #
39
+ # for result in results:
40
+ # print(result)
41
+
42
+
43
+ for kwargs in [{"pretrain": pretrain, "revision": revision} for pretrain in pretrains for revision in revisions]:
44
+ print(load_model(kwargs))
45
+
46
+ if __name__ == "__main__":
47
+ main()
bigscience/evaluation/utilities/download_all_models.slurm ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=download_all_models
3
+ #SBATCH --nodes=1
4
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
5
+ #SBATCH --cpus-per-task=10 # number of cores per tasks
6
+ #SBATCH --hint=nomultithread # we get physical cores not logical
7
+ #SBATCH --time 10:00:00 # maximum execution time (HH:MM:SS)
8
+ #SBATCH --output=logs/%x.out # output file name
9
+ #SBATCH --account=six@gpu
10
+ #SBATCH --partition=compil
11
+
12
+ set -x -e
13
+
14
+ source $six_ALL_CCFRWORK/start-prod
15
+ conda activate thomas_lm_eval
16
+
17
+ # TODO: replace with local fork of bigscience
18
+ BIGSCIENCE_REPO=$WORK/code/big_science/bigscience/evaluation/results/tr3
19
+
20
+ pushd $BIGSCIENCE_REPO
21
+
22
+ # TODO: replace with experiment / steps
23
+ EXPERIMENTS=bigscience/tr3d-1B3-oscar-checkpoints,bigscience/tr3e-1B3-c4-checkpoints,bigscience/tr3m-1B3-pile-checkpoints
24
+ STEPS=$(python -c "print(\",\".join([str(i) for i in range(19500, 118500, 1500)]))")
25
+
26
+ python download_all_models.py --experiments $EXPERIMENTS --steps $STEPS
bigscience/evaluation/utilities/export_results_through_training_to_wandb.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import numpy as np
4
+ import wandb
5
+ import json
6
+ import argparse
7
+
8
+ RANDOM_BASELINE={
9
+ "arc_challenge": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6
10
+ "arc_easy": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6
11
+ "boolq": 0.5,
12
+ "copa": 0.5,
13
+ "headqa_en": 0.25,
14
+ "hellaswag": 0.25,
15
+ "lambada": 0., # Safe to say that random models won't perform well at all.
16
+ "logiqa": 0.25,
17
+ "mathqa": (4360 * 1/ 5 - (4475 - 4360) * 1/ 4) / 4475,
18
+ "mrpc": 0.5,
19
+ "multirc": 0., # TODO: I couldn't figure it out
20
+ "openbookqa": 0.25,
21
+ "piqa": 0.5,
22
+ "prost": 0.25,
23
+ "pubmedqa": 1/3,
24
+ "qnli": 0.5,
25
+ "qqp": 0.5,
26
+ "race": 0.25, # Source: https://arxiv.org/pdf/1704.04683.pdf table 5
27
+ "rte": 0.5,
28
+ "sciq": 0.25,
29
+ "sst": 0.5,
30
+ "triviaqa": 0.,
31
+ "webqs": 0.,
32
+ "wic": 0.5,
33
+ "winogrande": 0.5,
34
+ "wnli": 0.5,
35
+ "wsc": 0.5
36
+ }
37
+
38
+ def normalise(score, task):
39
+ return (score - RANDOM_BASELINE[task]) / (1. - RANDOM_BASELINE[task])
40
+
41
+ def parse_args():
42
+ parser = argparse.ArgumentParser()
43
+ parser.add_argument("--input_files", type=lambda s: s.split(','), required=True)
44
+ parser.add_argument("--all_tasks", action="store_true")
45
+ parser.add_argument("--naive_average", action="store_true")
46
+ parser.add_argument("--acc_average", action="store_true")
47
+ parser.add_argument("--normalised_acc_average", action="store_true")
48
+ return parser.parse_args()
49
+
50
+ def main():
51
+ args = parse_args()
52
+ for input_file in args.input_files:
53
+ assert os.path.basename(input_file).endswith("_agg.json")
54
+ experiment_name = os.path.basename(input_file).split("_agg.json")[0]
55
+ with open(input_file, "r") as fi:
56
+ experiment = json.load(fi)
57
+
58
+ results = experiment["results"]
59
+ tokens = experiment["tokens"]
60
+ run = wandb.init(project="bigscience-tr3-evaluation-through-training", entity="timerobber", name=experiment_name,
61
+ reinit=True)
62
+ for i, n_tokens in enumerate(tokens):
63
+ all_values = []
64
+ acc_average = []
65
+ normalised_acc_average = []
66
+ for task, task_results in results.items():
67
+ values = None
68
+ for metric, values in task_results.items():
69
+ if args.all_tasks:
70
+ wandb.log({f"{task}_{metric}": values[i], "tokens": tokens[i]})
71
+ if "stderr" not in metric and "ppl" not in metric:
72
+ all_values.append(values[i])
73
+ if metric == "acc":
74
+ acc_average.append(values[i])
75
+ normalised_acc_average.append(normalise(values[i], task))
76
+ if args.naive_average:
77
+ wandb.log({f"naive_average": np.mean(all_values), "tokens": tokens[i]})
78
+ if args.acc_average:
79
+ wandb.log({f"acc_average": np.mean(acc_average), "tokens": tokens[i]})
80
+ if args.normalised_acc_average:
81
+ wandb.log({f"normalised_acc_average": np.mean(normalised_acc_average), "tokens": tokens[i]})
82
+
83
+ run.finish()
84
+
85
+ if __name__ == "__main__":
86
+ main()
bigscience/evaluation/utilities/find_checkpoints_at_token_intervals.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import json
3
+
4
+ steps_vs_samples = datasets.load_dataset("csv", data_files="run-.-tag-steps-vs-samples_y=steps,x=samples.csv")["train"]
5
+
6
+ slope = (steps_vs_samples[-1]["Step"] - steps_vs_samples[-2]["Step"]) / (
7
+ steps_vs_samples[-1]["Value"] - steps_vs_samples[-2]["Value"])
8
+ offset = steps_vs_samples[-1]["Step"] - steps_vs_samples[-1]["Value"] * slope
9
+
10
+ token_interval = 1e10
11
+ step_interval = 1500
12
+ tokens_per_sample = 2048
13
+ token_count = token_interval
14
+
15
+ output_checkpoints = []
16
+
17
+ for item in steps_vs_samples:
18
+ if item["Step"] * tokens_per_sample > token_count:
19
+ token_count += token_interval
20
+ step = step_interval * (item['Value'] // step_interval)
21
+ tokens = tokens_per_sample * (slope * (step_interval * (item['Value'] // step_interval)) + offset)
22
+ print(f"step: {step}")
23
+ print(f"tokens at that step: {tokens}")
24
+ output_checkpoints.append({"step": step, "tokens": tokens})
25
+
26
+
27
+ json.dump(output_checkpoints, open("steps_to_evaluate_with_tokens.json", "w"))
bigscience/evaluation/utilities/plot_all_eval.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from argparse import ArgumentParser
4
+
5
+ from matplotlib import pyplot as plt
6
+
7
+
8
+ def get_args():
9
+ parser = ArgumentParser()
10
+ parser.add_argument('--input-files', type=lambda s: s.split(','), required=True, help='Input files that hold all evaluation metrics')
11
+ return parser.parse_args()
12
+
13
+ def main():
14
+ args = get_args()
15
+
16
+ plots = {} # {"{EVALUATION}_{METRIC}": plt.figure}
17
+ for input_file in args.input_files:
18
+ assert os.path.basename(input_file).endswith("_agg.json")
19
+ experiment_name = os.path.basename(input_file).split("_agg.json")[0]
20
+ with open(input_file, "r") as fi:
21
+ experiment = json.load(fi)
22
+
23
+ tokens = experiment["tokens"]
24
+ for evaluation_name, evaluation in experiment["results"].items():
25
+ for metric_name, metric in evaluation.items():
26
+ key = f"{evaluation_name}_{metric_name}"
27
+ if key[-7:] == "_stderr":
28
+ continue
29
+
30
+ if key not in plots:
31
+ plot = plt.figure(len(plots))
32
+ plot = plot.add_subplot(1,1,1)
33
+ plot.set_title(key)
34
+ plots[key] = plot
35
+
36
+ plot = plots[key]
37
+
38
+ plot.plot(tokens, metric, label=experiment_name)
39
+
40
+ for plot in plots.values():
41
+ plot.legend()
42
+ plt.show()
43
+
44
+ if __name__ == "__main__":
45
+ main()
bigscience/experiments/bandwidth/README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Bandwidth tests
2
+
3
+ ## Deepspeed benchmark
4
+
5
+ https://gist.github.com/stas00/ec5e197b15e2e7aea0153f54d2f97c15
6
+
7
+ Probably need to adjust `TRIALS` to a higher number to get the more realistic results (after the interconnects is saturated).
8
+
9
+ Note: tried a larger number but got the same results.
10
+
11
+ ## Single node V100
12
+
13
+ ssh into a desired node and then:
14
+ ```
15
+ export NCCL_DEBUG=info
16
+ python -m torch.distributed.launch --nproc_per_node=4 all_reduce_bench.py 2>&1 | tee n1_32gb_all_reduce_bench.txt
17
+ ```
18
+
19
+ Results:
20
+ - [16gb](./n1_16gb_all_reduce_bench.txt) - `algo throughput: 1329.4242 Gbps`
21
+ - [32gb](./n1_32gb_all_reduce_bench.txt) - `algo throughput: 1323.6244 Gbps`
22
+
23
+ Here we have NVLink gen 2
24
+
25
+ https://en.wikipedia.org/wiki/NVLink
26
+ ```
27
+ Nvidia GV100 | V100 SXM2 | NVLink 2.0 | 25 GT/s | 300 GByte/s
28
+ ```
29
+ So the total is 300GB/s => 2400 Gb/s
30
+
31
+ and the benchmark clocks 1360 Gb/s - slightly more than half of the max total.
32
+
33
+ if this test is run a bit longer, it drops to 600 Gbps.
34
+
35
+
36
+
37
+ ## 16 nodes V100 32GB
38
+
39
+ ```
40
+ export NCCL_DEBUG=info
41
+ export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
42
+ srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.launch --nnodes 16 --nproc_per_node=4 --node_rank $SLURM_PROCID --master_addr $MASTER_ADDR --master_port 12345 all_reduce_bench.py' 2>&1 | tee n16_32gb_all_reduce_bench.txt
43
+ ```
44
+ Results:
45
+
46
+ - [32gp](./n16_32gb_all_reduce_bench.txt) - `algo throughput: 23.2939 to 55.0766 Gbps`
47
+
48
+ If the test is run much longer it fluctuates between 44 and 57 Gbps.
49
+
50
+ Currently we have an issue with nccl that doesn't fully utilize Intel OPA full bandwidth. Which is supposed to be 400Gbps max.
51
+
52
+
53
+ ## 4 nodes V100 32GB
54
+
55
+ Here is a recent re-run - jan 2022:
56
+
57
+ script: [all_reduce_bench-32gb-n4.slurm](./all_reduce_bench-32gb-n4.slurm)
58
+
59
+
60
+ ```
61
+ sbatch all_reduce_bench-32gb-n4.slurm
62
+ ```
63
+
64
+ Results:
65
+
66
+ [all_reduce_bench-32gb-n4.txt](./all_reduce_bench-32gb-n4.txt) - `algo throughput: 30 to 90 Gbps`
67
+
68
+
69
+
70
+
71
+ ## 4 nodes A100 80GB
72
+
73
+
74
+ script: [all_reduce_bench-a100-n4.slurm](./all_reduce_bench-a100-n4.slurm)
75
+
76
+
77
+ ```
78
+ sbatch all_reduce_bench-a100-n4.slurm
79
+ ```
80
+
81
+ Results:
82
+
83
+ [all_reduce_bench-a100-n4.txt](./all_reduce_bench-a100-n4.txt) - `algo throughput: 15 to 42 Gbps`
84
+
85
+ As a reference Azure has [ND A100 v4-series](https://docs.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series) w/ 1.6 Tb/s of interconnect bandwidth per VM. And Jeff Rasley clocked ~1.5Tb/s with this `all_reduce_bench` script.
86
+
87
+
88
+ ## NCCL tests
89
+
90
+ https://github.com/nvidia/nccl-tests
91
+
92
+ The details are explained here:
93
+
94
+ https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
95
+
96
+ ```
97
+ git clone https://github.com/nvidia/nccl-tests
98
+ cd nccl-tests
99
+ make
100
+ ```
101
+
102
+
103
+ ## Single node
104
+
105
+ ssh into a desired node and then:
106
+ ```
107
+ ./build/all_reduce_perf -b 8 -e 128M -f 2 -g 4
108
+ ```
109
+
110
+
111
+ ## 16 nodes
112
+
113
+ from master node:
114
+ ```
115
+ srun --jobid $SLURM_JOBID ./build/all_reduce_perf -b 8 -e 128M -f 2 -g 4
116
+ ```
117
+ (not sure if I did it right - didn't have time to read the docs)
bigscience/experiments/bandwidth/all_reduce_bench-32gb-n4.slurm ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=all_reduce_bench-32gb-n4
3
+ #SBATCH --constraint=v100-32g
4
+ #SBATCH --nodes=4
5
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
6
+ #SBATCH --cpus-per-task=40 # number of cores per tasks
7
+ #SBATCH --hint=nomultithread # we get physical cores not logical
8
+ #SBATCH --gres=gpu:4 # number of gpus
9
+ #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
10
+ #SBATCH --output=%x-%j.out # output file name
11
+ #SBATCH --account=six@gpu
12
+
13
+ export LOG_FILE=all_reduce_bench-32gb-n4.txt
14
+ export NNODES=4
15
+ export GPUS_PER_NODE=4
16
+ export NCCL_DEBUG=info
17
+
18
+ export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
19
+
20
+ srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.launch --nnodes $NNODES --nproc_per_node $GPUS_PER_NODE --node_rank $SLURM_PROCID --master_addr $MASTER_ADDR --master_port 12345 all_reduce_bench.py' 2>&1 | tee $LOG_FILE
bigscience/experiments/bandwidth/all_reduce_bench-32gb-n4.txt ADDED
@@ -0,0 +1,850 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
2
+ and will be removed in future. Use torchrun.
3
+ Note that --use_env is set by default in torchrun.
4
+ If your script expects `--local_rank` argument to be set, please
5
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
6
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
7
+ further instructions
8
+
9
+ warnings.warn(
10
+ /gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
11
+ and will be removed in future. Use torchrun.
12
+ Note that --use_env is set by default in torchrun.
13
+ If your script expects `--local_rank` argument to be set, please
14
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
15
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
16
+ further instructions
17
+
18
+ warnings.warn(
19
+ /gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
20
+ and will be removed in future. Use torchrun.
21
+ Note that --use_env is set by default in torchrun.
22
+ If your script expects `--local_rank` argument to be set, please
23
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
24
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
25
+ further instructions
26
+
27
+ warnings.warn(
28
+ WARNING:torch.distributed.run:
29
+ *****************************************
30
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
31
+ *****************************************
32
+ /gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
33
+ and will be removed in future. Use torchrun.
34
+ Note that --use_env is set by default in torchrun.
35
+ If your script expects `--local_rank` argument to be set, please
36
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
37
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
38
+ further instructions
39
+
40
+ warnings.warn(
41
+ WARNING:torch.distributed.run:
42
+ *****************************************
43
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
44
+ *****************************************
45
+ WARNING:torch.distributed.run:
46
+ *****************************************
47
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
48
+ *****************************************
49
+ WARNING:torch.distributed.run:
50
+ *****************************************
51
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
52
+ *****************************************
53
+ local_rank: 0
54
+ local_rank: 0
55
+ local_rank: 2
56
+ local_rank: 1
57
+ local_rank: 1
58
+ local_rank: 3
59
+ local_rank: 3
60
+ local_rank: 2
61
+ local_rank: 1
62
+ local_rank: 3
63
+ local_rank: 2
64
+ local_rank: 0
65
+ local_rank: 0
66
+ local_rank: 1
67
+ local_rank: 3
68
+ local_rank: 2
69
+ 0 data size: 4.0 GB
70
+ 4 data size: 4.0 GB
71
+ 6 data size: 4.0 GB
72
+ 11 data size: 4.0 GB
73
+ 3 data size: 4.0 GB
74
+ 10 data size: 4.0 GB
75
+ 7 data size: 4.0 GB
76
+ 5 data size: 4.0 GB
77
+ 1 data size: 4.0 GB
78
+ 2 data size: 4.0 GB
79
+ 8 data size: 4.0 GB
80
+ 15 data size: 4.0 GB
81
+ 13 data size: 4.0 GB
82
+ 12 data size: 4.0 GB
83
+ 14 data size: 4.0 GB
84
+ 9 data size: 4.0 GB
85
+ r6i6n4:257714:257714 [0] NCCL INFO Bootstrap : Using ib0:10.148.7.175<0>
86
+ r6i6n4:257714:257714 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
87
+ r6i6n4:257714:257714 [0] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.175<0>
88
+ r6i6n4:257714:257714 [0] NCCL INFO Using network IB
89
+ NCCL version 2.10.3+cuda11.3
90
+ r6i6n4:257715:257715 [1] NCCL INFO Bootstrap : Using ib0:10.148.7.175<0>
91
+ r6i6n5:378203:378203 [3] NCCL INFO Bootstrap : Using ib0:10.148.7.176<0>
92
+ r6i6n5:378202:378202 [2] NCCL INFO Bootstrap : Using ib0:10.148.7.176<0>
93
+ r6i6n5:378201:378201 [1] NCCL INFO Bootstrap : Using ib0:10.148.7.176<0>
94
+ r6i6n4:257715:257715 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
95
+ r6i6n5:378202:378202 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
96
+ r6i6n5:378203:378203 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
97
+ r6i6n5:378201:378201 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
98
+ r6i6n4:257715:257715 [1] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.175<0>
99
+ r6i6n4:257715:257715 [1] NCCL INFO Using network IB
100
+ r6i6n5:378203:378203 [3] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.176<0>
101
+ r6i6n5:378202:378202 [2] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.176<0>
102
+ r6i6n5:378203:378203 [3] NCCL INFO Using network IB
103
+ r6i6n5:378202:378202 [2] NCCL INFO Using network IB
104
+ r6i6n5:378201:378201 [1] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.176<0>
105
+ r6i6n5:378201:378201 [1] NCCL INFO Using network IB
106
+ r6i6n4:257717:257717 [3] NCCL INFO Bootstrap : Using ib0:10.148.7.175<0>
107
+ r6i6n4:257717:257717 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
108
+ r6i6n4:257717:257717 [3] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.175<0>
109
+ r6i6n4:257717:257717 [3] NCCL INFO Using network IB
110
+ r6i6n4:257716:257716 [2] NCCL INFO Bootstrap : Using ib0:10.148.7.175<0>
111
+ r6i6n4:257716:257716 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
112
+ r6i6n4:257716:257716 [2] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.175<0>
113
+ r6i6n4:257716:257716 [2] NCCL INFO Using network IB
114
+ r6i6n5:378200:378200 [0] NCCL INFO Bootstrap : Using ib0:10.148.7.176<0>
115
+ r6i6n5:378200:378200 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
116
+ r6i6n5:378200:378200 [0] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.7.176<0>
117
+ r6i6n5:378200:378200 [0] NCCL INFO Using network IB
118
+ r7i6n2:1370349:1370349 [2] NCCL INFO Bootstrap : Using ib0:10.148.0.95<0>
119
+ r7i6n2:1370348:1370348 [1] NCCL INFO Bootstrap : Using ib0:10.148.0.95<0>
120
+ r7i6n2:1370348:1370348 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
121
+ r7i6n2:1370349:1370349 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
122
+ r7i6n2:1370349:1370349 [2] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.95<0>
123
+ r7i6n2:1370349:1370349 [2] NCCL INFO Using network IB
124
+ r7i6n2:1370348:1370348 [1] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.95<0>
125
+ r7i6n2:1370348:1370348 [1] NCCL INFO Using network IB
126
+ r7i6n3:610063:610063 [0] NCCL INFO Bootstrap : Using ib0:10.148.0.96<0>
127
+ r7i6n3:610066:610066 [3] NCCL INFO Bootstrap : Using ib0:10.148.0.96<0>
128
+ r7i6n3:610063:610063 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
129
+ r7i6n3:610066:610066 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
130
+ r7i6n3:610066:610066 [3] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.96<0>
131
+ r7i6n3:610066:610066 [3] NCCL INFO Using network IB
132
+ r7i6n3:610063:610063 [0] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.96<0>
133
+ r7i6n3:610063:610063 [0] NCCL INFO Using network IB
134
+ r7i6n2:1370347:1370347 [0] NCCL INFO Bootstrap : Using ib0:10.148.0.95<0>
135
+ r7i6n2:1370347:1370347 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
136
+ r7i6n2:1370347:1370347 [0] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.95<0>
137
+ r7i6n2:1370347:1370347 [0] NCCL INFO Using network IB
138
+ r7i6n3:610065:610065 [2] NCCL INFO Bootstrap : Using ib0:10.148.0.96<0>
139
+ r7i6n3:610065:610065 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
140
+ r7i6n3:610064:610064 [1] NCCL INFO Bootstrap : Using ib0:10.148.0.96<0>
141
+ r7i6n3:610065:610065 [2] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.96<0>
142
+ r7i6n3:610065:610065 [2] NCCL INFO Using network IB
143
+ r7i6n3:610064:610064 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
144
+ r7i6n3:610064:610064 [1] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.96<0>
145
+ r7i6n3:610064:610064 [1] NCCL INFO Using network IB
146
+ r7i6n2:1370350:1370350 [3] NCCL INFO Bootstrap : Using ib0:10.148.0.95<0>
147
+ r7i6n2:1370350:1370350 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
148
+ r7i6n2:1370350:1370350 [3] NCCL INFO NET/IB : Using [0]hfi1_0:1/IB [1]hfi1_1:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.0.95<0>
149
+ r7i6n2:1370350:1370350 [3] NCCL INFO Using network IB
150
+ r7i6n3:610064:610133 [1] NCCL INFO Trees [0] 14/-1/-1->13->12 [1] -1/-1/-1->13->12 [2] 14/-1/-1->13->12 [3] -1/-1/-1->13->12
151
+ r7i6n3:610065:610128 [2] NCCL INFO Trees [0] 15/-1/-1->14->13 [1] 15/-1/-1->14->10 [2] 15/-1/-1->14->13 [3] 15/6/-1->14->-1
152
+ r7i6n3:610066:610123 [3] NCCL INFO Trees [0] -1/-1/-1->15->14 [1] 12/-1/-1->15->14 [2] -1/-1/-1->15->14 [3] 12/-1/-1->15->14
153
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 00/04 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
154
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 01/04 : 0 3 2 1 4 7 6 5 8 11 10 9 12 15 14 13
155
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 02/04 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
156
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 03/04 : 0 3 2 1 4 7 6 5 8 11 10 9 12 15 14 13
157
+ r6i6n4:257714:257762 [0] NCCL INFO Trees [0] 1/8/-1->0->-1 [1] 1/-1/-1->0->3 [2] 1/-1/-1->0->4 [3] 1/-1/-1->0->3
158
+ r6i6n4:257716:257777 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/10/-1->2->-1 [2] 3/-1/-1->2->1 [3] 3/-1/-1->2->6
159
+ r6i6n4:257715:257767 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] -1/-1/-1->1->0 [2] 2/-1/-1->1->0 [3] -1/-1/-1->1->0
160
+ r7i6n3:610063:610122 [0] NCCL INFO Trees [0] 13/-1/-1->12->8 [1] 13/-1/-1->12->15 [2] 13/4/-1->12->-1 [3] 13/-1/-1->12->15
161
+ r6i6n4:257714:257762 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff
162
+ r6i6n4:257715:257767 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff
163
+ r6i6n4:257717:257772 [3] NCCL INFO Trees [0] -1/-1/-1->3->2 [1] 0/-1/-1->3->2 [2] -1/-1/-1->3->2 [3] 0/-1/-1->3->2
164
+ r6i6n4:257716:257777 [2] NCCL INFO Setting affinity for GPU 2 to ff,fff00000
165
+ r7i6n2:1370350:1370452 [3] NCCL INFO Trees [0] -1/-1/-1->11->10 [1] 8/6/-1->11->10 [2] -1/-1/-1->11->10 [3] 8/-1/-1->11->10
166
+ r7i6n2:1370349:1370433 [2] NCCL INFO Trees [0] 11/-1/-1->10->9 [1] 11/14/-1->10->2 [2] 11/-1/-1->10->9 [3] 11/-1/-1->10->7
167
+ r6i6n4:257717:257772 [3] NCCL INFO Setting affinity for GPU 3 to ff,fff00000
168
+ r7i6n2:1370347:1370447 [0] NCCL INFO Trees [0] 9/12/-1->8->0 [1] 9/-1/-1->8->11 [2] 9/-1/-1->8->5 [3] 9/-1/-1->8->11
169
+ r7i6n2:1370348:1370434 [1] NCCL INFO Trees [0] 10/4/-1->9->8 [1] -1/-1/-1->9->8 [2] 10/-1/-1->9->8 [3] -1/-1/-1->9->8
170
+ r6i6n5:378202:378256 [2] NCCL INFO Trees [0] 7/-1/-1->6->5 [1] 7/-1/-1->6->11 [2] 7/-1/-1->6->5 [3] 7/2/-1->6->14
171
+ r6i6n5:378203:378255 [3] NCCL INFO Trees [0] -1/-1/-1->7->6 [1] 4/-1/-1->7->6 [2] -1/-1/-1->7->6 [3] 4/10/-1->7->6
172
+ r6i6n5:378201:378257 [1] NCCL INFO Trees [0] 6/-1/-1->5->4 [1] -1/-1/-1->5->4 [2] 6/8/-1->5->4 [3] -1/-1/-1->5->4
173
+ r6i6n5:378200:378262 [0] NCCL INFO Trees [0] 5/-1/-1->4->9 [1] 5/-1/-1->4->7 [2] 5/0/-1->4->12 [3] 5/-1/-1->4->7
174
+ r6i6n5:378202:378256 [2] NCCL INFO Setting affinity for GPU 2 to ff,fff00000
175
+ r6i6n5:378203:378255 [3] NCCL INFO Setting affinity for GPU 3 to ff,fff00000
176
+ r6i6n5:378201:378257 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff
177
+ r6i6n5:378200:378262 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff
178
+ r7i6n3:610064:610133 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff
179
+ r7i6n3:610065:610128 [2] NCCL INFO Setting affinity for GPU 2 to ff,fff00000
180
+ r7i6n3:610066:610123 [3] NCCL INFO Setting affinity for GPU 3 to ff,fff00000
181
+ r7i6n3:610063:610122 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff
182
+ r7i6n2:1370350:1370452 [3] NCCL INFO Setting affinity for GPU 3 to ff,fff00000
183
+ r7i6n2:1370349:1370433 [2] NCCL INFO Setting affinity for GPU 2 to ff,fff00000
184
+ r7i6n2:1370347:1370447 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff
185
+ r7i6n2:1370348:1370434 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff
186
+ r7i6n3:610064:610133 [1] NCCL INFO Channel 00 : 13[1c000] -> 14[88000] via P2P/IPC
187
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 00 : 5[1c000] -> 6[88000] via P2P/IPC
188
+ r7i6n3:610064:610133 [1] NCCL INFO Channel 02 : 13[1c000] -> 14[88000] via P2P/IPC
189
+ r6i6n4:257715:257767 [1] NCCL INFO Channel 00 : 1[1c000] -> 2[88000] via P2P/IPC
190
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 00 : 14[88000] -> 15[8a000] via P2P/IPC
191
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 00 : 2[88000] -> 3[8a000] via P2P/IPC
192
+ r6i6n4:257715:257767 [1] NCCL INFO Channel 02 : 1[1c000] -> 2[88000] via P2P/IPC
193
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 02 : 5[1c000] -> 6[88000] via P2P/IPC
194
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 00 : 6[88000] -> 7[8a000] via P2P/IPC
195
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 02 : 14[88000] -> 15[8a000] via P2P/IPC
196
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 02 : 2[88000] -> 3[8a000] via P2P/IPC
197
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 02 : 6[88000] -> 7[8a000] via P2P/IPC
198
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 00 : 15[8a000] -> 0[1a000] [receive] via NET/IB/1
199
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 00 : 3[8a000] -> 4[1a000] [receive] via NET/IB/1
200
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 00 : 11[8a000] -> 12[1a000] [receive] via NET/IB/1
201
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 00 : 9[1c000] -> 10[88000] via P2P/IPC
202
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 00 : 10[88000] -> 11[8a000] via P2P/IPC
203
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 02 : 9[1c000] -> 10[88000] via P2P/IPC
204
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 02 : 10[88000] -> 11[8a000] via P2P/IPC
205
+ r6i6n4:257717:257772 [3] NCCL INFO Channel 00 : 3[8a000] -> 4[1a000] [send] via NET/IB/3
206
+ r7i6n3:610066:610123 [3] NCCL INFO Channel 00 : 15[8a000] -> 0[1a000] [send] via NET/IB/3
207
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 00 : 7[8a000] -> 8[1a000] [send] via NET/IB/3
208
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 7[8a000] -> 8[1a000] [receive] via NET/IB/1
209
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 02 : 15[8a000] -> 0[1a000] [receive] via NET/IB/1
210
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 3[8a000] -> 4[1a000] [receive] via NET/IB/1
211
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 02 : 11[8a000] -> 12[1a000] [receive] via NET/IB/1
212
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 00 : 11[8a000] -> 12[1a000] [send] via NET/IB/3
213
+ r6i6n4:257717:257772 [3] NCCL INFO Channel 02 : 3[8a000] -> 4[1a000] [send] via NET/IB/3
214
+ r7i6n3:610066:610123 [3] NCCL INFO Channel 02 : 15[8a000] -> 0[1a000] [send] via NET/IB/3
215
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 01 : 2[88000] -> 1[1c000] via P2P/IPC
216
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 03 : 2[88000] -> 1[1c000] via P2P/IPC
217
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 02 : 7[8a000] -> 8[1a000] [send] via NET/IB/3
218
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 02 : 7[8a000] -> 8[1a000] [receive] via NET/IB/1
219
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 02 : 11[8a000] -> 12[1a000] [send] via NET/IB/3
220
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 10[88000] -> 9[1c000] via P2P/IPC
221
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 03 : 10[88000] -> 9[1c000] via P2P/IPC
222
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 01 : 6[88000] -> 5[1c000] via P2P/IPC
223
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 6[88000] -> 5[1c000] via P2P/IPC
224
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 00 : 12[1a000] -> 13[1c000] via P2P/IPC
225
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 02 : 12[1a000] -> 13[1c000] via P2P/IPC
226
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 01 : 14[88000] -> 13[1c000] via P2P/IPC
227
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 03 : 14[88000] -> 13[1c000] via P2P/IPC
228
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 00 : 4[1a000] -> 5[1c000] via P2P/IPC
229
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 4[1a000] -> 5[1c000] via P2P/IPC
230
+ r7i6n3:610064:610133 [1] NCCL INFO Channel 01 : 13[1c000] -> 0[1a000] [send] via NET/IB/1
231
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 00 : 0[1a000] -> 1[1c000] via P2P/IPC
232
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 02 : 0[1a000] -> 1[1c000] via P2P/IPC
233
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 01 : 9[1c000] -> 12[1a000] [receive] via NET/IB/1
234
+ r7i6n3:610064:610133 [1] NCCL INFO Channel 03 : 13[1c000] -> 0[1a000] [send] via NET/IB/1
235
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 8[1a000] -> 9[1c000] via P2P/IPC
236
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 02 : 8[1a000] -> 9[1c000] via P2P/IPC
237
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 01 : 1[1c000] -> 4[1a000] [receive] via NET/IB/1
238
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 01 : 13[1c000] -> 0[1a000] [receive] via NET/IB/1
239
+ r6i6n4:257715:257767 [1] NCCL INFO Channel 01 : 1[1c000] -> 4[1a000] [send] via NET/IB/1
240
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 03 : 9[1c000] -> 12[1a000] [receive] via NET/IB/1
241
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 01 : 12[1a000] -> 15[8a000] via P2P/IPC
242
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 03 : 12[1a000] -> 15[8a000] via P2P/IPC
243
+ r7i6n3:610066:610123 [3] NCCL INFO Channel 01 : 15[8a000] -> 14[88000] via P2P/IPC
244
+ r7i6n3:610066:610123 [3] NCCL INFO Channel 03 : 15[8a000] -> 14[88000] via P2P/IPC
245
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 03 : 1[1c000] -> 4[1a000] [receive] via NET/IB/1
246
+ r7i6n3:610066:610123 [3] NCCL INFO Connected all rings
247
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 01 : 4[1a000] -> 7[8a000] via P2P/IPC
248
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 03 : 4[1a000] -> 7[8a000] via P2P/IPC
249
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 01 : 5[1c000] -> 8[1a000] [receive] via NET/IB/1
250
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 03 : 13[1c000] -> 0[1a000] [receive] via NET/IB/1
251
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 01 : 7[8a000] -> 6[88000] via P2P/IPC
252
+ r6i6n4:257715:257767 [1] NCCL INFO Channel 03 : 1[1c000] -> 4[1a000] [send] via NET/IB/1
253
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 01 : 0[1a000] -> 3[8a000] via P2P/IPC
254
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 03 : 0[1a000] -> 3[8a000] via P2P/IPC
255
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 03 : 7[8a000] -> 6[88000] via P2P/IPC
256
+ r6i6n5:378203:378255 [3] NCCL INFO Connected all rings
257
+ r6i6n4:257717:257772 [3] NCCL INFO Channel 01 : 3[8a000] -> 2[88000] via P2P/IPC
258
+ r6i6n4:257717:257772 [3] NCCL INFO Channel 03 : 3[8a000] -> 2[88000] via P2P/IPC
259
+ r6i6n5:378200:378262 [0] NCCL INFO Connected all rings
260
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 01 : 4[1a000] -> 5[1c000] via P2P/IPC
261
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 03 : 4[1a000] -> 5[1c000] via P2P/IPC
262
+ r6i6n4:257715:257767 [1] NCCL INFO Connected all rings
263
+ r6i6n4:257717:257772 [3] NCCL INFO Connected all rings
264
+ r6i6n4:257716:257777 [2] NCCL INFO Connected all rings
265
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 03 : 5[1c000] -> 8[1a000] [receive] via NET/IB/1
266
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 01 : 8[1a000] -> 11[8a000] via P2P/IPC
267
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 01 : 2[88000] -> 3[8a000] via P2P/IPC
268
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 03 : 2[88000] -> 3[8a000] via P2P/IPC
269
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 01 : 5[1c000] -> 8[1a000] [send] via NET/IB/1
270
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 03 : 8[1a000] -> 11[8a000] via P2P/IPC
271
+ r6i6n4:257717:257772 [3] NCCL INFO Channel 01 : 3[8a000] -> 0[1a000] via P2P/IPC
272
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 01 : 9[1c000] -> 12[1a000] [send] via NET/IB/1
273
+ r6i6n4:257717:257772 [3] NCCL INFO Channel 03 : 3[8a000] -> 0[1a000] via P2P/IPC
274
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 01 : 11[8a000] -> 10[88000] via P2P/IPC
275
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 03 : 11[8a000] -> 10[88000] via P2P/IPC
276
+ r7i6n2:1370350:1370452 [3] NCCL INFO Connected all rings
277
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 03 : 5[1c000] -> 8[1a000] [send] via NET/IB/1
278
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 03 : 2[88000] -> 6[88000] [send] via NET/IB/3
279
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 03 : 9[1c000] -> 12[1a000] [send] via NET/IB/1
280
+ r7i6n2:1370347:1370447 [0] NCCL INFO Connected all rings
281
+ r6i6n4:257714:257762 [0] NCCL INFO Connected all rings
282
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 01 : 8[1a000] -> 9[1c000] via P2P/IPC
283
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 01 : 0[1a000] -> 1[1c000] via P2P/IPC
284
+ r6i6n5:378201:378257 [1] NCCL INFO Connected all rings
285
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 03 : 0[1a000] -> 1[1c000] via P2P/IPC
286
+ r7i6n3:610063:610122 [0] NCCL INFO Connected all rings
287
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 03 : 8[1a000] -> 9[1c000] via P2P/IPC
288
+ r6i6n5:378202:378256 [2] NCCL INFO Connected all rings
289
+ r7i6n3:610064:610133 [1] NCCL INFO Connected all rings
290
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 01 : 6[88000] -> 7[8a000] via P2P/IPC
291
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 01 : 12[1a000] -> 13[1c000] via P2P/IPC
292
+ r7i6n2:1370348:1370434 [1] NCCL INFO Connected all rings
293
+ r6i6n4:257715:257767 [1] NCCL INFO Channel 00 : 1[1c000] -> 0[1a000] via P2P/IPC
294
+ r6i6n4:257715:257767 [1] NCCL INFO Channel 01 : 1[1c000] -> 0[1a000] via P2P/IPC
295
+ r6i6n4:257715:257767 [1] NCCL INFO Channel 02 : 1[1c000] -> 0[1a000] via P2P/IPC
296
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 03 : 12[1a000] -> 13[1c000] via P2P/IPC
297
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 6[88000] -> 7[8a000] via P2P/IPC
298
+ r7i6n3:610065:610128 [2] NCCL INFO Connected all rings
299
+ r7i6n2:1370349:1370433 [2] NCCL INFO Connected all rings
300
+ r6i6n4:257715:257767 [1] NCCL INFO Channel 03 : 1[1c000] -> 0[1a000] via P2P/IPC
301
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 01 : 14[88000] -> 15[8a000] via P2P/IPC
302
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 10[88000] -> 11[8a000] via P2P/IPC
303
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 03 : 14[88000] -> 15[8a000] via P2P/IPC
304
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 03 : 10[88000] -> 11[8a000] via P2P/IPC
305
+ r7i6n3:610066:610123 [3] NCCL INFO Channel 01 : 15[8a000] -> 12[1a000] via P2P/IPC
306
+ r7i6n3:610064:610133 [1] NCCL INFO Channel 00 : 13[1c000] -> 12[1a000] via P2P/IPC
307
+ r7i6n3:610066:610123 [3] NCCL INFO Channel 03 : 15[8a000] -> 12[1a000] via P2P/IPC
308
+ r7i6n3:610064:610133 [1] NCCL INFO Channel 01 : 13[1c000] -> 12[1a000] via P2P/IPC
309
+ r7i6n3:610064:610133 [1] NCCL INFO Channel 02 : 13[1c000] -> 12[1a000] via P2P/IPC
310
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 02 : 0[1a000] -> 4[1a000] [send] via NET/IB/1
311
+ r7i6n3:610064:610133 [1] NCCL INFO Channel 03 : 13[1c000] -> 12[1a000] via P2P/IPC
312
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 0[1a000] -> 4[1a000] [receive] via NET/IB/1
313
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 02 : 5[1c000] -> 8[1a000] [send] via NET/IB/1
314
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 03 : 7[8a000] -> 10[88000] [send] via NET/IB/3
315
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 00 : 8[1a000] -> 12[1a000] [receive] via NET/IB/1
316
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 2[88000] -> 6[88000] [receive] via NET/IB/3
317
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 02 : 5[1c000] -> 8[1a000] [receive] via NET/IB/1
318
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 00 : 4[1a000] -> 9[1c000] [receive] via NET/IB/1
319
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 01 : 10[88000] -> 14[88000] [receive] via NET/IB/3
320
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 01 : 6[88000] -> 11[8a000] [receive] via NET/IB/3
321
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 03 : 7[8a000] -> 10[88000] [receive] via NET/IB/3
322
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 00 : 8[1a000] -> 0[1a000] [receive] via NET/IB/1
323
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 00 : 4[1a000] -> 9[1c000] [send] via NET/IB/1
324
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 01 : 10[88000] -> 2[88000] [receive] via NET/IB/3
325
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 01 : 6[88000] -> 11[8a000] [send] via NET/IB/3
326
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 8[1a000] -> 12[1a000] [send] via NET/IB/1
327
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 02 : 8[1a000] -> 5[1c000] [receive] via NET/IB/1
328
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 03 : 10[88000] -> 7[8a000] [receive] via NET/IB/3
329
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 01 : 7[8a000] -> 4[1a000] via P2P/IPC
330
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 10[88000] -> 14[88000] [send] via NET/IB/3
331
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 03 : 7[8a000] -> 4[1a000] via P2P/IPC
332
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 00 : 0[1a000] -> 8[1a000] [send] via NET/IB/1
333
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 01 : 2[88000] -> 10[88000] [send] via NET/IB/3
334
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 12[1a000] -> 4[1a000] [receive] via NET/IB/1
335
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 00 : 9[1c000] -> 4[1a000] [send] via NET/IB/1
336
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 14[88000] -> 6[88000] [receive] via NET/IB/3
337
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 02 : 4[1a000] -> 12[1a000] [receive] via NET/IB/1
338
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 0[1a000] -> 8[1a000] [receive] via NET/IB/1
339
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 01 : 11[8a000] -> 6[88000] [send] via NET/IB/3
340
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 03 : 6[88000] -> 14[88000] [receive] via NET/IB/3
341
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 2[88000] -> 10[88000] [receive] via NET/IB/3
342
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 4[1a000] -> 12[1a000] [send] via NET/IB/1
343
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 6[88000] -> 14[88000] [send] via NET/IB/3
344
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 02 : 12[1a000] -> 4[1a000] [send] via NET/IB/1
345
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 8[1a000] -> 0[1a000] [send] via NET/IB/1
346
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 03 : 14[88000] -> 6[88000] [send] via NET/IB/3
347
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 10[88000] -> 2[88000] [send] via NET/IB/3
348
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 00 : 9[1c000] -> 4[1a000] [receive] via NET/IB/1
349
+ r7i6n3:610063:610122 [0] NCCL INFO Channel 00 : 12[1a000] -> 8[1a000] [send] via NET/IB/1
350
+ r6i6n4:257714:257762 [0] NCCL INFO Channel 02 : 4[1a000] -> 0[1a000] [receive] via NET/IB/1
351
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 00 : 12[1a000] -> 8[1a000] [receive] via NET/IB/1
352
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 01 : 14[88000] -> 10[88000] [send] via NET/IB/3
353
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 01 : 11[8a000] -> 6[88000] [receive] via NET/IB/3
354
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 00 : 9[1c000] -> 8[1a000] via P2P/IPC
355
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 03 : 6[88000] -> 2[88000] [receive] via NET/IB/3
356
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 01 : 9[1c000] -> 8[1a000] via P2P/IPC
357
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 01 : 14[88000] -> 10[88000] [receive] via NET/IB/3
358
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 01 : 11[8a000] -> 8[1a000] via P2P/IPC
359
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 02 : 9[1c000] -> 8[1a000] via P2P/IPC
360
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 03 : 11[8a000] -> 8[1a000] via P2P/IPC
361
+ r7i6n3:610066:610123 [3] NCCL INFO Channel 00 : 15[8a000] -> 14[88000] via P2P/IPC
362
+ r7i6n2:1370348:1370434 [1] NCCL INFO Channel 03 : 9[1c000] -> 8[1a000] via P2P/IPC
363
+ r7i6n3:610066:610123 [3] NCCL INFO Channel 02 : 15[8a000] -> 14[88000] via P2P/IPC
364
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 00 : 14[88000] -> 13[1c000] via P2P/IPC
365
+ r7i6n3:610065:610128 [2] NCCL INFO Channel 02 : 14[88000] -> 13[1c000] via P2P/IPC
366
+ r6i6n5:378200:378262 [0] NCCL INFO Channel 02 : 4[1a000] -> 0[1a000] [send] via NET/IB/1
367
+ r7i6n3:610063:610122 [0] NCCL INFO Connected all trees
368
+ r7i6n3:610063:610122 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
369
+ r7i6n3:610063:610122 [0] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
370
+ r7i6n3:610066:610123 [3] NCCL INFO Connected all trees
371
+ r7i6n3:610066:610123 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
372
+ r7i6n3:610066:610123 [3] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
373
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 03 : 6[88000] -> 2[88000] [send] via NET/IB/3
374
+ r7i6n3:610065:610128 [2] NCCL INFO Connected all trees
375
+ r7i6n3:610065:610128 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
376
+ r7i6n3:610065:610128 [2] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
377
+ r7i6n2:1370347:1370447 [0] NCCL INFO Channel 02 : 8[1a000] -> 5[1c000] [send] via NET/IB/1
378
+ r7i6n3:610064:610133 [1] NCCL INFO Connected all trees
379
+ r7i6n3:610064:610133 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
380
+ r7i6n3:610064:610133 [1] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
381
+ r7i6n3:610064:610133 [1] NCCL INFO comm 0x1471e8002fb0 rank 13 nranks 16 cudaDev 1 busId 1c000 - Init COMPLETE
382
+ r7i6n3:610063:610122 [0] NCCL INFO comm 0x148058002fb0 rank 12 nranks 16 cudaDev 0 busId 1a000 - Init COMPLETE
383
+ r7i6n3:610066:610123 [3] NCCL INFO comm 0x155220002fb0 rank 15 nranks 16 cudaDev 3 busId 8a000 - Init COMPLETE
384
+ r7i6n3:610065:610128 [2] NCCL INFO comm 0x1521c8002fb0 rank 14 nranks 16 cudaDev 2 busId 88000 - Init COMPLETE
385
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 03 : 10[88000] -> 7[8a000] [send] via NET/IB/3
386
+ r6i6n4:257717:257772 [3] NCCL INFO Channel 00 : 3[8a000] -> 2[88000] via P2P/IPC
387
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 00 : 11[8a000] -> 10[88000] via P2P/IPC
388
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 00 : 6[88000] -> 5[1c000] via P2P/IPC
389
+ r6i6n4:257717:257772 [3] NCCL INFO Channel 02 : 3[8a000] -> 2[88000] via P2P/IPC
390
+ r7i6n2:1370350:1370452 [3] NCCL INFO Channel 02 : 11[8a000] -> 10[88000] via P2P/IPC
391
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 00 : 2[88000] -> 1[1c000] via P2P/IPC
392
+ r6i6n4:257716:257777 [2] NCCL INFO Channel 02 : 2[88000] -> 1[1c000] via P2P/IPC
393
+ r6i6n5:378202:378256 [2] NCCL INFO Channel 02 : 6[88000] -> 5[1c000] via P2P/IPC
394
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 00 : 5[1c000] -> 4[1a000] via P2P/IPC
395
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 00 : 10[88000] -> 9[1c000] via P2P/IPC
396
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 01 : 5[1c000] -> 4[1a000] via P2P/IPC
397
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 00 : 7[8a000] -> 6[88000] via P2P/IPC
398
+ r6i6n4:257717:257772 [3] NCCL INFO Connected all trees
399
+ r7i6n2:1370349:1370433 [2] NCCL INFO Channel 02 : 10[88000] -> 9[1c000] via P2P/IPC
400
+ r6i6n4:257717:257772 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
401
+ r6i6n4:257717:257772 [3] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
402
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 02 : 5[1c000] -> 4[1a000] via P2P/IPC
403
+ r6i6n5:378203:378255 [3] NCCL INFO Channel 02 : 7[8a000] -> 6[88000] via P2P/IPC
404
+ r6i6n5:378201:378257 [1] NCCL INFO Channel 03 : 5[1c000] -> 4[1a000] via P2P/IPC
405
+ r6i6n4:257714:257762 [0] NCCL INFO Connected all trees
406
+ r7i6n2:1370350:1370452 [3] NCCL INFO Connected all trees
407
+ r6i6n4:257714:257762 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
408
+ r6i6n4:257714:257762 [0] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
409
+ r6i6n4:257716:257777 [2] NCCL INFO Connected all trees
410
+ r6i6n4:257716:257777 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
411
+ r6i6n4:257716:257777 [2] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
412
+ r7i6n2:1370350:1370452 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
413
+ r7i6n2:1370350:1370452 [3] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
414
+ r6i6n5:378203:378255 [3] NCCL INFO Connected all trees
415
+ r6i6n5:378203:378255 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
416
+ r6i6n5:378203:378255 [3] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
417
+ r6i6n4:257715:257767 [1] NCCL INFO Connected all trees
418
+ r6i6n4:257715:257767 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
419
+ r6i6n4:257715:257767 [1] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
420
+ r6i6n4:257714:257762 [0] NCCL INFO comm 0x145844002fb0 rank 0 nranks 16 cudaDev 0 busId 1a000 - Init COMPLETE
421
+ r6i6n4:257715:257767 [1] NCCL INFO comm 0x14c6f8002fb0 rank 1 nranks 16 cudaDev 1 busId 1c000 - Init COMPLETE
422
+ r6i6n4:257717:257772 [3] NCCL INFO comm 0x149830002fb0 rank 3 nranks 16 cudaDev 3 busId 8a000 - Init COMPLETE
423
+ r6i6n4:257716:257777 [2] NCCL INFO comm 0x151a88002fb0 rank 2 nranks 16 cudaDev 2 busId 88000 - Init COMPLETE
424
+ r7i6n2:1370349:1370433 [2] NCCL INFO Connected all trees
425
+ r7i6n2:1370349:1370433 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
426
+ r7i6n2:1370349:1370433 [2] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
427
+ r7i6n2:1370347:1370447 [0] NCCL INFO Connected all trees
428
+ r7i6n2:1370347:1370447 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
429
+ r7i6n2:1370347:1370447 [0] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
430
+ r6i6n4:257714:257714 [0] NCCL INFO Launch mode Parallel
431
+ r6i6n5:378202:378256 [2] NCCL INFO Connected all trees
432
+ r6i6n5:378202:378256 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
433
+ r6i6n5:378202:378256 [2] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
434
+ r7i6n2:1370348:1370434 [1] NCCL INFO Connected all trees
435
+ r7i6n2:1370348:1370434 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
436
+ r6i6n5:378200:378262 [0] NCCL INFO Connected all trees
437
+ r7i6n2:1370348:1370434 [1] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
438
+ r6i6n5:378200:378262 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
439
+ r6i6n5:378200:378262 [0] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
440
+ r7i6n2:1370347:1370447 [0] NCCL INFO comm 0x151020002fb0 rank 8 nranks 16 cudaDev 0 busId 1a000 - Init COMPLETE
441
+ r6i6n5:378201:378257 [1] NCCL INFO Connected all trees
442
+ r7i6n2:1370348:1370434 [1] NCCL INFO comm 0x14d418002fb0 rank 9 nranks 16 cudaDev 1 busId 1c000 - Init COMPLETE
443
+ r7i6n2:1370350:1370452 [3] NCCL INFO comm 0x154f28002fb0 rank 11 nranks 16 cudaDev 3 busId 8a000 - Init COMPLETE
444
+ r6i6n5:378201:378257 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 8/8/512
445
+ r6i6n5:378201:378257 [1] NCCL INFO 4 coll channels, 4 p2p channels, 1 p2p channels per peer
446
+ r7i6n2:1370349:1370433 [2] NCCL INFO comm 0x154d48002fb0 rank 10 nranks 16 cudaDev 2 busId 88000 - Init COMPLETE
447
+ r6i6n5:378200:378262 [0] NCCL INFO comm 0x153408002fb0 rank 4 nranks 16 cudaDev 0 busId 1a000 - Init COMPLETE
448
+ r6i6n5:378202:378256 [2] NCCL INFO comm 0x154188002fb0 rank 6 nranks 16 cudaDev 2 busId 88000 - Init COMPLETE
449
+ r6i6n5:378201:378257 [1] NCCL INFO comm 0x14c900002fb0 rank 5 nranks 16 cudaDev 1 busId 1c000 - Init COMPLETE
450
+ r6i6n5:378203:378255 [3] NCCL INFO comm 0x14ef58002fb0 rank 7 nranks 16 cudaDev 3 busId 8a000 - Init COMPLETE
451
+ ignore me 6
452
+ 14:
453
+ duration: 1.1593 sec
454
+ algo throughput: 55204675592.2273 bps, 55.2047 Gbps
455
+ busbw: 51.7544 Gbps
456
+ ignore me 6
457
+ ignore me 6
458
+ 15:
459
+ duration: 1.2942 sec
460
+ algo throughput: 49451976290.1993 bps, 49.4520 Gbps
461
+ busbw: 46.3612 Gbps
462
+ 13:
463
+ duration: 1.1545 sec
464
+ algo throughput: 55435153048.8659 bps, 55.4352 Gbps
465
+ busbw: 51.9705 Gbps
466
+ ignore me 6
467
+ 12:
468
+ duration: 1.2946 sec
469
+ algo throughput: 49434318117.6515 bps, 49.4343 Gbps
470
+ busbw: 46.3447 Gbps
471
+ ignore me 6
472
+ ignore me 6
473
+ 9:
474
+ duration: 1.4402 sec
475
+ algo throughput: 44438492090.8732 bps, 44.4385 Gbps
476
+ busbw: 41.6611 Gbps
477
+ 10:
478
+ duration: 1.4738 sec
479
+ algo throughput: 43424520166.0441 bps, 43.4245 Gbps
480
+ ignore me 6
481
+ busbw: 40.7105 Gbps
482
+ ignore me 6
483
+ ignore me 6
484
+ 3:
485
+ duration: 1.7691 sec
486
+ algo throughput: 36177572497.7145 bps, 36.1776 Gbps
487
+ busbw: 33.9165 Gbps
488
+ 0:
489
+ 11:
490
+ duration: 1.0927 sec
491
+ duration: 1.8093 sec
492
+ algo throughput: 35371927695.6812 bps, 35.3719 Gbps
493
+ busbw: 33.1612 Gbps
494
+ algo throughput: 58569704243.7844 bps, 58.5697 Gbps
495
+ busbw: 54.9091 Gbps
496
+ ignore me 6
497
+ ignore me 6
498
+ 5:
499
+ duration: 2.0802 sec
500
+ algo throughput: 30765780785.6832 bps, 30.7658 Gbps
501
+ busbw: 28.8429 Gbps
502
+ ignore me 6
503
+ 6:
504
+ duration: 2.1418 sec
505
+ algo throughput: 29880845367.0138 bps, 29.8808 Gbps
506
+ busbw: 28.0133 Gbps
507
+ ignore me 6
508
+ 8:
509
+ duration: 1.2561 sec
510
+ algo throughput: 50951080615.8564 bps, 50.9511 Gbps
511
+ busbw: 47.7666 Gbps
512
+ 7:
513
+ duration: 1.8124 sec
514
+ algo throughput: 35312957596.3833 bps, 35.3130 Gbps
515
+ busbw: 33.1059 Gbps
516
+ ignore me 6
517
+ 4:
518
+ duration: 1.7526 sec
519
+ algo throughput: 36517122206.3803 bps, 36.5171 Gbps
520
+ busbw: 34.2348 Gbps
521
+ ignore me 6
522
+ 1:
523
+ duration: 1.8395 sec
524
+ algo throughput: 34792737240.4271 bps, 34.7927 Gbps
525
+ busbw: 32.6182 Gbps
526
+ ignore me 6
527
+ 2:
528
+ duration: 1.7637 sec
529
+ algo throughput: 36287170944.4988 bps, 36.2872 Gbps
530
+ busbw: 34.0192 Gbps
531
+ ignore me 109
532
+ 14:
533
+ duration: 0.7080 sec
534
+ algo throughput: 90399491760.9001 bps, 90.3995 Gbps
535
+ busbw: 84.7495 Gbps
536
+ ignore me 109
537
+ 15:
538
+ duration: 0.7080 sec
539
+ algo throughput: 90395163203.6951 bps, 90.3952 Gbps
540
+ busbw: 84.7455 Gbps
541
+ ignore me 109
542
+ 13:
543
+ duration: 0.7081 sec
544
+ algo throughput: 90382326783.5510 bps, 90.3823 Gbps
545
+ busbw: 84.7334 Gbps
546
+ ignore me 109
547
+ 12:
548
+ duration: 0.7080 sec
549
+ algo throughput: 90401745663.7657 bps, 90.4017 Gbps
550
+ busbw: 84.7516 Gbps
551
+ ignore me 109
552
+ 9:
553
+ duration: 0.7080 sec
554
+ algo throughput: 90395783074.5905 bps, 90.3958 Gbps
555
+ busbw: 84.7460 Gbps
556
+ ignore me 109
557
+ 10:
558
+ duration: 0.7082 sec
559
+ algo throughput: 90374224799.5715 bps, 90.3742 Gbps
560
+ busbw: 84.7258 Gbps
561
+ ignore me 109
562
+ 0:
563
+ duration: 0.7083 sec
564
+ algo throughput: 90354374863.7591 bps, 90.3544 Gbps
565
+ busbw: 84.7072 Gbps
566
+ ignore me 109
567
+ 11:
568
+ duration: 0.7084 sec
569
+ algo throughput: 90343336684.2220 bps, 90.3433 Gbps
570
+ busbw: 84.6969 Gbps
571
+ ignore me 109
572
+ 3:
573
+ duration: 0.7087 sec
574
+ algo throughput: 90311896434.2268 bps, 90.3119 Gbps
575
+ busbw: 84.6674 Gbps
576
+ ignore me 109
577
+ 8:
578
+ duration: 0.7085 sec
579
+ algo throughput: 90330088518.1323 bps, 90.3301 Gbps
580
+ busbw: 84.6845 Gbps
581
+ ignore me 109
582
+ ignore me 109
583
+ 2:
584
+ duration: 0.7085 sec
585
+ algo throughput: 90337030385.0629 bps, 90.3370 Gbps
586
+ busbw: 84.6910 Gbps
587
+ 5:
588
+ duration: 0.7088 sec
589
+ algo throughput: 90287308758.8899 bps, 90.2873 Gbps
590
+ busbw: 84.6444 Gbps
591
+ ignore me 109
592
+ ignore me 109
593
+ 1:
594
+ duration: 0.7089 sec
595
+ algo throughput: 90280901515.7927 bps, 90.2809 Gbps
596
+ busbw: 84.6383 Gbps
597
+ 6:
598
+ duration: 0.7090 sec
599
+ algo throughput: 90270047942.0345 bps, 90.2700 Gbps
600
+ busbw: 84.6282 Gbps
601
+ ignore me 109
602
+ 7:
603
+ duration: 0.7090 sec
604
+ algo throughput: 90272586091.4933 bps, 90.2726 Gbps
605
+ busbw: 84.6305 Gbps
606
+ ignore me 109
607
+ 4:
608
+ duration: 0.7085 sec
609
+ algo throughput: 90337161208.6908 bps, 90.3372 Gbps
610
+ busbw: 84.6911 Gbps
611
+ ignore me 1749
612
+ 14:
613
+ duration: 0.7107 sec
614
+ algo throughput: 90058256584.7650 bps, 90.0583 Gbps
615
+ busbw: 84.4296 Gbps
616
+ ignore me 1749
617
+ ignore me 1749
618
+ 15:
619
+ duration: 0.7107 sec
620
+ algo throughput: 90057464420.3045 bps, 90.0575 Gbps
621
+ busbw: 84.4289 Gbps
622
+ 13:
623
+ duration: 0.7106 sec
624
+ algo throughput: 90070702828.5613 bps, 90.0707 Gbps
625
+ busbw: 84.4413 Gbps
626
+ ignore me 1749
627
+ ignore me 1749
628
+ 12:
629
+ duration: 0.7106 sec
630
+ algo throughput: 90059933061.1509 bps, 90.0599 Gbps
631
+ busbw: 84.4312 Gbps
632
+ 9:
633
+ duration: 0.7105 sec
634
+ algo throughput: 90071340053.9053 bps, 90.0713 Gbps
635
+ busbw: 84.4419 Gbps
636
+ ignore me 1749
637
+ 10:
638
+ duration: 0.7106 sec
639
+ algo throughput: 90063253431.3530 bps, 90.0633 Gbps
640
+ busbw: 84.4343 Gbps
641
+ ignore me 1749
642
+ ignore me 1749
643
+ 11:
644
+ duration: 0.7106 sec
645
+ algo throughput: 90065670303.2662 bps, 90.0657 Gbps
646
+ busbw: 84.4366 Gbps
647
+ 0:
648
+ duration: 0.7107 sec
649
+ algo throughput: 90053334417.7426 bps, 90.0533 Gbps
650
+ busbw: 84.4250 Gbps
651
+ ignore me 1749
652
+ 3:
653
+ duration: 0.7106 sec
654
+ algo throughput: 90068692693.3661 bps, 90.0687 Gbps
655
+ busbw: 84.4394 Gbps
656
+ ignore me 1749
657
+ ignore me 1749
658
+ ignore me 1749
659
+ 8:
660
+ duration: 0.7105 sec
661
+ 2:
662
+ duration: 0.7104 sec
663
+ algo throughput: 90072894085.7098 bps, 90.0729 Gbps
664
+ busbw: 84.4433 Gbps
665
+ algo throughput: 90091360420.7079 bps, 90.0914 Gbps
666
+ busbw: 84.4607 Gbps
667
+ ignore me 1749
668
+ ignore me 1749
669
+ 5:
670
+ duration: 0.7104 sec
671
+ algo throughput: 90091316675.7603 bps, 90.0913 Gbps
672
+ busbw: 84.4606 Gbps
673
+ 1:
674
+ duration: 0.7103 sec
675
+ algo throughput: 90101456511.8536 bps, 90.1015 Gbps
676
+ busbw: 84.4701 Gbps
677
+ 6:
678
+ duration: 0.7103 sec
679
+ algo throughput: 90107024226.3038 bps, 90.1070 Gbps
680
+ busbw: 84.4753 Gbps
681
+ ignore me 1749
682
+ 7:
683
+ duration: 0.7103 sec
684
+ algo throughput: 90107799997.7677 bps, 90.1078 Gbps
685
+ busbw: 84.4761 Gbps
686
+ ignore me 1749
687
+ 4:
688
+ duration: 0.7103 sec
689
+ algo throughput: 90102477650.2766 bps, 90.1025 Gbps
690
+ busbw: 84.4711 Gbps
691
+ ignore me 27986
692
+ 14:
693
+ duration: 0.7092 sec
694
+ algo throughput: 90242129271.5844 bps, 90.2421 Gbps
695
+ busbw: 84.6020 Gbps
696
+ ignore me 27986
697
+ ignore me 27986
698
+ 15:
699
+ duration: 0.7093 sec
700
+ algo throughput: 90233065038.0259 bps, 90.2331 Gbps
701
+ busbw: 84.5935 Gbps
702
+ 13:
703
+ duration: 0.7093 sec
704
+ algo throughput: 90226024022.6829 bps, 90.2260 Gbps
705
+ busbw: 84.5869 Gbps
706
+ ignore me 27986
707
+ 12:
708
+ duration: 0.7092 sec
709
+ algo throughput: 90236901241.3211 bps, 90.2369 Gbps
710
+ busbw: 84.5971 Gbps
711
+ ignore me 27986
712
+ 9:
713
+ duration: 0.7093 sec
714
+ algo throughput: 90231794012.9985 bps, 90.2318 Gbps
715
+ busbw: 84.5923 Gbps
716
+ ignore me 27986
717
+ 10:
718
+ duration: 0.7093 sec
719
+ algo throughput: 90224093186.3902 bps, 90.2241 Gbps
720
+ busbw: 84.5851 Gbps
721
+ ignore me 27986
722
+ ignore me 27986
723
+ 0:
724
+ duration: 0.7092 sec
725
+ 11:
726
+ duration: 0.7092 sec
727
+ algo throughput: 90246123531.0302 bps, 90.2461 Gbps
728
+ busbw: 84.6057 Gbps
729
+ algo throughput: 90237670852.4900 bps, 90.2377 Gbps
730
+ busbw: 84.5978 Gbps
731
+ ignore me 27986
732
+ 3:
733
+ duration: 0.7093 sec
734
+ algo throughput: 90235789890.2677 bps, 90.2358 Gbps
735
+ busbw: 84.5961 Gbps
736
+ ignore me 27986
737
+ 8:
738
+ duration: 0.7092 sec
739
+ algo throughput: 90238335770.9699 bps, 90.2383 Gbps
740
+ busbw: 84.5984 Gbps
741
+ ignore me 27986
742
+ ignore me 27986
743
+ 2:
744
+ duration: 0.7093 sec
745
+ algo throughput: 90223737057.9605 bps, 90.2237 Gbps
746
+ busbw: 84.5848 Gbps
747
+ ignore me 27986
748
+ ignore me 27986
749
+ 5:
750
+ duration: 0.7093 sec
751
+ algo throughput: 90226816489.8323 bps, 90.2268 Gbps
752
+ busbw: 84.5876 Gbps
753
+ 6:
754
+ duration: 0.7093 sec
755
+ algo throughput: 90227312447.8407 bps, 90.2273 Gbps
756
+ busbw: 84.5881 Gbps
757
+ 1:
758
+ duration: 0.7094 sec
759
+ algo throughput: 90222924803.6610 bps, 90.2229 Gbps
760
+ busbw: 84.5840 Gbps
761
+ ignore me 27986
762
+ 7:
763
+ duration: 0.7093 sec
764
+ algo throughput: 90229254099.1920 bps, 90.2293 Gbps
765
+ busbw: 84.5899 Gbps
766
+ ignore me 27986
767
+ 4:
768
+ duration: 0.7094 sec
769
+ algo throughput: 90217548148.5392 bps, 90.2175 Gbps
770
+ busbw: 84.5790 Gbps
771
+ ignore me 447779
772
+ 14:
773
+ duration: 0.7079 sec
774
+ algo throughput: 90401898007.1683 bps, 90.4019 Gbps
775
+ busbw: 84.7518 Gbps
776
+ ignore me 447779
777
+ 13:
778
+ duration: 0.7078 sec
779
+ algo throughput: 90422510545.5320 bps, 90.4225 Gbps
780
+ busbw: 84.7711 Gbps
781
+ ignore me 447779
782
+ 15:
783
+ duration: 0.7080 sec
784
+ algo throughput: 90397684358.3370 bps, 90.3977 Gbps
785
+ busbw: 84.7478 Gbps
786
+ ignore me 447779
787
+ 12:
788
+ duration: 0.7080 sec
789
+ algo throughput: 90398934791.1951 bps, 90.3989 Gbps
790
+ busbw: 84.7490 Gbps
791
+ ignore me 447779
792
+ 10:
793
+ duration: 0.7079 sec
794
+ algo throughput: 90404439072.1211 bps, 90.4044 Gbps
795
+ busbw: 84.7542 Gbps
796
+ ignore me 447779
797
+ 11:
798
+ duration: 0.7078 sec
799
+ algo throughput: 90415260229.4886 bps, 90.4153 Gbps
800
+ busbw: 84.7643 Gbps
801
+ ignore me 447779
802
+ ignore me 447779
803
+ 9:
804
+ duration: 0.7086 sec
805
+ algo throughput: 90317814308.9687 bps, 90.3178 Gbps
806
+ busbw: 84.6730 Gbps
807
+ 0:
808
+ duration: 0.7081 sec
809
+ algo throughput: 90384670565.8098 bps, 90.3847 Gbps
810
+ busbw: 84.7356 Gbps
811
+ ignore me 447779
812
+ 8:
813
+ duration: 0.7080 sec
814
+ algo throughput: 90401729311.5575 bps, 90.4017 Gbps
815
+ busbw: 84.7516 Gbps
816
+ ignore me 447779
817
+ ignore me 447779
818
+ 2:
819
+ duration: 0.7081 sec
820
+ algo throughput: 90388659575.5084 bps, 90.3887 Gbps
821
+ busbw: 84.7394 Gbps
822
+ 1:
823
+ duration: 0.7080 sec
824
+ algo throughput: 90397847806.5952 bps, 90.3978 Gbps
825
+ busbw: 84.7480 Gbps
826
+ ignore me 447779
827
+ ignore me 447779
828
+ 3:
829
+ duration: 0.7086 sec
830
+ 6:
831
+ duration: 0.7083 sec
832
+ algo throughput: 90320233896.8830 bps, 90.3202 Gbps
833
+ busbw: 84.6752 Gbps
834
+ algo throughput: 90360979559.3395 bps, 90.3610 Gbps
835
+ busbw: 84.7134 Gbps
836
+ ignore me 447779
837
+ 7:
838
+ duration: 0.7083 sec
839
+ algo throughput: 90360919482.0588 bps, 90.3609 Gbps
840
+ busbw: 84.7134 Gbps
841
+ ignore me 447779
842
+ 5:
843
+ duration: 0.7087 sec
844
+ algo throughput: 90307672345.7347 bps, 90.3077 Gbps
845
+ busbw: 84.6634 Gbps
846
+ ignore me 447779
847
+ 4:
848
+ duration: 0.7085 sec
849
+ algo throughput: 90328680753.0585 bps, 90.3287 Gbps
850
+ busbw: 84.6831 Gbps
bigscience/experiments/bandwidth/all_reduce_bench-a100-n4.slurm ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=all_reduce_bench-a100-n4
3
+ #SBATCH --partition=gpu_p5
4
+ #SBATCH --constraint=a100
5
+ #SBATCH --nodes=4
6
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
7
+ #SBATCH --cpus-per-task=64 # number of cores per tasks
8
+ #SBATCH --hint=nomultithread # we get physical cores not logical
9
+ #SBATCH --gres=gpu:8 # number of gpus
10
+ #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
11
+ #SBATCH --output=%x-%j.out # output file name
12
+ #SBATCH --account=six@a100
13
+
14
+ source $six_ALL_CCFRWORK/code/tr11-176B-ml/bigscience/train/tr11-176B-ml/start-tr11-176B-ml
15
+
16
+ export NNODES=$SLURM_NNODES
17
+ export GPUS_PER_NODE=8
18
+ export NCCL_DEBUG=info
19
+
20
+ export LOG_FILE=all_reduce_bench-a100-$NNODES.txt
21
+
22
+ export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
23
+
24
+ srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.launch --nnodes $NNODES --nproc_per_node $GPUS_PER_NODE --node_rank $SLURM_PROCID --master_addr $MASTER_ADDR --master_port 12345 all_reduce_bench.py' 2>&1 | tee $LOG_FILE
bigscience/experiments/bandwidth/all_reduce_bench-a100-n4.txt ADDED
@@ -0,0 +1,1424 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
2
+ and will be removed in future. Use torchrun.
3
+ Note that --use_env is set by default in torchrun.
4
+ If your script expects `--local_rank` argument to be set, please
5
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
6
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
7
+ further instructions
8
+
9
+ warnings.warn(
10
+ /gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
11
+ and will be removed in future. Use torchrun.
12
+ Note that --use_env is set by default in torchrun.
13
+ If your script expects `--local_rank` argument to be set, please
14
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
15
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
16
+ further instructions
17
+
18
+ warnings.warn(
19
+ /gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
20
+ and will be removed in future. Use torchrun.
21
+ Note that --use_env is set by default in torchrun.
22
+ If your script expects `--local_rank` argument to be set, please
23
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
24
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
25
+ further instructions
26
+
27
+ warnings.warn(
28
+ /gpfswork/rech/six/commun/conda/hf-prod/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
29
+ and will be removed in future. Use torchrun.
30
+ Note that --use_env is set by default in torchrun.
31
+ If your script expects `--local_rank` argument to be set, please
32
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
33
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
34
+ further instructions
35
+
36
+ warnings.warn(
37
+ WARNING:torch.distributed.run:
38
+ *****************************************
39
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
40
+ *****************************************
41
+ WARNING:torch.distributed.run:
42
+ *****************************************
43
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
44
+ *****************************************
45
+ WARNING:torch.distributed.run:
46
+ *****************************************
47
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
48
+ *****************************************
49
+ WARNING:torch.distributed.run:
50
+ *****************************************
51
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
52
+ *****************************************
53
+ local_rank: 1
54
+ local_rank: 3
55
+ local_rank: 5
56
+ local_rank: 6
57
+ local_rank: 7
58
+ local_rank: 2
59
+ local_rank: 2
60
+ local_rank: 3
61
+ local_rank: 2
62
+ local_rank: 1
63
+ local_rank: 0
64
+ local_rank: 2
65
+ local_rank: 0
66
+ local_rank: 0
67
+ local_rank: 5
68
+ local_rank: 1
69
+ local_rank: 4
70
+ local_rank: 3
71
+ local_rank: 7
72
+ local_rank: 7
73
+ local_rank: 6
74
+ local_rank: 6
75
+ local_rank: 4
76
+ local_rank: 5
77
+ local_rank: 5
78
+ local_rank: 1
79
+ local_rank: 3
80
+ local_rank: 4
81
+ local_rank: 6
82
+ local_rank: 7
83
+ local_rank: 0
84
+ local_rank: 4
85
+ 0 data size: 4.0 GB
86
+ 1 data size: 4.0 GB
87
+ 5 data size: 4.0 GB
88
+ 20 data size: 4.0 GB
89
+ 30 data size: 4.0 GB
90
+ 3 data size: 4.0 GB
91
+ 12 data size: 4.0 GB
92
+ 21 data size: 4.0 GB
93
+ 28 data size: 4.0 GB
94
+ 17 data size: 4.0 GB
95
+ 2 data size: 4.0 GB
96
+ 25 data size: 4.0 GB
97
+ 19 data size: 4.0 GB
98
+ 22 data size: 4.0 GB
99
+ 16 data size: 4.0 GB
100
+ 15 data size: 4.0 GB
101
+ 26 data size: 4.0 GB
102
+ 27 data size: 4.0 GB
103
+ 6 data size: 4.0 GB
104
+ 24 data size: 4.0 GB
105
+ 9 data size: 4.0 GB
106
+ 29 data size: 4.0 GB
107
+ 23 data size: 4.0 GB
108
+ 31 data size: 4.0 GB
109
+ 14 data size: 4.0 GB
110
+ 7 data size: 4.0 GB
111
+ 18 data size: 4.0 GB
112
+ 8 data size: 4.0 GB
113
+ 11 data size: 4.0 GB
114
+ 10 data size: 4.0 GB
115
+ 13 data size: 4.0 GB
116
+ 4 data size: 4.0 GB
117
+ jean-zay-iam37:261379:261379 [0] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
118
+ jean-zay-iam37:261379:261379 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
119
+ jean-zay-iam37:261379:261379 [0] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
120
+ jean-zay-iam37:261379:261379 [0] NCCL INFO Using network IB
121
+ NCCL version 2.10.3+cuda11.3
122
+ jean-zay-iam37:261380:261380 [1] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
123
+ jean-zay-iam37:261383:261383 [4] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
124
+ jean-zay-iam37:261384:261384 [5] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
125
+ jean-zay-iam37:261386:261386 [7] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
126
+ jean-zay-iam37:261381:261381 [2] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
127
+ jean-zay-iam37:261382:261382 [3] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
128
+ jean-zay-iam41:276753:276753 [7] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
129
+ jean-zay-iam41:276748:276748 [2] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
130
+ jean-zay-iam41:276747:276747 [1] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
131
+ jean-zay-iam41:276752:276752 [6] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
132
+ jean-zay-iam41:276750:276750 [4] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
133
+ jean-zay-iam41:276751:276751 [5] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
134
+ jean-zay-iam41:276746:276746 [0] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
135
+ jean-zay-iam41:276749:276749 [3] NCCL INFO Bootstrap : Using ib0:10.148.8.206<0>
136
+ jean-zay-iam37:261384:261384 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
137
+ jean-zay-iam52:263016:263016 [1] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
138
+ jean-zay-iam52:263017:263017 [2] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
139
+ jean-zay-iam52:263018:263018 [3] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
140
+ jean-zay-iam52:263021:263021 [6] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
141
+ jean-zay-iam52:263019:263019 [4] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
142
+ jean-zay-iam52:263015:263015 [0] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
143
+ jean-zay-iam52:263020:263020 [5] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
144
+ jean-zay-iam52:263022:263022 [7] NCCL INFO Bootstrap : Using ib0:10.148.8.217<0>
145
+ jean-zay-iam37:261386:261386 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
146
+ jean-zay-iam37:261381:261381 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
147
+ jean-zay-iam37:261380:261380 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
148
+ jean-zay-iam37:261383:261383 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
149
+ jean-zay-iam40:289973:289973 [6] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
150
+ jean-zay-iam40:289967:289967 [0] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
151
+ jean-zay-iam40:289969:289969 [2] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
152
+ jean-zay-iam40:289971:289971 [4] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
153
+ jean-zay-iam40:289970:289970 [3] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
154
+ jean-zay-iam40:289972:289972 [5] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
155
+ jean-zay-iam40:289968:289968 [1] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
156
+ jean-zay-iam40:289974:289974 [7] NCCL INFO Bootstrap : Using ib0:10.148.8.205<0>
157
+ jean-zay-iam37:261382:261382 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
158
+ jean-zay-iam41:276751:276751 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
159
+ jean-zay-iam41:276749:276749 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
160
+ jean-zay-iam41:276746:276746 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
161
+ jean-zay-iam41:276753:276753 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
162
+ jean-zay-iam41:276748:276748 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
163
+ jean-zay-iam41:276752:276752 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
164
+ jean-zay-iam41:276747:276747 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
165
+ jean-zay-iam41:276750:276750 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
166
+ jean-zay-iam52:263017:263017 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
167
+ jean-zay-iam52:263016:263016 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
168
+ jean-zay-iam40:289968:289968 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
169
+ jean-zay-iam40:289974:289974 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
170
+ jean-zay-iam52:263021:263021 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
171
+ jean-zay-iam52:263015:263015 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
172
+ jean-zay-iam52:263019:263019 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
173
+ jean-zay-iam52:263020:263020 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
174
+ jean-zay-iam40:289973:289973 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
175
+ jean-zay-iam52:263018:263018 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
176
+ jean-zay-iam52:263022:263022 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
177
+ jean-zay-iam40:289972:289972 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
178
+ jean-zay-iam40:289969:289969 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
179
+ jean-zay-iam40:289971:289971 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
180
+ jean-zay-iam40:289967:289967 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
181
+ jean-zay-iam40:289970:289970 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
182
+ jean-zay-iam37:261384:261384 [5] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
183
+ jean-zay-iam37:261384:261384 [5] NCCL INFO Using network IB
184
+ jean-zay-iam37:261380:261380 [1] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
185
+ jean-zay-iam37:261380:261380 [1] NCCL INFO Using network IB
186
+ jean-zay-iam37:261383:261383 [4] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
187
+ jean-zay-iam37:261381:261381 [2] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
188
+ jean-zay-iam37:261386:261386 [7] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
189
+ jean-zay-iam37:261381:261381 [2] NCCL INFO Using network IB
190
+ jean-zay-iam37:261383:261383 [4] NCCL INFO Using network IB
191
+ jean-zay-iam37:261386:261386 [7] NCCL INFO Using network IB
192
+ jean-zay-iam37:261382:261382 [3] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
193
+ jean-zay-iam37:261382:261382 [3] NCCL INFO Using network IB
194
+ jean-zay-iam41:276751:276751 [5] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
195
+ jean-zay-iam41:276751:276751 [5] NCCL INFO Using network IB
196
+ jean-zay-iam41:276748:276748 [2] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
197
+ jean-zay-iam41:276748:276748 [2] NCCL INFO Using network IB
198
+ jean-zay-iam41:276747:276747 [1] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
199
+ jean-zay-iam41:276747:276747 [1] NCCL INFO Using network IB
200
+ jean-zay-iam41:276752:276752 [6] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
201
+ jean-zay-iam41:276746:276746 [0] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
202
+ jean-zay-iam41:276749:276749 [3] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
203
+ jean-zay-iam41:276753:276753 [7] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
204
+ jean-zay-iam41:276749:276749 [3] NCCL INFO Using network IB
205
+ jean-zay-iam41:276750:276750 [4] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.206<0>
206
+ jean-zay-iam41:276746:276746 [0] NCCL INFO Using network IB
207
+ jean-zay-iam41:276753:276753 [7] NCCL INFO Using network IB
208
+ jean-zay-iam41:276752:276752 [6] NCCL INFO Using network IB
209
+ jean-zay-iam41:276750:276750 [4] NCCL INFO Using network IB
210
+ jean-zay-iam52:263022:263022 [7] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
211
+ jean-zay-iam52:263022:263022 [7] NCCL INFO Using network IB
212
+ jean-zay-iam52:263019:263019 [4] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
213
+ jean-zay-iam52:263019:263019 [4] NCCL INFO Using network IB
214
+ jean-zay-iam52:263021:263021 [6] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
215
+ jean-zay-iam52:263021:263021 [6] NCCL INFO Using network IB
216
+ jean-zay-iam52:263017:263017 [2] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
217
+ jean-zay-iam52:263017:263017 [2] NCCL INFO Using network IB
218
+ jean-zay-iam52:263020:263020 [5] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
219
+ jean-zay-iam52:263020:263020 [5] NCCL INFO Using network IB
220
+ jean-zay-iam52:263015:263015 [0] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
221
+ jean-zay-iam52:263018:263018 [3] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
222
+ jean-zay-iam52:263015:263015 [0] NCCL INFO Using network IB
223
+ jean-zay-iam52:263018:263018 [3] NCCL INFO Using network IB
224
+ jean-zay-iam52:263016:263016 [1] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.217<0>
225
+ jean-zay-iam52:263016:263016 [1] NCCL INFO Using network IB
226
+ jean-zay-iam40:289968:289968 [1] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
227
+ jean-zay-iam40:289968:289968 [1] NCCL INFO Using network IB
228
+ jean-zay-iam40:289972:289972 [5] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
229
+ jean-zay-iam40:289972:289972 [5] NCCL INFO Using network IB
230
+ jean-zay-iam40:289969:289969 [2] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
231
+ jean-zay-iam40:289969:289969 [2] NCCL INFO Using network IB
232
+ jean-zay-iam40:289973:289973 [6] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
233
+ jean-zay-iam40:289973:289973 [6] NCCL INFO Using network IB
234
+ jean-zay-iam40:289970:289970 [3] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
235
+ jean-zay-iam40:289970:289970 [3] NCCL INFO Using network IB
236
+ jean-zay-iam40:289967:289967 [0] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
237
+ jean-zay-iam40:289967:289967 [0] NCCL INFO Using network IB
238
+ jean-zay-iam40:289974:289974 [7] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
239
+ jean-zay-iam40:289971:289971 [4] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.205<0>
240
+ jean-zay-iam40:289974:289974 [7] NCCL INFO Using network IB
241
+ jean-zay-iam40:289971:289971 [4] NCCL INFO Using network IB
242
+ jean-zay-iam37:261385:261385 [6] NCCL INFO Bootstrap : Using ib0:10.148.8.203<0>
243
+ jean-zay-iam37:261385:261385 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
244
+ jean-zay-iam37:261385:261385 [6] NCCL INFO NET/IB : Using [0]hfi1_1:1/IB [1]hfi1_0:1/IB [2]hfi1_2:1/IB [3]hfi1_3:1/IB ; OOB ib0:10.148.8.203<0>
245
+ jean-zay-iam37:261385:261385 [6] NCCL INFO Using network IB
246
+ jean-zay-iam52:263016:263142 [1] NCCL INFO Trees [0] 26/-1/-1->25->24 [1] 26/-1/-1->25->24
247
+ jean-zay-iam52:263016:263142 [1] NCCL INFO Setting affinity for GPU 1 to ffffffff
248
+ jean-zay-iam52:263017:263138 [2] NCCL INFO Trees [0] 27/-1/-1->26->25 [1] 27/-1/-1->26->25
249
+ jean-zay-iam52:263017:263138 [2] NCCL INFO Setting affinity for GPU 2 to ffffffff
250
+ jean-zay-iam52:263018:263141 [3] NCCL INFO Trees [0] 28/-1/-1->27->26 [1] 28/-1/-1->27->26
251
+ jean-zay-iam52:263018:263141 [3] NCCL INFO Setting affinity for GPU 3 to ffffffff
252
+ jean-zay-iam52:263021:263137 [6] NCCL INFO Trees [0] 31/-1/-1->30->29 [1] 31/-1/-1->30->29
253
+ jean-zay-iam52:263020:263139 [5] NCCL INFO Trees [0] 30/-1/-1->29->28 [1] 30/-1/-1->29->28
254
+ jean-zay-iam52:263021:263137 [6] NCCL INFO Setting affinity for GPU 6 to ff,00000000
255
+ jean-zay-iam52:263020:263139 [5] NCCL INFO Setting affinity for GPU 5 to ff,00000000
256
+ jean-zay-iam52:263019:263136 [4] NCCL INFO Trees [0] 29/-1/-1->28->27 [1] 29/-1/-1->28->27
257
+ jean-zay-iam52:263022:263135 [7] NCCL INFO Trees [0] -1/-1/-1->31->30 [1] -1/-1/-1->31->30
258
+ jean-zay-iam52:263019:263136 [4] NCCL INFO Setting affinity for GPU 4 to ff,00000000
259
+ jean-zay-iam52:263022:263135 [7] NCCL INFO Setting affinity for GPU 7 to ff,00000000
260
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
261
+ jean-zay-iam37:261381:261500 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/-1/-1->2->1
262
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
263
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Trees [0] 1/16/-1->0->-1 [1] 1/-1/-1->0->8
264
+ jean-zay-iam37:261380:261497 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] 2/-1/-1->1->0
265
+ jean-zay-iam37:261381:261500 [2] NCCL INFO Setting affinity for GPU 2 to ffffffff
266
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Setting affinity for GPU 0 to ffffffff
267
+ jean-zay-iam37:261380:261497 [1] NCCL INFO Setting affinity for GPU 1 to ffffffff
268
+ jean-zay-iam41:276749:276869 [3] NCCL INFO Trees [0] 20/-1/-1->19->18 [1] 20/-1/-1->19->18
269
+ jean-zay-iam41:276751:276865 [5] NCCL INFO Trees [0] 22/-1/-1->21->20 [1] 22/-1/-1->21->20
270
+ jean-zay-iam41:276749:276869 [3] NCCL INFO Setting affinity for GPU 3 to ffffffff
271
+ jean-zay-iam41:276750:276871 [4] NCCL INFO Trees [0] 21/-1/-1->20->19 [1] 21/-1/-1->20->19
272
+ jean-zay-iam41:276752:276872 [6] NCCL INFO Trees [0] 23/-1/-1->22->21 [1] 23/-1/-1->22->21
273
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Trees [0] 25/-1/-1->24->16 [1] 25/8/-1->24->-1
274
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Setting affinity for GPU 0 to ffffffff
275
+ jean-zay-iam40:289974:290092 [7] NCCL INFO Trees [0] -1/-1/-1->15->14 [1] -1/-1/-1->15->14
276
+ jean-zay-iam41:276751:276865 [5] NCCL INFO Setting affinity for GPU 5 to ff,00000000
277
+ jean-zay-iam41:276750:276871 [4] NCCL INFO Setting affinity for GPU 4 to ff,00000000
278
+ jean-zay-iam41:276752:276872 [6] NCCL INFO Setting affinity for GPU 6 to ff,00000000
279
+ jean-zay-iam41:276753:276870 [7] NCCL INFO Trees [0] -1/-1/-1->23->22 [1] -1/-1/-1->23->22
280
+ jean-zay-iam41:276753:276870 [7] NCCL INFO Setting affinity for GPU 7 to ff,00000000
281
+ jean-zay-iam40:289974:290092 [7] NCCL INFO Setting affinity for GPU 7 to ff,00000000
282
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Trees [0] 18/8/-1->17->16 [1] 18/-1/-1->17->16
283
+ jean-zay-iam41:276748:276866 [2] NCCL INFO Trees [0] 19/-1/-1->18->17 [1] 19/-1/-1->18->17
284
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Trees [0] 17/24/-1->16->0 [1] 17/-1/-1->16->9
285
+ jean-zay-iam41:276748:276866 [2] NCCL INFO Setting affinity for GPU 2 to ffffffff
286
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Setting affinity for GPU 0 to ffffffff
287
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Setting affinity for GPU 1 to ffffffff
288
+ jean-zay-iam37:261382:261501 [3] NCCL INFO Trees [0] 4/-1/-1->3->2 [1] 4/-1/-1->3->2
289
+ jean-zay-iam37:261382:261501 [3] NCCL INFO Setting affinity for GPU 3 to ffffffff
290
+ jean-zay-iam37:261383:261499 [4] NCCL INFO Trees [0] 5/-1/-1->4->3 [1] 5/-1/-1->4->3
291
+ jean-zay-iam37:261383:261499 [4] NCCL INFO Setting affinity for GPU 4 to ff,00000000
292
+ jean-zay-iam37:261385:261506 [6] NCCL INFO Trees [0] 7/-1/-1->6->5 [1] 7/-1/-1->6->5
293
+ jean-zay-iam37:261385:261506 [6] NCCL INFO Setting affinity for GPU 6 to ff,00000000
294
+ jean-zay-iam37:261384:261496 [5] NCCL INFO Trees [0] 6/-1/-1->5->4 [1] 6/-1/-1->5->4
295
+ jean-zay-iam37:261384:261496 [5] NCCL INFO Setting affinity for GPU 5 to ff,00000000
296
+ jean-zay-iam37:261386:261498 [7] NCCL INFO Trees [0] -1/-1/-1->7->6 [1] -1/-1/-1->7->6
297
+ jean-zay-iam37:261386:261498 [7] NCCL INFO Setting affinity for GPU 7 to ff,00000000
298
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Trees [0] 9/-1/-1->8->17 [1] 9/0/-1->8->24
299
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Setting affinity for GPU 0 to ffffffff
300
+ jean-zay-iam40:289969:290087 [2] NCCL INFO Trees [0] 11/-1/-1->10->9 [1] 11/-1/-1->10->9
301
+ jean-zay-iam40:289970:290090 [3] NCCL INFO Trees [0] 12/-1/-1->11->10 [1] 12/-1/-1->11->10
302
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Trees [0] 10/-1/-1->9->8 [1] 10/16/-1->9->8
303
+ jean-zay-iam40:289973:290089 [6] NCCL INFO Trees [0] 15/-1/-1->14->13 [1] 15/-1/-1->14->13
304
+ jean-zay-iam40:289969:290087 [2] NCCL INFO Setting affinity for GPU 2 to ffffffff
305
+ jean-zay-iam40:289970:290090 [3] NCCL INFO Setting affinity for GPU 3 to ffffffff
306
+ jean-zay-iam40:289973:290089 [6] NCCL INFO Setting affinity for GPU 6 to ff,00000000
307
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Setting affinity for GPU 1 to ffffffff
308
+ jean-zay-iam40:289972:290088 [5] NCCL INFO Trees [0] 14/-1/-1->13->12 [1] 14/-1/-1->13->12
309
+ jean-zay-iam40:289971:290093 [4] NCCL INFO Trees [0] 13/-1/-1->12->11 [1] 13/-1/-1->12->11
310
+ jean-zay-iam40:289972:290088 [5] NCCL INFO Setting affinity for GPU 5 to ff,00000000
311
+ jean-zay-iam40:289971:290093 [4] NCCL INFO Setting affinity for GPU 4 to ff,00000000
312
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00 : 31[cb000] -> 0[7000] [receive] via NET/IB/1
313
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 00 : 7[cb000] -> 8[7000] [receive] via NET/IB/1
314
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 00 : 23[cb000] -> 24[7000] [receive] via NET/IB/1
315
+ jean-zay-iam52:263016:263142 [1] NCCL INFO Channel 00 : 25[b000] -> 26[48000] via P2P/IPC/read
316
+ jean-zay-iam52:263017:263138 [2] NCCL INFO Channel 00 : 26[48000] -> 27[4c000] via P2P/IPC/read
317
+ jean-zay-iam52:263018:263141 [3] NCCL INFO Channel 00 : 27[4c000] -> 28[88000] via P2P/IPC/read
318
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 15[cb000] -> 16[7000] [receive] via NET/IB/1
319
+ jean-zay-iam52:263020:263139 [5] NCCL INFO Channel 00 : 29[8b000] -> 30[c8000] via P2P/IPC/read
320
+ jean-zay-iam40:289974:290092 [7] NCCL INFO Channel 00 : 15[cb000] -> 16[7000] [send] via NET/IB/3
321
+ jean-zay-iam41:276752:276872 [6] NCCL INFO Channel 00 : 22[c8000] -> 23[cb000] via P2P/IPC/read
322
+ jean-zay-iam52:263019:263136 [4] NCCL INFO Channel 00 : 28[88000] -> 29[8b000] via P2P/IPC/read
323
+ jean-zay-iam52:263021:263137 [6] NCCL INFO Channel 00 : 30[c8000] -> 31[cb000] via P2P/IPC/read
324
+ jean-zay-iam52:263016:263142 [1] NCCL INFO Channel 01 : 25[b000] -> 26[48000] via P2P/IPC/read
325
+ jean-zay-iam41:276750:276871 [4] NCCL INFO Channel 00 : 20[88000] -> 21[8b000] via P2P/IPC/read
326
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 01 : 23[cb000] -> 24[7000] [receive] via NET/IB/1
327
+ jean-zay-iam52:263017:263138 [2] NCCL INFO Channel 01 : 26[48000] -> 27[4c000] via P2P/IPC/read
328
+ jean-zay-iam41:276751:276865 [5] NCCL INFO Channel 00 : 21[8b000] -> 22[c8000] via P2P/IPC/read
329
+ jean-zay-iam52:263022:263135 [7] NCCL INFO Channel 00 : 31[cb000] -> 0[7000] [send] via NET/IB/3
330
+ jean-zay-iam41:276749:276869 [3] NCCL INFO Channel 00 : 19[4c000] -> 20[88000] via P2P/IPC/read
331
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01 : 31[cb000] -> 0[7000] [receive] via NET/IB/1
332
+ jean-zay-iam37:261381:261500 [2] NCCL INFO Channel 00 : 2[48000] -> 3[4c000] via P2P/IPC/read
333
+ jean-zay-iam52:263018:263141 [3] NCCL INFO Channel 01 : 27[4c000] -> 28[88000] via P2P/IPC/read
334
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 00 : 17[b000] -> 18[48000] via P2P/IPC/read
335
+ jean-zay-iam41:276748:276866 [2] NCCL INFO Channel 00 : 18[48000] -> 19[4c000] via P2P/IPC/read
336
+ jean-zay-iam52:263020:263139 [5] NCCL INFO Channel 01 : 29[8b000] -> 30[c8000] via P2P/IPC/read
337
+ jean-zay-iam37:261380:261497 [1] NCCL INFO Channel 00 : 1[b000] -> 2[48000] via P2P/IPC/read
338
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 01 : 15[cb000] -> 16[7000] [receive] via NET/IB/1
339
+ jean-zay-iam37:261382:261501 [3] NCCL INFO Channel 00 : 3[4c000] -> 4[88000] via P2P/IPC/read
340
+ jean-zay-iam37:261385:261506 [6] NCCL INFO Channel 00 : 6[c8000] -> 7[cb000] via P2P/IPC/read
341
+ jean-zay-iam41:276752:276872 [6] NCCL INFO Channel 01 : 22[c8000] -> 23[cb000] via P2P/IPC/read
342
+ jean-zay-iam52:263019:263136 [4] NCCL INFO Channel 01 : 28[88000] -> 29[8b000] via P2P/IPC/read
343
+ jean-zay-iam52:263021:263137 [6] NCCL INFO Channel 01 : 30[c8000] -> 31[cb000] via P2P/IPC/read
344
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 7[cb000] -> 8[7000] [receive] via NET/IB/1
345
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 00 : 9[b000] -> 10[48000] via P2P/IPC/read
346
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 00 : 24[7000] -> 25[b000] via P2P/IPC/read
347
+ jean-zay-iam41:276753:276870 [7] NCCL INFO Channel 00 : 23[cb000] -> 24[7000] [send] via NET/IB/3
348
+ jean-zay-iam41:276750:276871 [4] NCCL INFO Channel 01 : 20[88000] -> 21[8b000] via P2P/IPC/read
349
+ jean-zay-iam40:289970:290090 [3] NCCL INFO Channel 00 : 11[4c000] -> 12[88000] via P2P/IPC/read
350
+ jean-zay-iam40:289969:290087 [2] NCCL INFO Channel 00 : 10[48000] -> 11[4c000] via P2P/IPC/read
351
+ jean-zay-iam40:289973:290089 [6] NCCL INFO Channel 00 : 14[c8000] -> 15[cb000] via P2P/IPC/read
352
+ jean-zay-iam40:289972:290088 [5] NCCL INFO Channel 00 : 13[8b000] -> 14[c8000] via P2P/IPC/read
353
+ jean-zay-iam37:261386:261498 [7] NCCL INFO Channel 00 : 7[cb000] -> 8[7000] [send] via NET/IB/3
354
+ jean-zay-iam41:276751:276865 [5] NCCL INFO Channel 01 : 21[8b000] -> 22[c8000] via P2P/IPC/read
355
+ jean-zay-iam41:276749:276869 [3] NCCL INFO Channel 01 : 19[4c000] -> 20[88000] via P2P/IPC/read
356
+ jean-zay-iam40:289974:290092 [7] NCCL INFO Channel 01 : 15[cb000] -> 16[7000] [send] via NET/IB/3
357
+ jean-zay-iam40:289971:290093 [4] NCCL INFO Channel 00 : 12[88000] -> 13[8b000] via P2P/IPC/read
358
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 01 : 17[b000] -> 18[48000] via P2P/IPC/read
359
+ jean-zay-iam41:276748:276866 [2] NCCL INFO Channel 01 : 18[48000] -> 19[4c000] via P2P/IPC/read
360
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 16[7000] -> 17[b000] via P2P/IPC/read
361
+ jean-zay-iam37:261383:261499 [4] NCCL INFO Channel 00 : 4[88000] -> 5[8b000] via P2P/IPC/read
362
+ jean-zay-iam52:263022:263135 [7] NCCL INFO Channel 01 : 31[cb000] -> 0[7000] [send] via NET/IB/3
363
+ jean-zay-iam37:261384:261496 [5] NCCL INFO Channel 00 : 5[8b000] -> 6[c8000] via P2P/IPC/read
364
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 01 : 9[b000] -> 10[48000] via P2P/IPC/read
365
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 00 : 8[7000] -> 9[b000] via P2P/IPC/read
366
+ jean-zay-iam40:289970:290090 [3] NCCL INFO Channel 01 : 11[4c000] -> 12[88000] via P2P/IPC/read
367
+ jean-zay-iam40:289969:290087 [2] NCCL INFO Channel 01 : 10[48000] -> 11[4c000] via P2P/IPC/read
368
+ jean-zay-iam40:289972:290088 [5] NCCL INFO Channel 01 : 13[8b000] -> 14[c8000] via P2P/IPC/read
369
+ jean-zay-iam40:289973:290089 [6] NCCL INFO Channel 01 : 14[c8000] -> 15[cb000] via P2P/IPC/read
370
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00 : 0[7000] -> 1[b000] via P2P/IPC/read
371
+ jean-zay-iam37:261381:261500 [2] NCCL INFO Channel 01 : 2[48000] -> 3[4c000] via P2P/IPC/read
372
+ jean-zay-iam40:289971:290093 [4] NCCL INFO Channel 01 : 12[88000] -> 13[8b000] via P2P/IPC/read
373
+ jean-zay-iam37:261380:261497 [1] NCCL INFO Channel 01 : 1[b000] -> 2[48000] via P2P/IPC/read
374
+ jean-zay-iam37:261382:261501 [3] NCCL INFO Channel 01 : 3[4c000] -> 4[88000] via P2P/IPC/read
375
+ jean-zay-iam37:261385:261506 [6] NCCL INFO Channel 01 : 6[c8000] -> 7[cb000] via P2P/IPC/read
376
+ jean-zay-iam37:261386:261498 [7] NCCL INFO Channel 01 : 7[cb000] -> 8[7000] [send] via NET/IB/3
377
+ jean-zay-iam41:276753:276870 [7] NCCL INFO Channel 01 : 23[cb000] -> 24[7000] [send] via NET/IB/3
378
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 01 : 24[7000] -> 25[b000] via P2P/IPC/read
379
+ jean-zay-iam37:261383:261499 [4] NCCL INFO Channel 01 : 4[88000] -> 5[8b000] via P2P/IPC/read
380
+ jean-zay-iam37:261384:261496 [5] NCCL INFO Channel 01 : 5[8b000] -> 6[c8000] via P2P/IPC/read
381
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 8[7000] -> 9[b000] via P2P/IPC/read
382
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 01 : 16[7000] -> 17[b000] via P2P/IPC/read
383
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01 : 0[7000] -> 1[b000] via P2P/IPC/read
384
+ jean-zay-iam52:263017:263138 [2] NCCL INFO Connected all rings
385
+ jean-zay-iam41:276753:276870 [7] NCCL INFO Connected all rings
386
+ jean-zay-iam52:263018:263141 [3] NCCL INFO Connected all rings
387
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Connected all rings
388
+ jean-zay-iam52:263019:263136 [4] NCCL INFO Connected all rings
389
+ jean-zay-iam37:261386:261498 [7] NCCL INFO Connected all rings
390
+ jean-zay-iam41:276751:276865 [5] NCCL INFO Connected all rings
391
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Connected all rings
392
+ jean-zay-iam52:263020:263139 [5] NCCL INFO Connected all rings
393
+ jean-zay-iam40:289974:290092 [7] NCCL INFO Connected all rings
394
+ jean-zay-iam41:276750:276871 [4] NCCL INFO Connected all rings
395
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Connected all rings
396
+ jean-zay-iam52:263022:263135 [7] NCCL INFO Connected all rings
397
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Connected all rings
398
+ jean-zay-iam41:276748:276866 [2] NCCL INFO Connected all rings
399
+ jean-zay-iam41:276749:276869 [3] NCCL INFO Connected all rings
400
+ jean-zay-iam52:263021:263137 [6] NCCL INFO Connected all rings
401
+ jean-zay-iam40:289973:290089 [6] NCCL INFO Connected all rings
402
+ jean-zay-iam40:289969:290087 [2] NCCL INFO Connected all rings
403
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 00 : 16[7000] -> 24[7000] [receive] via NET/IB/1
404
+ jean-zay-iam41:276753:276870 [7] NCCL INFO Channel 00 : 23[cb000] -> 22[c8000] via P2P/IPC/read
405
+ jean-zay-iam37:261381:261500 [2] NCCL INFO Connected all rings
406
+ jean-zay-iam40:289972:290088 [5] NCCL INFO Connected all rings
407
+ jean-zay-iam52:263016:263142 [1] NCCL INFO Connected all rings
408
+ jean-zay-iam52:263022:263135 [7] NCCL INFO Channel 00 : 31[cb000] -> 30[c8000] via P2P/IPC/read
409
+ jean-zay-iam41:276752:276872 [6] NCCL INFO Connected all rings
410
+ jean-zay-iam40:289970:290090 [3] NCCL INFO Connected all rings
411
+ jean-zay-iam40:289971:290093 [4] NCCL INFO Connected all rings
412
+ jean-zay-iam37:261386:261498 [7] NCCL INFO Channel 00 : 7[cb000] -> 6[c8000] via P2P/IPC/read
413
+ jean-zay-iam37:261382:261501 [3] NCCL INFO Connected all rings
414
+ jean-zay-iam40:289974:290092 [7] NCCL INFO Channel 00 : 15[cb000] -> 14[c8000] via P2P/IPC/read
415
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Connected all rings
416
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 0[7000] -> 8[7000] [receive] via NET/IB/1
417
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 01 : 9[b000] -> 16[7000] [receive] via NET/IB/1
418
+ jean-zay-iam37:261384:261496 [5] NCCL INFO Connected all rings
419
+ jean-zay-iam37:261383:261499 [4] NCCL INFO Connected all rings
420
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Connected all rings
421
+ jean-zay-iam37:261385:261506 [6] NCCL INFO Connected all rings
422
+ jean-zay-iam52:263022:263135 [7] NCCL INFO Channel 01 : 31[cb000] -> 30[c8000] via P2P/IPC/read
423
+ jean-zay-iam41:276753:276870 [7] NCCL INFO Channel 01 : 23[cb000] -> 22[c8000] via P2P/IPC/read
424
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01 : 0[7000] -> 8[7000] [send] via NET/IB/1
425
+ jean-zay-iam52:263017:263138 [2] NCCL INFO Channel 00 : 26[48000] -> 25[b000] via P2P/IPC/read
426
+ jean-zay-iam37:261380:261497 [1] NCCL INFO Connected all rings
427
+ jean-zay-iam40:289974:290092 [7] NCCL INFO Channel 01 : 15[cb000] -> 14[c8000] via P2P/IPC/read
428
+ jean-zay-iam52:263018:263141 [3] NCCL INFO Channel 00 : 27[4c000] -> 26[48000] via P2P/IPC/read
429
+ jean-zay-iam52:263019:263136 [4] NCCL INFO Channel 00 : 28[88000] -> 27[4c000] via P2P/IPC/read
430
+ jean-zay-iam52:263020:263139 [5] NCCL INFO Channel 00 : 29[8b000] -> 28[88000] via P2P/IPC/read
431
+ jean-zay-iam41:276751:276865 [5] NCCL INFO Channel 00 : 21[8b000] -> 20[88000] via P2P/IPC/read
432
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 00 : 8[7000] -> 17[b000] [receive] via NET/IB/1
433
+ jean-zay-iam37:261386:261498 [7] NCCL INFO Channel 01 : 7[cb000] -> 6[c8000] via P2P/IPC/read
434
+ jean-zay-iam41:276750:276871 [4] NCCL INFO Channel 00 : 20[88000] -> 19[4c000] via P2P/IPC/read
435
+ jean-zay-iam52:263017:263138 [2] NCCL INFO Channel 01 : 26[48000] -> 25[b000] via P2P/IPC/read
436
+ jean-zay-iam52:263021:263137 [6] NCCL INFO Channel 00 : 30[c8000] -> 29[8b000] via P2P/IPC/read
437
+ jean-zay-iam41:276748:276866 [2] NCCL INFO Channel 00 : 18[48000] -> 17[b000] via P2P/IPC/read
438
+ jean-zay-iam41:276749:276869 [3] NCCL INFO Channel 00 : 19[4c000] -> 18[48000] via P2P/IPC/read
439
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 01 : 9[b000] -> 16[7000] [send] via NET/IB/1
440
+ jean-zay-iam52:263018:263141 [3] NCCL INFO Channel 01 : 27[4c000] -> 26[48000] via P2P/IPC/read
441
+ jean-zay-iam52:263019:263136 [4] NCCL INFO Channel 01 : 28[88000] -> 27[4c000] via P2P/IPC/read
442
+ jean-zay-iam52:263020:263139 [5] NCCL INFO Channel 01 : 29[8b000] -> 28[88000] via P2P/IPC/read
443
+ jean-zay-iam52:263016:263142 [1] NCCL INFO Channel 00 : 25[b000] -> 24[7000] via P2P/IPC/read
444
+ jean-zay-iam41:276751:276865 [5] NCCL INFO Channel 01 : 21[8b000] -> 20[88000] via P2P/IPC/read
445
+ jean-zay-iam41:276750:276871 [4] NCCL INFO Channel 01 : 20[88000] -> 19[4c000] via P2P/IPC/read
446
+ jean-zay-iam41:276752:276872 [6] NCCL INFO Channel 00 : 22[c8000] -> 21[8b000] via P2P/IPC/read
447
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00 : 16[7000] -> 0[7000] [receive] via NET/IB/1
448
+ jean-zay-iam41:276748:276866 [2] NCCL INFO Channel 01 : 18[48000] -> 17[b000] via P2P/IPC/read
449
+ jean-zay-iam41:276749:276869 [3] NCCL INFO Channel 01 : 19[4c000] -> 18[48000] via P2P/IPC/read
450
+ jean-zay-iam52:263021:263137 [6] NCCL INFO Channel 01 : 30[c8000] -> 29[8b000] via P2P/IPC/read
451
+ jean-zay-iam40:289973:290089 [6] NCCL INFO Channel 00 : 14[c8000] -> 13[8b000] via P2P/IPC/read
452
+ jean-zay-iam41:276752:276872 [6] NCCL INFO Channel 01 : 22[c8000] -> 21[8b000] via P2P/IPC/read
453
+ jean-zay-iam40:289969:290087 [2] NCCL INFO Channel 00 : 10[48000] -> 9[b000] via P2P/IPC/read
454
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 00 : 8[7000] -> 17[b000] [send] via NET/IB/1
455
+ jean-zay-iam40:289970:290090 [3] NCCL INFO Channel 00 : 11[4c000] -> 10[48000] via P2P/IPC/read
456
+ jean-zay-iam40:289972:290088 [5] NCCL INFO Channel 00 : 13[8b000] -> 12[88000] via P2P/IPC/read
457
+ jean-zay-iam40:289971:290093 [4] NCCL INFO Channel 00 : 12[88000] -> 11[4c000] via P2P/IPC/read
458
+ jean-zay-iam37:261381:261500 [2] NCCL INFO Channel 00 : 2[48000] -> 1[b000] via P2P/IPC/read
459
+ jean-zay-iam52:263016:263142 [1] NCCL INFO Channel 01 : 25[b000] -> 24[7000] via P2P/IPC/read
460
+ jean-zay-iam37:261382:261501 [3] NCCL INFO Channel 00 : 3[4c000] -> 2[48000] via P2P/IPC/read
461
+ jean-zay-iam37:261385:261506 [6] NCCL INFO Channel 00 : 6[c8000] -> 5[8b000] via P2P/IPC/read
462
+ jean-zay-iam37:261384:261496 [5] NCCL INFO Channel 00 : 5[8b000] -> 4[88000] via P2P/IPC/read
463
+ jean-zay-iam40:289973:290089 [6] NCCL INFO Channel 01 : 14[c8000] -> 13[8b000] via P2P/IPC/read
464
+ jean-zay-iam40:289969:290087 [2] NCCL INFO Channel 01 : 10[48000] -> 9[b000] via P2P/IPC/read
465
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 01 : 16[7000] -> 9[b000] [receive] via NET/IB/1
466
+ jean-zay-iam37:261383:261499 [4] NCCL INFO Channel 00 : 4[88000] -> 3[4c000] via P2P/IPC/read
467
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 00 : 0[7000] -> 16[7000] [send] via NET/IB/1
468
+ jean-zay-iam40:289970:290090 [3] NCCL INFO Channel 01 : 11[4c000] -> 10[48000] via P2P/IPC/read
469
+ jean-zay-iam40:289972:290088 [5] NCCL INFO Channel 01 : 13[8b000] -> 12[88000] via P2P/IPC/read
470
+ jean-zay-iam40:289971:290093 [4] NCCL INFO Channel 01 : 12[88000] -> 11[4c000] via P2P/IPC/read
471
+ jean-zay-iam37:261380:261497 [1] NCCL INFO Channel 00 : 1[b000] -> 0[7000] via P2P/IPC/read
472
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 24[7000] -> 8[7000] [receive] via NET/IB/1
473
+ jean-zay-iam37:261381:261500 [2] NCCL INFO Channel 01 : 2[48000] -> 1[b000] via P2P/IPC/read
474
+ jean-zay-iam37:261382:261501 [3] NCCL INFO Channel 01 : 3[4c000] -> 2[48000] via P2P/IPC/read
475
+ jean-zay-iam37:261385:261506 [6] NCCL INFO Channel 01 : 6[c8000] -> 5[8b000] via P2P/IPC/read
476
+ jean-zay-iam37:261384:261496 [5] NCCL INFO Channel 01 : 5[8b000] -> 4[88000] via P2P/IPC/read
477
+ jean-zay-iam37:261383:261499 [4] NCCL INFO Channel 01 : 4[88000] -> 3[4c000] via P2P/IPC/read
478
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 16[7000] -> 24[7000] [send] via NET/IB/1
479
+ jean-zay-iam37:261380:261497 [1] NCCL INFO Channel 01 : 1[b000] -> 0[7000] via P2P/IPC/read
480
+ jean-zay-iam41:276753:276870 [7] NCCL INFO Connected all trees
481
+ jean-zay-iam41:276753:276870 [7] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
482
+ jean-zay-iam41:276753:276870 [7] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
483
+ jean-zay-iam52:263022:263135 [7] NCCL INFO Connected all trees
484
+ jean-zay-iam52:263022:263135 [7] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
485
+ jean-zay-iam52:263022:263135 [7] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
486
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 00 : 17[b000] -> 8[7000] [send] via NET/IB/1
487
+ jean-zay-iam40:289974:290092 [7] NCCL INFO Connected all trees
488
+ jean-zay-iam40:289974:290092 [7] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
489
+ jean-zay-iam40:289974:290092 [7] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
490
+ jean-zay-iam52:263018:263141 [3] NCCL INFO Connected all trees
491
+ jean-zay-iam52:263018:263141 [3] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
492
+ jean-zay-iam52:263018:263141 [3] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
493
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 8[7000] -> 24[7000] [send] via NET/IB/1
494
+ jean-zay-iam52:263019:263136 [4] NCCL INFO Connected all trees
495
+ jean-zay-iam52:263019:263136 [4] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
496
+ jean-zay-iam52:263019:263136 [4] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
497
+ jean-zay-iam37:261386:261498 [7] NCCL INFO Connected all trees
498
+ jean-zay-iam37:261386:261498 [7] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
499
+ jean-zay-iam37:261386:261498 [7] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
500
+ jean-zay-iam41:276750:276871 [4] NCCL INFO Connected all trees
501
+ jean-zay-iam41:276750:276871 [4] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
502
+ jean-zay-iam41:276750:276871 [4] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
503
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 0[7000] -> 16[7000] [receive] via NET/IB/1
504
+ jean-zay-iam41:276749:276869 [3] NCCL INFO Connected all trees
505
+ jean-zay-iam41:276749:276869 [3] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
506
+ jean-zay-iam41:276749:276869 [3] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
507
+ jean-zay-iam41:276752:276872 [6] NCCL INFO Connected all trees
508
+ jean-zay-iam41:276752:276872 [6] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
509
+ jean-zay-iam52:263021:263137 [6] NCCL INFO Connected all trees
510
+ jean-zay-iam41:276752:276872 [6] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
511
+ jean-zay-iam52:263021:263137 [6] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
512
+ jean-zay-iam52:263021:263137 [6] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
513
+ jean-zay-iam41:276751:276865 [5] NCCL INFO Connected all trees
514
+ jean-zay-iam41:276751:276865 [5] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
515
+ jean-zay-iam41:276751:276865 [5] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
516
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 01 : 8[7000] -> 24[7000] [receive] via NET/IB/1
517
+ jean-zay-iam52:263020:263139 [5] NCCL INFO Connected all trees
518
+ jean-zay-iam52:263020:263139 [5] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
519
+ jean-zay-iam52:263020:263139 [5] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
520
+ jean-zay-iam52:263017:263138 [2] NCCL INFO Connected all trees
521
+ jean-zay-iam52:263017:263138 [2] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
522
+ jean-zay-iam52:263017:263138 [2] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
523
+ jean-zay-iam40:289973:290089 [6] NCCL INFO Connected all trees
524
+ jean-zay-iam40:289973:290089 [6] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
525
+ jean-zay-iam40:289973:290089 [6] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
526
+ jean-zay-iam40:289970:290090 [3] NCCL INFO Connected all trees
527
+ jean-zay-iam40:289970:290090 [3] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
528
+ jean-zay-iam40:289970:290090 [3] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
529
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 16[7000] -> 0[7000] [send] via NET/IB/1
530
+ jean-zay-iam40:289971:290093 [4] NCCL INFO Connected all trees
531
+ jean-zay-iam40:289971:290093 [4] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
532
+ jean-zay-iam40:289971:290093 [4] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
533
+ jean-zay-iam40:289972:290088 [5] NCCL INFO Connected all trees
534
+ jean-zay-iam40:289972:290088 [5] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
535
+ jean-zay-iam40:289972:290088 [5] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
536
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 01 : 24[7000] -> 8[7000] [send] via NET/IB/1
537
+ jean-zay-iam37:261385:261506 [6] NCCL INFO Connected all trees
538
+ jean-zay-iam37:261385:261506 [6] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
539
+ jean-zay-iam37:261385:261506 [6] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
540
+ jean-zay-iam37:261382:261501 [3] NCCL INFO Connected all trees
541
+ jean-zay-iam37:261382:261501 [3] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
542
+ jean-zay-iam37:261382:261501 [3] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
543
+ jean-zay-iam37:261383:261499 [4] NCCL INFO Connected all trees
544
+ jean-zay-iam37:261383:261499 [4] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
545
+ jean-zay-iam37:261383:261499 [4] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
546
+ jean-zay-iam37:261384:261496 [5] NCCL INFO Connected all trees
547
+ jean-zay-iam37:261384:261496 [5] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
548
+ jean-zay-iam37:261384:261496 [5] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
549
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 00 : 24[7000] -> 16[7000] [receive] via NET/IB/1
550
+ jean-zay-iam37:261381:261500 [2] NCCL INFO Connected all trees
551
+ jean-zay-iam37:261381:261500 [2] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
552
+ jean-zay-iam37:261381:261500 [2] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
553
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Channel 01 : 8[7000] -> 0[7000] [receive] via NET/IB/1
554
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Channel 00 : 24[7000] -> 16[7000] [send] via NET/IB/1
555
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 00 : 17[b000] -> 8[7000] [receive] via NET/IB/1
556
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 00 : 17[b000] -> 16[7000] via P2P/IPC/read
557
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Channel 01 : 17[b000] -> 16[7000] via P2P/IPC/read
558
+ jean-zay-iam52:263015:263140 [0] NCCL INFO Connected all trees
559
+ jean-zay-iam52:263015:263140 [0] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
560
+ jean-zay-iam52:263015:263140 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
561
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Channel 01 : 8[7000] -> 0[7000] [send] via NET/IB/1
562
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Channel 01 : 16[7000] -> 9[b000] [send] via NET/IB/1
563
+ jean-zay-iam52:263016:263142 [1] NCCL INFO Connected all trees
564
+ jean-zay-iam52:263016:263142 [1] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
565
+ jean-zay-iam52:263016:263142 [1] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
566
+ jean-zay-iam52:263019:263136 [4] NCCL INFO comm 0x14b1a8002fb0 rank 28 nranks 32 cudaDev 4 busId 88000 - Init COMPLETE
567
+ jean-zay-iam52:263020:263139 [5] NCCL INFO comm 0x151418002fb0 rank 29 nranks 32 cudaDev 5 busId 8b000 - Init COMPLETE
568
+ jean-zay-iam52:263016:263142 [1] NCCL INFO comm 0x145588002fb0 rank 25 nranks 32 cudaDev 1 busId b000 - Init COMPLETE
569
+ jean-zay-iam52:263015:263140 [0] NCCL INFO comm 0x14c858002fb0 rank 24 nranks 32 cudaDev 0 busId 7000 - Init COMPLETE
570
+ jean-zay-iam52:263017:263138 [2] NCCL INFO comm 0x14e858002fb0 rank 26 nranks 32 cudaDev 2 busId 48000 - Init COMPLETE
571
+ jean-zay-iam52:263018:263141 [3] NCCL INFO comm 0x150208002fb0 rank 27 nranks 32 cudaDev 3 busId 4c000 - Init COMPLETE
572
+ jean-zay-iam52:263021:263137 [6] NCCL INFO comm 0x151df8002fb0 rank 30 nranks 32 cudaDev 6 busId c8000 - Init COMPLETE
573
+ jean-zay-iam52:263022:263135 [7] NCCL INFO comm 0x152728002fb0 rank 31 nranks 32 cudaDev 7 busId cb000 - Init COMPLETE
574
+ jean-zay-iam41:276748:276866 [2] NCCL INFO Connected all trees
575
+ jean-zay-iam41:276748:276866 [2] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
576
+ jean-zay-iam41:276748:276866 [2] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
577
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 00 : 9[b000] -> 8[7000] via P2P/IPC/read
578
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Channel 01 : 9[b000] -> 8[7000] via P2P/IPC/read
579
+ jean-zay-iam37:261379:261471 [0] NCCL INFO Connected all trees
580
+ jean-zay-iam37:261379:261471 [0] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
581
+ jean-zay-iam37:261379:261471 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
582
+ jean-zay-iam41:276746:276868 [0] NCCL INFO Connected all trees
583
+ jean-zay-iam41:276746:276868 [0] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
584
+ jean-zay-iam41:276746:276868 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
585
+ jean-zay-iam37:261380:261497 [1] NCCL INFO Connected all trees
586
+ jean-zay-iam37:261380:261497 [1] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
587
+ jean-zay-iam37:261380:261497 [1] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
588
+ jean-zay-iam37:261380:261497 [1] NCCL INFO comm 0x151790002fb0 rank 1 nranks 32 cudaDev 1 busId b000 - Init COMPLETE
589
+ jean-zay-iam37:261379:261471 [0] NCCL INFO comm 0x151f24002fb0 rank 0 nranks 32 cudaDev 0 busId 7000 - Init COMPLETE
590
+ jean-zay-iam37:261382:261501 [3] NCCL INFO comm 0x14a538002fb0 rank 3 nranks 32 cudaDev 3 busId 4c000 - Init COMPLETE
591
+ jean-zay-iam37:261381:261500 [2] NCCL INFO comm 0x151028002fb0 rank 2 nranks 32 cudaDev 2 busId 48000 - Init COMPLETE
592
+ jean-zay-iam37:261383:261499 [4] NCCL INFO comm 0x152340002fb0 rank 4 nranks 32 cudaDev 4 busId 88000 - Init COMPLETE
593
+ jean-zay-iam37:261384:261496 [5] NCCL INFO comm 0x14d048002fb0 rank 5 nranks 32 cudaDev 5 busId 8b000 - Init COMPLETE
594
+ jean-zay-iam37:261379:261379 [0] NCCL INFO Launch mode Parallel
595
+ jean-zay-iam37:261386:261498 [7] NCCL INFO comm 0x1519b0002fb0 rank 7 nranks 32 cudaDev 7 busId cb000 - Init COMPLETE
596
+ jean-zay-iam37:261385:261506 [6] NCCL INFO comm 0x14bd98002fb0 rank 6 nranks 32 cudaDev 6 busId c8000 - Init COMPLETE
597
+ jean-zay-iam41:276747:276867 [1] NCCL INFO Connected all trees
598
+ jean-zay-iam41:276747:276867 [1] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
599
+ jean-zay-iam41:276747:276867 [1] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
600
+ jean-zay-iam41:276749:276869 [3] NCCL INFO comm 0x14d508002fb0 rank 19 nranks 32 cudaDev 3 busId 4c000 - Init COMPLETE
601
+ jean-zay-iam40:289967:290091 [0] NCCL INFO Connected all trees
602
+ jean-zay-iam41:276748:276866 [2] NCCL INFO comm 0x14ae78002fb0 rank 18 nranks 32 cudaDev 2 busId 48000 - Init COMPLETE
603
+ jean-zay-iam40:289967:290091 [0] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
604
+ jean-zay-iam40:289967:290091 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
605
+ jean-zay-iam41:276747:276867 [1] NCCL INFO comm 0x14d928002fb0 rank 17 nranks 32 cudaDev 1 busId b000 - Init COMPLETE
606
+ jean-zay-iam41:276750:276871 [4] NCCL INFO comm 0x146d68002fb0 rank 20 nranks 32 cudaDev 4 busId 88000 - Init COMPLETE
607
+ jean-zay-iam41:276753:276870 [7] NCCL INFO comm 0x1523f8002fb0 rank 23 nranks 32 cudaDev 7 busId cb000 - Init COMPLETE
608
+ jean-zay-iam41:276746:276868 [0] NCCL INFO comm 0x152f60002fb0 rank 16 nranks 32 cudaDev 0 busId 7000 - Init COMPLETE
609
+ jean-zay-iam41:276751:276865 [5] NCCL INFO comm 0x14c788002fb0 rank 21 nranks 32 cudaDev 5 busId 8b000 - Init COMPLETE
610
+ jean-zay-iam41:276752:276872 [6] NCCL INFO comm 0x14e538002fb0 rank 22 nranks 32 cudaDev 6 busId c8000 - Init COMPLETE
611
+ jean-zay-iam40:289968:290086 [1] NCCL INFO Connected all trees
612
+ jean-zay-iam40:289968:290086 [1] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
613
+ jean-zay-iam40:289968:290086 [1] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
614
+ jean-zay-iam40:289969:290087 [2] NCCL INFO Connected all trees
615
+ jean-zay-iam40:289969:290087 [2] NCCL INFO threadThresholds 8/8/64 | 256/8/64 | 8/8/512
616
+ jean-zay-iam40:289969:290087 [2] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
617
+ jean-zay-iam40:289969:290087 [2] NCCL INFO comm 0x154f98002fb0 rank 10 nranks 32 cudaDev 2 busId 48000 - Init COMPLETE
618
+ jean-zay-iam40:289971:290093 [4] NCCL INFO comm 0x1529e8002fb0 rank 12 nranks 32 cudaDev 4 busId 88000 - Init COMPLETE
619
+ jean-zay-iam40:289970:290090 [3] NCCL INFO comm 0x14ee38002fb0 rank 11 nranks 32 cudaDev 3 busId 4c000 - Init COMPLETE
620
+ jean-zay-iam40:289973:290089 [6] NCCL INFO comm 0x145bb0002fb0 rank 14 nranks 32 cudaDev 6 busId c8000 - Init COMPLETE
621
+ jean-zay-iam40:289972:290088 [5] NCCL INFO comm 0x14d508002fb0 rank 13 nranks 32 cudaDev 5 busId 8b000 - Init COMPLETE
622
+ jean-zay-iam40:289968:290086 [1] NCCL INFO comm 0x14d558002fb0 rank 9 nranks 32 cudaDev 1 busId b000 - Init COMPLETE
623
+ jean-zay-iam40:289974:290092 [7] NCCL INFO comm 0x1494b8002fb0 rank 15 nranks 32 cudaDev 7 busId cb000 - Init COMPLETE
624
+ jean-zay-iam40:289967:290091 [0] NCCL INFO comm 0x14aa40002fb0 rank 8 nranks 32 cudaDev 0 busId 7000 - Init COMPLETE
625
+ ignore me 17
626
+ 6:
627
+ duration: 3.9563 sec
628
+ algo throughput: 16176643777.3540 bps, 16.1766 Gbps
629
+ busbw: 15.6711 Gbps
630
+ ignore me 17
631
+ 7:
632
+ duration: 4.1011 sec
633
+ algo throughput: 15605538666.8284 bps, 15.6055 Gbps
634
+ busbw: 15.1179 Gbps
635
+ ignore me 17
636
+ 5:
637
+ duration: 4.0281 sec
638
+ algo throughput: 15888388696.7879 bps, 15.8884 Gbps
639
+ busbw: 15.3919 Gbps
640
+ ignore me 17
641
+ ignore me 17
642
+ 27:
643
+ duration: 4.1446 sec
644
+ algo throughput: 15441789907.3424 bps, 15.4418 Gbps
645
+ busbw: 14.9592 Gbps
646
+ 4:
647
+ duration: 4.1584 sec
648
+ algo throughput: 15390377253.3963 bps, 15.3904 Gbps
649
+ busbw: 14.9094 Gbps
650
+ ignore me 17
651
+ ignore me 17
652
+ 28:
653
+ duration: 4.0857 sec
654
+ ignore me 17
655
+ algo throughput: 15664581341.3504 bps, 15.6646 Gbps
656
+ busbw: 15.1751 Gbps
657
+ 26:
658
+ duration: 4.1296 sec
659
+ algo throughput: 15497834133.7166 bps, 15.4978 Gbps
660
+ busbw: 15.0135 Gbps
661
+ 3:
662
+ duration: 4.1508 sec
663
+ algo throughput: 15418582053.9969 bps, 15.4186 Gbps
664
+ busbw: 14.9368 Gbps
665
+ ignore me 17
666
+ ignore me 17
667
+ 8:
668
+ duration: 4.2224 sec
669
+ algo throughput: 15157302718.4214 bps, 15.1573 Gbps
670
+ busbw: 14.6836 Gbps
671
+ ignore me 17
672
+ 29:
673
+ duration: 4.0621 sec
674
+ algo throughput: 15755272218.1164 bps, 15.7553 Gbps
675
+ busbw: 15.2629 Gbps
676
+ 25:
677
+ duration: 4.1516 sec
678
+ algo throughput: 15415828590.9963 bps, 15.4158 Gbps
679
+ busbw: 14.9341 Gbps
680
+ ignore me 17
681
+ ignore me 17
682
+ 9:
683
+ duration: 4.0906 sec
684
+ algo throughput: 15645779547.2488 bps, 15.6458 Gbps
685
+ busbw: 15.1568 Gbps
686
+ ignore me 17
687
+ ignore me 17
688
+ ignore me 17
689
+ ignore me 17
690
+ 23:
691
+ duration: 4.1569 sec
692
+ 30:
693
+ duration: 4.0722 sec
694
+ algo throughput: 15716173146.2812 bps, 15.7162 Gbps
695
+ 1:
696
+ duration: 4.0663 sec
697
+ algo throughput: 15396140153.8145 bps, 15.3961 Gbps
698
+ busbw: 14.9150 Gbps
699
+ algo throughput: 15739134214.8659 bps, 15.7391 Gbps
700
+ busbw: 15.2473 Gbps
701
+ busbw: 15.2250 Gbps
702
+ 22:
703
+ duration: 4.0428 sec
704
+ algo throughput: 15830448441.2183 bps, 15.8304 Gbps
705
+ busbw: 15.3357 Gbps
706
+ ignore me 17
707
+ 2:
708
+ duration: 4.1513 sec
709
+ algo throughput: 15416737873.4375 bps, 15.4167 Gbps
710
+ busbw: 14.9350 Gbps
711
+ ignore me 17
712
+ ignore me 17
713
+ 10:
714
+ duration: 4.1135 sec
715
+ 24:
716
+ duration: 4.0613 sec
717
+ algo throughput: 15758479220.2859 bps, 15.7585 Gbps
718
+ busbw: 15.2660 Gbps
719
+ algo throughput: 15558588332.8945 bps, 15.5586 Gbps
720
+ busbw: 15.0724 Gbps
721
+ ignore me 17
722
+ 31:
723
+ duration: 4.1502 sec
724
+ algo throughput: 15420839540.9777 bps, 15.4208 Gbps
725
+ busbw: 14.9389 Gbps
726
+ 21:
727
+ duration: 4.1419 sec
728
+ algo throughput: 15451690470.9343 bps, 15.4517 Gbps
729
+ busbw: 14.9688 Gbps
730
+ ignore me 17
731
+ ignore me 17
732
+ ignore me 17
733
+ 11:
734
+ duration: 4.0492 sec
735
+ algo throughput: 15805693708.4176 bps, 15.8057 Gbps
736
+ 20:
737
+ duration: 4.0993 sec
738
+ algo throughput: 15612440511.8644 bps, 15.6124 Gbps
739
+ busbw: 15.1246 Gbps
740
+ 0:
741
+ duration: 4.0120 sec
742
+ algo throughput: 15952303597.3018 bps, 15.9523 Gbps
743
+ busbw: 15.3118 Gbps
744
+ busbw: 15.4538 Gbps
745
+ ignore me 17
746
+ ignore me 17
747
+ 12:
748
+ duration: 4.1850 sec
749
+ algo throughput: 15292749814.3865 bps, 15.2927 Gbps
750
+ busbw: 14.8149 Gbps
751
+ 19:
752
+ duration: 4.0412 sec
753
+ algo throughput: 15836843924.5534 bps, 15.8368 Gbps
754
+ busbw: 15.3419 Gbps
755
+ ignore me 17
756
+ 13:
757
+ duration: 4.0840 sec
758
+ algo throughput: 15670769926.9476 bps, 15.6708 Gbps
759
+ busbw: 15.1811 Gbps
760
+ ignore me 17
761
+ 18:
762
+ duration: 4.1647 sec
763
+ algo throughput: 15367278261.5983 bps, 15.3673 Gbps
764
+ busbw: 14.8871 Gbps
765
+ ignore me 17
766
+ 14:
767
+ duration: 4.0438 sec
768
+ algo throughput: 15826582974.8276 bps, 15.8266 Gbps
769
+ busbw: 15.3320 Gbps
770
+ ignore me 17
771
+ ignore me 17
772
+ 17:
773
+ duration: 4.1553 sec
774
+ algo throughput: 15401946302.4121 bps, 15.4019 Gbps
775
+ 15:
776
+ duration: 4.1608 sec
777
+ algo throughput: 15381558817.4705 bps, 15.3816 Gbps
778
+ busbw: 14.9206 Gbps
779
+ busbw: 14.9009 Gbps
780
+ ignore me 17
781
+ 16:
782
+ duration: 4.0474 sec
783
+ algo throughput: 15812815660.2083 bps, 15.8128 Gbps
784
+ busbw: 15.3187 Gbps
785
+ ignore me 555
786
+ 23:
787
+ duration: 1.5186 sec
788
+ algo throughput: 42143980222.5332 bps, 42.1440 Gbps
789
+ ignore me 555
790
+ busbw: 40.8270 Gbps
791
+ 9:
792
+ duration: 1.5187 sec
793
+ algo throughput: 42140589448.6002 bps, 42.1406 Gbps
794
+ busbw: 40.8237 Gbps
795
+ ignore me 555
796
+ 22:
797
+ duration: 1.5187 sec
798
+ algo throughput: 42140378571.5530 bps, 42.1404 Gbps
799
+ ignore me 555
800
+ busbw: 40.8235 Gbps
801
+ 24:
802
+ duration: 1.5187 sec
803
+ algo throughput: 42142240285.3888 bps, 42.1422 Gbps
804
+ busbw: 40.8253 Gbps
805
+ ignore me 555
806
+ 7:
807
+ duration: 1.5199 sec
808
+ algo throughput: 42108029847.7049 bps, 42.1080 Gbps
809
+ busbw: 40.7922 Gbps
810
+ ignore me 555
811
+ ignore me 555
812
+ 10:
813
+ duration: 1.5188 sec
814
+ algo throughput: 42138916267.0821 bps, 42.1389 Gbps
815
+ busbw: 40.8221 Gbps
816
+ 8:
817
+ duration: 1.5192 sec
818
+ algo throughput: 42126338602.2545 bps, 42.1263 Gbps
819
+ busbw: 40.8099 Gbps
820
+ ignore me 555
821
+ ignore me 555
822
+ ignore me 555
823
+ 21:
824
+ duration: 1.5188 sec
825
+ algo throughput: 42139898494.4063 bps, 42.1399 Gbps
826
+ busbw: 40.8230 Gbps
827
+ 25:
828
+ duration: 1.5192 sec
829
+ algo throughput: 42127092502.8457 bps, 42.1271 Gbps
830
+ busbw: 40.8106 Gbps
831
+ 6:
832
+ duration: 1.5202 sec
833
+ algo throughput: 42099423136.7009 bps, 42.0994 Gbps
834
+ busbw: 40.7838 Gbps
835
+ ignore me 555
836
+ 11:
837
+ duration: 1.5187 sec
838
+ algo throughput: 42141289163.4721 bps, 42.1413 Gbps
839
+ ignore me 555
840
+ busbw: 40.8244 Gbps
841
+ 20:
842
+ duration: 1.5188 sec
843
+ algo throughput: 42139687792.2383 bps, 42.1397 Gbps
844
+ busbw: 40.8228 Gbps
845
+ ignore me 555
846
+ 26:
847
+ duration: 1.5197 sec
848
+ algo throughput: 42113294024.4995 bps, 42.1133 Gbps
849
+ busbw: 40.7973 Gbps
850
+ ignore me 555
851
+ ignore me 555
852
+ 5:
853
+ duration: 1.5202 sec
854
+ algo throughput: 42100022978.8723 bps, 42.1000 Gbps
855
+ busbw: 40.7844 Gbps
856
+ 12:
857
+ duration: 1.5187 sec
858
+ algo throughput: 42141483180.7297 bps, 42.1415 Gbps
859
+ busbw: 40.8246 Gbps
860
+ ignore me 555
861
+ 19:
862
+ duration: 1.5188 sec
863
+ algo throughput: 42139070669.3367 bps, 42.1391 Gbps
864
+ busbw: 40.8222 Gbps
865
+ ignore me 555
866
+ ignore me 555
867
+ 13:
868
+ duration: 1.5187 sec
869
+ algo throughput: 42140413754.7281 bps, 42.1404 Gbps
870
+ 27:
871
+ duration: 1.5202 sec
872
+ algo throughput: 42099139976.4359 bps, 42.0991 Gbps
873
+ busbw: 40.7835 Gbps
874
+ busbw: 40.8235 Gbps
875
+ ignore me 555
876
+ 4:
877
+ duration: 1.5203 sec
878
+ algo throughput: 42097969076.0652 bps, 42.0980 Gbps
879
+ busbw: 40.7824 Gbps
880
+ ignore me 555
881
+ 18:
882
+ duration: 1.5187 sec
883
+ algo throughput: 42141134996.9228 bps, 42.1411 Gbps
884
+ busbw: 40.8242 Gbps
885
+ ignore me 555
886
+ 28:
887
+ duration: 1.5203 sec
888
+ algo throughput: 42097422955.6261 bps, 42.0974 Gbps
889
+ ignore me 555
890
+ busbw: 40.7819 Gbps
891
+ ignore me 555
892
+ 14:
893
+ duration: 1.5188 sec
894
+ algo throughput: 42139893361.7641 bps, 42.1399 Gbps
895
+ busbw: 40.8230 Gbps
896
+ 3:
897
+ duration: 1.5203 sec
898
+ algo throughput: 42097598433.0412 bps, 42.0976 Gbps
899
+ busbw: 40.7820 Gbps
900
+ ignore me 555
901
+ 17:
902
+ duration: 1.5188 sec
903
+ algo throughput: 42139267495.6574 bps, 42.1393 Gbps
904
+ busbw: 40.8224 Gbps
905
+ ignore me 555
906
+ ignore me 555
907
+ 29:
908
+ duration: 1.5203 sec
909
+ algo throughput: 42096144082.6273 bps, 42.0961 Gbps
910
+ ignore me 555
911
+ busbw: 40.7806 Gbps
912
+ 15:
913
+ duration: 1.5188 sec
914
+ algo throughput: 42137175969.6847 bps, 42.1372 Gbps
915
+ ignore me 555
916
+ busbw: 40.8204 Gbps
917
+ 16:
918
+ duration: 1.5186 sec
919
+ algo throughput: 42144770940.2506 bps, 42.1448 Gbps
920
+ busbw: 40.8277 Gbps
921
+ 2:
922
+ duration: 1.5201 sec
923
+ algo throughput: 42101391688.1200 bps, 42.1014 Gbps
924
+ busbw: 40.7857 Gbps
925
+ ignore me 555
926
+ ignore me 555
927
+ 30:
928
+ duration: 1.5203 sec
929
+ algo throughput: 42096228974.3786 bps, 42.0962 Gbps
930
+ busbw: 40.7807 Gbps
931
+ 1:
932
+ duration: 1.5204 sec
933
+ algo throughput: 42095494315.5608 bps, 42.0955 Gbps
934
+ busbw: 40.7800 Gbps
935
+ ignore me 555
936
+ 31:
937
+ duration: 1.5203 sec
938
+ algo throughput: 42096577970.2344 bps, 42.0966 Gbps
939
+ busbw: 40.7811 Gbps
940
+ ignore me 555
941
+ 0:
942
+ duration: 1.5203 sec
943
+ algo throughput: 42097401467.1174 bps, 42.0974 Gbps
944
+ busbw: 40.7819 Gbps
945
+ ignore me 17760
946
+ 19:
947
+ duration: 1.5271 sec
948
+ algo throughput: 41910600634.9022 bps, 41.9106 Gbps
949
+ busbw: 40.6009 Gbps
950
+ ignore me 17760
951
+ ignore me 17760
952
+ 18:
953
+ duration: 1.5270 sec
954
+ algo throughput: 41911582289.7142 bps, 41.9116 Gbps
955
+ busbw: 40.6018 Gbps
956
+ 20:
957
+ duration: 1.5276 sec
958
+ algo throughput: 41894987422.3905 bps, 41.8950 Gbps
959
+ busbw: 40.5858 Gbps
960
+ ignore me 17760
961
+ ignore me 17760
962
+ 17:
963
+ duration: 1.5270 sec
964
+ algo throughput: 41913406576.8859 bps, 41.9134 Gbps
965
+ busbw: 40.6036 Gbps
966
+ ignore me 17760
967
+ 21:
968
+ duration: 1.5280 sec
969
+ algo throughput: 41885069299.4918 bps, 41.8851 Gbps
970
+ busbw: 40.5762 Gbps
971
+ ignore me 17760
972
+ 14:
973
+ duration: 1.5272 sec
974
+ algo throughput: 41907314947.6113 bps, 41.9073 Gbps
975
+ busbw: 40.5977 Gbps
976
+ 15:
977
+ duration: 1.5270 sec
978
+ algo throughput: 41913242272.3447 bps, 41.9132 Gbps
979
+ busbw: 40.6035 Gbps
980
+ ignore me 17760
981
+ ignore me 17760
982
+ 13:
983
+ duration: 1.5277 sec
984
+ algo throughput: 41893273876.8880 bps, 41.8933 Gbps
985
+ busbw: 40.5841 Gbps
986
+ ignore me 17760
987
+ 16:
988
+ duration: 1.5271 sec
989
+ algo throughput: 41909230280.3461 bps, 41.9092 Gbps
990
+ busbw: 40.5996 Gbps
991
+ 22:
992
+ duration: 1.5286 sec
993
+ algo throughput: 41869319488.2197 bps, 41.8693 Gbps
994
+ busbw: 40.5609 Gbps
995
+ ignore me 17760
996
+ ignore me 17760
997
+ 23:
998
+ duration: 1.5289 sec
999
+ algo throughput: 41861290350.4216 bps, 41.8613 Gbps
1000
+ 12:
1001
+ duration: 1.5281 sec
1002
+ algo throughput: 41882850453.1701 bps, 41.8829 Gbps
1003
+ busbw: 40.5740 Gbps
1004
+ busbw: 40.5531 Gbps
1005
+ ignore me 17760
1006
+ 11:
1007
+ duration: 1.5286 sec
1008
+ algo throughput: 41868966830.1641 bps, 41.8690 Gbps
1009
+ busbw: 40.5606 Gbps
1010
+ ignore me 17760
1011
+ ignore me 17760
1012
+ 24:
1013
+ duration: 1.5291 sec
1014
+ algo throughput: 41854797523.2289 bps, 41.8548 Gbps
1015
+ 10:
1016
+ duration: 1.5290 sec
1017
+ algo throughput: 41858049187.4726 bps, 41.8580 Gbps
1018
+ busbw: 40.5468 Gbps
1019
+ busbw: 40.5500 Gbps
1020
+ ignore me 17760
1021
+ 25:
1022
+ duration: 1.5291 sec
1023
+ algo throughput: 41855697296.6685 bps, 41.8557 Gbps
1024
+ busbw: 40.5477 Gbps
1025
+ ignore me 17760
1026
+ ignore me 17760
1027
+ ignore me 17760
1028
+ 9:
1029
+ duration: 1.5296 sec
1030
+ algo throughput: 41841767653.6339 bps, 41.8418 Gbps
1031
+ busbw: 40.5342 Gbps
1032
+ 6:
1033
+ duration: 1.5292 sec
1034
+ algo throughput: 41851931325.8954 bps, 41.8519 Gbps
1035
+ busbw: 40.5441 Gbps
1036
+ 7:
1037
+ duration: 1.5294 sec
1038
+ algo throughput: 41846364025.0241 bps, 41.8464 Gbps
1039
+ busbw: 40.5387 Gbps
1040
+ ignore me 17760
1041
+ 26:
1042
+ duration: 1.5290 sec
1043
+ algo throughput: 41856070811.5191 bps, 41.8561 Gbps
1044
+ busbw: 40.5481 Gbps
1045
+ ignore me 17760
1046
+ ignore me 17760
1047
+ 5:
1048
+ duration: 1.5291 sec
1049
+ algo throughput: 41855875143.2076 bps, 41.8559 Gbps
1050
+ busbw: 40.5479 Gbps
1051
+ 8:
1052
+ duration: 1.5295 sec
1053
+ algo throughput: 41843741534.2125 bps, 41.8437 Gbps
1054
+ busbw: 40.5361 Gbps
1055
+ ignore me 17760
1056
+ 27:
1057
+ duration: 1.5290 sec
1058
+ algo throughput: 41856588048.6577 bps, 41.8566 Gbps
1059
+ busbw: 40.5486 Gbps
1060
+ ignore me 17760
1061
+ 4:
1062
+ duration: 1.5290 sec
1063
+ algo throughput: 41856245346.9914 bps, 41.8562 Gbps
1064
+ busbw: 40.5482 Gbps
1065
+ ignore me 17760
1066
+ 28:
1067
+ duration: 1.5290 sec
1068
+ algo throughput: 41858071525.4799 bps, 41.8581 Gbps
1069
+ busbw: 40.5500 Gbps
1070
+ ignore me 17760
1071
+ 3:
1072
+ duration: 1.5290 sec
1073
+ algo throughput: 41857294677.8322 bps, 41.8573 Gbps
1074
+ busbw: 40.5493 Gbps
1075
+ ignore me 17760
1076
+ 29:
1077
+ duration: 1.5289 sec
1078
+ algo throughput: 41859219678.2562 bps, 41.8592 Gbps
1079
+ busbw: 40.5511 Gbps
1080
+ ignore me 17760
1081
+ 2:
1082
+ duration: 1.5289 sec
1083
+ algo throughput: 41859941759.2278 bps, 41.8599 Gbps
1084
+ busbw: 40.5518 Gbps
1085
+ ignore me 17760
1086
+ 30:
1087
+ duration: 1.5289 sec
1088
+ algo throughput: 41858890268.6218 bps, 41.8589 Gbps
1089
+ busbw: 40.5508 Gbps
1090
+ ignore me 17760
1091
+ 1:
1092
+ duration: 1.5290 sec
1093
+ algo throughput: 41856634528.5093 bps, 41.8566 Gbps
1094
+ busbw: 40.5486 Gbps
1095
+ ignore me 17760
1096
+ 31:
1097
+ duration: 1.5290 sec
1098
+ algo throughput: 41858450586.8372 bps, 41.8585 Gbps
1099
+ busbw: 40.5504 Gbps
1100
+ ignore me 17760
1101
+ 0:
1102
+ duration: 1.5289 sec
1103
+ algo throughput: 41860374323.0033 bps, 41.8604 Gbps
1104
+ busbw: 40.5522 Gbps
1105
+ ignore me 568326
1106
+ 18:
1107
+ duration: 1.5292 sec
1108
+ algo throughput: 41851192689.6061 bps, 41.8512 Gbps
1109
+ busbw: 40.5433 Gbps
1110
+ ignore me 568326
1111
+ 19:
1112
+ duration: 1.5296 sec
1113
+ algo throughput: 41840982602.8527 bps, 41.8410 Gbps
1114
+ busbw: 40.5335 Gbps
1115
+ ignore me 568326
1116
+ 17:
1117
+ duration: 1.5292 sec
1118
+ algo throughput: 41851389273.1359 bps, 41.8514 Gbps
1119
+ busbw: 40.5435 Gbps
1120
+ ignore me 568326
1121
+ ignore me 568326
1122
+ ignore me 568326
1123
+ 14:
1124
+ duration: 1.5293 sec
1125
+ algo throughput: 41850546358.8408 bps, 41.8505 Gbps
1126
+ busbw: 40.5427 Gbps
1127
+ 20:
1128
+ duration: 1.5296 sec
1129
+ algo throughput: 41841711605.3523 bps, 41.8417 Gbps
1130
+ 15:
1131
+ duration: 1.5292 sec
1132
+ algo throughput: 41850900844.4322 bps, 41.8509 Gbps
1133
+ busbw: 40.5342 Gbps
1134
+ busbw: 40.5431 Gbps
1135
+ ignore me 568326
1136
+ ignore me 568326
1137
+ 13:
1138
+ duration: 1.5293 sec
1139
+ 16:
1140
+ duration: 1.5292 sec
1141
+ algo throughput: 41851732548.4344 bps, 41.8517 Gbps
1142
+ busbw: 40.5439 Gbps
1143
+ algo throughput: 41849491619.2404 bps, 41.8495 Gbps
1144
+ busbw: 40.5417 Gbps
1145
+ ignore me 568326
1146
+ 21:
1147
+ duration: 1.5296 sec
1148
+ algo throughput: 41841051125.8787 bps, 41.8411 Gbps
1149
+ busbw: 40.5335 Gbps
1150
+ ignore me 568326
1151
+ 12:
1152
+ duration: 1.5293 sec
1153
+ algo throughput: 41848837733.7002 bps, 41.8488 Gbps
1154
+ busbw: 40.5411 Gbps
1155
+ ignore me 568326
1156
+ ignore me 568326
1157
+ 22:
1158
+ duration: 1.5295 sec
1159
+ algo throughput: 41842526390.1754 bps, 41.8425 Gbps
1160
+ 11:
1161
+ duration: 1.5292 sec
1162
+ algo throughput: 41851402077.7964 bps, 41.8514 Gbps
1163
+ busbw: 40.5349 Gbps
1164
+ busbw: 40.5435 Gbps
1165
+ ignore me 568326
1166
+ ignore me 568326
1167
+ 25:
1168
+ duration: 1.5289 sec
1169
+ algo throughput: 41860057899.5817 bps, 41.8601 Gbps
1170
+ busbw: 40.5519 Gbps
1171
+ 23:
1172
+ duration: 1.5296 sec
1173
+ algo throughput: 41841328471.6004 bps, 41.8413 Gbps
1174
+ busbw: 40.5338 Gbps
1175
+ ignore me 568326
1176
+ ignore me 568326
1177
+ 10:
1178
+ duration: 1.5293 sec
1179
+ algo throughput: 41850492064.7668 bps, 41.8505 Gbps
1180
+ ignore me 568326
1181
+ busbw: 40.5427 Gbps
1182
+ 26:
1183
+ duration: 1.5289 sec
1184
+ algo throughput: 41861009756.5066 bps, 41.8610 Gbps
1185
+ busbw: 40.5529 Gbps
1186
+ 24:
1187
+ duration: 1.5293 sec
1188
+ algo throughput: 41848595317.3039 bps, 41.8486 Gbps
1189
+ busbw: 40.5408 Gbps
1190
+ ignore me 568326
1191
+ 5:
1192
+ duration: 1.5289 sec
1193
+ algo throughput: 41860676073.0211 bps, 41.8607 Gbps
1194
+ ignore me 568326
1195
+ busbw: 40.5525 Gbps
1196
+ ignore me 568326
1197
+ 27:
1198
+ duration: 1.5288 sec
1199
+ algo throughput: 41861710376.5379 bps, 41.8617 Gbps
1200
+ busbw: 40.5535 Gbps
1201
+ ignore me 568326
1202
+ 6:
1203
+ duration: 1.5292 sec
1204
+ algo throughput: 41852910485.9393 bps, 41.8529 Gbps
1205
+ busbw: 40.5450 Gbps
1206
+ ignore me 568326
1207
+ 9:
1208
+ duration: 1.5292 sec
1209
+ algo throughput: 41850873996.3972 bps, 41.8509 Gbps
1210
+ ignore me 568326
1211
+ busbw: 40.5430 Gbps
1212
+ 4:
1213
+ duration: 1.5288 sec
1214
+ algo throughput: 41861534698.9598 bps, 41.8615 Gbps
1215
+ busbw: 40.5534 Gbps
1216
+ 7:
1217
+ duration: 1.5293 sec
1218
+ algo throughput: 41849369678.9657 bps, 41.8494 Gbps
1219
+ busbw: 40.5416 Gbps
1220
+ ignore me 568326
1221
+ 28:
1222
+ duration: 1.5289 sec
1223
+ algo throughput: 41861383911.2504 bps, 41.8614 Gbps
1224
+ busbw: 40.5532 Gbps
1225
+ ignore me 568326
1226
+ ignore me 568326
1227
+ 8:
1228
+ duration: 1.5293 sec
1229
+ algo throughput: 41848441035.8316 bps, 41.8484 Gbps
1230
+ 3:
1231
+ duration: 1.5289 sec
1232
+ algo throughput: 41861481198.7633 bps, 41.8615 Gbps
1233
+ busbw: 40.5533 Gbps
1234
+ busbw: 40.5407 Gbps
1235
+ ignore me 568326
1236
+ 29:
1237
+ duration: 1.5289 sec
1238
+ algo throughput: 41861138665.5933 bps, 41.8611 Gbps
1239
+ busbw: 40.5530 Gbps
1240
+ ignore me 568326
1241
+ 2:
1242
+ duration: 1.5289 sec
1243
+ algo throughput: 41861040340.5475 bps, 41.8610 Gbps
1244
+ busbw: 40.5529 Gbps
1245
+ ignore me 568326
1246
+ 30:
1247
+ duration: 1.5289 sec
1248
+ algo throughput: 41861393521.7231 bps, 41.8614 Gbps
1249
+ ignore me 568326
1250
+ busbw: 40.5532 Gbps
1251
+ 1:
1252
+ duration: 1.5288 sec
1253
+ algo throughput: 41863250360.5825 bps, 41.8633 Gbps
1254
+ busbw: 40.5550 Gbps
1255
+ ignore me 568326
1256
+ 31:
1257
+ duration: 1.5289 sec
1258
+ algo throughput: 41860930490.0206 bps, 41.8609 Gbps
1259
+ busbw: 40.5528 Gbps
1260
+ ignore me 568326
1261
+ 0:
1262
+ duration: 1.5289 sec
1263
+ algo throughput: 41861381313.3954 bps, 41.8614 Gbps
1264
+ busbw: 40.5532 Gbps
1265
+ ignore me 18186434
1266
+ 18:
1267
+ duration: 1.5304 sec
1268
+ algo throughput: 41819308451.5824 bps, 41.8193 Gbps
1269
+ busbw: 40.5125 Gbps
1270
+ ignore me 18186434
1271
+ 19:
1272
+ duration: 1.5304 sec
1273
+ algo throughput: 41819374415.9696 bps, 41.8194 Gbps
1274
+ busbw: 40.5125 Gbps
1275
+ ignore me 18186434
1276
+ 17:
1277
+ duration: 1.5304 sec
1278
+ algo throughput: 41819400154.7344 bps, 41.8194 Gbps
1279
+ busbw: 40.5125 Gbps
1280
+ ignore me 18186434
1281
+ ignore me 18186434
1282
+ 15:
1283
+ duration: 1.5303 sec
1284
+ algo throughput: 41821175681.0869 bps, 41.8212 Gbps
1285
+ 20:
1286
+ duration: 1.5304 sec
1287
+ algo throughput: 41820265560.0101 bps, 41.8203 Gbps
1288
+ busbw: 40.5134 Gbps
1289
+ busbw: 40.5143 Gbps
1290
+ ignore me 18186434
1291
+ 14:
1292
+ duration: 1.5305 sec
1293
+ algo throughput: 41817412474.7738 bps, 41.8174 Gbps
1294
+ busbw: 40.5106 Gbps
1295
+ ignore me 18186434
1296
+ 16:
1297
+ duration: 1.5304 sec
1298
+ algo throughput: 41820405171.5425 bps, 41.8204 Gbps
1299
+ busbw: 40.5135 Gbps
1300
+ ignore me 18186434
1301
+ ignore me 18186434
1302
+ 21:
1303
+ duration: 1.5304 sec
1304
+ algo throughput: 41820211341.2948 bps, 41.8202 Gbps
1305
+ busbw: 40.5133 Gbps
1306
+ 13:
1307
+ duration: 1.5305 sec
1308
+ algo throughput: 41815893542.3173 bps, 41.8159 Gbps
1309
+ busbw: 40.5091 Gbps
1310
+ ignore me 18186434
1311
+ ignore me 18186434
1312
+ 22:
1313
+ duration: 1.5304 sec
1314
+ algo throughput: 41819993958.8392 bps, 41.8200 Gbps
1315
+ busbw: 40.5131 Gbps
1316
+ 12:
1317
+ duration: 1.5305 sec
1318
+ algo throughput: 41816988451.4211 bps, 41.8170 Gbps
1319
+ busbw: 40.5102 Gbps
1320
+ ignore me 18186434
1321
+ 23:
1322
+ duration: 1.5304 sec
1323
+ algo throughput: 41820013685.7934 bps, 41.8200 Gbps
1324
+ busbw: 40.5131 Gbps
1325
+ ignore me 18186434
1326
+ 11:
1327
+ duration: 1.5306 sec
1328
+ algo throughput: 41813631070.6557 bps, 41.8136 Gbps
1329
+ busbw: 40.5070 Gbps
1330
+ ignore me 18186434
1331
+ 10:
1332
+ duration: 1.5306 sec
1333
+ algo throughput: 41813136230.6469 bps, 41.8131 Gbps
1334
+ busbw: 40.5065 Gbps
1335
+ ignore me 18186434
1336
+ 24:
1337
+ duration: 1.5306 sec
1338
+ algo throughput: 41813362805.8615 bps, 41.8134 Gbps
1339
+ busbw: 40.5067 Gbps
1340
+ ignore me 18186434
1341
+ ignore me 18186434
1342
+ 9:
1343
+ duration: 1.5306 sec
1344
+ algo throughput: 41814612837.9065 bps, 41.8146 Gbps
1345
+ 25:
1346
+ duration: 1.5311 sec
1347
+ algo throughput: 41801050732.9013 bps, 41.8011 Gbps
1348
+ busbw: 40.4948 Gbps
1349
+ busbw: 40.5079 Gbps
1350
+ ignore me 18186434
1351
+ ignore me 18186434
1352
+ 6:
1353
+ duration: 1.5307 sec
1354
+ algo throughput: 41811611108.9466 bps, 41.8116 Gbps
1355
+ busbw: 40.5050 Gbps
1356
+ 7:
1357
+ duration: 1.5305 sec
1358
+ algo throughput: 41815091867.5771 bps, 41.8151 Gbps
1359
+ busbw: 40.5084 Gbps
1360
+ ignore me 18186434
1361
+ 8:
1362
+ duration: 1.5304 sec
1363
+ algo throughput: 41818224707.1108 bps, 41.8182 Gbps
1364
+ busbw: 40.5114 Gbps
1365
+ ignore me 18186434
1366
+ 26:
1367
+ duration: 1.5311 sec
1368
+ algo throughput: 41799543931.1436 bps, 41.7995 Gbps
1369
+ busbw: 40.4933 Gbps
1370
+ ignore me 18186434
1371
+ 5:
1372
+ duration: 1.5311 sec
1373
+ algo throughput: 41800540982.4688 bps, 41.8005 Gbps
1374
+ busbw: 40.4943 Gbps
1375
+ ignore me 18186434
1376
+ 27:
1377
+ duration: 1.5311 sec
1378
+ algo throughput: 41798734639.3871 bps, 41.7987 Gbps
1379
+ busbw: 40.4925 Gbps
1380
+ ignore me 18186434
1381
+ 4:
1382
+ duration: 1.5311 sec
1383
+ algo throughput: 41799893567.7921 bps, 41.7999 Gbps
1384
+ busbw: 40.4936 Gbps
1385
+ ignore me 18186434
1386
+ 28:
1387
+ duration: 1.5312 sec
1388
+ algo throughput: 41798021113.2911 bps, 41.7980 Gbps
1389
+ busbw: 40.4918 Gbps
1390
+ ignore me 18186434
1391
+ 3:
1392
+ duration: 1.5311 sec
1393
+ algo throughput: 41799656984.3057 bps, 41.7997 Gbps
1394
+ busbw: 40.4934 Gbps
1395
+ ignore me 18186434
1396
+ 29:
1397
+ duration: 1.5312 sec
1398
+ ignore me 18186434
1399
+ algo throughput: 41797483455.9485 bps, 41.7975 Gbps
1400
+ busbw: 40.4913 Gbps
1401
+ 2:
1402
+ duration: 1.5312 sec
1403
+ algo throughput: 41797889916.8612 bps, 41.7979 Gbps
1404
+ busbw: 40.4917 Gbps
1405
+ ignore me 18186434
1406
+ 30:
1407
+ duration: 1.5312 sec
1408
+ algo throughput: 41797399459.7577 bps, 41.7974 Gbps
1409
+ busbw: 40.4912 Gbps
1410
+ ignore me 18186434
1411
+ 1:
1412
+ duration: 1.5312 sec
1413
+ algo throughput: 41796838922.8479 bps, 41.7968 Gbps
1414
+ busbw: 40.4907 Gbps
1415
+ ignore me 18186434
1416
+ 31:
1417
+ duration: 1.5312 sec
1418
+ algo throughput: 41798535248.2715 bps, 41.7985 Gbps
1419
+ busbw: 40.4923 Gbps
1420
+ ignore me 18186434
1421
+ 0:
1422
+ duration: 1.5312 sec
1423
+ algo throughput: 41797155891.1448 bps, 41.7972 Gbps
1424
+ busbw: 40.4910 Gbps
bigscience/experiments/bandwidth/all_reduce_bench.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # python -m torch.distributed.run --nproc_per_node=2 all_reduce_bench.py
2
+
3
+ import argparse
4
+ import fcntl
5
+ import os
6
+ import socket
7
+ import time
8
+ import torch
9
+ import torch.distributed as dist
10
+
11
+ # note: this benchmark doesn't care how many gpus per node one has
12
+
13
+ TRIALS = 5
14
+
15
+ N = 500000
16
+ M = 2000
17
+
18
+ def printflock(*msgs):
19
+ """ print """
20
+ with open(__file__, "r") as fh:
21
+ fcntl.flock(fh, fcntl.LOCK_EX)
22
+ try:
23
+ print(*msgs)
24
+ finally:
25
+ fcntl.flock(fh, fcntl.LOCK_UN)
26
+
27
+ def timed_allreduce(mat, id):
28
+ pre = time.perf_counter()
29
+ dist.all_reduce(mat)
30
+ printflock(f"ignore me {int(mat[0][0])}") # required due to lazy evaluation
31
+ duration = time.perf_counter() - pre
32
+ tput = ((M*N*4*2)/duration)*8 # *2 is for send + receive, *8 for gigabits/second
33
+ size = M * N * 4 # 4 is fp32
34
+ n = dist.get_world_size()
35
+ busbw = (size / duration) * (2 * (n - 1) / n) * 8
36
+ printflock(f"{id}:\n",
37
+ f"duration: {duration:.4f} sec\n",
38
+ f"algo throughput: {tput:.4f} bps, {tput/1e9:.4f} Gbps\n",
39
+ f"busbw: {busbw / 1e9:.4f} Gbps"
40
+ )
41
+
42
+ def run(local_rank):
43
+ hostname = socket.gethostname()
44
+ id = f"{hostname}:{local_rank}"
45
+ global_rank = dist.get_rank()
46
+
47
+ printflock(f"{id} data size: {M*N*4/1e9} GB")
48
+ mat = torch.rand(N, M, dtype=torch.float32).cuda(local_rank)
49
+
50
+ for i in range(TRIALS):
51
+ dist.barrier()
52
+ if global_rank == 0:
53
+ print(f"\n\n\n-----------trial-{i}----------------")
54
+ timed_allreduce(mat, id)
55
+
56
+ def init_processes(local_rank, fn, backend='nccl'):
57
+ torch.cuda.set_device(local_rank)
58
+ dist.init_process_group(backend)
59
+ fn(local_rank)
60
+
61
+
62
+ if __name__ == "__main__":
63
+ rank = int(os.environ["LOCAL_RANK"])
64
+ printflock("local_rank: %d" % rank)
65
+ init_processes(local_rank=rank, fn=run)
66
+
bigscience/experiments/bandwidth/n16_32gb_all_reduce_bench.txt ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/experiments/bandwidth/n1_16gb_all_reduce_bench.txt ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export NCCL_DEBUG=info
2
+ python -m torch.distributed.launch --nproc_per_node=4 all_reduce_bench.py
3
+
4
+ *****************************************
5
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
6
+ *****************************************
7
+ local_rank: 2
8
+ local_rank: 3
9
+ local_rank: 1
10
+ local_rank: 0
11
+ 0 data size: 4.0 GB
12
+ 2 data size: 4.0 GB
13
+ 1 data size: 4.0 GB
14
+ 3 data size: 4.0 GB
15
+ r10i4n8:38029:38029 [0] NCCL INFO Bootstrap : Using [0]ib0:10.148.8.71<0> [1]ib1:10.149.8.71<0>
16
+ r10i4n8:38029:38029 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
17
+ r10i4n8:38029:38029 [0] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.8.71<0>
18
+ r10i4n8:38029:38029 [0] NCCL INFO Using network IB
19
+ NCCL version 2.7.8+cuda10.2
20
+ r10i4n8:38030:38030 [1] NCCL INFO Bootstrap : Using [0]ib0:10.148.8.71<0> [1]ib1:10.149.8.71<0>
21
+ r10i4n8:38030:38030 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
22
+ r10i4n8:38030:38030 [1] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.8.71<0>
23
+ r10i4n8:38030:38030 [1] NCCL INFO Using network IB
24
+ r10i4n8:38032:38032 [3] NCCL INFO Bootstrap : Using [0]ib0:10.148.8.71<0> [1]ib1:10.149.8.71<0>
25
+ r10i4n8:38032:38032 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
26
+ r10i4n8:38031:38031 [2] NCCL INFO Bootstrap : Using [0]ib0:10.148.8.71<0> [1]ib1:10.149.8.71<0>
27
+ r10i4n8:38031:38031 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
28
+ r10i4n8:38032:38032 [3] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.8.71<0>
29
+ r10i4n8:38032:38032 [3] NCCL INFO Using network IB
30
+ r10i4n8:38031:38031 [2] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.8.71<0>
31
+ r10i4n8:38031:38031 [2] NCCL INFO Using network IB
32
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 00/12 : 0 1 2 3
33
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 01/12 : 0 1 3 2
34
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 02/12 : 0 2 3 1
35
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 03/12 : 0 2 1 3
36
+ r10i4n8:38030:38071 [1] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
37
+ r10i4n8:38032:38077 [3] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
38
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 04/12 : 0 3 1 2
39
+ r10i4n8:38031:38081 [2] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
40
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 05/12 : 0 3 2 1
41
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 06/12 : 0 1 2 3
42
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 07/12 : 0 1 3 2
43
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 08/12 : 0 2 3 1
44
+ r10i4n8:38030:38071 [1] NCCL INFO Trees [0] 2/-1/-1->1->0|0->1->2/-1/-1 [1] 3/-1/-1->1->-1|-1->1->3/-1/-1 [2] -1/-1/-1->1->3|3->1->-1/-1/-1 [3] 0/-1/-1->1->2|2->1->0/-1/-1 [4] 2/-1/-1->1->0|0->1->2/-1/-1 [5] 3/-1/-1->1->-1|-1->1->3/-1/-1 [6] 2/-1/-1->1->0|0->1->2/-1/-1 [7] 3/-1/-1->1->-1|-1->1->3/-1/-1 [8] -1/-1/-1->1->3|3->1->-1/-1/-1 [9] 0/-1/-1->1->2|2->1->0/-1/-1 [10] 2/-1/-1->1->0|0->1->2/-1/-1 [11] 3/-1/-1->1->-1|-1->1->3/-1/-1
45
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 09/12 : 0 2 1 3
46
+ r10i4n8:38032:38077 [3] NCCL INFO Trees [0] -1/-1/-1->3->2|2->3->-1/-1/-1 [1] 0/-1/-1->3->1|1->3->0/-1/-1 [2] 1/-1/-1->3->0|0->3->1/-1/-1 [3] 2/-1/-1->3->-1|-1->3->2/-1/-1 [4] -1/-1/-1->3->2|2->3->-1/-1/-1 [5] 0/-1/-1->3->1|1->3->0/-1/-1 [6] -1/-1/-1->3->2|2->3->-1/-1/-1 [7] 0/-1/-1->3->1|1->3->0/-1/-1 [8] 1/-1/-1->3->0|0->3->1/-1/-1 [9] 2/-1/-1->3->-1|-1->3->2/-1/-1 [10] -1/-1/-1->3->2|2->3->-1/-1/-1 [11] 0/-1/-1->3->1|1->3->0/-1/-1
47
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 10/12 : 0 3 1 2
48
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 11/12 : 0 3 2 1
49
+ r10i4n8:38031:38081 [2] NCCL INFO Trees [0] 3/-1/-1->2->1|1->2->3/-1/-1 [1] -1/-1/-1->2->0|0->2->-1/-1/-1 [2] 0/-1/-1->2->-1|-1->2->0/-1/-1 [3] 1/-1/-1->2->3|3->2->1/-1/-1 [4] 3/-1/-1->2->1|1->2->3/-1/-1 [5] -1/-1/-1->2->0|0->2->-1/-1/-1 [6] 3/-1/-1->2->1|1->2->3/-1/-1 [7] -1/-1/-1->2->0|0->2->-1/-1/-1 [8] 0/-1/-1->2->-1|-1->2->0/-1/-1 [9] 1/-1/-1->2->3|3->2->1/-1/-1 [10] 3/-1/-1->2->1|1->2->3/-1/-1 [11] -1/-1/-1->2->0|0->2->-1/-1/-1
50
+ r10i4n8:38030:38071 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff00,000fffff
51
+ r10i4n8:38032:38077 [3] NCCL INFO Setting affinity for GPU 3 to ffff,f00000ff,fff00000
52
+ r10i4n8:38031:38081 [2] NCCL INFO Setting affinity for GPU 2 to ffff,f00000ff,fff00000
53
+ r10i4n8:38029:38066 [0] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
54
+ r10i4n8:38029:38066 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1|-1->0->1/-1/-1 [1] 2/-1/-1->0->3|3->0->2/-1/-1 [2] 3/-1/-1->0->2|2->0->3/-1/-1 [3] -1/-1/-1->0->1|1->0->-1/-1/-1 [4] 1/-1/-1->0->-1|-1->0->1/-1/-1 [5] 2/-1/-1->0->3|3->0->2/-1/-1 [6] 1/-1/-1->0->-1|-1->0->1/-1/-1 [7] 2/-1/-1->0->3|3->0->2/-1/-1 [8] 3/-1/-1->0->2|2->0->3/-1/-1 [9] -1/-1/-1->0->1|1->0->-1/-1/-1 [10] 1/-1/-1->0->-1|-1->0->1/-1/-1 [11] 2/-1/-1->0->3|3->0->2/-1/-1
55
+ r10i4n8:38029:38066 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff00,000fffff
56
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 00 : 3[8a000] -> 0[1a000] via P2P/IPC
57
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 00 : 2[88000] -> 3[8a000] via P2P/IPC
58
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 00 : 1[1c000] -> 2[88000] via P2P/IPC
59
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 00 : 0[1a000] -> 1[1c000] via P2P/IPC
60
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 00 : 3[8a000] -> 2[88000] via P2P/IPC
61
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 00 : 2[88000] -> 1[1c000] via P2P/IPC
62
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 00 : 1[1c000] -> 0[1a000] via P2P/IPC
63
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 01 : 3[8a000] -> 2[88000] via P2P/IPC
64
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 01 : 0[1a000] -> 1[1c000] via P2P/IPC
65
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 01 : 2[88000] -> 0[1a000] via P2P/IPC
66
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 01 : 1[1c000] -> 3[8a000] via P2P/IPC
67
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 01 : 0[1a000] -> 3[8a000] via P2P/IPC
68
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 01 : 3[8a000] -> 1[1c000] via P2P/IPC
69
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 01 : 0[1a000] -> 2[88000] via P2P/IPC
70
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 01 : 3[8a000] -> 0[1a000] via P2P/IPC
71
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 02 : 1[1c000] -> 0[1a000] via P2P/IPC
72
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 02 : 2[88000] -> 3[8a000] via P2P/IPC
73
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 02 : 3[8a000] -> 1[1c000] via P2P/IPC
74
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 02 : 0[1a000] -> 2[88000] via P2P/IPC
75
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 02 : 1[1c000] -> 3[8a000] via P2P/IPC
76
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 02 : 2[88000] -> 0[1a000] via P2P/IPC
77
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 02 : 3[8a000] -> 0[1a000] via P2P/IPC
78
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 03 : 1[1c000] -> 3[8a000] via P2P/IPC
79
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 02 : 0[1a000] -> 3[8a000] via P2P/IPC
80
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 03 : 2[88000] -> 1[1c000] via P2P/IPC
81
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 03 : 3[8a000] -> 0[1a000] via P2P/IPC
82
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 03 : 0[1a000] -> 2[88000] via P2P/IPC
83
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 03 : 1[1c000] -> 2[88000] via P2P/IPC
84
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 03 : 0[1a000] -> 1[1c000] via P2P/IPC
85
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 03 : 2[88000] -> 3[8a000] via P2P/IPC
86
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 03 : 1[1c000] -> 0[1a000] via P2P/IPC
87
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 03 : 3[8a000] -> 2[88000] via P2P/IPC
88
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 04 : 1[1c000] -> 2[88000] via P2P/IPC
89
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 04 : 0[1a000] -> 3[8a000] via P2P/IPC
90
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 04 : 3[8a000] -> 1[1c000] via P2P/IPC
91
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 04 : 2[88000] -> 0[1a000] via P2P/IPC
92
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 04 : 3[8a000] -> 2[88000] via P2P/IPC
93
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 04 : 1[1c000] -> 0[1a000] via P2P/IPC
94
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 04 : 2[88000] -> 1[1c000] via P2P/IPC
95
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 04 : 0[1a000] -> 1[1c000] via P2P/IPC
96
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 04 : 2[88000] -> 3[8a000] via P2P/IPC
97
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 05 : 1[1c000] -> 0[1a000] via P2P/IPC
98
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 05 : 0[1a000] -> 3[8a000] via P2P/IPC
99
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 05 : 3[8a000] -> 2[88000] via P2P/IPC
100
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 05 : 2[88000] -> 1[1c000] via P2P/IPC
101
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 05 : 3[8a000] -> 1[1c000] via P2P/IPC
102
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 05 : 2[88000] -> 0[1a000] via P2P/IPC
103
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 05 : 1[1c000] -> 3[8a000] via P2P/IPC
104
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 05 : 3[8a000] -> 0[1a000] via P2P/IPC
105
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 05 : 0[1a000] -> 2[88000] via P2P/IPC
106
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 06 : 1[1c000] -> 2[88000] via P2P/IPC
107
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 06 : 2[88000] -> 3[8a000] via P2P/IPC
108
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 06 : 3[8a000] -> 0[1a000] via P2P/IPC
109
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 06 : 0[1a000] -> 1[1c000] via P2P/IPC
110
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 06 : 3[8a000] -> 2[88000] via P2P/IPC
111
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 06 : 2[88000] -> 1[1c000] via P2P/IPC
112
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 06 : 1[1c000] -> 0[1a000] via P2P/IPC
113
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 07 : 3[8a000] -> 2[88000] via P2P/IPC
114
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 07 : 2[88000] -> 0[1a000] via P2P/IPC
115
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 07 : 0[1a000] -> 1[1c000] via P2P/IPC
116
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 07 : 1[1c000] -> 3[8a000] via P2P/IPC
117
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 07 : 0[1a000] -> 3[8a000] via P2P/IPC
118
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 07 : 3[8a000] -> 1[1c000] via P2P/IPC
119
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 07 : 0[1a000] -> 2[88000] via P2P/IPC
120
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 07 : 3[8a000] -> 0[1a000] via P2P/IPC
121
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 08 : 1[1c000] -> 0[1a000] via P2P/IPC
122
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 08 : 2[88000] -> 3[8a000] via P2P/IPC
123
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 08 : 3[8a000] -> 1[1c000] via P2P/IPC
124
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 08 : 0[1a000] -> 2[88000] via P2P/IPC
125
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 08 : 1[1c000] -> 3[8a000] via P2P/IPC
126
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 08 : 2[88000] -> 0[1a000] via P2P/IPC
127
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 08 : 3[8a000] -> 0[1a000] via P2P/IPC
128
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 09 : 1[1c000] -> 3[8a000] via P2P/IPC
129
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 08 : 0[1a000] -> 3[8a000] via P2P/IPC
130
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 09 : 2[88000] -> 1[1c000] via P2P/IPC
131
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 09 : 3[8a000] -> 0[1a000] via P2P/IPC
132
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 09 : 0[1a000] -> 2[88000] via P2P/IPC
133
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 09 : 1[1c000] -> 2[88000] via P2P/IPC
134
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 09 : 0[1a000] -> 1[1c000] via P2P/IPC
135
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 09 : 2[88000] -> 3[8a000] via P2P/IPC
136
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 09 : 1[1c000] -> 0[1a000] via P2P/IPC
137
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 09 : 3[8a000] -> 2[88000] via P2P/IPC
138
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 10 : 1[1c000] -> 2[88000] via P2P/IPC
139
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 10 : 0[1a000] -> 3[8a000] via P2P/IPC
140
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 10 : 3[8a000] -> 1[1c000] via P2P/IPC
141
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 10 : 2[88000] -> 0[1a000] via P2P/IPC
142
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 10 : 3[8a000] -> 2[88000] via P2P/IPC
143
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 10 : 1[1c000] -> 0[1a000] via P2P/IPC
144
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 10 : 2[88000] -> 1[1c000] via P2P/IPC
145
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 10 : 0[1a000] -> 1[1c000] via P2P/IPC
146
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 10 : 2[88000] -> 3[8a000] via P2P/IPC
147
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 11 : 1[1c000] -> 0[1a000] via P2P/IPC
148
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 11 : 0[1a000] -> 3[8a000] via P2P/IPC
149
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 11 : 3[8a000] -> 2[88000] via P2P/IPC
150
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 11 : 2[88000] -> 1[1c000] via P2P/IPC
151
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 11 : 3[8a000] -> 1[1c000] via P2P/IPC
152
+ r10i4n8:38031:38081 [2] NCCL INFO Channel 11 : 2[88000] -> 0[1a000] via P2P/IPC
153
+ r10i4n8:38030:38071 [1] NCCL INFO Channel 11 : 1[1c000] -> 3[8a000] via P2P/IPC
154
+ r10i4n8:38032:38077 [3] NCCL INFO Channel 11 : 3[8a000] -> 0[1a000] via P2P/IPC
155
+ r10i4n8:38029:38066 [0] NCCL INFO Channel 11 : 0[1a000] -> 2[88000] via P2P/IPC
156
+ r10i4n8:38030:38071 [1] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
157
+ r10i4n8:38030:38071 [1] NCCL INFO comm 0x14dbb0001060 rank 1 nranks 4 cudaDev 1 busId 1c000 - Init COMPLETE
158
+ r10i4n8:38031:38081 [2] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
159
+ r10i4n8:38031:38081 [2] NCCL INFO comm 0x150950001060 rank 2 nranks 4 cudaDev 2 busId 88000 - Init COMPLETE
160
+ r10i4n8:38032:38077 [3] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
161
+ r10i4n8:38032:38077 [3] NCCL INFO comm 0x14ccd8001060 rank 3 nranks 4 cudaDev 3 busId 8a000 - Init COMPLETE
162
+ r10i4n8:38029:38066 [0] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
163
+ r10i4n8:38029:38066 [0] NCCL INFO comm 0x149bac001060 rank 0 nranks 4 cudaDev 0 busId 1a000 - Init COMPLETE
164
+ r10i4n8:38029:38029 [0] NCCL INFO Launch mode Parallel
165
+ ignore me 1
166
+ ignore me 1
167
+ ignore me 1
168
+ 0:
169
+ duration: 0.6633 sec
170
+ algo throughput: 96488131490.3540 bps, 96.4881 Gbps
171
+ busbw: 72.3661 Gbps
172
+ 1:
173
+ duration: 0.4507 sec
174
+ algo throughput: 142007505620.8443 bps, 142.0075 Gbps
175
+ busbw: 106.5056 Gbps
176
+ 2:
177
+ duration: 0.4203 sec
178
+ algo throughput: 152274131784.9601 bps, 152.2741 Gbps
179
+ busbw: 114.2056 Gbps
180
+ ignore me 1
181
+ 3:
182
+ duration: 0.4225 sec
183
+ algo throughput: 151490688123.0876 bps, 151.4907 Gbps
184
+ busbw: 113.6180 Gbps
185
+ ignore me 7
186
+ ignore me 7
187
+ ignore me 7
188
+ 3:
189
+ duration: 0.0479 sec
190
+ algo throughput: 1336658447010.4644 bps, 1336.6584 Gbps
191
+ busbw: 1002.4938 Gbps
192
+ ignore me 7
193
+ 1:
194
+ duration: 0.0483 sec
195
+ algo throughput: 1325019685494.1951 bps, 1325.0197 Gbps
196
+ busbw: 993.7648 Gbps
197
+ 0:
198
+ duration: 0.0483 sec
199
+ algo throughput: 1323924013812.1467 bps, 1323.9240 Gbps
200
+ busbw: 992.9430 Gbps
201
+ 2:
202
+ duration: 0.0483 sec
203
+ algo throughput: 1324507343140.4290 bps, 1324.5073 Gbps
204
+ busbw: 993.3805 Gbps
205
+ ignore me 31
206
+ ignore me 31
207
+ ignore me 31
208
+ ignore me 31
209
+ 3:
210
+ duration: 0.0479 sec
211
+ algo throughput: 1335850436641.9412 bps, 1335.8504 Gbps
212
+ busbw: 1001.8878 Gbps
213
+ 2:
214
+ duration: 0.0478 sec
215
+ algo throughput: 1338717258044.6157 bps, 1338.7173 Gbps
216
+ busbw: 1004.0379 Gbps
217
+ 0:
218
+ duration: 0.0479 sec
219
+ algo throughput: 1336480609710.5195 bps, 1336.4806 Gbps
220
+ busbw: 1002.3605 Gbps
221
+ 1:
222
+ duration: 0.0479 sec
223
+ algo throughput: 1335644997705.6060 bps, 1335.6450 Gbps
224
+ busbw: 1001.7337 Gbps
225
+ ignore me 124
226
+ ignore me 124
227
+ ignore me 124
228
+ 2:
229
+ duration: 0.0479 sec
230
+ algo throughput: 1337297229056.0354 bps, 1337.2972 Gbps
231
+ busbw: 1002.9729 Gbps
232
+ 0:
233
+ duration: 0.0479 sec
234
+ algo throughput: 1337048861958.8491 bps, 1337.0489 Gbps
235
+ busbw: 1002.7866 Gbps
236
+ ignore me 124
237
+ 1:
238
+ duration: 0.0479 sec
239
+ algo throughput: 1337386146372.2676 bps, 1337.3861 Gbps
240
+ busbw: 1003.0396 Gbps
241
+ 3:
242
+ duration: 0.0480 sec
243
+ algo throughput: 1333613993474.4404 bps, 1333.6140 Gbps
244
+ busbw: 1000.2105 Gbps
245
+ ignore me 496
246
+ ignore me 496
247
+ ignore me 496
248
+ ignore me 496
249
+ 2:
250
+ duration: 0.0481 sec
251
+ algo throughput: 1329998661494.7930 bps, 1329.9987 Gbps
252
+ busbw: 997.4990 Gbps
253
+ 3:
254
+ duration: 0.0480 sec
255
+ algo throughput: 1333082662016.4126 bps, 1333.0827 Gbps
256
+ busbw: 999.8120 Gbps
257
+ 1:
258
+ duration: 0.0481 sec
259
+ algo throughput: 1330394518818.0288 bps, 1330.3945 Gbps
260
+ busbw: 997.7959 Gbps
261
+ 0:
262
+ duration: 0.0481 sec
263
+ algo throughput: 1329424219916.1433 bps, 1329.4242 Gbps
264
+ busbw: 997.0682 Gbps
bigscience/experiments/bandwidth/n1_32gb_all_reduce_bench.txt ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export NCCL_DEBUG=info
2
+ python -m torch.distributed.launch --nproc_per_node=4 all_reduce_bench.py
3
+
4
+ *****************************************
5
+ Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
6
+ *****************************************
7
+ local_rank: 3
8
+ local_rank: 1
9
+ local_rank: 0
10
+ local_rank: 2
11
+ 0 data size: 4.0 GB
12
+ 2 data size: 4.0 GB
13
+ 3 data size: 4.0 GB
14
+ 1 data size: 4.0 GB
15
+ r7i4n1:63120:63120 [0] NCCL INFO Bootstrap : Using [0]ib0:10.148.0.76<0> [1]ib1:10.149.0.76<0>
16
+ r7i4n1:63120:63120 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
17
+ r7i4n1:63120:63120 [0] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.0.76<0>
18
+ r7i4n1:63120:63120 [0] NCCL INFO Using network IB
19
+ NCCL version 2.7.8+cuda10.2
20
+ r7i4n1:63123:63123 [3] NCCL INFO Bootstrap : Using [0]ib0:10.148.0.76<0> [1]ib1:10.149.0.76<0>
21
+ r7i4n1:63121:63121 [1] NCCL INFO Bootstrap : Using [0]ib0:10.148.0.76<0> [1]ib1:10.149.0.76<0>
22
+ r7i4n1:63123:63123 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
23
+ r7i4n1:63121:63121 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
24
+ r7i4n1:63121:63121 [1] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.0.76<0>
25
+ r7i4n1:63123:63123 [3] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.0.76<0>
26
+ r7i4n1:63121:63121 [1] NCCL INFO Using network IB
27
+ r7i4n1:63123:63123 [3] NCCL INFO Using network IB
28
+ r7i4n1:63122:63122 [2] NCCL INFO Bootstrap : Using [0]ib0:10.148.0.76<0> [1]ib1:10.149.0.76<0>
29
+ r7i4n1:63122:63122 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
30
+ r7i4n1:63122:63122 [2] NCCL INFO NET/IB : Using [0]hfi1_2:1/IB [1]hfi1_0:1/IB [2]hfi1_3:1/IB [3]hfi1_1:1/IB ; OOB ib0:10.148.0.76<0>
31
+ r7i4n1:63122:63122 [2] NCCL INFO Using network IB
32
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 00/12 : 0 1 2 3
33
+ r7i4n1:63122:63194 [2] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
34
+ r7i4n1:63121:63193 [1] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
35
+ r7i4n1:63123:63192 [3] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
36
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 01/12 : 0 1 3 2
37
+ r7i4n1:63122:63194 [2] NCCL INFO Trees [0] 3/-1/-1->2->1|1->2->3/-1/-1 [1] -1/-1/-1->2->0|0->2->-1/-1/-1 [2] 0/-1/-1->2->-1|-1->2->0/-1/-1 [3] 1/-1/-1->2->3|3->2->1/-1/-1 [4] 3/-1/-1->2->1|1->2->3/-1/-1 [5] -1/-1/-1->2->0|0->2->-1/-1/-1 [6] 3/-1/-1->2->1|1->2->3/-1/-1 [7] -1/-1/-1->2->0|0->2->-1/-1/-1 [8] 0/-1/-1->2->-1|-1->2->0/-1/-1 [9] 1/-1/-1->2->3|3->2->1/-1/-1 [10] 3/-1/-1->2->1|1->2->3/-1/-1 [11] -1/-1/-1->2->0|0->2->-1/-1/-1
38
+ r7i4n1:63121:63193 [1] NCCL INFO Trees [0] 2/-1/-1->1->0|0->1->2/-1/-1 [1] 3/-1/-1->1->-1|-1->1->3/-1/-1 [2] -1/-1/-1->1->3|3->1->-1/-1/-1 [3] 0/-1/-1->1->2|2->1->0/-1/-1 [4] 2/-1/-1->1->0|0->1->2/-1/-1 [5] 3/-1/-1->1->-1|-1->1->3/-1/-1 [6] 2/-1/-1->1->0|0->1->2/-1/-1 [7] 3/-1/-1->1->-1|-1->1->3/-1/-1 [8] -1/-1/-1->1->3|3->1->-1/-1/-1 [9] 0/-1/-1->1->2|2->1->0/-1/-1 [10] 2/-1/-1->1->0|0->1->2/-1/-1 [11] 3/-1/-1->1->-1|-1->1->3/-1/-1
39
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 02/12 : 0 2 3 1
40
+ r7i4n1:63123:63192 [3] NCCL INFO Trees [0] -1/-1/-1->3->2|2->3->-1/-1/-1 [1] 0/-1/-1->3->1|1->3->0/-1/-1 [2] 1/-1/-1->3->0|0->3->1/-1/-1 [3] 2/-1/-1->3->-1|-1->3->2/-1/-1 [4] -1/-1/-1->3->2|2->3->-1/-1/-1 [5] 0/-1/-1->3->1|1->3->0/-1/-1 [6] -1/-1/-1->3->2|2->3->-1/-1/-1 [7] 0/-1/-1->3->1|1->3->0/-1/-1 [8] 1/-1/-1->3->0|0->3->1/-1/-1 [9] 2/-1/-1->3->-1|-1->3->2/-1/-1 [10] -1/-1/-1->3->2|2->3->-1/-1/-1 [11] 0/-1/-1->3->1|1->3->0/-1/-1
41
+ r7i4n1:63122:63194 [2] NCCL INFO Setting affinity for GPU 2 to ffff,f00000ff,fff00000
42
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 03/12 : 0 2 1 3
43
+ r7i4n1:63121:63193 [1] NCCL INFO Setting affinity for GPU 1 to 0fffff00,000fffff
44
+ r7i4n1:63123:63192 [3] NCCL INFO Setting affinity for GPU 3 to ffff,f00000ff,fff00000
45
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 04/12 : 0 3 1 2
46
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 00 : 2[88000] -> 3[8a000] via P2P/IPC
47
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 05/12 : 0 3 2 1
48
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 06/12 : 0 1 2 3
49
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 07/12 : 0 1 3 2
50
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 08/12 : 0 2 3 1
51
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 09/12 : 0 2 1 3
52
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 10/12 : 0 3 1 2
53
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 11/12 : 0 3 2 1
54
+ r7i4n1:63120:63191 [0] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/64
55
+ r7i4n1:63120:63191 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1|-1->0->1/-1/-1 [1] 2/-1/-1->0->3|3->0->2/-1/-1 [2] 3/-1/-1->0->2|2->0->3/-1/-1 [3] -1/-1/-1->0->1|1->0->-1/-1/-1 [4] 1/-1/-1->0->-1|-1->0->1/-1/-1 [5] 2/-1/-1->0->3|3->0->2/-1/-1 [6] 1/-1/-1->0->-1|-1->0->1/-1/-1 [7] 2/-1/-1->0->3|3->0->2/-1/-1 [8] 3/-1/-1->0->2|2->0->3/-1/-1 [9] -1/-1/-1->0->1|1->0->-1/-1/-1 [10] 1/-1/-1->0->-1|-1->0->1/-1/-1 [11] 2/-1/-1->0->3|3->0->2/-1/-1
56
+ r7i4n1:63120:63191 [0] NCCL INFO Setting affinity for GPU 0 to 0fffff00,000fffff
57
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 00 : 3[8a000] -> 0[1a000] via P2P/IPC
58
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 00 : 1[1c000] -> 2[88000] via P2P/IPC
59
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 00 : 0[1a000] -> 1[1c000] via P2P/IPC
60
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 00 : 3[8a000] -> 2[88000] via P2P/IPC
61
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 00 : 2[88000] -> 1[1c000] via P2P/IPC
62
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 00 : 1[1c000] -> 0[1a000] via P2P/IPC
63
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 01 : 3[8a000] -> 2[88000] via P2P/IPC
64
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 01 : 2[88000] -> 0[1a000] via P2P/IPC
65
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 01 : 0[1a000] -> 1[1c000] via P2P/IPC
66
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 01 : 1[1c000] -> 3[8a000] via P2P/IPC
67
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 01 : 0[1a000] -> 3[8a000] via P2P/IPC
68
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 01 : 3[8a000] -> 1[1c000] via P2P/IPC
69
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 01 : 0[1a000] -> 2[88000] via P2P/IPC
70
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 01 : 3[8a000] -> 0[1a000] via P2P/IPC
71
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 02 : 1[1c000] -> 0[1a000] via P2P/IPC
72
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 02 : 2[88000] -> 3[8a000] via P2P/IPC
73
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 02 : 3[8a000] -> 1[1c000] via P2P/IPC
74
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 02 : 0[1a000] -> 2[88000] via P2P/IPC
75
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 02 : 1[1c000] -> 3[8a000] via P2P/IPC
76
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 02 : 2[88000] -> 0[1a000] via P2P/IPC
77
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 02 : 3[8a000] -> 0[1a000] via P2P/IPC
78
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 03 : 1[1c000] -> 3[8a000] via P2P/IPC
79
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 02 : 0[1a000] -> 3[8a000] via P2P/IPC
80
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 03 : 2[88000] -> 1[1c000] via P2P/IPC
81
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 03 : 3[8a000] -> 0[1a000] via P2P/IPC
82
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 03 : 0[1a000] -> 2[88000] via P2P/IPC
83
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 03 : 1[1c000] -> 2[88000] via P2P/IPC
84
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 03 : 0[1a000] -> 1[1c000] via P2P/IPC
85
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 03 : 2[88000] -> 3[8a000] via P2P/IPC
86
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 03 : 1[1c000] -> 0[1a000] via P2P/IPC
87
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 03 : 3[8a000] -> 2[88000] via P2P/IPC
88
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 04 : 0[1a000] -> 3[8a000] via P2P/IPC
89
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 04 : 1[1c000] -> 2[88000] via P2P/IPC
90
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 04 : 3[8a000] -> 1[1c000] via P2P/IPC
91
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 04 : 2[88000] -> 0[1a000] via P2P/IPC
92
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 04 : 3[8a000] -> 2[88000] via P2P/IPC
93
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 04 : 1[1c000] -> 0[1a000] via P2P/IPC
94
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 04 : 2[88000] -> 1[1c000] via P2P/IPC
95
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 04 : 0[1a000] -> 1[1c000] via P2P/IPC
96
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 04 : 2[88000] -> 3[8a000] via P2P/IPC
97
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 05 : 0[1a000] -> 3[8a000] via P2P/IPC
98
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 05 : 1[1c000] -> 0[1a000] via P2P/IPC
99
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 05 : 3[8a000] -> 2[88000] via P2P/IPC
100
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 05 : 2[88000] -> 1[1c000] via P2P/IPC
101
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 05 : 3[8a000] -> 1[1c000] via P2P/IPC
102
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 05 : 2[88000] -> 0[1a000] via P2P/IPC
103
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 05 : 1[1c000] -> 3[8a000] via P2P/IPC
104
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 05 : 3[8a000] -> 0[1a000] via P2P/IPC
105
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 05 : 0[1a000] -> 2[88000] via P2P/IPC
106
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 06 : 1[1c000] -> 2[88000] via P2P/IPC
107
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 06 : 2[88000] -> 3[8a000] via P2P/IPC
108
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 06 : 3[8a000] -> 0[1a000] via P2P/IPC
109
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 06 : 0[1a000] -> 1[1c000] via P2P/IPC
110
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 06 : 3[8a000] -> 2[88000] via P2P/IPC
111
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 06 : 1[1c000] -> 0[1a000] via P2P/IPC
112
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 06 : 2[88000] -> 1[1c000] via P2P/IPC
113
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 07 : 3[8a000] -> 2[88000] via P2P/IPC
114
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 07 : 0[1a000] -> 1[1c000] via P2P/IPC
115
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 07 : 1[1c000] -> 3[8a000] via P2P/IPC
116
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 07 : 2[88000] -> 0[1a000] via P2P/IPC
117
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 07 : 0[1a000] -> 3[8a000] via P2P/IPC
118
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 07 : 3[8a000] -> 1[1c000] via P2P/IPC
119
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 07 : 0[1a000] -> 2[88000] via P2P/IPC
120
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 07 : 3[8a000] -> 0[1a000] via P2P/IPC
121
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 08 : 1[1c000] -> 0[1a000] via P2P/IPC
122
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 08 : 2[88000] -> 3[8a000] via P2P/IPC
123
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 08 : 0[1a000] -> 2[88000] via P2P/IPC
124
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 08 : 3[8a000] -> 1[1c000] via P2P/IPC
125
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 08 : 2[88000] -> 0[1a000] via P2P/IPC
126
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 08 : 1[1c000] -> 3[8a000] via P2P/IPC
127
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 08 : 3[8a000] -> 0[1a000] via P2P/IPC
128
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 09 : 1[1c000] -> 3[8a000] via P2P/IPC
129
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 08 : 0[1a000] -> 3[8a000] via P2P/IPC
130
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 09 : 2[88000] -> 1[1c000] via P2P/IPC
131
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 09 : 3[8a000] -> 0[1a000] via P2P/IPC
132
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 09 : 0[1a000] -> 2[88000] via P2P/IPC
133
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 09 : 1[1c000] -> 2[88000] via P2P/IPC
134
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 09 : 0[1a000] -> 1[1c000] via P2P/IPC
135
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 09 : 2[88000] -> 3[8a000] via P2P/IPC
136
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 09 : 1[1c000] -> 0[1a000] via P2P/IPC
137
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 09 : 3[8a000] -> 2[88000] via P2P/IPC
138
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 10 : 0[1a000] -> 3[8a000] via P2P/IPC
139
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 10 : 1[1c000] -> 2[88000] via P2P/IPC
140
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 10 : 2[88000] -> 0[1a000] via P2P/IPC
141
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 10 : 3[8a000] -> 1[1c000] via P2P/IPC
142
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 10 : 3[8a000] -> 2[88000] via P2P/IPC
143
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 10 : 1[1c000] -> 0[1a000] via P2P/IPC
144
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 10 : 2[88000] -> 1[1c000] via P2P/IPC
145
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 10 : 0[1a000] -> 1[1c000] via P2P/IPC
146
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 10 : 2[88000] -> 3[8a000] via P2P/IPC
147
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 11 : 1[1c000] -> 0[1a000] via P2P/IPC
148
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 11 : 0[1a000] -> 3[8a000] via P2P/IPC
149
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 11 : 3[8a000] -> 2[88000] via P2P/IPC
150
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 11 : 2[88000] -> 1[1c000] via P2P/IPC
151
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 11 : 3[8a000] -> 1[1c000] via P2P/IPC
152
+ r7i4n1:63122:63194 [2] NCCL INFO Channel 11 : 2[88000] -> 0[1a000] via P2P/IPC
153
+ r7i4n1:63121:63193 [1] NCCL INFO Channel 11 : 1[1c000] -> 3[8a000] via P2P/IPC
154
+ r7i4n1:63123:63192 [3] NCCL INFO Channel 11 : 3[8a000] -> 0[1a000] via P2P/IPC
155
+ r7i4n1:63120:63191 [0] NCCL INFO Channel 11 : 0[1a000] -> 2[88000] via P2P/IPC
156
+ r7i4n1:63121:63193 [1] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
157
+ r7i4n1:63121:63193 [1] NCCL INFO comm 0x148f80001060 rank 1 nranks 4 cudaDev 1 busId 1c000 - Init COMPLETE
158
+ r7i4n1:63122:63194 [2] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
159
+ r7i4n1:63122:63194 [2] NCCL INFO comm 0x152f00001060 rank 2 nranks 4 cudaDev 2 busId 88000 - Init COMPLETE
160
+ r7i4n1:63123:63192 [3] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
161
+ r7i4n1:63120:63191 [0] NCCL INFO 12 coll channels, 16 p2p channels, 4 p2p channels per peer
162
+ r7i4n1:63123:63192 [3] NCCL INFO comm 0x146050001060 rank 3 nranks 4 cudaDev 3 busId 8a000 - Init COMPLETE
163
+ r7i4n1:63120:63191 [0] NCCL INFO comm 0x14f24c001060 rank 0 nranks 4 cudaDev 0 busId 1a000 - Init COMPLETE
164
+ r7i4n1:63120:63120 [0] NCCL INFO Launch mode Parallel
165
+ ignore me 2
166
+ ignore me 2
167
+ ignore me 2
168
+ 3:
169
+ duration: 0.6125 sec
170
+ algo throughput: 104487664227.6784 bps, 104.4877 Gbps
171
+ busbw: 78.3657 Gbps
172
+ 0:
173
+ duration: 0.5584 sec
174
+ algo throughput: 114613183387.2373 bps, 114.6132 Gbps
175
+ busbw: 85.9599 Gbps
176
+ 2:
177
+ duration: 0.5140 sec
178
+ algo throughput: 124513941981.7996 bps, 124.5139 Gbps
179
+ busbw: 93.3855 Gbps
180
+ ignore me 2
181
+ 1:
182
+ duration: 0.6245 sec
183
+ algo throughput: 102486528362.0469 bps, 102.4865 Gbps
184
+ busbw: 76.8649 Gbps
185
+ ignore me 11
186
+ ignore me 11
187
+ ignore me 11
188
+ ignore me 11
189
+ 1:
190
+ duration: 0.0479 sec
191
+ algo throughput: 1337346013047.7080 bps, 1337.3460 Gbps
192
+ busbw: 1003.0095 Gbps
193
+ 2:
194
+ duration: 0.0482 sec
195
+ algo throughput: 1328071705904.8621 bps, 1328.0717 Gbps
196
+ busbw: 996.0538 Gbps
197
+ 3:
198
+ duration: 0.0483 sec
199
+ algo throughput: 1325052362787.1750 bps, 1325.0524 Gbps
200
+ busbw: 993.7893 Gbps
201
+ 0:
202
+ duration: 0.0483 sec
203
+ algo throughput: 1325619195876.0120 bps, 1325.6192 Gbps
204
+ busbw: 994.2144 Gbps
205
+ ignore me 45
206
+ ignore me 45
207
+ ignore me 45
208
+ ignore me 45
209
+ 1:
210
+ duration: 0.0485 sec
211
+ algo throughput: 1319242278750.3755 bps, 1319.2423 Gbps
212
+ busbw: 989.4317 Gbps
213
+ 3:
214
+ duration: 0.0485 sec
215
+ algo throughput: 1320339103321.9136 bps, 1320.3391 Gbps
216
+ busbw: 990.2543 Gbps
217
+ 2:
218
+ duration: 0.0485 sec
219
+ algo throughput: 1318722904549.9961 bps, 1318.7229 Gbps
220
+ busbw: 989.0422 Gbps
221
+ 0:
222
+ duration: 0.0485 sec
223
+ algo throughput: 1320313583319.3479 bps, 1320.3136 Gbps
224
+ busbw: 990.2352 Gbps
225
+ ignore me 183
226
+ ignore me 183
227
+ ignore me 183
228
+ ignore me 183
229
+ 2:
230
+ duration: 0.0484 sec
231
+ algo throughput: 1322236494553.5015 bps, 1322.2365 Gbps
232
+ busbw: 991.6774 Gbps
233
+ 0:
234
+ duration: 0.0484 sec
235
+ algo throughput: 1321797181142.1807 bps, 1321.7972 Gbps
236
+ busbw: 991.3479 Gbps
237
+ 1:
238
+ duration: 0.0485 sec
239
+ algo throughput: 1318282723325.4265 bps, 1318.2827 Gbps
240
+ busbw: 988.7120 Gbps
241
+ 3:
242
+ duration: 0.0485 sec
243
+ algo throughput: 1320550708735.8535 bps, 1320.5507 Gbps
244
+ busbw: 990.4130 Gbps
245
+ ignore me 733
246
+ ignore me 733
247
+ ignore me 733
248
+ 1:
249
+ duration: 0.0483 sec
250
+ algo throughput: 1323715979433.6658 bps, 1323.7160 Gbps
251
+ busbw: 992.7870 Gbps
252
+ 2:
253
+ duration: 0.0484 sec
254
+ algo throughput: 1322345035832.8503 bps, 1322.3450 Gbps
255
+ busbw: 991.7588 Gbps
256
+ ignore me 733
257
+ 3:
258
+ duration: 0.0484 sec
259
+ algo throughput: 1323624408929.4016 bps, 1323.6244 Gbps
260
+ busbw: 992.7183 Gbps
261
+ 0:
262
+ duration: 0.0485 sec
263
+ algo throughput: 1319272113636.8833 bps, 1319.2721 Gbps
264
+ busbw: 989.4541 Gbps
bigscience/experiments/decoder-only-lm/gpt2_deepspeed.sh ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DATASET=openwebtext
2
+ SERIALIZATION_DIR=${ALL_CCFRWORK}/experiments/gpt2_repro
3
+ LOGGING_DIR=${ALL_CCFRWORK}/tensorboard/gpt2_repro
4
+
5
+ export CUDA_VISIBLE_DEVICES=0
6
+
7
+ #python scripts/run_clm.py \
8
+ deepspeed scripts/run_clm.py \
9
+ --deepspeed configs/deepspeed/ds_zero2.json \
10
+ --model_type gpt2 \
11
+ --tokenizer_name gpt2 \
12
+ --dataset_name openwebtext --block_size 1024 \
13
+ --preprocessing_num_workers 76 \
14
+ --group_by_length --length_column_name length \
15
+ --do_train --do_eval \
16
+ --max_steps 15000 \
17
+ --max_train_samples 10000000 \
18
+ --per_device_train_batch_size 4 --gradient_accumulation_steps 16 \
19
+ --per_device_eval_batch_size 8 \
20
+ --output_dir outputs --overwrite_output_dir \
21
+ --report_to tensorboard \
22
+ --logging_strategy steps --logging_first_step --logging_dir logs --logging_steps 20 \
23
+ --eval_steps 250 --evaluation_strategy steps \
24
+ --save_strategy steps --save_steps 500 --save_total_limit 31 \
25
+ --n_layer 3 --n_embd 128 --n_inner 128 --n_head 8
bigscience/experiments/decoder-only-lm/models/__init__.py ADDED
File without changes
bigscience/experiments/decoder-only-lm/models/decoder_only_t5/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .configuration_decoder_only_t5 import DecoderOnlyT5Config
2
+ from .modeling_decoder_only_t5 import DecoderOnlyT5Model, DecoderOnlyT5LMHeadModel
bigscience/experiments/decoder-only-lm/models/decoder_only_t5/configuration_decoder_only_t5.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020, The T5 Authors and HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Decoder Only T5 model configuration """
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ # T5_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ # "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
25
+ # "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
26
+ # "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
27
+ # "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
28
+ # "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
29
+ # }
30
+
31
+
32
+ class DecoderOnlyT5Config(PretrainedConfig):
33
+ r"""
34
+ This is the configuration class to store the configuration of a :class:`~transformers.T5Model` or a
35
+ :class:`~transformers.TFT5Model`. It is used to instantiate a T5 model according to the specified arguments,
36
+ defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
37
+ to that of the T5 `t5-small <https://huggingface.co/t5-small>`__ architecture.
38
+
39
+ Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
40
+ outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
41
+
42
+ Arguments:
43
+ vocab_size (:obj:`int`, `optional`, defaults to 32128):
44
+ Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
45
+ :obj:`inputs_ids` passed when calling :class:`~transformers.T5Model` or :class:`~transformers.TFT5Model`.
46
+ d_model (:obj:`int`, `optional`, defaults to 512):
47
+ Size of the encoder layers and the pooler layer.
48
+ d_kv (:obj:`int`, `optional`, defaults to 64):
49
+ Size of the key, query, value projections per attention head. :obj:`d_kv` has to be equal to :obj:`d_model
50
+ // num_heads`.
51
+ d_ff (:obj:`int`, `optional`, defaults to 2048):
52
+ Size of the intermediate feed forward layer in each :obj:`T5Block`.
53
+ num_layers (:obj:`int`, `optional`, defaults to 6):
54
+ Number of hidden layers in the Transformer encoder.
55
+ num_decoder_layers (:obj:`int`, `optional`):
56
+ Number of hidden layers in the Transformer decoder. Will use the same value as :obj:`num_layers` if not
57
+ set.
58
+ num_heads (:obj:`int`, `optional`, defaults to 8):
59
+ Number of attention heads for each attention layer in the Transformer encoder.
60
+ relative_attention_num_buckets (:obj:`int`, `optional`, defaults to 32):
61
+ The number of buckets to use for each attention layer.
62
+ dropout_rate (:obj:`float`, `optional`, defaults to 0.1):
63
+ The ratio for all dropout layers.
64
+ layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-6):
65
+ The epsilon used by the layer normalization layers.
66
+ initializer_factor (:obj:`float`, `optional`, defaults to 1):
67
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
68
+ testing).
69
+ feed_forward_proj (:obj:`string`, `optional`, defaults to :obj:`"relu"`):
70
+ Type of feed forward layer to be used. Should be one of :obj:`"relu"` or :obj:`"gated-gelu"`. T5v1.1 uses
71
+ the :obj:`"gated-gelu"` feed forward projection. Original T5 uses :obj:`"relu"`.
72
+ use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
73
+ Whether or not the model should return the last key/values attentions (not used by all models).
74
+ gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
75
+ If True, use gradient checkpointing to save memory at the expense of slower backward pass.
76
+ """
77
+ model_type = "decoder_only_t5"
78
+ keys_to_ignore_at_inference = ["past_key_values"]
79
+
80
+ def __init__(
81
+ self,
82
+ vocab_size=32128,
83
+ d_model=512,
84
+ d_kv=64,
85
+ d_ff=2048,
86
+ num_layers=6,
87
+ # num_decoder_layers=None,
88
+ num_heads=8,
89
+ relative_attention_num_buckets=32,
90
+ dropout_rate=0.1,
91
+ layer_norm_epsilon=1e-6,
92
+ initializer_factor=1.0,
93
+ feed_forward_proj="relu",
94
+ is_encoder_decoder=False,
95
+ use_cache=True,
96
+ pad_token_id=0,
97
+ eos_token_id=1,
98
+ gradient_checkpointing=False,
99
+ **kwargs
100
+ ):
101
+ super().__init__(
102
+ pad_token_id=pad_token_id,
103
+ eos_token_id=eos_token_id,
104
+ is_encoder_decoder=is_encoder_decoder,
105
+ **kwargs,
106
+ )
107
+ self.vocab_size = vocab_size
108
+ self.d_model = d_model
109
+ self.d_kv = d_kv
110
+ self.d_ff = d_ff
111
+ self.num_layers = num_layers
112
+ # self.num_decoder_layers = (
113
+ # num_decoder_layers if num_decoder_layers is not None else self.num_layers
114
+ # ) # default = symmetry
115
+ self.num_heads = num_heads
116
+ self.relative_attention_num_buckets = relative_attention_num_buckets
117
+ self.dropout_rate = dropout_rate
118
+ self.layer_norm_epsilon = layer_norm_epsilon
119
+ self.initializer_factor = initializer_factor
120
+ self.feed_forward_proj = feed_forward_proj
121
+ self.use_cache = use_cache
122
+ self.gradient_checkpointing = gradient_checkpointing
123
+
124
+ @property
125
+ def hidden_size(self):
126
+ return self.d_model
127
+
128
+ @property
129
+ def num_attention_heads(self):
130
+ return self.num_heads
131
+
132
+ @property
133
+ def num_hidden_layers(self):
134
+ return self.num_layers
bigscience/experiments/decoder-only-lm/models/decoder_only_t5/modeling_decoder_only_t5.py ADDED
@@ -0,0 +1,1517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Decoder-only T5 model. It's quick and dirty so please don't mind the unused arguments."""
16
+
17
+
18
+ import copy
19
+ import math
20
+ import os
21
+ import warnings
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ from torch import nn
26
+ from torch.nn import CrossEntropyLoss
27
+ from torch.utils.checkpoint import checkpoint
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.file_utils import (
31
+ DUMMY_INPUTS,
32
+ DUMMY_MASK,
33
+ add_start_docstrings,
34
+ add_start_docstrings_to_model_forward,
35
+ replace_return_docstrings,
36
+ )
37
+ from transformers.modeling_outputs import (
38
+ BaseModelOutput,
39
+ BaseModelOutputWithPastAndCrossAttentions,
40
+ CausalLMOutputWithCrossAttentions,
41
+ )
42
+ from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
43
+ from transformers.utils import logging
44
+ from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
45
+ from .configuration_decoder_only_t5 import DecoderOnlyT5Config
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ _CONFIG_FOR_DOC = "DecoderOnlyT5Config"
50
+ _TOKENIZER_FOR_DOC = "T5Tokenizer"
51
+
52
+ ####################################################
53
+ # This dict contains ids and associated url
54
+ # for the pretrained weights provided with the models
55
+ ####################################################
56
+ # T5_PRETRAINED_MODEL_ARCHIVE_LIST = [
57
+ # "t5-small",
58
+ # "t5-base",
59
+ # "t5-large",
60
+ # "t5-3b",
61
+ # "t5-11b",
62
+ # # See all T5 models at https://huggingface.co/models?filter=t5
63
+ # ]
64
+
65
+
66
+ ####################################################
67
+ # This is a conversion method from TF 1.0 to PyTorch
68
+ # More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
69
+ ####################################################
70
+ def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
71
+ """Load tf checkpoints in a pytorch model."""
72
+ try:
73
+ import re
74
+
75
+ import numpy as np
76
+ import tensorflow as tf
77
+ except ImportError:
78
+ logger.error(
79
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
80
+ "https://www.tensorflow.org/install/ for installation instructions."
81
+ )
82
+ raise
83
+ tf_path = os.path.abspath(tf_checkpoint_path)
84
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
85
+ # Load weights from TF model
86
+ init_vars = tf.train.list_variables(tf_path)
87
+ names = []
88
+ tf_weights = {}
89
+ for name, shape in init_vars:
90
+ logger.info(f"Loading TF weight {name} with shape {shape}")
91
+ array = tf.train.load_variable(tf_path, name)
92
+ names.append(name)
93
+ tf_weights[name] = array
94
+
95
+ for txt_name in names:
96
+ name = txt_name.split("/")
97
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
98
+ # which are not required for using pretrained model
99
+ if any(
100
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
101
+ for n in name
102
+ ):
103
+ logger.info(f"Skipping {'/'.join(name)}")
104
+ tf_weights.pop(txt_name, None)
105
+ continue
106
+ if "_slot_" in name[-1]:
107
+ logger.info(f"Skipping {'/'.join(name)}")
108
+ tf_weights.pop(txt_name, None)
109
+ continue
110
+ pointer = model
111
+ array = tf_weights[txt_name]
112
+
113
+ for m_name in name:
114
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
115
+ scope_names = re.split(r"_(\d+)", m_name)
116
+ else:
117
+ scope_names = [m_name]
118
+ if scope_names[0] in ["kernel", "scale", "embedding"]:
119
+ pointer = getattr(pointer, "weight")
120
+ elif scope_names[0] == "self_attention":
121
+ pointer = getattr(pointer, "layer")
122
+ pointer = pointer[0]
123
+ elif scope_names[0] == "enc_dec_attention":
124
+ pointer = getattr(pointer, "layer")
125
+ pointer = pointer[1]
126
+ elif scope_names[0] == "dense_relu_dense":
127
+ pointer = getattr(pointer, "layer")
128
+ pointer = pointer[2]
129
+ elif scope_names[0] == "rms_norm":
130
+ if hasattr(pointer, "layer_norm"):
131
+ pointer = getattr(pointer, "layer_norm")
132
+ elif hasattr(pointer, "final_layer_norm"):
133
+ pointer = getattr(pointer, "final_layer_norm")
134
+ elif scope_names[0] == "scale":
135
+ pointer = getattr(pointer, "weight")
136
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
137
+ pointer = getattr(pointer, "bias")
138
+ elif scope_names[0] == "squad":
139
+ pointer = getattr(pointer, "classifier")
140
+ elif scope_names[0] == "decoder" and name[1] == "logits":
141
+ continue
142
+ elif scope_names[0] == "logits":
143
+ pointer = getattr(pointer, "lm_head")
144
+ elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
145
+ pointer = getattr(pointer, f"wi_{scope_names[1]}")
146
+ continue
147
+ else:
148
+ try:
149
+ pointer = getattr(pointer, scope_names[0])
150
+ except AttributeError:
151
+ logger.info(f"Skipping {'/'.join(name)}")
152
+ continue
153
+ if len(scope_names) >= 2:
154
+ num = int(scope_names[1])
155
+ pointer = pointer[num]
156
+ if scope_names[0] not in ["kernel", "scale", "embedding"]:
157
+ pointer = getattr(pointer, "weight")
158
+ if scope_names[0] != "embedding":
159
+ logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
160
+ array = np.transpose(array)
161
+ try:
162
+ assert (
163
+ pointer.shape == array.shape
164
+ ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
165
+ except AssertionError as e:
166
+ e.args += (pointer.shape, array.shape)
167
+ raise
168
+ logger.info(f"Initialize PyTorch weight {name}")
169
+ pointer.data = torch.from_numpy(array.astype(np.float32))
170
+ tf_weights.pop(txt_name, None)
171
+
172
+ logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
173
+ return model
174
+
175
+
176
+ ####################################################
177
+ # PyTorch Models are constructed by sub-classing
178
+ # - torch.nn.Module for the layers and
179
+ # - PreTrainedModel for the models (it-self a sub-class of torch.nn.Module)
180
+ ####################################################
181
+ PARALLELIZE_DOCSTRING = r"""
182
+ This is an experimental feature and is a subject to change at a moment's notice.
183
+
184
+ Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
185
+ it will evenly distribute blocks across all devices.
186
+
187
+ Args:
188
+ device_map (:obj:`Dict[int, list]`, optional, defaults to None):
189
+ A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
190
+ automatically mapped to the first device (for esoteric reasons). That means that the first device should
191
+ have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
192
+ following number of attention modules:
193
+
194
+ - t5-small: 6
195
+ - t5-base: 12
196
+ - t5-large: 24
197
+ - t5-3b: 24
198
+ - t5-11b: 24
199
+
200
+ Example::
201
+
202
+ # Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules:
203
+ model = T5ForConditionalGeneration.from_pretrained('t5-3b')
204
+ device_map = {0: [0, 1, 2],
205
+
206
+ 1: [3, 4, 5, 6, 7, 8, 9],
207
+ 2: [10, 11, 12, 13, 14, 15, 16],
208
+ 3: [17, 18, 19, 20, 21, 22, 23]}
209
+ model.parallelize(device_map)
210
+ """
211
+ DEPARALLELIZE_DOCSTRING = r"""
212
+ Moves the model to cpu from a model parallel state.
213
+
214
+ Example::
215
+
216
+ # On a 4 GPU machine with t5-3b:
217
+ model = T5ForConditionalGeneration.from_pretrained('t5-3b')
218
+ device_map = {0: [0, 1, 2],
219
+
220
+ 1: [3, 4, 5, 6, 7, 8, 9],
221
+ 2: [10, 11, 12, 13, 14, 15, 16],
222
+ 3: [17, 18, 19, 20, 21, 22, 23]}
223
+ model.parallelize(device_map) # Splits the model across several devices
224
+ model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
225
+ """
226
+
227
+
228
+ class DecoderOnlyT5LayerNorm(nn.Module):
229
+ def __init__(self, hidden_size, eps=1e-6):
230
+ """
231
+ Construct a layernorm module in the T5 style No bias and no subtraction of mean.
232
+ """
233
+ super().__init__()
234
+ self.weight = nn.Parameter(torch.ones(hidden_size))
235
+ self.variance_epsilon = eps
236
+
237
+ def forward(self, hidden_states):
238
+ # layer norm should always be calculated in float32
239
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
240
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
241
+
242
+ # convert into float16 if necessary
243
+ if self.weight.dtype == torch.float16:
244
+ hidden_states = hidden_states.to(torch.float16)
245
+ return self.weight * hidden_states
246
+
247
+
248
+ class DecoderOnlyT5DenseReluDense(nn.Module):
249
+ def __init__(self, config):
250
+ super().__init__()
251
+ self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
252
+ self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
253
+ self.dropout = nn.Dropout(config.dropout_rate)
254
+
255
+ def forward(self, hidden_states):
256
+ hidden_states = self.wi(hidden_states)
257
+ hidden_states = F.relu(hidden_states)
258
+ hidden_states = self.dropout(hidden_states)
259
+ hidden_states = self.wo(hidden_states)
260
+ return hidden_states
261
+
262
+
263
+ class DecoderOnlyT5DenseGatedGeluDense(nn.Module):
264
+ def __init__(self, config):
265
+ super().__init__()
266
+ self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
267
+ self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
268
+ self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
269
+ self.dropout = nn.Dropout(config.dropout_rate)
270
+ self.gelu_act = ACT2FN["gelu_new"]
271
+
272
+ def forward(self, hidden_states):
273
+ hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
274
+ hidden_linear = self.wi_1(hidden_states)
275
+ hidden_states = hidden_gelu * hidden_linear
276
+ hidden_states = self.dropout(hidden_states)
277
+ hidden_states = self.wo(hidden_states)
278
+ return hidden_states
279
+
280
+
281
+ class DecoderOnlyT5LayerFF(nn.Module):
282
+ def __init__(self, config):
283
+ super().__init__()
284
+ if config.feed_forward_proj == "relu":
285
+ self.DenseReluDense = DecoderOnlyT5DenseReluDense(config)
286
+ elif config.feed_forward_proj == "gated-gelu":
287
+ self.DenseReluDense = DecoderOnlyT5DenseGatedGeluDense(config)
288
+ else:
289
+ raise ValueError(
290
+ f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`"
291
+ )
292
+
293
+ self.layer_norm = DecoderOnlyT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
294
+ self.dropout = nn.Dropout(config.dropout_rate)
295
+
296
+ def forward(self, hidden_states):
297
+ forwarded_states = self.layer_norm(hidden_states)
298
+ forwarded_states = self.DenseReluDense(forwarded_states)
299
+ hidden_states = hidden_states + self.dropout(forwarded_states)
300
+ return hidden_states
301
+
302
+
303
+ class DecoderOnlyT5Attention(nn.Module):
304
+ def __init__(self, config: DecoderOnlyT5Config, has_relative_attention_bias=False):
305
+ super().__init__()
306
+ # self.is_decoder = config.is_decoder
307
+ self.has_relative_attention_bias = has_relative_attention_bias
308
+
309
+ self.relative_attention_num_buckets = config.relative_attention_num_buckets
310
+ self.d_model = config.d_model
311
+ self.key_value_proj_dim = config.d_kv
312
+ self.n_heads = config.num_heads
313
+ self.dropout = config.dropout_rate
314
+ self.inner_dim = self.n_heads * self.key_value_proj_dim
315
+
316
+ # Mesh TensorFlow initialization to avoid scaling before softmax
317
+ self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
318
+ self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
319
+ self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
320
+ self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
321
+
322
+ if self.has_relative_attention_bias:
323
+ self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
324
+ self.pruned_heads = set()
325
+ self.gradient_checkpointing = getattr(config, "gradient_checkpointing", False)
326
+
327
+ def prune_heads(self, heads):
328
+ if len(heads) == 0:
329
+ return
330
+ heads, index = find_pruneable_heads_and_indices(
331
+ heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
332
+ )
333
+ # Prune linear layers
334
+ self.q = prune_linear_layer(self.q, index)
335
+ self.k = prune_linear_layer(self.k, index)
336
+ self.v = prune_linear_layer(self.v, index)
337
+ self.o = prune_linear_layer(self.o, index, dim=1)
338
+ # Update hyper params
339
+ self.n_heads = self.n_heads - len(heads)
340
+ self.inner_dim = self.key_value_proj_dim * self.n_heads
341
+ self.pruned_heads = self.pruned_heads.union(heads)
342
+
343
+ @staticmethod
344
+ def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
345
+ """
346
+ Adapted from Mesh Tensorflow:
347
+ https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
348
+
349
+ Translate relative position to a bucket number for relative attention. The relative position is defined as
350
+ memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
351
+ position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
352
+ small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
353
+ positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
354
+ This should allow for more graceful generalization to longer sequences than the model has been trained on
355
+
356
+ Args:
357
+ relative_position: an int32 Tensor
358
+ bidirectional: a boolean - whether the attention is bidirectional
359
+ num_buckets: an integer
360
+ max_distance: an integer
361
+
362
+ Returns:
363
+ a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
364
+ """
365
+ relative_buckets = 0
366
+ if bidirectional:
367
+ num_buckets //= 2
368
+ relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
369
+ relative_position = torch.abs(relative_position)
370
+ else:
371
+ relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
372
+ # now relative_position is in the range [0, inf)
373
+
374
+ # half of the buckets are for exact increments in positions
375
+ max_exact = num_buckets // 2
376
+ is_small = relative_position < max_exact
377
+
378
+ # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
379
+ relative_postion_if_large = max_exact + (
380
+ torch.log(relative_position.float() / max_exact)
381
+ / math.log(max_distance / max_exact)
382
+ * (num_buckets - max_exact)
383
+ ).to(torch.long)
384
+ relative_postion_if_large = torch.min(
385
+ relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
386
+ )
387
+
388
+ relative_buckets += torch.where(is_small, relative_position, relative_postion_if_large)
389
+ return relative_buckets
390
+
391
+ def compute_bias(self, query_length, key_length):
392
+ """Compute binned relative position bias"""
393
+ context_position = torch.arange(query_length, dtype=torch.long)[:, None]
394
+ memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
395
+ relative_position = memory_position - context_position # shape (query_length, key_length)
396
+ relative_position_bucket = self._relative_position_bucket(
397
+ relative_position, # shape (query_length, key_length)
398
+ bidirectional=False,
399
+ num_buckets=self.relative_attention_num_buckets,
400
+ )
401
+ relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
402
+ values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
403
+ values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
404
+ return values
405
+
406
+ def forward(
407
+ self,
408
+ hidden_states,
409
+ mask=None,
410
+ key_value_states=None,
411
+ position_bias=None,
412
+ past_key_value=None,
413
+ layer_head_mask=None,
414
+ query_length=None,
415
+ use_cache=False,
416
+ output_attentions=False,
417
+ ):
418
+ """
419
+ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
420
+ """
421
+ # Input is (batch_size, seq_length, dim)
422
+ # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
423
+ # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
424
+ batch_size, seq_length = hidden_states.shape[:2]
425
+
426
+ int_seq_length = int(seq_length)
427
+
428
+ real_seq_length = seq_length
429
+
430
+ if past_key_value is not None:
431
+ assert (
432
+ len(past_key_value) == 2
433
+ ), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
434
+ real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
435
+
436
+ key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
437
+
438
+ def shape(states):
439
+ """projection"""
440
+ return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
441
+
442
+ def unshape(states):
443
+ """reshape"""
444
+ return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
445
+
446
+ def project(hidden_states, proj_layer, key_value_states, past_key_value):
447
+ """projects hidden states correctly to key/query states"""
448
+ if key_value_states is None:
449
+ # self-attn
450
+ # (batch_size, n_heads, seq_length, dim_per_head)
451
+ hidden_states = shape(proj_layer(hidden_states))
452
+ elif past_key_value is None:
453
+ # cross-attn
454
+ # (batch_size, n_heads, seq_length, dim_per_head)
455
+ hidden_states = shape(proj_layer(key_value_states))
456
+
457
+ if past_key_value is not None:
458
+ if key_value_states is None:
459
+ # self-attn
460
+ # (batch_size, n_heads, key_length, dim_per_head)
461
+ hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
462
+ else:
463
+ # cross-attn
464
+ hidden_states = past_key_value
465
+ return hidden_states
466
+
467
+ # get query states
468
+ query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
469
+
470
+ # get key/value states
471
+ key_states = project(
472
+ hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
473
+ )
474
+ value_states = project(
475
+ hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
476
+ )
477
+
478
+ # compute scores
479
+ scores = torch.matmul(
480
+ query_states, key_states.transpose(3, 2)
481
+ ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
482
+
483
+ if position_bias is None:
484
+ if not self.has_relative_attention_bias:
485
+ position_bias = torch.zeros(
486
+ (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
487
+ )
488
+ if self.training and self.gradient_checkpointing:
489
+ position_bias.requires_grad = True
490
+ else:
491
+ position_bias = self.compute_bias(real_seq_length, key_length)
492
+
493
+ # if key and values are already calculated
494
+ # we want only the last query position bias
495
+ if past_key_value is not None:
496
+ position_bias = position_bias[:, :, -int_seq_length:, :]
497
+
498
+ if mask is not None:
499
+ position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
500
+
501
+ scores += position_bias
502
+ attn_weights = F.softmax(scores.float(), dim=-1).type_as(
503
+ scores
504
+ ) # (batch_size, n_heads, seq_length, key_length)
505
+ attn_weights = F.dropout(
506
+ attn_weights, p=self.dropout, training=self.training
507
+ ) # (batch_size, n_heads, seq_length, key_length)
508
+
509
+ # Mask heads if we want to
510
+ if layer_head_mask is not None:
511
+ attn_weights = attn_weights * layer_head_mask
512
+
513
+ attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
514
+ attn_output = self.o(attn_output)
515
+
516
+ present_key_value_state = (key_states, value_states) if use_cache else None
517
+ outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
518
+
519
+ if output_attentions:
520
+ outputs = outputs + (attn_weights,)
521
+ return outputs
522
+
523
+
524
+ class DecoderOnlyT5LayerSelfAttention(nn.Module):
525
+ def __init__(self, config, has_relative_attention_bias=False):
526
+ super().__init__()
527
+ self.SelfAttention = DecoderOnlyT5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
528
+ self.layer_norm = DecoderOnlyT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
529
+ self.dropout = nn.Dropout(config.dropout_rate)
530
+
531
+ def forward(
532
+ self,
533
+ hidden_states,
534
+ attention_mask=None,
535
+ position_bias=None,
536
+ layer_head_mask=None,
537
+ past_key_value=None,
538
+ use_cache=False,
539
+ output_attentions=False,
540
+ ):
541
+ normed_hidden_states = self.layer_norm(hidden_states)
542
+ attention_output = self.SelfAttention(
543
+ normed_hidden_states,
544
+ mask=attention_mask,
545
+ position_bias=position_bias,
546
+ layer_head_mask=layer_head_mask,
547
+ past_key_value=past_key_value,
548
+ use_cache=use_cache,
549
+ output_attentions=output_attentions,
550
+ )
551
+ hidden_states = hidden_states + self.dropout(attention_output[0])
552
+ outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
553
+ return outputs
554
+
555
+
556
+ # class T5LayerCrossAttention(nn.Module):
557
+ # def __init__(self, config):
558
+ # super().__init__()
559
+ # self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
560
+ # self.layer_norm = DecoderOnlyT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
561
+ # self.dropout = nn.Dropout(config.dropout_rate)
562
+
563
+ # def forward(
564
+ # self,
565
+ # hidden_states,
566
+ # key_value_states,
567
+ # attention_mask=None,
568
+ # position_bias=None,
569
+ # layer_head_mask=None,
570
+ # past_key_value=None,
571
+ # use_cache=False,
572
+ # query_length=None,
573
+ # output_attentions=False,
574
+ # ):
575
+ # normed_hidden_states = self.layer_norm(hidden_states)
576
+ # attention_output = self.EncDecAttention(
577
+ # normed_hidden_states,
578
+ # mask=attention_mask,
579
+ # key_value_states=key_value_states,
580
+ # position_bias=position_bias,
581
+ # layer_head_mask=layer_head_mask,
582
+ # past_key_value=past_key_value,
583
+ # use_cache=use_cache,
584
+ # query_length=query_length,
585
+ # output_attentions=output_attentions,
586
+ # )
587
+ # layer_output = hidden_states + self.dropout(attention_output[0])
588
+ # outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
589
+ # return outputs
590
+
591
+
592
+ class T5Block(nn.Module):
593
+ def __init__(self, config, has_relative_attention_bias=False):
594
+ super().__init__()
595
+ # self.is_decoder = config.is_decoder
596
+ self.layer = nn.ModuleList()
597
+ self.layer.append(DecoderOnlyT5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
598
+ # if self.is_decoder:
599
+ # self.layer.append(T5LayerCrossAttention(config))
600
+
601
+ self.layer.append(DecoderOnlyT5LayerFF(config))
602
+
603
+ def forward(
604
+ self,
605
+ hidden_states,
606
+ attention_mask=None,
607
+ position_bias=None,
608
+ encoder_hidden_states=None,
609
+ encoder_attention_mask=None,
610
+ encoder_decoder_position_bias=None,
611
+ layer_head_mask=None,
612
+ cross_attn_layer_head_mask=None,
613
+ past_key_value=None,
614
+ use_cache=False,
615
+ output_attentions=False,
616
+ return_dict=True,
617
+ ):
618
+
619
+ if past_key_value is not None:
620
+ # assert self.is_decoder, "Only decoder can use `past_key_values`"
621
+ expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
622
+
623
+ if len(past_key_value) != expected_num_past_key_values:
624
+ raise ValueError(
625
+ f"There should be {expected_num_past_key_values} past states. "
626
+ f"{'2 (past / key) for cross attention' if expected_num_past_key_values == 4 else ''}."
627
+ f"Got {len(past_key_value)} past key / value states"
628
+ )
629
+
630
+ self_attn_past_key_value = past_key_value[:2]
631
+ cross_attn_past_key_value = past_key_value[2:]
632
+ else:
633
+ self_attn_past_key_value, cross_attn_past_key_value = None, None
634
+
635
+ self_attention_outputs = self.layer[0](
636
+ hidden_states,
637
+ attention_mask=attention_mask,
638
+ position_bias=position_bias,
639
+ layer_head_mask=layer_head_mask,
640
+ past_key_value=self_attn_past_key_value,
641
+ use_cache=use_cache,
642
+ output_attentions=output_attentions,
643
+ )
644
+ hidden_states, present_key_value_state = self_attention_outputs[:2]
645
+ attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
646
+
647
+ # clamp inf values to enable fp16 training
648
+ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
649
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
650
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
651
+
652
+ do_cross_attention = encoder_hidden_states is not None
653
+ if do_cross_attention:
654
+ # the actual query length is unknown for cross attention
655
+ # if using past key value states. Need to inject it here
656
+ if present_key_value_state is not None:
657
+ query_length = present_key_value_state[0].shape[2]
658
+ else:
659
+ query_length = None
660
+
661
+ cross_attention_outputs = self.layer[1](
662
+ hidden_states,
663
+ key_value_states=encoder_hidden_states,
664
+ attention_mask=encoder_attention_mask,
665
+ position_bias=encoder_decoder_position_bias,
666
+ layer_head_mask=cross_attn_layer_head_mask,
667
+ past_key_value=cross_attn_past_key_value,
668
+ query_length=query_length,
669
+ use_cache=use_cache,
670
+ output_attentions=output_attentions,
671
+ )
672
+ hidden_states = cross_attention_outputs[0]
673
+
674
+ # clamp inf values to enable fp16 training
675
+ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
676
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
677
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
678
+
679
+ # Combine self attn and cross attn key value states
680
+ if present_key_value_state is not None:
681
+ present_key_value_state = present_key_value_state + cross_attention_outputs[1]
682
+
683
+ # Keep cross-attention outputs and relative position weights
684
+ attention_outputs = attention_outputs + cross_attention_outputs[2:]
685
+
686
+ # Apply Feed Forward layer
687
+ hidden_states = self.layer[-1](hidden_states)
688
+
689
+ # clamp inf values to enable fp16 training
690
+ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
691
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
692
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
693
+
694
+ outputs = (hidden_states,)
695
+
696
+ if use_cache:
697
+ outputs = outputs + (present_key_value_state,) + attention_outputs
698
+ else:
699
+ outputs = outputs + attention_outputs
700
+
701
+ return outputs # hidden-states, present_key_value_states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
702
+
703
+
704
+ class DecoderOnlyT5PreTrainedModel(PreTrainedModel):
705
+ """
706
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
707
+ models.
708
+ """
709
+
710
+ config_class = DecoderOnlyT5Config
711
+ load_tf_weights = load_tf_weights_in_t5
712
+ base_model_prefix = "transformer"
713
+ is_parallelizable = True
714
+
715
+ @property
716
+ def dummy_inputs(self):
717
+ input_ids = torch.tensor(DUMMY_INPUTS)
718
+ input_mask = torch.tensor(DUMMY_MASK)
719
+ dummy_inputs = {
720
+ # "decoder_input_ids": input_ids,
721
+ "input_ids": input_ids,
722
+ # "decoder_attention_mask": input_mask,
723
+ }
724
+ return dummy_inputs
725
+
726
+ def _init_weights(self, module):
727
+ """Initialize the weights"""
728
+ factor = self.config.initializer_factor # Used for testing weights initialization
729
+ if isinstance(module, DecoderOnlyT5LayerNorm):
730
+ module.weight.data.fill_(factor * 1.0)
731
+ elif isinstance(module, (DecoderOnlyT5Model)): #, T5ForConditionalGeneration, T5EncoderModel)):
732
+ # Mesh TensorFlow embeddings initialization
733
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
734
+ module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
735
+ elif isinstance(module, DecoderOnlyT5DenseReluDense):
736
+ # Mesh TensorFlow FF initialization
737
+ # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
738
+ # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
739
+ module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
740
+ if hasattr(module.wi, "bias") and module.wi.bias is not None:
741
+ module.wi.bias.data.zero_()
742
+ module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
743
+ if hasattr(module.wo, "bias") and module.wo.bias is not None:
744
+ module.wo.bias.data.zero_()
745
+ elif isinstance(module, DecoderOnlyT5DenseGatedGeluDense):
746
+ module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
747
+ if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
748
+ module.wi_0.bias.data.zero_()
749
+ module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
750
+ if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
751
+ module.wi_1.bias.data.zero_()
752
+ module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
753
+ if hasattr(module.wo, "bias") and module.wo.bias is not None:
754
+ module.wo.bias.data.zero_()
755
+ elif isinstance(module, DecoderOnlyT5Attention):
756
+ # Mesh TensorFlow attention initialization to avoid scaling before softmax
757
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
758
+ d_model = self.config.d_model
759
+ key_value_proj_dim = self.config.d_kv
760
+ n_heads = self.config.num_heads
761
+ module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
762
+ module.k.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
763
+ module.v.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
764
+ module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
765
+ if module.has_relative_attention_bias:
766
+ module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
767
+
768
+ # def _shift_right(self, input_ids):
769
+ # decoder_start_token_id = self.config.decoder_start_token_id
770
+ # pad_token_id = self.config.pad_token_id
771
+
772
+ # assert (
773
+ # decoder_start_token_id is not None
774
+ # ), "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. See T5 docs for more information"
775
+
776
+ # # shift inputs to the right
777
+ # if is_torch_fx_proxy(input_ids):
778
+ # # Item assignment is not supported natively for proxies.
779
+ # shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
780
+ # shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
781
+ # else:
782
+ # shifted_input_ids = input_ids.new_zeros(input_ids.shape)
783
+ # shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
784
+ # shifted_input_ids[..., 0] = decoder_start_token_id
785
+
786
+ # assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
787
+ # # replace possible -100 values in labels by `pad_token_id`
788
+ # shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
789
+
790
+ # assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values"
791
+
792
+ # return shifted_input_ids
793
+
794
+
795
+ class DecoderOnlyT5Stack(DecoderOnlyT5PreTrainedModel):
796
+ def __init__(self, config, embed_tokens=None):
797
+ super().__init__(config)
798
+
799
+ self.embed_tokens = embed_tokens
800
+ # self.is_decoder = config.is_decoder
801
+
802
+ self.block = nn.ModuleList(
803
+ [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
804
+ )
805
+ self.final_layer_norm = DecoderOnlyT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
806
+ self.dropout = nn.Dropout(config.dropout_rate)
807
+
808
+ self.init_weights()
809
+ # Model parallel
810
+ self.model_parallel = False
811
+ self.device_map = None
812
+
813
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
814
+ def parallelize(self, device_map=None):
815
+ # Check validity of device_map
816
+ self.device_map = (
817
+ get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
818
+ )
819
+ assert_device_map(self.device_map, len(self.block))
820
+ self.model_parallel = True
821
+ self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
822
+ self.last_device = "cuda:" + str(max(self.device_map.keys()))
823
+ # Load onto devices
824
+ for k, v in self.device_map.items():
825
+ for layer in v:
826
+ cuda_device = "cuda:" + str(k)
827
+ self.block[layer] = self.block[layer].to(cuda_device)
828
+
829
+ # Set embed_tokens to first layer
830
+ self.embed_tokens = self.embed_tokens.to(self.first_device)
831
+ # Set final layer norm to last device
832
+ self.final_layer_norm = self.final_layer_norm.to(self.last_device)
833
+
834
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
835
+ def deparallelize(self):
836
+ self.model_parallel = False
837
+ self.device_map = None
838
+ self.first_device = "cpu"
839
+ self.last_device = "cpu"
840
+ for i in range(len(self.block)):
841
+ self.block[i] = self.block[i].to("cpu")
842
+ self.embed_tokens = self.embed_tokens.to("cpu")
843
+ self.final_layer_norm = self.final_layer_norm.to("cpu")
844
+ torch.cuda.empty_cache()
845
+
846
+ def get_input_embeddings(self):
847
+ return self.embed_tokens
848
+
849
+ def set_input_embeddings(self, new_embeddings):
850
+ self.embed_tokens = new_embeddings
851
+
852
+ def forward(
853
+ self,
854
+ input_ids=None,
855
+ attention_mask=None,
856
+ encoder_hidden_states=None,
857
+ encoder_attention_mask=None,
858
+ inputs_embeds=None,
859
+ head_mask=None,
860
+ cross_attn_head_mask=None,
861
+ past_key_values=None,
862
+ use_cache=None,
863
+ output_attentions=None,
864
+ output_hidden_states=None,
865
+ return_dict=None,
866
+ ):
867
+ # Model parallel
868
+ if self.model_parallel:
869
+ torch.cuda.set_device(self.first_device)
870
+ self.embed_tokens = self.embed_tokens.to(self.first_device)
871
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
872
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
873
+ output_hidden_states = (
874
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
875
+ )
876
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
877
+
878
+ if input_ids is not None and inputs_embeds is not None:
879
+ err_msg_prefix = ""
880
+ raise ValueError(
881
+ f"You cannot specify both {err_msg_prefix}inputs and {err_msg_prefix}inputs_embeds at the same time"
882
+ )
883
+ elif input_ids is not None:
884
+ input_shape = input_ids.size()
885
+ input_ids = input_ids.view(-1, input_shape[-1])
886
+ elif inputs_embeds is not None:
887
+ input_shape = inputs_embeds.size()[:-1]
888
+ else:
889
+ err_msg_prefix = ""
890
+ raise ValueError(f"You have to specify either {err_msg_prefix}inputs or {err_msg_prefix}inputs_embeds")
891
+
892
+ if inputs_embeds is None:
893
+ assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
894
+ inputs_embeds = self.embed_tokens(input_ids)
895
+
896
+ batch_size, seq_length = input_shape
897
+
898
+ # required mask seq length can be calculated via length of past
899
+ mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
900
+
901
+ # if use_cache is True:
902
+ # assert self.is_decoder, f":obj:`use_cache` can only be set to `True` if {self} is used as a decoder"
903
+
904
+ if attention_mask is None:
905
+ attention_mask = torch.ones(batch_size, mask_seq_length).to(inputs_embeds.device)
906
+ if encoder_attention_mask is None and encoder_hidden_states is not None:
907
+ encoder_seq_length = encoder_hidden_states.shape[1]
908
+ encoder_attention_mask = torch.ones(
909
+ batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
910
+ )
911
+
912
+ # initialize past_key_values with `None` if past does not exist
913
+ if past_key_values is None:
914
+ past_key_values = [None] * len(self.block)
915
+
916
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
917
+ # ourselves in which case we just need to make it broadcastable to all heads.
918
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, inputs_embeds.device)
919
+
920
+ # If a 2D or 3D attention mask is provided for the cross-attention
921
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
922
+ if encoder_hidden_states is not None:
923
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
924
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
925
+ if encoder_attention_mask is None:
926
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
927
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
928
+ else:
929
+ encoder_extended_attention_mask = None
930
+
931
+ # Prepare head mask if needed
932
+ head_mask = self.get_head_mask(head_mask, self.config.num_layers)
933
+ cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
934
+ present_key_value_states = () if use_cache else None
935
+ all_hidden_states = () if output_hidden_states else None
936
+ all_attentions = () if output_attentions else None
937
+ all_cross_attentions = () if output_attentions else None
938
+ position_bias = None
939
+ encoder_decoder_position_bias = None
940
+
941
+ hidden_states = self.dropout(inputs_embeds)
942
+
943
+ for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
944
+ layer_head_mask = head_mask[i]
945
+ cross_attn_layer_head_mask = cross_attn_head_mask[i]
946
+ # Model parallel
947
+ if self.model_parallel:
948
+ torch.cuda.set_device(hidden_states.device)
949
+ # Ensure that attention_mask is always on the same device as hidden_states
950
+ if attention_mask is not None:
951
+ attention_mask = attention_mask.to(hidden_states.device)
952
+ if position_bias is not None:
953
+ position_bias = position_bias.to(hidden_states.device)
954
+ if encoder_hidden_states is not None:
955
+ encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
956
+ if encoder_extended_attention_mask is not None:
957
+ encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
958
+ if encoder_decoder_position_bias is not None:
959
+ encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
960
+ if layer_head_mask is not None:
961
+ layer_head_mask = layer_head_mask.to(hidden_states.device)
962
+ if cross_attn_layer_head_mask is not None:
963
+ cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
964
+ if output_hidden_states:
965
+ all_hidden_states = all_hidden_states + (hidden_states,)
966
+
967
+ if getattr(self.config, "gradient_checkpointing", False) and self.training:
968
+ if use_cache:
969
+ logger.warn(
970
+ "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
971
+ "`use_cache=False`..."
972
+ )
973
+ use_cache = False
974
+
975
+ def create_custom_forward(module):
976
+ def custom_forward(*inputs):
977
+ return tuple(module(*inputs, use_cache, output_attentions))
978
+
979
+ return custom_forward
980
+
981
+ layer_outputs = checkpoint(
982
+ create_custom_forward(layer_module),
983
+ hidden_states,
984
+ extended_attention_mask,
985
+ position_bias,
986
+ encoder_hidden_states,
987
+ encoder_extended_attention_mask,
988
+ encoder_decoder_position_bias,
989
+ layer_head_mask,
990
+ cross_attn_layer_head_mask,
991
+ None, # past_key_value is always None with gradient checkpointing
992
+ )
993
+ else:
994
+ layer_outputs = layer_module(
995
+ hidden_states,
996
+ attention_mask=extended_attention_mask,
997
+ position_bias=position_bias,
998
+ encoder_hidden_states=encoder_hidden_states,
999
+ encoder_attention_mask=encoder_extended_attention_mask,
1000
+ encoder_decoder_position_bias=encoder_decoder_position_bias,
1001
+ layer_head_mask=layer_head_mask,
1002
+ cross_attn_layer_head_mask=cross_attn_layer_head_mask,
1003
+ past_key_value=past_key_value,
1004
+ use_cache=use_cache,
1005
+ output_attentions=output_attentions,
1006
+ )
1007
+
1008
+ # layer_outputs is a tuple with:
1009
+ # hidden-states, key-value-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
1010
+ if use_cache is False:
1011
+ layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
1012
+ hidden_states, present_key_value_state = layer_outputs[:2]
1013
+
1014
+ # We share the position biases between the layers - the first layer store them
1015
+ # layer_outputs = hidden-states, key-value-states (self-attention weights),
1016
+ # (self-attention position bias), (cross-attention weights), (cross-attention position bias)
1017
+ position_bias = layer_outputs[2]
1018
+ if encoder_hidden_states is not None:
1019
+ encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
1020
+ # append next layer key value states
1021
+ if use_cache:
1022
+ present_key_value_states = present_key_value_states + (present_key_value_state,)
1023
+
1024
+ if output_attentions:
1025
+ all_attentions = all_attentions + (layer_outputs[3],)
1026
+ # if self.is_decoder:
1027
+ # all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
1028
+
1029
+ # Model Parallel: If it's the last layer for that device, put things on the next device
1030
+ if self.model_parallel:
1031
+ for k, v in self.device_map.items():
1032
+ if i == v[-1] and "cuda:" + str(k) != self.last_device:
1033
+ hidden_states = hidden_states.to("cuda:" + str(k + 1))
1034
+
1035
+ hidden_states = self.final_layer_norm(hidden_states)
1036
+ hidden_states = self.dropout(hidden_states)
1037
+
1038
+ # Add last layer
1039
+ if output_hidden_states:
1040
+ all_hidden_states = all_hidden_states + (hidden_states,)
1041
+
1042
+ if not return_dict:
1043
+ return tuple(
1044
+ v
1045
+ for v in [
1046
+ hidden_states,
1047
+ present_key_value_states,
1048
+ all_hidden_states,
1049
+ all_attentions,
1050
+ all_cross_attentions,
1051
+ ]
1052
+ if v is not None
1053
+ )
1054
+ return BaseModelOutputWithPastAndCrossAttentions(
1055
+ last_hidden_state=hidden_states,
1056
+ past_key_values=present_key_value_states,
1057
+ hidden_states=all_hidden_states,
1058
+ attentions=all_attentions,
1059
+ cross_attentions=all_cross_attentions,
1060
+ )
1061
+
1062
+
1063
+ T5_START_DOCSTRING = r"""
1064
+
1065
+ The T5 model was proposed in `Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
1066
+ <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
1067
+ Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text
1068
+ denoising generative setting.
1069
+
1070
+ This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
1071
+ methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
1072
+ pruning heads etc.)
1073
+
1074
+ This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
1075
+ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
1076
+ general usage and behavior.
1077
+
1078
+ Parameters:
1079
+ config (:class:`~transformers.T5Config`): Model configuration class with all the parameters of the model.
1080
+ Initializing with a config file does not load the weights associated with the model, only the
1081
+ configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
1082
+ weights.
1083
+ """
1084
+
1085
+ T5_INPUTS_DOCSTRING = r"""
1086
+ Args:
1087
+ input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
1088
+ Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
1089
+ should be able to pad the inputs on both the right and the left.
1090
+
1091
+ Indices can be obtained using :class:`~transformers.T5Tokenizer`. See
1092
+ :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
1093
+ detail.
1094
+
1095
+ `What are input IDs? <../glossary.html#input-ids>`__
1096
+
1097
+ To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training
1098
+ <./t5.html#training>`__.
1099
+ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1100
+ Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
1101
+
1102
+ - 1 for tokens that are **not masked**,
1103
+ - 0 for tokens that are **masked**.
1104
+
1105
+ `What are attention masks? <../glossary.html#attention-mask>`__
1106
+ decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
1107
+ Indices of decoder input sequence tokens in the vocabulary.
1108
+
1109
+ Indices can be obtained using :class:`~transformers.T5Tokenizer`. See
1110
+ :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
1111
+ details.
1112
+
1113
+ `What are decoder input IDs? <../glossary.html#decoder-input-ids>`__
1114
+
1115
+ T5 uses the :obj:`pad_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
1116
+ :obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
1117
+ :obj:`past_key_values`).
1118
+
1119
+ To know more on how to prepare :obj:`decoder_input_ids` for pretraining take a look at `T5 Training
1120
+ <./t5.html#training>`__.
1121
+ decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
1122
+ Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
1123
+ also be used by default.
1124
+ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
1125
+ Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in ``[0,
1126
+ 1]``:
1127
+
1128
+ - 1 indicates the head is **not masked**,
1129
+ - 0 indicates the head is **masked**.
1130
+
1131
+ decoder_head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
1132
+ Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in ``[0,
1133
+ 1]``:
1134
+
1135
+ - 1 indicates the head is **not masked**,
1136
+ - 0 indicates the head is **masked**.
1137
+
1138
+ cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
1139
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
1140
+ ``[0, 1]``:
1141
+
1142
+ - 1 indicates the head is **not masked**,
1143
+ - 0 indicates the head is **masked**.
1144
+
1145
+ encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`):
1146
+ Tuple consists of (:obj:`last_hidden_state`, :obj:`optional`: `hidden_states`, :obj:`optional`:
1147
+ `attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)` is a
1148
+ sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of
1149
+ the decoder.
1150
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1151
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1152
+
1153
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
1154
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
1155
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
1156
+ inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
1157
+ Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
1158
+ This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
1159
+ vectors than the model's internal embedding lookup matrix.
1160
+ decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`):
1161
+ Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded
1162
+ representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds`
1163
+ have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert
1164
+ :obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
1165
+
1166
+ If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds`
1167
+ takes the value of :obj:`inputs_embeds`.
1168
+
1169
+ use_cache (:obj:`bool`, `optional`):
1170
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
1171
+ decoding (see :obj:`past_key_values`).
1172
+
1173
+ output_attentions (:obj:`bool`, `optional`):
1174
+ Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
1175
+ tensors for more detail.
1176
+ output_hidden_states (:obj:`bool`, `optional`):
1177
+ Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
1178
+ more detail.
1179
+ return_dict (:obj:`bool`, `optional`):
1180
+ Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
1181
+ """
1182
+
1183
+ T5_ENCODER_INPUTS_DOCSTRING = r"""
1184
+ Args:
1185
+ input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
1186
+ Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
1187
+ should be able to pad the inputs on both the right and the left.
1188
+
1189
+ Indices can be obtained using :class:`~transformers.T5Tokenizer`. See
1190
+ :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
1191
+ detail.
1192
+
1193
+ To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training
1194
+ <./t5.html#training>`__.
1195
+ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1196
+ Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
1197
+
1198
+ - 1 for tokens that are **not masked**,
1199
+ - 0 for tokens that are **masked**.
1200
+
1201
+ `What are attention masks? <../glossary.html#attention-mask>`__
1202
+ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
1203
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
1204
+
1205
+ - 1 indicates the head is **not masked**,
1206
+ - 0 indicates the head is **masked**.
1207
+
1208
+ inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
1209
+ Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
1210
+ This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
1211
+ vectors than the model's internal embedding lookup matrix.
1212
+ output_attentions (:obj:`bool`, `optional`):
1213
+ Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
1214
+ tensors for more detail.
1215
+ output_hidden_states (:obj:`bool`, `optional`):
1216
+ Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
1217
+ more detail.
1218
+ return_dict (:obj:`bool`, `optional`):
1219
+ Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
1220
+ """
1221
+
1222
+ # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
1223
+ __HEAD_MASK_WARNING_MSG = """
1224
+ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
1225
+ `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
1226
+ If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
1227
+ num_heads)`.
1228
+ """
1229
+
1230
+
1231
+ @add_start_docstrings(
1232
+ "The bare T5 Model transformer outputting raw hidden-states" "without any specific head on top.",
1233
+ T5_START_DOCSTRING,
1234
+ )
1235
+ class DecoderOnlyT5Model(DecoderOnlyT5PreTrainedModel):
1236
+ _keys_to_ignore_on_load_missing = [
1237
+ r"encoder\.embed_tokens\.weight",
1238
+ ]
1239
+
1240
+ def __init__(self, config: DecoderOnlyT5Config):
1241
+ super().__init__(config)
1242
+ self.shared = nn.Embedding(config.vocab_size, config.d_model)
1243
+
1244
+ encoder_config = copy.deepcopy(config)
1245
+ encoder_config.is_decoder = True
1246
+ encoder_config.use_cache = False
1247
+ encoder_config.is_encoder_decoder = False
1248
+ self.encoder = DecoderOnlyT5Stack(encoder_config, self.shared)
1249
+
1250
+
1251
+ self.init_weights()
1252
+
1253
+ # Model parallel
1254
+ self.model_parallel = False
1255
+ self.device_map = None
1256
+
1257
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
1258
+ def parallelize(self, device_map=None):
1259
+ self.device_map = (
1260
+ get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
1261
+ if device_map is None
1262
+ else device_map
1263
+ )
1264
+ assert_device_map(self.device_map, len(self.encoder.block))
1265
+ self.encoder.parallelize(self.device_map)
1266
+ self.model_parallel = True
1267
+
1268
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
1269
+ def deparallelize(self):
1270
+ self.encoder.deparallelize()
1271
+ self.encoder = self.encoder.to("cpu")
1272
+ self.model_parallel = False
1273
+ self.device_map = None
1274
+ torch.cuda.empty_cache()
1275
+
1276
+ def get_input_embeddings(self):
1277
+ return self.shared
1278
+
1279
+ def set_input_embeddings(self, new_embeddings):
1280
+ self.shared = new_embeddings
1281
+ self.encoder.set_input_embeddings(new_embeddings)
1282
+
1283
+ def get_encoder(self):
1284
+ return self.encoder
1285
+
1286
+
1287
+ def _prune_heads(self, heads_to_prune):
1288
+ """
1289
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1290
+ class PreTrainedModel
1291
+ """
1292
+ for layer, heads in heads_to_prune.items():
1293
+ self.encoder.layer[layer].attention.prune_heads(heads)
1294
+
1295
+ @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
1296
+ @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
1297
+ def forward(
1298
+ self,
1299
+ input_ids=None,
1300
+ attention_mask=None,
1301
+ head_mask=None,
1302
+ encoder_outputs=None,
1303
+ inputs_embeds=None,
1304
+ output_attentions=None,
1305
+ output_hidden_states=None,
1306
+ return_dict=None,
1307
+ ):
1308
+ r"""
1309
+ Returns:
1310
+
1311
+ Example::
1312
+
1313
+ >>> from transformers import T5Tokenizer, T5Model
1314
+
1315
+ >>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
1316
+ >>> model = T5Model.from_pretrained('t5-small')
1317
+
1318
+ >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1
1319
+ >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
1320
+ >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
1321
+
1322
+ >>> last_hidden_states = outputs.last_hidden_state
1323
+ """
1324
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1325
+
1326
+ encoder_outputs = self.encoder(
1327
+ input_ids=input_ids,
1328
+ attention_mask=attention_mask,
1329
+ inputs_embeds=inputs_embeds,
1330
+ head_mask=head_mask,
1331
+ output_attentions=output_attentions,
1332
+ output_hidden_states=output_hidden_states,
1333
+ return_dict=return_dict,
1334
+ )
1335
+
1336
+ return encoder_outputs
1337
+
1338
+ @add_start_docstrings("""T5 Model with a `language modeling` head on top. """, T5_START_DOCSTRING)
1339
+ class DecoderOnlyT5LMHeadModel(DecoderOnlyT5PreTrainedModel):
1340
+ _keys_to_ignore_on_load_missing = [
1341
+ r"encoder\.embed_tokens\.weight",
1342
+ r"lm_head\.weight",
1343
+ ]
1344
+
1345
+ def __init__(self, config):
1346
+ super().__init__(config)
1347
+ self.model_dim = config.d_model
1348
+
1349
+ self.shared = nn.Embedding(config.vocab_size, config.d_model)
1350
+
1351
+ encoder_config = copy.deepcopy(config)
1352
+ encoder_config.is_decoder = True
1353
+ encoder_config.use_cache = False
1354
+ encoder_config.is_encoder_decoder = False
1355
+ self.encoder = DecoderOnlyT5Stack(encoder_config, self.shared)
1356
+
1357
+ self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
1358
+
1359
+ self.init_weights()
1360
+
1361
+ # Model parallel
1362
+ self.model_parallel = False
1363
+ self.device_map = None
1364
+
1365
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
1366
+ def parallelize(self, device_map=None):
1367
+ self.device_map = (
1368
+ get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
1369
+ if device_map is None
1370
+ else device_map
1371
+ )
1372
+ assert_device_map(self.device_map, len(self.encoder.block))
1373
+ self.encoder.parallelize(self.device_map)
1374
+ self.lm_head = self.lm_head.to(self.encoder.first_device)
1375
+ self.model_parallel = True
1376
+
1377
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
1378
+ def deparallelize(self):
1379
+ self.encoder.deparallelize()
1380
+ self.encoder = self.encoder.to("cpu")
1381
+ self.lm_head = self.lm_head.to("cpu")
1382
+ self.model_parallel = False
1383
+ self.device_map = None
1384
+ torch.cuda.empty_cache()
1385
+
1386
+ def get_input_embeddings(self):
1387
+ return self.shared
1388
+
1389
+ def set_input_embeddings(self, new_embeddings):
1390
+ self.shared = new_embeddings
1391
+ self.encoder.set_input_embeddings(new_embeddings)
1392
+
1393
+ def set_output_embeddings(self, new_embeddings):
1394
+ self.lm_head = new_embeddings
1395
+
1396
+ def get_output_embeddings(self):
1397
+ return self.lm_head
1398
+
1399
+ def get_encoder(self):
1400
+ return self.encoder
1401
+
1402
+ @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
1403
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
1404
+ def forward(
1405
+ self,
1406
+ input_ids=None,
1407
+ attention_mask=None,
1408
+ head_mask=None,
1409
+ past_key_values=None,
1410
+ inputs_embeds=None,
1411
+ labels=None,
1412
+ use_cache=None,
1413
+ output_attentions=None,
1414
+ output_hidden_states=None,
1415
+ return_dict=None,
1416
+ ):
1417
+ r"""
1418
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1419
+ Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ...,
1420
+ config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for
1421
+ labels in ``[0, ..., config.vocab_size]``
1422
+
1423
+ Returns:
1424
+
1425
+ Examples::
1426
+
1427
+ >>> from transformers import T5Tokenizer, T5ForConditionalGeneration
1428
+
1429
+ >>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
1430
+ >>> model = T5ForConditionalGeneration.from_pretrained('t5-small')
1431
+
1432
+ >>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
1433
+ >>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='pt').input_ids
1434
+ >>> outputs = model(input_ids=input_ids, labels=labels)
1435
+ >>> loss = outputs.loss
1436
+ >>> logits = outputs.logits
1437
+
1438
+ >>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you ", return_tensors="pt").input_ids # Batch size 1
1439
+ >>> outputs = model.generate(input_ids)
1440
+ """
1441
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1442
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1443
+
1444
+ encoder_outputs = self.encoder(
1445
+ input_ids=input_ids,
1446
+ past_key_values=past_key_values,
1447
+ attention_mask=attention_mask,
1448
+ inputs_embeds=inputs_embeds,
1449
+ head_mask=head_mask,
1450
+ use_cache=use_cache,
1451
+ output_attentions=output_attentions,
1452
+ output_hidden_states=output_hidden_states,
1453
+ return_dict=return_dict,
1454
+ )
1455
+
1456
+ hidden_states = encoder_outputs[0]
1457
+
1458
+ if self.model_parallel:
1459
+ torch.cuda.set_device(self.encoder.first_device)
1460
+ hidden_states = hidden_states.to(self.lm_head.weight.device)
1461
+
1462
+ lm_logits = self.lm_head(hidden_states)
1463
+
1464
+ loss = None
1465
+ if labels is not None:
1466
+ # Shift so that tokens < n predict n
1467
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1468
+ shift_labels = labels[..., 1:].contiguous()
1469
+ # Flatten the tokens
1470
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1471
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1472
+
1473
+ if not return_dict:
1474
+ output = (lm_logits,) + encoder_outputs[1:]
1475
+ return ((loss,) + output) if loss is not None else output
1476
+
1477
+ return CausalLMOutputWithCrossAttentions(
1478
+ loss=loss,
1479
+ logits=lm_logits,
1480
+ past_key_values=encoder_outputs.past_key_values,
1481
+ hidden_states=encoder_outputs.hidden_states,
1482
+ attentions=encoder_outputs.attentions,
1483
+ cross_attentions=encoder_outputs.cross_attentions,
1484
+ )
1485
+
1486
+ def prepare_inputs_for_generation(
1487
+ self,
1488
+ input_ids,
1489
+ past=None,
1490
+ attention_mask=None,
1491
+ head_mask=None,
1492
+ use_cache=None,
1493
+ encoder_outputs=None,
1494
+ **kwargs
1495
+ ):
1496
+
1497
+ # cut decoder_input_ids if past is used
1498
+ if past is not None:
1499
+ input_ids = input_ids[:, -1:]
1500
+
1501
+ return {
1502
+ "input_ids": input_ids,
1503
+ "past_key_values": past,
1504
+ "attention_mask": attention_mask,
1505
+ "use_cache": use_cache,
1506
+ }
1507
+
1508
+ def _reorder_cache(past, beam_idx):
1509
+ """
1510
+ This function is used to re-order the :obj:`past_key_values` cache if
1511
+ :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
1512
+ called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
1513
+ """
1514
+ return tuple(
1515
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
1516
+ for layer_past in past
1517
+ )
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n16-1832552.out ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n16.slurm ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=hf_ds_gpt2_base_n16
3
+ #SBATCH --constraint=v100-32g
4
+ #SBATCH --nodes=16
5
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
6
+ #SBATCH --cpus-per-task=40 # number of cores per tasks
7
+ #SBATCH --hint=nomultithread # we get physical cores not logical
8
+ #SBATCH --gres=gpu:4 # number of gpus
9
+ #SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
10
+ #SBATCH --output=%x-%j.out # output file name
11
+ #SBATCH --error=%x-%j.out # error file name (same to watch just one file)
12
+ #SBATCH --account=six@gpu
13
+
14
+ set -x -e
15
+ export PYTHONUNBUFFERED=1
16
+
17
+ source $six_ALL_CCFRWORK/start-prod
18
+
19
+ nvidia-smi
20
+
21
+ cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
22
+
23
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
24
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
25
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
26
+
27
+ DATASET="stas/openwebtext-10k"
28
+
29
+ MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
30
+ MASTER_PORT=6000
31
+
32
+ # adjust depending on the number of the nodes
33
+
34
+ NNODES=16
35
+ MICRO_BATCH_SIZE=4
36
+
37
+ # succeeded:
38
+ # MSIZE=30
39
+ # MSIZE=39
40
+ # MSIZE=52
41
+ # MSIZE=65 # @ MICRO_BATCH_SIZE=4
42
+ # MSIZE=81
43
+
44
+ MSIZE=97
45
+
46
+ if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
47
+ elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
48
+ elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
49
+ elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
50
+ elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
51
+ elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
52
+ elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
53
+ elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
54
+ elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
55
+ elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
56
+ elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
57
+ elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
58
+ elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
59
+ elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
60
+ elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
61
+ else echo "invalid MSIZE: $MSIZE"
62
+ fi
63
+
64
+
65
+ GPUS_PER_NODE=4
66
+ NHEADS=32
67
+ SEQ_LEN=1024
68
+ VOCAB_SIZE=50257
69
+
70
+ export LAUNCHER="python -u -m torch.distributed.launch \
71
+ --nproc_per_node $GPUS_PER_NODE \
72
+ --nnodes $NNODES \
73
+ --master_addr $MASTER_ADDR \
74
+ --master_port $MASTER_PORT \
75
+ "
76
+
77
+
78
+ config_json="./ds_z3_cpu_offload.json"
79
+ cat <<EOT > $config_json
80
+ {
81
+ "fp16": {
82
+ "enabled": "auto",
83
+ "loss_scale": 0,
84
+ "loss_scale_window": 1000,
85
+ "initial_scale_power": 8,
86
+ "hysteresis": 2,
87
+ "min_loss_scale": 1
88
+ },
89
+
90
+ "optimizer": {
91
+ "type": "AdamW",
92
+ "params": {
93
+ "lr": "auto",
94
+ "betas": "auto",
95
+ "eps": "auto",
96
+ "weight_decay": "auto"
97
+ }
98
+ },
99
+
100
+ "scheduler": {
101
+ "type": "WarmupLR",
102
+ "params": {
103
+ "warmup_min_lr": "auto",
104
+ "warmup_max_lr": "auto",
105
+ "warmup_num_steps": "auto"
106
+ }
107
+ },
108
+
109
+ "zero_optimization": {
110
+ "stage": 3,
111
+ "offload_optimizer": {
112
+ "device": "cpu",
113
+ "pin_memory": true
114
+ },
115
+ "offload_param": {
116
+ "device": "cpu",
117
+ "pin_memory": true
118
+ },
119
+ "overlap_comm": true,
120
+ "contiguous_gradients": true,
121
+ "sub_group_size": 1e14,
122
+ "reduce_bucket_size": "auto",
123
+ "stage3_prefetch_bucket_size": "auto",
124
+ "stage3_param_persistence_threshold": "auto",
125
+ "stage3_max_live_parameters": 1e9,
126
+ "stage3_max_reuse_distance": 1e9,
127
+ "stage3_gather_fp16_weights_on_model_save": false
128
+ },
129
+
130
+ "gradient_accumulation_steps": "auto",
131
+ "gradient_clipping": "auto",
132
+ "steps_per_print": 2000,
133
+ "train_batch_size": "auto",
134
+ "train_micro_batch_size_per_gpu": "auto",
135
+ "wall_clock_breakdown": false
136
+ }
137
+ EOT
138
+
139
+ export PYTHONPATH=src
140
+ export HF_DATASETS_OFFLINE=1
141
+ export TRANSFORMERS_OFFLINE=1
142
+ export USE_TF=0
143
+
144
+ export CMD=" \
145
+ examples/pytorch/language-modeling/run_clm.py \
146
+ --model_type gpt2 \
147
+ --tokenizer_name gpt2 \
148
+ --config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
149
+ --dataset_name $DATASET \
150
+ --output_dir output_dir \
151
+ --overwrite_output_dir \
152
+ --do_train \
153
+ --max_train_samples 1000 \
154
+ --per_device_train_batch_size $MICRO_BATCH_SIZE \
155
+ --num_train_epochs 1 \
156
+ --warmup_steps 8 \
157
+ --fp16 \
158
+ --report_to none \
159
+ --deepspeed $config_json \
160
+ "
161
+
162
+ # clear old checkpoint as it'd mismatch while we sort things out
163
+ rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
164
+
165
+ # model size
166
+ python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
167
+
168
+ # to debug - add echo (it exits and prints what it would have launched)
169
+ clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_base_n16_bs4.txt
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n32.slurm ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=hf_ds_gpt2_base_n32
3
+ #SBATCH --constraint=v100-32g
4
+ #SBATCH --nodes=32
5
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
6
+ #SBATCH --cpus-per-task=40 # number of cores per tasks
7
+ #SBATCH --hint=nomultithread # we get physical cores not logical
8
+ #SBATCH --gres=gpu:4 # number of gpus
9
+ #SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
10
+ #SBATCH --output=%x-%j.out # output file name
11
+ #SBATCH --error=%x-%j.out # error file name (same to watch just one file)
12
+ #SBATCH --account=six@gpu
13
+
14
+ set -x -e
15
+ export PYTHONUNBUFFERED=1
16
+
17
+ source $six_ALL_CCFRWORK/start-prod
18
+
19
+ nvidia-smi
20
+
21
+ cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
22
+
23
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
24
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
25
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
26
+
27
+ DATASET="stas/openwebtext-10k"
28
+
29
+ MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
30
+ MASTER_PORT=6000
31
+
32
+ # adjust depending on the number of the nodes
33
+
34
+ NNODES=32
35
+ MICRO_BATCH_SIZE=4
36
+
37
+ # succeeded:
38
+
39
+ # to try
40
+ MSIZE=158
41
+
42
+ # failed
43
+ # MSIZE=181
44
+
45
+ if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
46
+ elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
47
+ elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
48
+ elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
49
+ elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
50
+ elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
51
+ elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
52
+ elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
53
+ elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
54
+ elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
55
+ elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
56
+ elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
57
+ elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
58
+ elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
59
+ elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
60
+ else echo "invalid MSIZE: $MSIZE"
61
+ fi
62
+
63
+
64
+ GPUS_PER_NODE=4
65
+ NHEADS=32
66
+ SEQ_LEN=1024
67
+ VOCAB_SIZE=50257
68
+
69
+ export LAUNCHER="python -u -m torch.distributed.launch \
70
+ --nproc_per_node $GPUS_PER_NODE \
71
+ --nnodes $NNODES \
72
+ --master_addr $MASTER_ADDR \
73
+ --master_port $MASTER_PORT \
74
+ "
75
+
76
+
77
+ config_json="./ds_z3_cpu_offload.json"
78
+ cat <<EOT > $config_json
79
+ {
80
+ "fp16": {
81
+ "enabled": "auto",
82
+ "loss_scale": 0,
83
+ "loss_scale_window": 1000,
84
+ "initial_scale_power": 8,
85
+ "hysteresis": 2,
86
+ "min_loss_scale": 1
87
+ },
88
+
89
+ "optimizer": {
90
+ "type": "AdamW",
91
+ "params": {
92
+ "lr": "auto",
93
+ "betas": "auto",
94
+ "eps": "auto",
95
+ "weight_decay": "auto"
96
+ }
97
+ },
98
+
99
+ "scheduler": {
100
+ "type": "WarmupLR",
101
+ "params": {
102
+ "warmup_min_lr": "auto",
103
+ "warmup_max_lr": "auto",
104
+ "warmup_num_steps": "auto"
105
+ }
106
+ },
107
+
108
+ "zero_optimization": {
109
+ "stage": 3,
110
+ "offload_optimizer": {
111
+ "device": "cpu",
112
+ "pin_memory": true
113
+ },
114
+ "offload_param": {
115
+ "device": "cpu",
116
+ "pin_memory": true
117
+ },
118
+ "overlap_comm": true,
119
+ "contiguous_gradients": true,
120
+ "sub_group_size": 1e14,
121
+ "reduce_bucket_size": "auto",
122
+ "stage3_prefetch_bucket_size": "auto",
123
+ "stage3_param_persistence_threshold": "auto",
124
+ "stage3_max_live_parameters": 1e9,
125
+ "stage3_max_reuse_distance": 1e9,
126
+ "stage3_gather_fp16_weights_on_model_save": false
127
+ },
128
+
129
+ "gradient_accumulation_steps": "auto",
130
+ "gradient_clipping": "auto",
131
+ "steps_per_print": 2000,
132
+ "train_batch_size": "auto",
133
+ "train_micro_batch_size_per_gpu": "auto",
134
+ "wall_clock_breakdown": false
135
+ }
136
+ EOT
137
+
138
+ export PYTHONPATH=src
139
+ export HF_DATASETS_OFFLINE=1
140
+ export TRANSFORMERS_OFFLINE=1
141
+ export USE_TF=0
142
+
143
+ export CMD=" \
144
+ examples/pytorch/language-modeling/run_clm.py \
145
+ --model_type gpt2 \
146
+ --tokenizer_name gpt2 \
147
+ --config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
148
+ --dataset_name $DATASET \
149
+ --output_dir output_dir \
150
+ --overwrite_output_dir \
151
+ --do_train \
152
+ --max_train_samples 1000 \
153
+ --per_device_train_batch_size $MICRO_BATCH_SIZE \
154
+ --num_train_epochs 1 \
155
+ --warmup_steps 8 \
156
+ --fp16 \
157
+ --report_to none \
158
+ --deepspeed $config_json \
159
+ "
160
+
161
+ # clear old checkpoint as it'd mismatch while we sort things out
162
+ rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
163
+
164
+ # model size
165
+ python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
166
+
167
+ # to debug - add echo (it exits and prints what it would have launched)
168
+ srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_base_n32_bs4.txt
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n4-1832555.out ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n4.slurm ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=hf_ds_gpt2_base_n4
3
+ #SBATCH --constraint=v100-32g
4
+ #SBATCH --nodes=4
5
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
6
+ #SBATCH --cpus-per-task=40 # number of cores per tasks
7
+ #SBATCH --hint=nomultithread # we get physical cores not logical
8
+ #SBATCH --gres=gpu:4 # number of gpus
9
+ #SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
10
+ #SBATCH --output=%x-%j.out # output file name
11
+ #SBATCH --error=%x-%j.out # error file name (same to watch just one file)
12
+ #SBATCH --account=six@gpu
13
+
14
+ set -x -e
15
+ export PYTHONUNBUFFERED=1
16
+
17
+ source $six_ALL_CCFRWORK/start-prod
18
+
19
+ nvidia-smi
20
+
21
+ cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
22
+
23
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
24
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
25
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
26
+
27
+ DATASET="stas/openwebtext-10k"
28
+
29
+ MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
30
+ MASTER_PORT=6000
31
+
32
+ # adjust depending on the number of the nodes
33
+
34
+ NNODES=4
35
+ MICRO_BATCH_SIZE=4
36
+
37
+ # succeeded:
38
+
39
+ # to try:
40
+ MSIZE=25
41
+
42
+ if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
43
+ elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
44
+ elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
45
+ elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
46
+ elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
47
+ elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
48
+ elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
49
+ elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
50
+ elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
51
+ elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
52
+ elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
53
+ elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
54
+ elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
55
+ elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
56
+ elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
57
+ else echo "invalid MSIZE: $MSIZE"
58
+ fi
59
+
60
+
61
+ GPUS_PER_NODE=4
62
+ NHEADS=32
63
+ SEQ_LEN=1024
64
+ VOCAB_SIZE=50257
65
+
66
+ export LAUNCHER="python -u -m torch.distributed.launch \
67
+ --nproc_per_node $GPUS_PER_NODE \
68
+ --nnodes $NNODES \
69
+ --master_addr $MASTER_ADDR \
70
+ --master_port $MASTER_PORT \
71
+ "
72
+
73
+
74
+ config_json="./ds_z3_cpu_offload.json"
75
+ cat <<EOT > $config_json
76
+ {
77
+ "fp16": {
78
+ "enabled": "auto",
79
+ "loss_scale": 0,
80
+ "loss_scale_window": 1000,
81
+ "initial_scale_power": 8,
82
+ "hysteresis": 2,
83
+ "min_loss_scale": 1
84
+ },
85
+
86
+ "optimizer": {
87
+ "type": "AdamW",
88
+ "params": {
89
+ "lr": "auto",
90
+ "betas": "auto",
91
+ "eps": "auto",
92
+ "weight_decay": "auto"
93
+ }
94
+ },
95
+
96
+ "scheduler": {
97
+ "type": "WarmupLR",
98
+ "params": {
99
+ "warmup_min_lr": "auto",
100
+ "warmup_max_lr": "auto",
101
+ "warmup_num_steps": "auto"
102
+ }
103
+ },
104
+
105
+ "zero_optimization": {
106
+ "stage": 3,
107
+ "offload_optimizer": {
108
+ "device": "cpu",
109
+ "pin_memory": true
110
+ },
111
+ "offload_param": {
112
+ "device": "none"
113
+ },
114
+ "overlap_comm": true,
115
+ "contiguous_gradients": true,
116
+ "sub_group_size": 1e14,
117
+ "reduce_bucket_size": "auto",
118
+ "stage3_prefetch_bucket_size": "auto",
119
+ "stage3_param_persistence_threshold": "auto",
120
+ "stage3_max_live_parameters": 1e9,
121
+ "stage3_max_reuse_distance": 1e9,
122
+ "stage3_gather_fp16_weights_on_model_save": false
123
+ },
124
+
125
+ "gradient_accumulation_steps": "auto",
126
+ "gradient_clipping": "auto",
127
+ "steps_per_print": 2000,
128
+ "train_batch_size": "auto",
129
+ "train_micro_batch_size_per_gpu": "auto",
130
+ "wall_clock_breakdown": false
131
+ }
132
+ EOT
133
+
134
+ export PYTHONPATH=src
135
+ export HF_DATASETS_OFFLINE=1
136
+ export TRANSFORMERS_OFFLINE=1
137
+ export USE_TF=0
138
+
139
+ export CMD=" \
140
+ examples/pytorch/language-modeling/run_clm.py \
141
+ --model_type gpt2 \
142
+ --tokenizer_name gpt2 \
143
+ --config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
144
+ --dataset_name $DATASET \
145
+ --output_dir output_dir \
146
+ --overwrite_output_dir \
147
+ --do_train \
148
+ --max_train_samples 1000 \
149
+ --per_device_train_batch_size $MICRO_BATCH_SIZE \
150
+ --num_train_epochs 1 \
151
+ --warmup_steps 8 \
152
+ --fp16 \
153
+ --report_to none \
154
+ --deepspeed $config_json \
155
+ "
156
+
157
+ # clear old checkpoint as it'd mismatch while we sort things out
158
+ rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
159
+
160
+ # model size
161
+ python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
162
+
163
+ # to debug - add echo (it exits and prints what it would have launched)
164
+ srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD'
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n8-1832573.out ADDED
The diff for this file is too large to render. See raw diff
 
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_base_n8.slurm ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=hf_ds_gpt2_base_n8
3
+ #SBATCH --constraint=v100-32g
4
+ #SBATCH --nodes=8
5
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
6
+ #SBATCH --cpus-per-task=40 # number of cores per tasks
7
+ #SBATCH --hint=nomultithread # we get physical cores not logical
8
+ #SBATCH --gres=gpu:4 # number of gpus
9
+ #SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
10
+ #SBATCH --output=%x-%j.out # output file name
11
+ #SBATCH --error=%x-%j.out # error file name (same to watch just one file)
12
+ #SBATCH --account=six@gpu
13
+
14
+ set -x -e
15
+ export PYTHONUNBUFFERED=1
16
+
17
+ source $six_ALL_CCFRWORK/start-prod
18
+
19
+ nvidia-smi
20
+
21
+ cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
22
+
23
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
24
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
25
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
26
+
27
+ DATASET="stas/openwebtext-10k"
28
+
29
+ MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
30
+ MASTER_PORT=6000
31
+
32
+ # adjust depending on the number of the nodes
33
+
34
+ NNODES=8
35
+ MICRO_BATCH_SIZE=4
36
+
37
+ # succeeded:
38
+ # MSIZE=30
39
+ #MSIZE=39
40
+
41
+ # to try
42
+ MSIZE=52
43
+
44
+
45
+ if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
46
+ elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
47
+ elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
48
+ elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
49
+ elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
50
+ elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
51
+ elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
52
+ elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
53
+ elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
54
+ elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
55
+ elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
56
+ elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
57
+ elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
58
+ elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
59
+ elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
60
+ else echo "invalid MSIZE: $MSIZE"
61
+ fi
62
+
63
+
64
+ GPUS_PER_NODE=4
65
+ NHEADS=32
66
+ SEQ_LEN=1024
67
+ VOCAB_SIZE=50257
68
+
69
+ export LAUNCHER="python -u -m torch.distributed.launch \
70
+ --nproc_per_node $GPUS_PER_NODE \
71
+ --nnodes $NNODES \
72
+ --master_addr $MASTER_ADDR \
73
+ --master_port $MASTER_PORT \
74
+ "
75
+
76
+
77
+ config_json="./ds_z3_cpu_offload.json"
78
+ cat <<EOT > $config_json
79
+ {
80
+ "fp16": {
81
+ "enabled": "auto",
82
+ "loss_scale": 0,
83
+ "loss_scale_window": 1000,
84
+ "initial_scale_power": 8,
85
+ "hysteresis": 2,
86
+ "min_loss_scale": 1
87
+ },
88
+
89
+ "optimizer": {
90
+ "type": "AdamW",
91
+ "params": {
92
+ "lr": "auto",
93
+ "betas": "auto",
94
+ "eps": "auto",
95
+ "weight_decay": "auto"
96
+ }
97
+ },
98
+
99
+ "scheduler": {
100
+ "type": "WarmupLR",
101
+ "params": {
102
+ "warmup_min_lr": "auto",
103
+ "warmup_max_lr": "auto",
104
+ "warmup_num_steps": "auto"
105
+ }
106
+ },
107
+
108
+ "zero_optimization": {
109
+ "stage": 3,
110
+ "offload_optimizer": {
111
+ "device": "cpu",
112
+ "pin_memory": true
113
+ },
114
+ "offload_param": {
115
+ "device": "cpu",
116
+ "pin_memory": true
117
+ },
118
+ "overlap_comm": true,
119
+ "contiguous_gradients": true,
120
+ "sub_group_size": 1e14,
121
+ "reduce_bucket_size": "auto",
122
+ "stage3_prefetch_bucket_size": "auto",
123
+ "stage3_param_persistence_threshold": "auto",
124
+ "stage3_max_live_parameters": 1e9,
125
+ "stage3_max_reuse_distance": 1e9,
126
+ "stage3_gather_fp16_weights_on_model_save": false
127
+ },
128
+
129
+ "gradient_accumulation_steps": "auto",
130
+ "gradient_clipping": "auto",
131
+ "steps_per_print": 2000,
132
+ "train_batch_size": "auto",
133
+ "train_micro_batch_size_per_gpu": "auto",
134
+ "wall_clock_breakdown": false
135
+ }
136
+ EOT
137
+
138
+ export PYTHONPATH=src
139
+ export HF_DATASETS_OFFLINE=1
140
+ export TRANSFORMERS_OFFLINE=1
141
+ export USE_TF=0
142
+
143
+ export CMD=" \
144
+ examples/pytorch/language-modeling/run_clm.py \
145
+ --model_type gpt2 \
146
+ --tokenizer_name gpt2 \
147
+ --config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
148
+ --dataset_name $DATASET \
149
+ --output_dir output_dir \
150
+ --overwrite_output_dir \
151
+ --do_train \
152
+ --max_train_samples 1000 \
153
+ --per_device_train_batch_size $MICRO_BATCH_SIZE \
154
+ --num_train_epochs 1 \
155
+ --warmup_steps 8 \
156
+ --fp16 \
157
+ --report_to none \
158
+ --deepspeed $config_json \
159
+ "
160
+
161
+ # clear old checkpoint as it'd mismatch while we sort things out
162
+ rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
163
+
164
+ # model size
165
+ python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
166
+
167
+ # to debug - add echo (it exits and prints what it would have launched)
168
+ srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_base_n16_bs4.txt
bigscience/experiments/gpt2-hf-ds/hf_ds_gpt2_perf_n16.slurm ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=hf_ds_gpt2_perf_n16
3
+ #SBATCH --constraint=v100-32g
4
+ #SBATCH --nodes=16
5
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
6
+ #SBATCH --cpus-per-task=40 # number of cores per tasks
7
+ #SBATCH --hint=nomultithread # we get physical cores not logical
8
+ #SBATCH --gres=gpu:4 # number of gpus
9
+ #SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS)
10
+ #SBATCH --output=%x-%j.out # output file name
11
+ #SBATCH --error=%x-%j.out # error file name (same to watch just one file)
12
+ #SBATCH --account=six@gpu
13
+
14
+ set -x -e
15
+ export PYTHONUNBUFFERED=1
16
+
17
+ source $six_ALL_CCFRWORK/start-prod
18
+
19
+ nvidia-smi
20
+
21
+ cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/
22
+
23
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
24
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
25
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
26
+
27
+ DATASET="stas/openwebtext-10k"
28
+
29
+ MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
30
+ MASTER_PORT=6000
31
+
32
+ # adjust depending on the number of the nodes
33
+
34
+ NNODES=16
35
+ MICRO_BATCH_SIZE=10 # 10 is 99% gpu
36
+
37
+ # succeeded:
38
+ MSIZE=52
39
+
40
+
41
+ if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
42
+ elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
43
+ elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
44
+ elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
45
+ elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
46
+ elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
47
+ elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
48
+ elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
49
+ elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
50
+ elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
51
+ elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
52
+ elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
53
+ elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
54
+ elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
55
+ elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
56
+ else echo "invalid MSIZE: $MSIZE"
57
+ fi
58
+
59
+
60
+ GPUS_PER_NODE=4
61
+ NHEADS=32
62
+ SEQ_LEN=1024
63
+ VOCAB_SIZE=50257
64
+
65
+ export LAUNCHER="python -u -m torch.distributed.launch \
66
+ --nproc_per_node $GPUS_PER_NODE \
67
+ --nnodes $NNODES \
68
+ --master_addr $MASTER_ADDR \
69
+ --master_port $MASTER_PORT \
70
+ "
71
+
72
+
73
+ config_json="./ds_z3_cpu_offload.json"
74
+ cat <<EOT > $config_json
75
+ {
76
+ "fp16": {
77
+ "enabled": "auto",
78
+ "loss_scale": 0,
79
+ "loss_scale_window": 1000,
80
+ "initial_scale_power": 8,
81
+ "hysteresis": 2,
82
+ "min_loss_scale": 1
83
+ },
84
+
85
+ "optimizer": {
86
+ "type": "AdamW",
87
+ "params": {
88
+ "lr": "auto",
89
+ "betas": "auto",
90
+ "eps": "auto",
91
+ "weight_decay": "auto"
92
+ }
93
+ },
94
+
95
+ "scheduler": {
96
+ "type": "WarmupLR",
97
+ "params": {
98
+ "warmup_min_lr": "auto",
99
+ "warmup_max_lr": "auto",
100
+ "warmup_num_steps": "auto"
101
+ }
102
+ },
103
+
104
+ "zero_optimization": {
105
+ "stage": 3,
106
+ "offload_optimizer": {
107
+ "device": "none"
108
+ },
109
+ "offload_param": {
110
+ "device": "none"
111
+ },
112
+ "overlap_comm": true,
113
+ "contiguous_gradients": true,
114
+ "sub_group_size": 1e14,
115
+ "reduce_bucket_size": "auto",
116
+ "stage3_prefetch_bucket_size": "auto",
117
+ "stage3_param_persistence_threshold": "auto",
118
+ "stage3_max_live_parameters": 1e9,
119
+ "stage3_max_reuse_distance": 1e9,
120
+ "stage3_gather_fp16_weights_on_model_save": false
121
+ },
122
+
123
+ "gradient_accumulation_steps": "auto",
124
+ "gradient_clipping": "auto",
125
+ "steps_per_print": 2000,
126
+ "train_batch_size": "auto",
127
+ "train_micro_batch_size_per_gpu": "auto",
128
+ "wall_clock_breakdown": false
129
+ }
130
+ EOT
131
+
132
+ export PYTHONPATH=src
133
+ export HF_DATASETS_OFFLINE=1
134
+ export TRANSFORMERS_OFFLINE=1
135
+ export USE_TF=0
136
+
137
+ # new arg to start using
138
+ # --log_on_each_node 0 \
139
+
140
+ export CMD=" \
141
+ examples/pytorch/language-modeling/run_clm.py \
142
+ --model_type gpt2 \
143
+ --tokenizer_name gpt2 \
144
+ --config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \
145
+ --dataset_name $DATASET \
146
+ --output_dir output_dir \
147
+ --overwrite_output_dir \
148
+ --do_train \
149
+ --max_train_samples 1000 \
150
+ --per_device_train_batch_size $MICRO_BATCH_SIZE \
151
+ --num_train_epochs 1 \
152
+ --warmup_steps 8 \
153
+ --fp16 \
154
+ --report_to none \
155
+ --deepspeed $config_json \
156
+ "
157
+
158
+ # clear old checkpoint as it'd mismatch while we sort things out
159
+ rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node
160
+
161
+ # model size
162
+ python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
163
+
164
+ # make sure no zombies have been left behind from previous runs
165
+ export PKILL="pkill python"
166
+
167
+ echo $CMD
168
+ # to debug - add echo (it exits and prints what it would have launched)
169
+ clear; srun --jobid $SLURM_JOBID bash -c '$PKILL; $LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_perf_n16_bs4.out