url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
1.94B
node_id
stringlengths
18
32
number
int64
1
6.3k
title
stringlengths
1
290
user
stringlengths
870
1.16k
labels
stringclasses
78 values
state
stringclasses
2 values
locked
bool
1 class
assignee
stringclasses
66 values
assignees
stringclasses
78 values
milestone
stringclasses
8 values
comments
stringlengths
2
193k
created_at
stringlengths
25
25
updated_at
stringlengths
25
25
closed_at
stringlengths
25
25
author_association
stringclasses
3 values
active_lock_reason
float64
body
stringlengths
1
228k
reactions
stringlengths
191
197
timeline_url
stringlengths
67
70
performed_via_github_app
float64
state_reason
stringclasses
3 values
draft
float64
0
1
pull_request
stringlengths
289
315
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/6303
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6303/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6303/comments
https://api.github.com/repos/huggingface/datasets/issues/6303/events
https://github.com/huggingface/datasets/issues/6303
1,943,466,532
I_kwDODunzps5z1vIk
6,303
Parquet uploads off-by-one naming scheme
{'avatar_url': 'https://avatars.githubusercontent.com/u/1981179?v=4', 'events_url': 'https://api.github.com/users/ZachNagengast/events{/privacy}', 'followers_url': 'https://api.github.com/users/ZachNagengast/followers', 'following_url': 'https://api.github.com/users/ZachNagengast/following{/other_user}', 'gists_url': 'https://api.github.com/users/ZachNagengast/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/ZachNagengast', 'id': 1981179, 'login': 'ZachNagengast', 'node_id': 'MDQ6VXNlcjE5ODExNzk=', 'organizations_url': 'https://api.github.com/users/ZachNagengast/orgs', 'received_events_url': 'https://api.github.com/users/ZachNagengast/received_events', 'repos_url': 'https://api.github.com/users/ZachNagengast/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/ZachNagengast/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/ZachNagengast'}
[]
open
false
null
[]
null
["You can find the reasoning behind this naming scheme [here](https://github.com/huggingface/transformers/pull/16343#discussion_r931182168).\r\n\r\nThis point has been raised several times, so I'd be okay with starting with `00001-` (also to be consistent with the `transformers` sharding), but I'm not sure @lhoestq agrees." "We start at 0 in `datasets` for consistency with Apache Spark, Apache Beam, Dask and others.\r\n\r\nAlso note `transformers` isn't a good reference on this topic. I talked with the maintainers when they added shards but it was already released this way. Though we found that there is a backward-compatible way in `transformers` to start at 0, but no request from `transformers` users to changes this AFAIK." 'not sure it would be a good idea to break the consistency now, IMO' "Makes sense to start at 0 for plenty of good reasons so I'm on board.\r\n\r\nWhat about the second part `-of-0000X`? With single commit PR #6269 just getting merged, there was a note about issues with 100+ file edits https://github.com/huggingface/datasets/pull/6269#issuecomment-1755428581.\r\n\r\nThat would be my last remaining concern in the context of the `push_to_hub(..., append=True)` work to be done, where appending a single file to the full dataset will require renaming every other existing file in the dataset. If it doesn't seem like a big issue for this work then all the better 👍"]
2023-10-14 18:31:03+00:00
2023-10-14 18:31:03+00:00
null
NONE
null
### Describe the bug I noticed this numbering scheme not matching up in a different project and wanted to raise it as an issue for discussion, what is the actual proper way to have these stored? <img width="425" alt="image" src="https://github.com/huggingface/datasets/assets/1981179/3ffa2144-7c9a-446f-b521-a5e9db71e7ce"> The `-SSSSS-of-NNNNN` seems to be used widely across the codebase. The section that creates the part in my screenshot is here https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L5287 There are also some edits to this section in the single commit branch. ### Steps to reproduce the bug 1. Upload a dataset that requires at least two parquet files in it 2. Observe the naming scheme ### Expected behavior The couple options here are of course **1. keeping it as is** **2. Starting the index at 1:** train-00001-of-00002-{hash}.parquet train-00002-of-00002-{hash}.parquet **3. My preferred option** (which would solve my specific issue), dropping the total entirely: train-00000-{hash}.parquet train-00001-{hash}.parquet This also solves an issue that will occur with an `append` variable for `push_to_hub` (see https://github.com/huggingface/datasets/issues/6290) where as you add a new parquet file, you need to rename everything in the repo as well. However, I know there are parts of the repo that use 0 as the starting file or may require the total, so raising the question for discussion. ### Environment info - `datasets` version: 2.14.6.dev0 - Platform: macOS-14.0-arm64-arm-64bit - Python version: 3.10.12 - Huggingface_hub version: 0.18.0 - PyArrow version: 12.0.1 - Pandas version: 1.5.3
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6303/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6303/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6302
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6302/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6302/comments
https://api.github.com/repos/huggingface/datasets/issues/6302/events
https://github.com/huggingface/datasets/issues/6302
1,942,096,078
I_kwDODunzps5zwgjO
6,302
ArrowWriter/ParquetWriter `write` method does not increase `_num_bytes` and hence datasets not sharding at `max_shard_size`
{'avatar_url': 'https://avatars.githubusercontent.com/u/2855550?v=4', 'events_url': 'https://api.github.com/users/Rassibassi/events{/privacy}', 'followers_url': 'https://api.github.com/users/Rassibassi/followers', 'following_url': 'https://api.github.com/users/Rassibassi/following{/other_user}', 'gists_url': 'https://api.github.com/users/Rassibassi/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/Rassibassi', 'id': 2855550, 'login': 'Rassibassi', 'node_id': 'MDQ6VXNlcjI4NTU1NTA=', 'organizations_url': 'https://api.github.com/users/Rassibassi/orgs', 'received_events_url': 'https://api.github.com/users/Rassibassi/received_events', 'repos_url': 'https://api.github.com/users/Rassibassi/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/Rassibassi/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/Rassibassi/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/Rassibassi'}
[]
open
false
null
[]
null
['`writer._num_bytes` is updated every `writer_batch_size`-th call to the `write` method (default `writer_batch_size` is 1000 (examples)). You should be able to see the update by passing a smaller `writer_batch_size` to the `load_dataset_builder`.\r\n\r\nWe could improve this by supporting the string `writer_batch_size` version as we do with `max_shard_size`, and capping `writer_batch_size` to `max_shard_size` in scenarios where the default `writer_batch_size` > `max_shard_size`. ' 'Thanks, reducing `writer_batch_size` solved my problem :)']
2023-10-13 14:43:36+00:00
2023-10-13 14:43:36+00:00
null
NONE
null
### Describe the bug An example from [1], does not work when limiting shards with `max_shard_size`. Try the following example with low `max_shard_size`, such as: ```python builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB") ``` The reason for this is that, in line [2] `writer._num_bytes > max_shard_size` is never true, because the `write` method of `ArrowWriter` [3] does not increase `self._num_bytes`. Such that respective Arrow/Parquet shards are only written to file based on the `writer_batch_size` or `config.DEFAULT_MAX_BATCH_SIZE`, but not based on `max_shard_size`. [1] https://huggingface.co/docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage [2] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/builder.py#L1677 [3] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/arrow_writer.py#L459 ### Steps to reproduce the bug Get example from: https://huggingface.co/docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage Call `builder.download_and_prepare` with low `max_shard_size` such as `10MB`, e.g.: ```python builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB") ``` ### Expected behavior Shards should be written based on `max_shard_size` instead of batch size. ### Environment info ``` >>> import datasets >>> datasets.__version__ '2.14.6.dev0 ```
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6302/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6302/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6301
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6301/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6301/comments
https://api.github.com/repos/huggingface/datasets/issues/6301/events
https://github.com/huggingface/datasets/pull/6301
1,940,183,999
PR_kwDODunzps5cpPVh
6,301
Unpin `tensorflow` maximum version
{'avatar_url': 'https://avatars.githubusercontent.com/u/47462742?v=4', 'events_url': 'https://api.github.com/users/mariosasko/events{/privacy}', 'followers_url': 'https://api.github.com/users/mariosasko/followers', 'following_url': 'https://api.github.com/users/mariosasko/following{/other_user}', 'gists_url': 'https://api.github.com/users/mariosasko/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/mariosasko', 'id': 47462742, 'login': 'mariosasko', 'node_id': 'MDQ6VXNlcjQ3NDYyNzQy', 'organizations_url': 'https://api.github.com/users/mariosasko/orgs', 'received_events_url': 'https://api.github.com/users/mariosasko/received_events', 'repos_url': 'https://api.github.com/users/mariosasko/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/mariosasko/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/mariosasko/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/mariosasko'}
[]
closed
false
null
[]
null
['<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006663 / 0.011353 (-0.004690) | 0.004091 / 0.011008 (-0.006918) | 0.084954 / 0.038508 (0.046445) | 0.071869 / 0.023109 (0.048760) | 0.314706 / 0.275898 (0.038808) | 0.352794 / 0.323480 (0.029314) | 0.004027 / 0.007986 (-0.003959) | 0.003371 / 0.004328 (-0.000957) | 0.065456 / 0.004250 (0.061205) | 0.055828 / 0.037052 (0.018775) | 0.316502 / 0.258489 (0.058013) | 0.377979 / 0.293841 (0.084138) | 0.030870 / 0.128546 (-0.097676) | 0.008616 / 0.075646 (-0.067030) | 0.288625 / 0.419271 (-0.130646) | 0.052314 / 0.043533 (0.008781) | 0.322725 / 0.255139 (0.067586) | 0.351810 / 0.283200 (0.068611) | 0.025726 / 0.141683 (-0.115957) | 1.439308 / 1.452155 (-0.012847) | 1.524484 / 1.492716 (0.031768) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235212 / 0.018006 (0.217206) | 0.444926 / 0.000490 (0.444437) | 0.009887 / 0.000200 (0.009687) | 0.000402 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028956 / 0.037411 (-0.008455) | 0.084401 / 0.014526 (0.069875) | 0.339686 / 0.176557 (0.163130) | 0.186785 / 0.737135 (-0.550350) | 0.195017 / 0.296338 (-0.101322) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405480 / 0.215209 (0.190271) | 4.024315 / 2.077655 (1.946661) | 2.056398 / 1.504120 (0.552278) | 1.912099 / 1.541195 (0.370904) | 1.950119 / 1.468490 (0.481629) | 0.486071 / 4.584777 (-4.098706) | 3.578501 / 3.745712 (-0.167211) | 3.268980 / 5.269862 (-2.000881) | 2.018114 / 4.565676 (-2.547563) | 0.057440 / 0.424275 (-0.366835) | 0.007281 / 0.007607 (-0.000326) | 0.474760 / 0.226044 (0.248716) | 4.746908 / 2.268929 (2.477979) | 2.550111 / 55.444624 (-52.894513) | 2.171932 / 6.876477 (-4.704544) | 2.392235 / 2.142072 (0.250162) | 0.585940 / 4.805227 (-4.219287) | 0.136445 / 6.500664 (-6.364219) | 0.062125 / 0.075469 (-0.013344) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270763 / 1.841788 (-0.571025) | 19.213516 / 8.074308 (11.139208) | 13.992620 / 10.191392 (3.801228) | 0.167356 / 0.680424 (-0.513068) | 0.018261 / 0.534201 (-0.515940) | 0.392489 / 0.579283 (-0.186794) | 0.418845 / 0.434364 (-0.015519) | 0.461824 / 0.540337 (-0.078513) | 0.649661 / 1.386936 (-0.737275) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006675 / 0.011353 (-0.004678) | 0.003913 / 0.011008 (-0.007096) | 0.064943 / 0.038508 (0.026435) | 0.072426 / 0.023109 (0.049317) | 0.400785 / 0.275898 (0.124887) | 0.434359 / 0.323480 (0.110879) | 0.005370 / 0.007986 (-0.002616) | 0.003290 / 0.004328 (-0.001038) | 0.065035 / 0.004250 (0.060785) | 0.054924 / 0.037052 (0.017872) | 0.404442 / 0.258489 (0.145953) | 0.439027 / 0.293841 (0.145186) | 0.032467 / 0.128546 (-0.096080) | 0.008565 / 0.075646 (-0.067081) | 0.070653 / 0.419271 (-0.348619) | 0.048034 / 0.043533 (0.004501) | 0.400869 / 0.255139 (0.145730) | 0.423048 / 0.283200 (0.139848) | 0.022757 / 0.141683 (-0.118926) | 1.516956 / 1.452155 (0.064801) | 1.581599 / 1.492716 (0.088883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214761 / 0.018006 (0.196755) | 0.440921 / 0.000490 (0.440431) | 0.007538 / 0.000200 (0.007338) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032313 / 0.037411 (-0.005099) | 0.091365 / 0.014526 (0.076839) | 0.106665 / 0.176557 (-0.069891) | 0.158637 / 0.737135 (-0.578498) | 0.104894 / 0.296338 (-0.191445) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432995 / 0.215209 (0.217786) | 4.339911 / 2.077655 (2.262256) | 2.313139 / 1.504120 (0.809019) | 2.142552 / 1.541195 (0.601357) | 2.279275 / 1.468490 (0.810785) | 0.501133 / 4.584777 (-4.083644) | 3.696160 / 3.745712 (-0.049552) | 3.341886 / 5.269862 (-1.927976) | 2.105972 / 4.565676 (-2.459705) | 0.059268 / 0.424275 (-0.365008) | 0.007568 / 0.007607 (-0.000039) | 0.512546 / 0.226044 (0.286502) | 5.130219 / 2.268929 (2.861290) | 2.808292 / 55.444624 (-52.636332) | 2.478721 / 6.876477 (-4.397755) | 2.679341 / 2.142072 (0.537269) | 0.599022 / 4.805227 (-4.206206) | 0.143761 / 6.500664 (-6.356903) | 0.062061 / 0.075469 (-0.013409) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.430507 / 1.841788 (-0.411281) | 20.458085 / 8.074308 (12.383777) | 15.268356 / 10.191392 (5.076964) | 0.163359 / 0.680424 (-0.517065) | 0.020908 / 0.534201 (-0.513293) | 0.396870 / 0.579283 (-0.182413) | 0.432630 / 0.434364 (-0.001733) | 0.475909 / 0.540337 (-0.064429) | 0.681031 / 1.386936 (-0.705905) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fd1dd6aa4c7fa7744c1c1f877573ff59f1529292 "CML watermark")\n' 'CI failures are unrelated' '<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005815 / 0.011353 (-0.005538) | 0.003419 / 0.011008 (-0.007589) | 0.080286 / 0.038508 (0.041778) | 0.056487 / 0.023109 (0.033377) | 0.304414 / 0.275898 (0.028516) | 0.341039 / 0.323480 (0.017559) | 0.004392 / 0.007986 (-0.003594) | 0.002852 / 0.004328 (-0.001477) | 0.062339 / 0.004250 (0.058089) | 0.044683 / 0.037052 (0.007630) | 0.311651 / 0.258489 (0.053162) | 0.357249 / 0.293841 (0.063409) | 0.027300 / 0.128546 (-0.101246) | 0.007963 / 0.075646 (-0.067683) | 0.261948 / 0.419271 (-0.157323) | 0.044952 / 0.043533 (0.001419) | 0.309990 / 0.255139 (0.054851) | 0.340735 / 0.283200 (0.057536) | 0.020786 / 0.141683 (-0.120897) | 1.471378 / 1.452155 (0.019224) | 1.517260 / 1.492716 (0.024543) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245447 / 0.018006 (0.227441) | 0.418967 / 0.000490 (0.418477) | 0.007039 / 0.000200 (0.006840) | 0.000196 / 0.000054 (0.000142) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022880 / 0.037411 (-0.014532) | 0.071862 / 0.014526 (0.057337) | 0.083009 / 0.176557 (-0.093547) | 0.143414 / 0.737135 (-0.593722) | 0.082896 / 0.296338 (-0.213442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390645 / 0.215209 (0.175436) | 3.888104 / 2.077655 (1.810450) | 1.859572 / 1.504120 (0.355452) | 1.683803 / 1.541195 (0.142608) | 1.697902 / 1.468490 (0.229412) | 0.499537 / 4.584777 (-4.085239) | 3.015832 / 3.745712 (-0.729881) | 2.805696 / 5.269862 (-2.464166) | 1.830408 / 4.565676 (-2.735268) | 0.058191 / 0.424275 (-0.366085) | 0.006357 / 0.007607 (-0.001250) | 0.462486 / 0.226044 (0.236442) | 4.634951 / 2.268929 (2.366022) | 2.309364 / 55.444624 (-53.135260) | 1.979521 / 6.876477 (-4.896956) | 2.080011 / 2.142072 (-0.062062) | 0.593086 / 4.805227 (-4.212141) | 0.124856 / 6.500664 (-6.375808) | 0.060172 / 0.075469 (-0.015297) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251439 / 1.841788 (-0.590349) | 17.068999 / 8.074308 (8.994691) | 13.527209 / 10.191392 (3.335817) | 0.146636 / 0.680424 (-0.533788) | 0.016866 / 0.534201 (-0.517335) | 0.333202 / 0.579283 (-0.246081) | 0.360444 / 0.434364 (-0.073920) | 0.388378 / 0.540337 (-0.151959) | 0.530519 / 1.386936 (-0.856417) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006043 / 0.011353 (-0.005310) | 0.003612 / 0.011008 (-0.007396) | 0.062644 / 0.038508 (0.024135) | 0.056104 / 0.023109 (0.032995) | 0.446328 / 0.275898 (0.170430) | 0.478044 / 0.323480 (0.154564) | 0.004641 / 0.007986 (-0.003345) | 0.002896 / 0.004328 (-0.001432) | 0.062344 / 0.004250 (0.058093) | 0.046339 / 0.037052 (0.009287) | 0.454866 / 0.258489 (0.196377) | 0.484242 / 0.293841 (0.190401) | 0.028602 / 0.128546 (-0.099944) | 0.008075 / 0.075646 (-0.067571) | 0.067980 / 0.419271 (-0.351291) | 0.041339 / 0.043533 (-0.002194) | 0.452911 / 0.255139 (0.197772) | 0.474180 / 0.283200 (0.190981) | 0.019395 / 0.141683 (-0.122288) | 1.432161 / 1.452155 (-0.019993) | 1.505800 / 1.492716 (0.013083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216983 / 0.018006 (0.198977) | 0.406232 / 0.000490 (0.405743) | 0.005101 / 0.000200 (0.004902) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026295 / 0.037411 (-0.011116) | 0.080490 / 0.014526 (0.065964) | 0.088105 / 0.176557 (-0.088451) | 0.143294 / 0.737135 (-0.593841) | 0.089125 / 0.296338 (-0.207213) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465512 / 0.215209 (0.250302) | 4.648656 / 2.077655 (2.571002) | 2.598225 / 1.504120 (1.094105) | 2.409588 / 1.541195 (0.868393) | 2.513745 / 1.468490 (1.045255) | 0.507425 / 4.584777 (-4.077352) | 3.130164 / 3.745712 (-0.615548) | 2.836817 / 5.269862 (-2.433045) | 1.836029 / 4.565676 (-2.729647) | 0.058829 / 0.424275 (-0.365446) | 0.006551 / 0.007607 (-0.001056) | 0.537892 / 0.226044 (0.311848) | 5.401079 / 2.268929 (3.132150) | 3.019817 / 55.444624 (-52.424807) | 2.695131 / 6.876477 (-4.181346) | 2.805321 / 2.142072 (0.663248) | 0.595681 / 4.805227 (-4.209546) | 0.124368 / 6.500664 (-6.376296) | 0.060712 / 0.075469 (-0.014757) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.361508 / 1.841788 (-0.480279) | 17.811373 / 8.074308 (9.737065) | 14.482705 / 10.191392 (4.291313) | 0.153193 / 0.680424 (-0.527231) | 0.018347 / 0.534201 (-0.515854) | 0.330900 / 0.579283 (-0.248383) | 0.374948 / 0.434364 (-0.059416) | 0.385615 / 0.540337 (-0.154722) | 0.568077 / 1.386936 (-0.818859) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#18ef408c21f8efbb2142f050a691b5c916455af3 "CML watermark")\n']
2023-10-12 14:58:07+00:00
2023-10-12 15:58:20+00:00
2023-10-12 15:49:54+00:00
CONTRIBUTOR
null
Removes the temporary pin introduced in #6264
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6301/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6301/timeline
null
null
0
{'diff_url': 'https://github.com/huggingface/datasets/pull/6301.diff', 'html_url': 'https://github.com/huggingface/datasets/pull/6301', 'merged_at': '2023-10-12T15:49:54Z', 'patch_url': 'https://github.com/huggingface/datasets/pull/6301.patch', 'url': 'https://api.github.com/repos/huggingface/datasets/pulls/6301'}
true
https://api.github.com/repos/huggingface/datasets/issues/6300
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6300/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6300/comments
https://api.github.com/repos/huggingface/datasets/issues/6300/events
https://github.com/huggingface/datasets/pull/6300
1,940,153,432
PR_kwDODunzps5cpIoG
6,300
Unpin `jax` maximum version
{'avatar_url': 'https://avatars.githubusercontent.com/u/47462742?v=4', 'events_url': 'https://api.github.com/users/mariosasko/events{/privacy}', 'followers_url': 'https://api.github.com/users/mariosasko/followers', 'following_url': 'https://api.github.com/users/mariosasko/following{/other_user}', 'gists_url': 'https://api.github.com/users/mariosasko/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/mariosasko', 'id': 47462742, 'login': 'mariosasko', 'node_id': 'MDQ6VXNlcjQ3NDYyNzQy', 'organizations_url': 'https://api.github.com/users/mariosasko/orgs', 'received_events_url': 'https://api.github.com/users/mariosasko/received_events', 'repos_url': 'https://api.github.com/users/mariosasko/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/mariosasko/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/mariosasko/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/mariosasko'}
[]
closed
false
null
[]
null
['<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008410 / 0.011353 (-0.002943) | 0.004888 / 0.011008 (-0.006120) | 0.103342 / 0.038508 (0.064834) | 0.103697 / 0.023109 (0.080587) | 0.416445 / 0.275898 (0.140547) | 0.454604 / 0.323480 (0.131124) | 0.004976 / 0.007986 (-0.003010) | 0.003957 / 0.004328 (-0.000371) | 0.077398 / 0.004250 (0.073148) | 0.069026 / 0.037052 (0.031973) | 0.420484 / 0.258489 (0.161995) | 0.471828 / 0.293841 (0.177987) | 0.037133 / 0.128546 (-0.091413) | 0.010009 / 0.075646 (-0.065637) | 0.349573 / 0.419271 (-0.069698) | 0.063240 / 0.043533 (0.019708) | 0.421554 / 0.255139 (0.166415) | 0.433548 / 0.283200 (0.150348) | 0.029397 / 0.141683 (-0.112286) | 1.716860 / 1.452155 (0.264705) | 1.851264 / 1.492716 (0.358547) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269733 / 0.018006 (0.251727) | 0.493313 / 0.000490 (0.492823) | 0.010438 / 0.000200 (0.010238) | 0.000401 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034690 / 0.037411 (-0.002722) | 0.105304 / 0.014526 (0.090778) | 0.115831 / 0.176557 (-0.060726) | 0.185017 / 0.737135 (-0.552118) | 0.117480 / 0.296338 (-0.178859) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479414 / 0.215209 (0.264205) | 4.785526 / 2.077655 (2.707871) | 2.388412 / 1.504120 (0.884292) | 2.178222 / 1.541195 (0.637027) | 2.248214 / 1.468490 (0.779723) | 0.571723 / 4.584777 (-4.013054) | 4.721250 / 3.745712 (0.975538) | 4.073893 / 5.269862 (-1.195969) | 2.618131 / 4.565676 (-1.947546) | 0.068406 / 0.424275 (-0.355869) | 0.008890 / 0.007607 (0.001283) | 0.564224 / 0.226044 (0.338180) | 5.631412 / 2.268929 (3.362483) | 3.072212 / 55.444624 (-52.372412) | 2.760574 / 6.876477 (-4.115903) | 2.963060 / 2.142072 (0.820987) | 0.708150 / 4.805227 (-4.097077) | 0.160324 / 6.500664 (-6.340340) | 0.075402 / 0.075469 (-0.000067) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.649965 / 1.841788 (-0.191823) | 24.297517 / 8.074308 (16.223209) | 17.658675 / 10.191392 (7.467283) | 0.171399 / 0.680424 (-0.509025) | 0.021172 / 0.534201 (-0.513029) | 0.477196 / 0.579283 (-0.102087) | 0.503900 / 0.434364 (0.069536) | 0.555858 / 0.540337 (0.015520) | 0.824302 / 1.386936 (-0.562634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008613 / 0.011353 (-0.002740) | 0.004848 / 0.011008 (-0.006160) | 0.078344 / 0.038508 (0.039836) | 0.098976 / 0.023109 (0.075867) | 0.520713 / 0.275898 (0.244815) | 0.566350 / 0.323480 (0.242870) | 0.006658 / 0.007986 (-0.001327) | 0.004043 / 0.004328 (-0.000285) | 0.077881 / 0.004250 (0.073631) | 0.070731 / 0.037052 (0.033678) | 0.519717 / 0.258489 (0.261228) | 0.575623 / 0.293841 (0.281782) | 0.038542 / 0.128546 (-0.090004) | 0.010277 / 0.075646 (-0.065369) | 0.084269 / 0.419271 (-0.335002) | 0.058088 / 0.043533 (0.014555) | 0.541790 / 0.255139 (0.286651) | 0.534915 / 0.283200 (0.251715) | 0.027851 / 0.141683 (-0.113831) | 1.814827 / 1.452155 (0.362672) | 1.898208 / 1.492716 (0.405492) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244162 / 0.018006 (0.226156) | 0.482895 / 0.000490 (0.482405) | 0.005734 / 0.000200 (0.005534) | 0.000127 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039328 / 0.037411 (0.001917) | 0.119795 / 0.014526 (0.105269) | 0.128570 / 0.176557 (-0.047986) | 0.191207 / 0.737135 (-0.545929) | 0.127147 / 0.296338 (-0.169192) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.533545 / 0.215209 (0.318336) | 5.320135 / 2.077655 (3.242480) | 2.924573 / 1.504120 (1.420453) | 2.741351 / 1.541195 (1.200156) | 2.824217 / 1.468490 (1.355727) | 0.595842 / 4.584777 (-3.988935) | 4.343499 / 3.745712 (0.597787) | 3.976546 / 5.269862 (-1.293316) | 2.532541 / 4.565676 (-2.033135) | 0.070480 / 0.424275 (-0.353795) | 0.008868 / 0.007607 (0.001260) | 0.634297 / 0.226044 (0.408253) | 6.327314 / 2.268929 (4.058386) | 3.530741 / 55.444624 (-51.913883) | 3.121435 / 6.876477 (-3.755042) | 3.344473 / 2.142072 (1.202401) | 0.719413 / 4.805227 (-4.085814) | 0.162348 / 6.500664 (-6.338316) | 0.074964 / 0.075469 (-0.000505) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.679095 / 1.841788 (-0.162693) | 25.071620 / 8.074308 (16.997312) | 18.422398 / 10.191392 (8.231006) | 0.223981 / 0.680424 (-0.456443) | 0.026537 / 0.534201 (-0.507664) | 0.513867 / 0.579283 (-0.065416) | 0.535874 / 0.434364 (0.101510) | 0.567971 / 0.540337 (0.027634) | 0.842545 / 1.386936 (-0.544391) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d8b871016c25cb3b90ac1ff65a4e54f0454f525e "CML watermark")\n' '<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006445 / 0.011353 (-0.004908) | 0.003978 / 0.011008 (-0.007030) | 0.084542 / 0.038508 (0.046034) | 0.069231 / 0.023109 (0.046122) | 0.308794 / 0.275898 (0.032896) | 0.339246 / 0.323480 (0.015766) | 0.005269 / 0.007986 (-0.002716) | 0.003285 / 0.004328 (-0.001043) | 0.065336 / 0.004250 (0.061086) | 0.053480 / 0.037052 (0.016428) | 0.316775 / 0.258489 (0.058286) | 0.357885 / 0.293841 (0.064044) | 0.031309 / 0.128546 (-0.097237) | 0.008450 / 0.075646 (-0.067196) | 0.287911 / 0.419271 (-0.131361) | 0.052756 / 0.043533 (0.009223) | 0.321516 / 0.255139 (0.066377) | 0.331998 / 0.283200 (0.048799) | 0.024129 / 0.141683 (-0.117553) | 1.507718 / 1.452155 (0.055563) | 1.571400 / 1.492716 (0.078683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237536 / 0.018006 (0.219530) | 0.499691 / 0.000490 (0.499201) | 0.007644 / 0.000200 (0.007444) | 0.000284 / 0.000054 (0.000230) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028243 / 0.037411 (-0.009168) | 0.081556 / 0.014526 (0.067030) | 0.096877 / 0.176557 (-0.079680) | 0.149985 / 0.737135 (-0.587150) | 0.095556 / 0.296338 (-0.200783) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383215 / 0.215209 (0.168006) | 3.815800 / 2.077655 (1.738145) | 1.832227 / 1.504120 (0.328107) | 1.664001 / 1.541195 (0.122806) | 1.698786 / 1.468490 (0.230296) | 0.487594 / 4.584777 (-4.097183) | 3.569767 / 3.745712 (-0.175945) | 3.262387 / 5.269862 (-2.007475) | 2.017105 / 4.565676 (-2.548572) | 0.057555 / 0.424275 (-0.366720) | 0.007170 / 0.007607 (-0.000437) | 0.460134 / 0.226044 (0.234090) | 4.629800 / 2.268929 (2.360871) | 2.357126 / 55.444624 (-53.087499) | 1.970144 / 6.876477 (-4.906332) | 2.123520 / 2.142072 (-0.018552) | 0.613058 / 4.805227 (-4.192169) | 0.135869 / 6.500664 (-6.364795) | 0.061292 / 0.075469 (-0.014177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.311294 / 1.841788 (-0.530494) | 18.640807 / 8.074308 (10.566499) | 13.946834 / 10.191392 (3.755442) | 0.163976 / 0.680424 (-0.516448) | 0.018527 / 0.534201 (-0.515674) | 0.390530 / 0.579283 (-0.188753) | 0.412661 / 0.434364 (-0.021703) | 0.459514 / 0.540337 (-0.080823) | 0.635026 / 1.386936 (-0.751910) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006645 / 0.011353 (-0.004708) | 0.003943 / 0.011008 (-0.007066) | 0.064470 / 0.038508 (0.025962) | 0.069895 / 0.023109 (0.046786) | 0.411091 / 0.275898 (0.135193) | 0.437628 / 0.323480 (0.114148) | 0.005214 / 0.007986 (-0.002772) | 0.003281 / 0.004328 (-0.001047) | 0.064434 / 0.004250 (0.060183) | 0.054294 / 0.037052 (0.017241) | 0.413576 / 0.258489 (0.155087) | 0.448793 / 0.293841 (0.154952) | 0.031754 / 0.128546 (-0.096793) | 0.008530 / 0.075646 (-0.067117) | 0.069950 / 0.419271 (-0.349322) | 0.047747 / 0.043533 (0.004214) | 0.411241 / 0.255139 (0.156102) | 0.430076 / 0.283200 (0.146876) | 0.023462 / 0.141683 (-0.118220) | 1.519501 / 1.452155 (0.067346) | 1.575782 / 1.492716 (0.083066) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231816 / 0.018006 (0.213810) | 0.442802 / 0.000490 (0.442312) | 0.005738 / 0.000200 (0.005539) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031426 / 0.037411 (-0.005985) | 0.090758 / 0.014526 (0.076233) | 0.103414 / 0.176557 (-0.073142) | 0.156409 / 0.737135 (-0.580726) | 0.103900 / 0.296338 (-0.192439) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438897 / 0.215209 (0.223688) | 4.385318 / 2.077655 (2.307663) | 2.352042 / 1.504120 (0.847923) | 2.182228 / 1.541195 (0.641033) | 2.266256 / 1.468490 (0.797766) | 0.492780 / 4.584777 (-4.091997) | 3.665787 / 3.745712 (-0.079925) | 3.315329 / 5.269862 (-1.954533) | 2.027993 / 4.565676 (-2.537684) | 0.058220 / 0.424275 (-0.366055) | 0.007429 / 0.007607 (-0.000178) | 0.508790 / 0.226044 (0.282746) | 5.107093 / 2.268929 (2.838164) | 2.799789 / 55.444624 (-52.644836) | 2.462828 / 6.876477 (-4.413649) | 2.610193 / 2.142072 (0.468120) | 0.588133 / 4.805227 (-4.217094) | 0.133418 / 6.500664 (-6.367246) | 0.059793 / 0.075469 (-0.015676) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.363358 / 1.841788 (-0.478430) | 19.258372 / 8.074308 (11.184064) | 14.730977 / 10.191392 (4.539584) | 0.169493 / 0.680424 (-0.510931) | 0.020462 / 0.534201 (-0.513739) | 0.397980 / 0.579283 (-0.181303) | 0.426638 / 0.434364 (-0.007726) | 0.474249 / 0.540337 (-0.066088) | 0.677640 / 1.386936 (-0.709296) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90b3d2619ecb8f01dd12283c30f04dfe6e443795 "CML watermark")\n' '<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006536 / 0.011353 (-0.004817) | 0.003827 / 0.011008 (-0.007181) | 0.084394 / 0.038508 (0.045886) | 0.073166 / 0.023109 (0.050056) | 0.309380 / 0.275898 (0.033482) | 0.338501 / 0.323480 (0.015021) | 0.005346 / 0.007986 (-0.002640) | 0.003273 / 0.004328 (-0.001056) | 0.064606 / 0.004250 (0.060356) | 0.053500 / 0.037052 (0.016447) | 0.313143 / 0.258489 (0.054654) | 0.354364 / 0.293841 (0.060523) | 0.030919 / 0.128546 (-0.097627) | 0.008512 / 0.075646 (-0.067134) | 0.292774 / 0.419271 (-0.126498) | 0.052441 / 0.043533 (0.008908) | 0.310503 / 0.255139 (0.055364) | 0.341211 / 0.283200 (0.058011) | 0.023608 / 0.141683 (-0.118074) | 1.456220 / 1.452155 (0.004065) | 1.540189 / 1.492716 (0.047473) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234321 / 0.018006 (0.216315) | 0.451809 / 0.000490 (0.451319) | 0.008560 / 0.000200 (0.008360) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028165 / 0.037411 (-0.009246) | 0.082548 / 0.014526 (0.068023) | 0.752621 / 0.176557 (0.576065) | 0.263949 / 0.737135 (-0.473187) | 0.097635 / 0.296338 (-0.198704) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386611 / 0.215209 (0.171402) | 3.847528 / 2.077655 (1.769873) | 1.859173 / 1.504120 (0.355053) | 1.685269 / 1.541195 (0.144074) | 1.715823 / 1.468490 (0.247333) | 0.485272 / 4.584777 (-4.099505) | 3.500724 / 3.745712 (-0.244988) | 3.252149 / 5.269862 (-2.017713) | 2.052914 / 4.565676 (-2.512762) | 0.056794 / 0.424275 (-0.367481) | 0.007317 / 0.007607 (-0.000291) | 0.457924 / 0.226044 (0.231879) | 4.570092 / 2.268929 (2.301163) | 2.328829 / 55.444624 (-53.115796) | 1.986502 / 6.876477 (-4.889975) | 2.164645 / 2.142072 (0.022573) | 0.580455 / 4.805227 (-4.224772) | 0.134415 / 6.500664 (-6.366249) | 0.060506 / 0.075469 (-0.014963) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267423 / 1.841788 (-0.574364) | 18.653450 / 8.074308 (10.579142) | 13.919682 / 10.191392 (3.728290) | 0.144001 / 0.680424 (-0.536423) | 0.018218 / 0.534201 (-0.515983) | 0.389933 / 0.579283 (-0.189350) | 0.418366 / 0.434364 (-0.015998) | 0.456341 / 0.540337 (-0.083997) | 0.631401 / 1.386936 (-0.755535) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006838 / 0.011353 (-0.004515) | 0.003973 / 0.011008 (-0.007036) | 0.065217 / 0.038508 (0.026709) | 0.068357 / 0.023109 (0.045248) | 0.407960 / 0.275898 (0.132062) | 0.437794 / 0.323480 (0.114314) | 0.005398 / 0.007986 (-0.002587) | 0.003360 / 0.004328 (-0.000969) | 0.065503 / 0.004250 (0.061253) | 0.055676 / 0.037052 (0.018623) | 0.411381 / 0.258489 (0.152892) | 0.446902 / 0.293841 (0.153061) | 0.032156 / 0.128546 (-0.096390) | 0.008702 / 0.075646 (-0.066944) | 0.072295 / 0.419271 (-0.346976) | 0.047722 / 0.043533 (0.004189) | 0.406125 / 0.255139 (0.150986) | 0.428359 / 0.283200 (0.145160) | 0.021901 / 0.141683 (-0.119782) | 1.464186 / 1.452155 (0.012032) | 1.532809 / 1.492716 (0.040093) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218505 / 0.018006 (0.200499) | 0.447450 / 0.000490 (0.446961) | 0.006509 / 0.000200 (0.006309) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031789 / 0.037411 (-0.005622) | 0.091100 / 0.014526 (0.076574) | 0.102812 / 0.176557 (-0.073745) | 0.155988 / 0.737135 (-0.581147) | 0.103983 / 0.296338 (-0.192355) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436431 / 0.215209 (0.221222) | 4.336072 / 2.077655 (2.258417) | 2.344613 / 1.504120 (0.840493) | 2.173513 / 1.541195 (0.632319) | 2.313134 / 1.468490 (0.844644) | 0.493651 / 4.584777 (-4.091126) | 3.657541 / 3.745712 (-0.088171) | 3.289933 / 5.269862 (-1.979928) | 2.040271 / 4.565676 (-2.525406) | 0.058092 / 0.424275 (-0.366183) | 0.007348 / 0.007607 (-0.000259) | 0.507506 / 0.226044 (0.281462) | 5.093477 / 2.268929 (2.824548) | 2.770579 / 55.444624 (-52.674046) | 2.449507 / 6.876477 (-4.426970) | 2.645470 / 2.142072 (0.503397) | 0.590799 / 4.805227 (-4.214429) | 0.133411 / 6.500664 (-6.367253) | 0.059507 / 0.075469 (-0.015962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.381148 / 1.841788 (-0.460639) | 19.188716 / 8.074308 (11.114408) | 14.709111 / 10.191392 (4.517719) | 0.191104 / 0.680424 (-0.489320) | 0.019862 / 0.534201 (-0.514339) | 0.395380 / 0.579283 (-0.183903) | 0.424757 / 0.434364 (-0.009607) | 0.468810 / 0.540337 (-0.071527) | 0.687058 / 1.386936 (-0.699878) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#407169e1ea91ae31f79ff29c4115b04a461279ab "CML watermark")\n' '<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008872 / 0.011353 (-0.002481) | 0.004824 / 0.011008 (-0.006184) | 0.097012 / 0.038508 (0.058504) | 0.074728 / 0.023109 (0.051619) | 0.400604 / 0.275898 (0.124706) | 0.434316 / 0.323480 (0.110836) | 0.006025 / 0.007986 (-0.001961) | 0.004153 / 0.004328 (-0.000176) | 0.074093 / 0.004250 (0.069842) | 0.057239 / 0.037052 (0.020187) | 0.420611 / 0.258489 (0.162122) | 0.457779 / 0.293841 (0.163938) | 0.047610 / 0.128546 (-0.080936) | 0.014577 / 0.075646 (-0.061069) | 0.414351 / 0.419271 (-0.004921) | 0.063072 / 0.043533 (0.019539) | 0.426141 / 0.255139 (0.171002) | 0.429844 / 0.283200 (0.146644) | 0.034754 / 0.141683 (-0.106929) | 1.620946 / 1.452155 (0.168792) | 1.725831 / 1.492716 (0.233115) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304712 / 0.018006 (0.286706) | 0.646924 / 0.000490 (0.646434) | 0.014486 / 0.000200 (0.014286) | 0.000626 / 0.000054 (0.000572) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034935 / 0.037411 (-0.002477) | 0.085788 / 0.014526 (0.071262) | 0.107749 / 0.176557 (-0.068807) | 0.170924 / 0.737135 (-0.566211) | 0.134985 / 0.296338 (-0.161354) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602913 / 0.215209 (0.387704) | 6.041700 / 2.077655 (3.964045) | 2.539970 / 1.504120 (1.035850) | 2.184166 / 1.541195 (0.642972) | 2.241783 / 1.468490 (0.773293) | 0.864601 / 4.584777 (-3.720176) | 5.246955 / 3.745712 (1.501243) | 4.850458 / 5.269862 (-0.419404) | 3.101497 / 4.565676 (-1.464179) | 0.098591 / 0.424275 (-0.325684) | 0.008902 / 0.007607 (0.001295) | 0.732278 / 0.226044 (0.506234) | 7.163557 / 2.268929 (4.894629) | 3.226444 / 55.444624 (-52.218180) | 2.578737 / 6.876477 (-4.297740) | 2.850212 / 2.142072 (0.708140) | 1.026390 / 4.805227 (-3.778837) | 0.217077 / 6.500664 (-6.283587) | 0.080344 / 0.075469 (0.004875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.687488 / 1.841788 (-0.154300) | 24.686337 / 8.074308 (16.612029) | 21.315989 / 10.191392 (11.124597) | 0.226176 / 0.680424 (-0.454248) | 0.035774 / 0.534201 (-0.498427) | 0.477807 / 0.579283 (-0.101476) | 0.636305 / 0.434364 (0.201941) | 0.553341 / 0.540337 (0.013003) | 0.797267 / 1.386936 (-0.589669) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008955 / 0.011353 (-0.002398) | 0.006099 / 0.011008 (-0.004909) | 0.086306 / 0.038508 (0.047798) | 0.090783 / 0.023109 (0.067674) | 0.554802 / 0.275898 (0.278904) | 0.598778 / 0.323480 (0.275299) | 0.008656 / 0.007986 (0.000670) | 0.004487 / 0.004328 (0.000159) | 0.084194 / 0.004250 (0.079943) | 0.076048 / 0.037052 (0.038996) | 0.533212 / 0.258489 (0.274723) | 0.584029 / 0.293841 (0.290188) | 0.051913 / 0.128546 (-0.076634) | 0.014253 / 0.075646 (-0.061393) | 0.100500 / 0.419271 (-0.318772) | 0.061092 / 0.043533 (0.017560) | 0.516955 / 0.255139 (0.261816) | 0.562754 / 0.283200 (0.279554) | 0.036673 / 0.141683 (-0.105010) | 1.853655 / 1.452155 (0.401501) | 1.968358 / 1.492716 (0.475642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.308258 / 0.018006 (0.290252) | 0.630492 / 0.000490 (0.630002) | 0.010575 / 0.000200 (0.010375) | 0.000271 / 0.000054 (0.000217) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034762 / 0.037411 (-0.002649) | 0.107314 / 0.014526 (0.092788) | 0.132160 / 0.176557 (-0.044396) | 0.178737 / 0.737135 (-0.558398) | 0.125988 / 0.296338 (-0.170351) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.730738 / 0.215209 (0.515528) | 7.240393 / 2.077655 (5.162738) | 3.557665 / 1.504120 (2.053545) | 3.541425 / 1.541195 (2.000230) | 3.103849 / 1.468490 (1.635359) | 0.926843 / 4.584777 (-3.657934) | 5.818264 / 3.745712 (2.072552) | 5.012984 / 5.269862 (-0.256878) | 3.286085 / 4.565676 (-1.279591) | 0.104879 / 0.424275 (-0.319396) | 0.009010 / 0.007607 (0.001403) | 0.806145 / 0.226044 (0.580101) | 8.263655 / 2.268929 (5.994727) | 4.108932 / 55.444624 (-51.335693) | 3.454613 / 6.876477 (-3.421864) | 3.629045 / 2.142072 (1.486973) | 1.062325 / 4.805227 (-3.742902) | 0.220482 / 6.500664 (-6.280182) | 0.081440 / 0.075469 (0.005970) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.665587 / 1.841788 (-0.176201) | 23.695299 / 8.074308 (15.620991) | 22.917493 / 10.191392 (12.726101) | 0.259033 / 0.680424 (-0.421391) | 0.040118 / 0.534201 (-0.494083) | 0.487329 / 0.579283 (-0.091954) | 0.607482 / 0.434364 (0.173118) | 0.568383 / 0.540337 (0.028045) | 0.824486 / 1.386936 (-0.562450) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53592bb8f635a1d6ea3e77acc290efdfb28fcbd7 "CML watermark")\n' 'CI failures are unrelated' '<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007095 / 0.011353 (-0.004258) | 0.004260 / 0.011008 (-0.006748) | 0.084729 / 0.038508 (0.046221) | 0.076498 / 0.023109 (0.053389) | 0.325981 / 0.275898 (0.050083) | 0.357140 / 0.323480 (0.033661) | 0.004325 / 0.007986 (-0.003660) | 0.003632 / 0.004328 (-0.000696) | 0.065075 / 0.004250 (0.060824) | 0.059058 / 0.037052 (0.022006) | 0.331895 / 0.258489 (0.073406) | 0.370782 / 0.293841 (0.076941) | 0.031886 / 0.128546 (-0.096660) | 0.008782 / 0.075646 (-0.066864) | 0.288159 / 0.419271 (-0.131113) | 0.053012 / 0.043533 (0.009479) | 0.319992 / 0.255139 (0.064853) | 0.347061 / 0.283200 (0.063861) | 0.026365 / 0.141683 (-0.115317) | 1.486112 / 1.452155 (0.033958) | 1.570150 / 1.492716 (0.077434) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277155 / 0.018006 (0.259149) | 0.573507 / 0.000490 (0.573017) | 0.010122 / 0.000200 (0.009922) | 0.000322 / 0.000054 (0.000268) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029076 / 0.037411 (-0.008335) | 0.082517 / 0.014526 (0.067991) | 0.100710 / 0.176557 (-0.075847) | 0.154529 / 0.737135 (-0.582606) | 0.099531 / 0.296338 (-0.196807) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382058 / 0.215209 (0.166849) | 3.803307 / 2.077655 (1.725652) | 1.834107 / 1.504120 (0.329987) | 1.665703 / 1.541195 (0.124508) | 1.739520 / 1.468490 (0.271030) | 0.490544 / 4.584777 (-4.094233) | 3.577874 / 3.745712 (-0.167838) | 3.327631 / 5.269862 (-1.942231) | 2.056634 / 4.565676 (-2.509043) | 0.057871 / 0.424275 (-0.366404) | 0.007326 / 0.007607 (-0.000281) | 0.453993 / 0.226044 (0.227949) | 4.549179 / 2.268929 (2.280250) | 2.320304 / 55.444624 (-53.124321) | 1.966082 / 6.876477 (-4.910395) | 2.189979 / 2.142072 (0.047907) | 0.586678 / 4.805227 (-4.218549) | 0.134919 / 6.500664 (-6.365745) | 0.061649 / 0.075469 (-0.013820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286228 / 1.841788 (-0.555560) | 19.409674 / 8.074308 (11.335366) | 14.290463 / 10.191392 (4.099071) | 0.165766 / 0.680424 (-0.514658) | 0.018200 / 0.534201 (-0.516001) | 0.390526 / 0.579283 (-0.188757) | 0.410953 / 0.434364 (-0.023411) | 0.455921 / 0.540337 (-0.084416) | 0.642271 / 1.386936 (-0.744665) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007288 / 0.011353 (-0.004064) | 0.004348 / 0.011008 (-0.006660) | 0.065935 / 0.038508 (0.027427) | 0.087327 / 0.023109 (0.064218) | 0.413461 / 0.275898 (0.137563) | 0.458904 / 0.323480 (0.135424) | 0.005996 / 0.007986 (-0.001990) | 0.003648 / 0.004328 (-0.000680) | 0.066578 / 0.004250 (0.062328) | 0.062072 / 0.037052 (0.025020) | 0.418469 / 0.258489 (0.159980) | 0.468960 / 0.293841 (0.175119) | 0.032616 / 0.128546 (-0.095930) | 0.008961 / 0.075646 (-0.066686) | 0.072537 / 0.419271 (-0.346734) | 0.048302 / 0.043533 (0.004769) | 0.411845 / 0.255139 (0.156706) | 0.441730 / 0.283200 (0.158530) | 0.025038 / 0.141683 (-0.116645) | 1.519402 / 1.452155 (0.067248) | 1.601791 / 1.492716 (0.109074) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322494 / 0.018006 (0.304488) | 0.570210 / 0.000490 (0.569720) | 0.025815 / 0.000200 (0.025615) | 0.000166 / 0.000054 (0.000111) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034657 / 0.037411 (-0.002754) | 0.096024 / 0.014526 (0.081498) | 0.109134 / 0.176557 (-0.067422) | 0.162170 / 0.737135 (-0.574965) | 0.110472 / 0.296338 (-0.185866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439032 / 0.215209 (0.223823) | 4.385768 / 2.077655 (2.308113) | 2.343261 / 1.504120 (0.839142) | 2.157926 / 1.541195 (0.616731) | 2.299193 / 1.468490 (0.830703) | 0.498961 / 4.584777 (-4.085816) | 3.651909 / 3.745712 (-0.093803) | 3.387587 / 5.269862 (-1.882275) | 2.144553 / 4.565676 (-2.421123) | 0.058242 / 0.424275 (-0.366033) | 0.007416 / 0.007607 (-0.000191) | 0.512714 / 0.226044 (0.286670) | 5.138569 / 2.268929 (2.869641) | 2.778683 / 55.444624 (-52.665941) | 2.532990 / 6.876477 (-4.343487) | 2.782211 / 2.142072 (0.640139) | 0.591881 / 4.805227 (-4.213346) | 0.135005 / 6.500664 (-6.365660) | 0.060965 / 0.075469 (-0.014504) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356311 / 1.841788 (-0.485477) | 20.029994 / 8.074308 (11.955686) | 14.666570 / 10.191392 (4.475178) | 0.164363 / 0.680424 (-0.516061) | 0.020685 / 0.534201 (-0.513516) | 0.396020 / 0.579283 (-0.183263) | 0.429407 / 0.434364 (-0.004957) | 0.476924 / 0.540337 (-0.063413) | 0.693389 / 1.386936 (-0.693547) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#292d627e398e30a538a616395f3b5ce4e89bb1e8 "CML watermark")\n']
2023-10-12 14:42:40+00:00
2023-10-12 16:37:55+00:00
2023-10-12 16:28:57+00:00
CONTRIBUTOR
null
fix #6299 fix #6202
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6300/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6300/timeline
null
null
0
{'diff_url': 'https://github.com/huggingface/datasets/pull/6300.diff', 'html_url': 'https://github.com/huggingface/datasets/pull/6300', 'merged_at': '2023-10-12T16:28:57Z', 'patch_url': 'https://github.com/huggingface/datasets/pull/6300.patch', 'url': 'https://api.github.com/repos/huggingface/datasets/pulls/6300'}
true
https://api.github.com/repos/huggingface/datasets/issues/6299
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6299/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6299/comments
https://api.github.com/repos/huggingface/datasets/issues/6299/events
https://github.com/huggingface/datasets/issues/6299
1,939,649,238
I_kwDODunzps5znLLW
6,299
Support for newer versions of JAX
{'avatar_url': 'https://avatars.githubusercontent.com/u/25456859?v=4', 'events_url': 'https://api.github.com/users/ddrous/events{/privacy}', 'followers_url': 'https://api.github.com/users/ddrous/followers', 'following_url': 'https://api.github.com/users/ddrous/following{/other_user}', 'gists_url': 'https://api.github.com/users/ddrous/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/ddrous', 'id': 25456859, 'login': 'ddrous', 'node_id': 'MDQ6VXNlcjI1NDU2ODU5', 'organizations_url': 'https://api.github.com/users/ddrous/orgs', 'received_events_url': 'https://api.github.com/users/ddrous/received_events', 'repos_url': 'https://api.github.com/users/ddrous/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/ddrous/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/ddrous/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/ddrous'}
[{'color': 'a2eeef', 'default': True, 'description': 'New feature or request', 'id': 1935892871, 'name': 'enhancement', 'node_id': 'MDU6TGFiZWwxOTM1ODkyODcx', 'url': 'https://api.github.com/repos/huggingface/datasets/labels/enhancement'}]
closed
false
null
[]
null
[]
2023-10-12 10:03:46+00:00
2023-10-12 16:28:59+00:00
2023-10-12 16:28:59+00:00
NONE
null
### Feature request Hi, I like your idea of adapting the datasets library to be usable with JAX. Thank you for that. However, in your [setup.py](https://github.com/huggingface/datasets/blob/main/setup.py), you enforce old versions of JAX <= 0.3... It is very cumbersome ! What is the rationale for such a limitation ? Can you remove it please ? Thanks, ### Motivation This library is unusable with new versions of JAX ? ### Your contribution Yes.
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6299/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6299/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6298
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6298/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6298/comments
https://api.github.com/repos/huggingface/datasets/issues/6298/events
https://github.com/huggingface/datasets/pull/6298
1,938,797,389
PR_kwDODunzps5ckg6j
6,298
Doc readme improvements
{'avatar_url': 'https://avatars.githubusercontent.com/u/47462742?v=4', 'events_url': 'https://api.github.com/users/mariosasko/events{/privacy}', 'followers_url': 'https://api.github.com/users/mariosasko/followers', 'following_url': 'https://api.github.com/users/mariosasko/following{/other_user}', 'gists_url': 'https://api.github.com/users/mariosasko/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/mariosasko', 'id': 47462742, 'login': 'mariosasko', 'node_id': 'MDQ6VXNlcjQ3NDYyNzQy', 'organizations_url': 'https://api.github.com/users/mariosasko/orgs', 'received_events_url': 'https://api.github.com/users/mariosasko/received_events', 'repos_url': 'https://api.github.com/users/mariosasko/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/mariosasko/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/mariosasko/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/mariosasko'}
[]
closed
false
null
[]
null
['<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006761 / 0.011353 (-0.004592) | 0.004307 / 0.011008 (-0.006701) | 0.084682 / 0.038508 (0.046174) | 0.083994 / 0.023109 (0.060885) | 0.316612 / 0.275898 (0.040714) | 0.346157 / 0.323480 (0.022678) | 0.004490 / 0.007986 (-0.003495) | 0.003699 / 0.004328 (-0.000629) | 0.066144 / 0.004250 (0.061894) | 0.057958 / 0.037052 (0.020906) | 0.319018 / 0.258489 (0.060529) | 0.367597 / 0.293841 (0.073756) | 0.031146 / 0.128546 (-0.097401) | 0.008814 / 0.075646 (-0.066832) | 0.290971 / 0.419271 (-0.128301) | 0.052769 / 0.043533 (0.009236) | 0.313125 / 0.255139 (0.057986) | 0.330473 / 0.283200 (0.047273) | 0.025922 / 0.141683 (-0.115760) | 1.494989 / 1.452155 (0.042834) | 1.556140 / 1.492716 (0.063423) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310580 / 0.018006 (0.292574) | 0.563600 / 0.000490 (0.563110) | 0.012344 / 0.000200 (0.012144) | 0.000382 / 0.000054 (0.000328) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031468 / 0.037411 (-0.005943) | 0.084856 / 0.014526 (0.070331) | 0.101371 / 0.176557 (-0.075186) | 0.158735 / 0.737135 (-0.578400) | 0.102451 / 0.296338 (-0.193888) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402288 / 0.215209 (0.187079) | 4.001351 / 2.077655 (1.923696) | 2.022710 / 1.504120 (0.518590) | 1.850236 / 1.541195 (0.309041) | 1.946779 / 1.468490 (0.478289) | 0.485828 / 4.584777 (-4.098949) | 3.584925 / 3.745712 (-0.160787) | 3.400815 / 5.269862 (-1.869046) | 2.123187 / 4.565676 (-2.442490) | 0.057373 / 0.424275 (-0.366902) | 0.007383 / 0.007607 (-0.000224) | 0.479773 / 0.226044 (0.253729) | 4.805342 / 2.268929 (2.536414) | 2.530151 / 55.444624 (-52.914473) | 2.190136 / 6.876477 (-4.686341) | 2.463666 / 2.142072 (0.321593) | 0.583512 / 4.805227 (-4.221715) | 0.134205 / 6.500664 (-6.366459) | 0.062021 / 0.075469 (-0.013448) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239532 / 1.841788 (-0.602255) | 20.252941 / 8.074308 (12.178633) | 14.265697 / 10.191392 (4.074305) | 0.158745 / 0.680424 (-0.521679) | 0.018605 / 0.534201 (-0.515596) | 0.394246 / 0.579283 (-0.185037) | 0.415260 / 0.434364 (-0.019104) | 0.462636 / 0.540337 (-0.077701) | 0.645318 / 1.386936 (-0.741618) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007063 / 0.011353 (-0.004290) | 0.004388 / 0.011008 (-0.006621) | 0.064997 / 0.038508 (0.026489) | 0.085135 / 0.023109 (0.062026) | 0.424349 / 0.275898 (0.148451) | 0.456033 / 0.323480 (0.132553) | 0.005745 / 0.007986 (-0.002241) | 0.003705 / 0.004328 (-0.000624) | 0.065835 / 0.004250 (0.061585) | 0.058366 / 0.037052 (0.021314) | 0.421654 / 0.258489 (0.163165) | 0.460334 / 0.293841 (0.166493) | 0.032828 / 0.128546 (-0.095718) | 0.008974 / 0.075646 (-0.066673) | 0.072524 / 0.419271 (-0.346747) | 0.048558 / 0.043533 (0.005025) | 0.413546 / 0.255139 (0.158407) | 0.435765 / 0.283200 (0.152565) | 0.023754 / 0.141683 (-0.117929) | 1.476884 / 1.452155 (0.024730) | 1.560011 / 1.492716 (0.067294) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.318279 / 0.018006 (0.300272) | 0.544990 / 0.000490 (0.544501) | 0.007118 / 0.000200 (0.006918) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033352 / 0.037411 (-0.004059) | 0.092921 / 0.014526 (0.078395) | 0.109028 / 0.176557 (-0.067528) | 0.161433 / 0.737135 (-0.575703) | 0.108445 / 0.296338 (-0.187893) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438925 / 0.215209 (0.223716) | 4.400714 / 2.077655 (2.323059) | 2.403727 / 1.504120 (0.899607) | 2.236472 / 1.541195 (0.695277) | 2.319219 / 1.468490 (0.850729) | 0.490159 / 4.584777 (-4.094618) | 3.647474 / 3.745712 (-0.098238) | 3.433144 / 5.269862 (-1.836718) | 2.145367 / 4.565676 (-2.420310) | 0.057994 / 0.424275 (-0.366281) | 0.007452 / 0.007607 (-0.000155) | 0.513808 / 0.226044 (0.287763) | 5.130792 / 2.268929 (2.861863) | 2.861691 / 55.444624 (-52.582934) | 2.473292 / 6.876477 (-4.403185) | 2.756445 / 2.142072 (0.614372) | 0.586783 / 4.805227 (-4.218444) | 0.134170 / 6.500664 (-6.366494) | 0.061149 / 0.075469 (-0.014320) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350144 / 1.841788 (-0.491644) | 21.003528 / 8.074308 (12.929220) | 15.174314 / 10.191392 (4.982922) | 0.186535 / 0.680424 (-0.493888) | 0.020821 / 0.534201 (-0.513380) | 0.399210 / 0.579283 (-0.180073) | 0.431942 / 0.434364 (-0.002422) | 0.475395 / 0.540337 (-0.064942) | 0.677457 / 1.386936 (-0.709479) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6aa5fc278324a253eab43ad1bc048e822e4ae5c7 "CML watermark")\n' '<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007062 / 0.011353 (-0.004291) | 0.004299 / 0.011008 (-0.006710) | 0.086019 / 0.038508 (0.047511) | 0.085166 / 0.023109 (0.062057) | 0.355804 / 0.275898 (0.079906) | 0.381056 / 0.323480 (0.057577) | 0.005500 / 0.007986 (-0.002486) | 0.003496 / 0.004328 (-0.000833) | 0.064866 / 0.004250 (0.060615) | 0.057399 / 0.037052 (0.020346) | 0.357914 / 0.258489 (0.099425) | 0.395387 / 0.293841 (0.101546) | 0.031763 / 0.128546 (-0.096784) | 0.008665 / 0.075646 (-0.066981) | 0.290097 / 0.419271 (-0.129175) | 0.053297 / 0.043533 (0.009765) | 0.355659 / 0.255139 (0.100520) | 0.378232 / 0.283200 (0.095032) | 0.026015 / 0.141683 (-0.115668) | 1.437121 / 1.452155 (-0.015034) | 1.538798 / 1.492716 (0.046082) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243518 / 0.018006 (0.225511) | 0.461361 / 0.000490 (0.460871) | 0.009529 / 0.000200 (0.009329) | 0.000473 / 0.000054 (0.000419) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030379 / 0.037411 (-0.007032) | 0.089851 / 0.014526 (0.075325) | 0.098278 / 0.176557 (-0.078278) | 0.157077 / 0.737135 (-0.580058) | 0.098997 / 0.296338 (-0.197341) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382415 / 0.215209 (0.167206) | 3.801964 / 2.077655 (1.724309) | 1.887680 / 1.504120 (0.383560) | 1.775903 / 1.541195 (0.234709) | 1.851338 / 1.468490 (0.382848) | 0.483616 / 4.584777 (-4.101161) | 3.612977 / 3.745712 (-0.132736) | 3.397700 / 5.269862 (-1.872162) | 2.114572 / 4.565676 (-2.451105) | 0.057250 / 0.424275 (-0.367025) | 0.007362 / 0.007607 (-0.000245) | 0.456873 / 0.226044 (0.230829) | 4.567319 / 2.268929 (2.298391) | 2.399476 / 55.444624 (-53.045148) | 2.054542 / 6.876477 (-4.821935) | 2.343432 / 2.142072 (0.201359) | 0.582319 / 4.805227 (-4.222908) | 0.134045 / 6.500664 (-6.366619) | 0.062726 / 0.075469 (-0.012743) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283390 / 1.841788 (-0.558398) | 20.358511 / 8.074308 (12.284202) | 14.933989 / 10.191392 (4.742597) | 0.164960 / 0.680424 (-0.515464) | 0.018625 / 0.534201 (-0.515576) | 0.394087 / 0.579283 (-0.185196) | 0.416761 / 0.434364 (-0.017603) | 0.466669 / 0.540337 (-0.073669) | 0.643161 / 1.386936 (-0.743775) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007141 / 0.011353 (-0.004212) | 0.004185 / 0.011008 (-0.006824) | 0.066097 / 0.038508 (0.027588) | 0.088436 / 0.023109 (0.065327) | 0.401189 / 0.275898 (0.125291) | 0.440402 / 0.323480 (0.116922) | 0.005729 / 0.007986 (-0.002257) | 0.003527 / 0.004328 (-0.000801) | 0.065278 / 0.004250 (0.061027) | 0.060866 / 0.037052 (0.023813) | 0.407035 / 0.258489 (0.148546) | 0.443923 / 0.293841 (0.150083) | 0.032922 / 0.128546 (-0.095625) | 0.008739 / 0.075646 (-0.066907) | 0.071800 / 0.419271 (-0.347472) | 0.048994 / 0.043533 (0.005461) | 0.403736 / 0.255139 (0.148597) | 0.419566 / 0.283200 (0.136366) | 0.025369 / 0.141683 (-0.116314) | 1.474980 / 1.452155 (0.022825) | 1.553500 / 1.492716 (0.060784) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225224 / 0.018006 (0.207218) | 0.462891 / 0.000490 (0.462401) | 0.006958 / 0.000200 (0.006758) | 0.000163 / 0.000054 (0.000108) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034431 / 0.037411 (-0.002980) | 0.100021 / 0.014526 (0.085495) | 0.108339 / 0.176557 (-0.068217) | 0.162762 / 0.737135 (-0.574374) | 0.108951 / 0.296338 (-0.187388) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435966 / 0.215209 (0.220757) | 4.351744 / 2.077655 (2.274089) | 2.372307 / 1.504120 (0.868187) | 2.192146 / 1.541195 (0.650951) | 2.326839 / 1.468490 (0.858349) | 0.488292 / 4.584777 (-4.096485) | 3.745227 / 3.745712 (-0.000485) | 3.456306 / 5.269862 (-1.813556) | 2.159771 / 4.565676 (-2.405906) | 0.057953 / 0.424275 (-0.366322) | 0.007469 / 0.007607 (-0.000138) | 0.515116 / 0.226044 (0.289071) | 5.162871 / 2.268929 (2.893942) | 2.850336 / 55.444624 (-52.594288) | 2.514700 / 6.876477 (-4.361777) | 2.748843 / 2.142072 (0.606770) | 0.587687 / 4.805227 (-4.217540) | 0.134333 / 6.500664 (-6.366331) | 0.062097 / 0.075469 (-0.013372) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.377082 / 1.841788 (-0.464705) | 21.103127 / 8.074308 (13.028819) | 15.325275 / 10.191392 (5.133883) | 0.166225 / 0.680424 (-0.514199) | 0.020472 / 0.534201 (-0.513729) | 0.395866 / 0.579283 (-0.183417) | 0.444964 / 0.434364 (0.010600) | 0.475367 / 0.540337 (-0.064970) | 0.693325 / 1.386936 (-0.693611) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#79b5bbbd52ffd90dd958c05b333d7c90a03756cc "CML watermark")\n']
2023-10-11 21:51:12+00:00
2023-10-12 12:47:15+00:00
2023-10-12 12:38:19+00:00
CONTRIBUTOR
null
Changes in the doc READMe: * adds two new sections (to be aligned with `transformers` and `hfh`): "Previewing the documentation" and "Writing documentation examples" * replaces the mentions of `transformers` with `datasets` * fixes some dead links
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6298/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6298/timeline
null
null
0
{'diff_url': 'https://github.com/huggingface/datasets/pull/6298.diff', 'html_url': 'https://github.com/huggingface/datasets/pull/6298', 'merged_at': '2023-10-12T12:38:19Z', 'patch_url': 'https://github.com/huggingface/datasets/pull/6298.patch', 'url': 'https://api.github.com/repos/huggingface/datasets/pulls/6298'}
true
https://api.github.com/repos/huggingface/datasets/issues/6297
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6297/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6297/comments
https://api.github.com/repos/huggingface/datasets/issues/6297/events
https://github.com/huggingface/datasets/pull/6297
1,938,752,707
PR_kwDODunzps5ckXBa
6,297
Fix ArrayXD cast
{'avatar_url': 'https://avatars.githubusercontent.com/u/47462742?v=4', 'events_url': 'https://api.github.com/users/mariosasko/events{/privacy}', 'followers_url': 'https://api.github.com/users/mariosasko/followers', 'following_url': 'https://api.github.com/users/mariosasko/following{/other_user}', 'gists_url': 'https://api.github.com/users/mariosasko/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/mariosasko', 'id': 47462742, 'login': 'mariosasko', 'node_id': 'MDQ6VXNlcjQ3NDYyNzQy', 'organizations_url': 'https://api.github.com/users/mariosasko/orgs', 'received_events_url': 'https://api.github.com/users/mariosasko/received_events', 'repos_url': 'https://api.github.com/users/mariosasko/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/mariosasko/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/mariosasko/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/mariosasko'}
[]
closed
false
null
[]
null
['<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006920 / 0.011353 (-0.004433) | 0.004306 / 0.011008 (-0.006703) | 0.085961 / 0.038508 (0.047453) | 0.087008 / 0.023109 (0.063899) | 0.308953 / 0.275898 (0.033055) | 0.349919 / 0.323480 (0.026440) | 0.005705 / 0.007986 (-0.002281) | 0.003565 / 0.004328 (-0.000763) | 0.066272 / 0.004250 (0.062022) | 0.056438 / 0.037052 (0.019385) | 0.312927 / 0.258489 (0.054437) | 0.363081 / 0.293841 (0.069240) | 0.031947 / 0.128546 (-0.096600) | 0.008801 / 0.075646 (-0.066845) | 0.288657 / 0.419271 (-0.130615) | 0.053746 / 0.043533 (0.010213) | 0.305815 / 0.255139 (0.050676) | 0.327174 / 0.283200 (0.043975) | 0.024863 / 0.141683 (-0.116820) | 1.489718 / 1.452155 (0.037563) | 1.566726 / 1.492716 (0.074009) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289273 / 0.018006 (0.271266) | 0.555519 / 0.000490 (0.555029) | 0.006522 / 0.000200 (0.006322) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031968 / 0.037411 (-0.005443) | 0.085113 / 0.014526 (0.070587) | 0.103931 / 0.176557 (-0.072625) | 0.158471 / 0.737135 (-0.578665) | 0.102633 / 0.296338 (-0.193705) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399592 / 0.215209 (0.184383) | 4.004453 / 2.077655 (1.926798) | 2.047224 / 1.504120 (0.543104) | 1.896203 / 1.541195 (0.355008) | 1.974056 / 1.468490 (0.505566) | 0.485964 / 4.584777 (-4.098813) | 3.650648 / 3.745712 (-0.095064) | 3.475953 / 5.269862 (-1.793908) | 2.168105 / 4.565676 (-2.397571) | 0.058167 / 0.424275 (-0.366108) | 0.007517 / 0.007607 (-0.000090) | 0.475386 / 0.226044 (0.249342) | 4.758300 / 2.268929 (2.489372) | 2.527540 / 55.444624 (-52.917085) | 2.180544 / 6.876477 (-4.695933) | 2.460148 / 2.142072 (0.318076) | 0.589944 / 4.805227 (-4.215284) | 0.136474 / 6.500664 (-6.364190) | 0.061462 / 0.075469 (-0.014007) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245816 / 1.841788 (-0.595972) | 20.376958 / 8.074308 (12.302650) | 14.764579 / 10.191392 (4.573187) | 0.152436 / 0.680424 (-0.527988) | 0.018580 / 0.534201 (-0.515621) | 0.394680 / 0.579283 (-0.184603) | 0.424162 / 0.434364 (-0.010202) | 0.465604 / 0.540337 (-0.074733) | 0.658531 / 1.386936 (-0.728405) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007105 / 0.011353 (-0.004248) | 0.004441 / 0.011008 (-0.006567) | 0.068792 / 0.038508 (0.030284) | 0.080371 / 0.023109 (0.057262) | 0.430263 / 0.275898 (0.154365) | 0.451743 / 0.323480 (0.128263) | 0.005987 / 0.007986 (-0.001999) | 0.003639 / 0.004328 (-0.000690) | 0.065462 / 0.004250 (0.061212) | 0.059852 / 0.037052 (0.022800) | 0.438390 / 0.258489 (0.179901) | 0.458679 / 0.293841 (0.164838) | 0.033044 / 0.128546 (-0.095502) | 0.008845 / 0.075646 (-0.066802) | 0.071772 / 0.419271 (-0.347500) | 0.048840 / 0.043533 (0.005307) | 0.415707 / 0.255139 (0.160568) | 0.431216 / 0.283200 (0.148017) | 0.024422 / 0.141683 (-0.117260) | 1.502249 / 1.452155 (0.050094) | 1.566767 / 1.492716 (0.074050) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.311352 / 0.018006 (0.293346) | 0.550395 / 0.000490 (0.549906) | 0.005190 / 0.000200 (0.004990) | 0.000116 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034264 / 0.037411 (-0.003147) | 0.098712 / 0.014526 (0.084186) | 0.110906 / 0.176557 (-0.065651) | 0.161670 / 0.737135 (-0.575465) | 0.111023 / 0.296338 (-0.185316) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435296 / 0.215209 (0.220087) | 4.331231 / 2.077655 (2.253576) | 2.305009 / 1.504120 (0.800889) | 2.154492 / 1.541195 (0.613297) | 2.344017 / 1.468490 (0.875527) | 0.496924 / 4.584777 (-4.087853) | 3.750782 / 3.745712 (0.005070) | 3.380193 / 5.269862 (-1.889669) | 2.161239 / 4.565676 (-2.404438) | 0.058456 / 0.424275 (-0.365819) | 0.007395 / 0.007607 (-0.000212) | 0.507824 / 0.226044 (0.281780) | 5.081564 / 2.268929 (2.812635) | 2.824080 / 55.444624 (-52.620544) | 2.458835 / 6.876477 (-4.417642) | 2.747897 / 2.142072 (0.605824) | 0.600727 / 4.805227 (-4.204500) | 0.135085 / 6.500664 (-6.365579) | 0.060506 / 0.075469 (-0.014963) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.376873 / 1.841788 (-0.464915) | 21.211922 / 8.074308 (13.137614) | 15.022845 / 10.191392 (4.831453) | 0.195388 / 0.680424 (-0.485036) | 0.020268 / 0.534201 (-0.513933) | 0.398971 / 0.579283 (-0.180312) | 0.427588 / 0.434364 (-0.006776) | 0.478044 / 0.540337 (-0.062293) | 0.687904 / 1.386936 (-0.699033) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7fb5fae8f79b3db4a94013aa2af7c63796ef2d64 "CML watermark")\n' '<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006134 / 0.011353 (-0.005219) | 0.003655 / 0.011008 (-0.007354) | 0.081295 / 0.038508 (0.042787) | 0.060202 / 0.023109 (0.037093) | 0.330005 / 0.275898 (0.054107) | 0.361219 / 0.323480 (0.037739) | 0.004766 / 0.007986 (-0.003220) | 0.002942 / 0.004328 (-0.001386) | 0.063322 / 0.004250 (0.059072) | 0.047844 / 0.037052 (0.010791) | 0.340375 / 0.258489 (0.081886) | 0.406301 / 0.293841 (0.112460) | 0.027474 / 0.128546 (-0.101072) | 0.007991 / 0.075646 (-0.067655) | 0.262746 / 0.419271 (-0.156526) | 0.045575 / 0.043533 (0.002042) | 0.324123 / 0.255139 (0.068984) | 0.344399 / 0.283200 (0.061199) | 0.021806 / 0.141683 (-0.119877) | 1.425390 / 1.452155 (-0.026765) | 1.487920 / 1.492716 (-0.004796) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217504 / 0.018006 (0.199498) | 0.420878 / 0.000490 (0.420388) | 0.007312 / 0.000200 (0.007112) | 0.000218 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023507 / 0.037411 (-0.013905) | 0.073493 / 0.014526 (0.058967) | 0.084857 / 0.176557 (-0.091700) | 0.145130 / 0.737135 (-0.592005) | 0.085204 / 0.296338 (-0.211135) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.388767 / 0.215209 (0.173557) | 3.877998 / 2.077655 (1.800344) | 1.881447 / 1.504120 (0.377327) | 1.714555 / 1.541195 (0.173360) | 1.772551 / 1.468490 (0.304061) | 0.505146 / 4.584777 (-4.079631) | 3.045471 / 3.745712 (-0.700241) | 2.834436 / 5.269862 (-2.435426) | 1.859896 / 4.565676 (-2.705780) | 0.057806 / 0.424275 (-0.366469) | 0.006378 / 0.007607 (-0.001229) | 0.458339 / 0.226044 (0.232294) | 4.588125 / 2.268929 (2.319196) | 2.302215 / 55.444624 (-53.142409) | 1.981297 / 6.876477 (-4.895180) | 2.152967 / 2.142072 (0.010895) | 0.590166 / 4.805227 (-4.215061) | 0.125753 / 6.500664 (-6.374911) | 0.061583 / 0.075469 (-0.013887) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.232195 / 1.841788 (-0.609593) | 17.761159 / 8.074308 (9.686851) | 13.829498 / 10.191392 (3.638106) | 0.131936 / 0.680424 (-0.548488) | 0.016909 / 0.534201 (-0.517292) | 0.332615 / 0.579283 (-0.246668) | 0.358149 / 0.434364 (-0.076215) | 0.384251 / 0.540337 (-0.156087) | 0.536453 / 1.386936 (-0.850483) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006253 / 0.011353 (-0.005100) | 0.003639 / 0.011008 (-0.007370) | 0.062810 / 0.038508 (0.024302) | 0.063761 / 0.023109 (0.040652) | 0.450538 / 0.275898 (0.174640) | 0.483793 / 0.323480 (0.160313) | 0.004973 / 0.007986 (-0.003013) | 0.002918 / 0.004328 (-0.001411) | 0.062140 / 0.004250 (0.057889) | 0.050328 / 0.037052 (0.013275) | 0.455860 / 0.258489 (0.197371) | 0.492399 / 0.293841 (0.198558) | 0.028928 / 0.128546 (-0.099618) | 0.008166 / 0.075646 (-0.067481) | 0.067860 / 0.419271 (-0.351411) | 0.040990 / 0.043533 (-0.002542) | 0.451343 / 0.255139 (0.196204) | 0.473769 / 0.283200 (0.190569) | 0.021585 / 0.141683 (-0.120097) | 1.451040 / 1.452155 (-0.001115) | 1.516065 / 1.492716 (0.023349) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230994 / 0.018006 (0.212988) | 0.428404 / 0.000490 (0.427915) | 0.003777 / 0.000200 (0.003577) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027394 / 0.037411 (-0.010018) | 0.081692 / 0.014526 (0.067166) | 0.091568 / 0.176557 (-0.084988) | 0.146149 / 0.737135 (-0.590987) | 0.092200 / 0.296338 (-0.204139) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.467086 / 0.215209 (0.251877) | 4.664862 / 2.077655 (2.587207) | 2.575703 / 1.504120 (1.071583) | 2.396587 / 1.541195 (0.855392) | 2.506064 / 1.468490 (1.037574) | 0.511942 / 4.584777 (-4.072834) | 3.196320 / 3.745712 (-0.549392) | 2.916627 / 5.269862 (-2.353235) | 1.919372 / 4.565676 (-2.646305) | 0.058769 / 0.424275 (-0.365506) | 0.006487 / 0.007607 (-0.001120) | 0.539095 / 0.226044 (0.313051) | 5.404675 / 2.268929 (3.135746) | 2.988962 / 55.444624 (-52.455662) | 2.670134 / 6.876477 (-4.206343) | 2.837414 / 2.142072 (0.695342) | 0.614776 / 4.805227 (-4.190451) | 0.125806 / 6.500664 (-6.374858) | 0.061593 / 0.075469 (-0.013876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346171 / 1.841788 (-0.495617) | 18.374626 / 8.074308 (10.300318) | 14.508723 / 10.191392 (4.317331) | 0.146771 / 0.680424 (-0.533652) | 0.018438 / 0.534201 (-0.515763) | 0.336944 / 0.579283 (-0.242339) | 0.385631 / 0.434364 (-0.048733) | 0.391922 / 0.540337 (-0.148416) | 0.568904 / 1.386936 (-0.818032) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3e8d420808718c9a1453a2e7ee3484ca12c9c70d "CML watermark")\n']
2023-10-11 21:14:59+00:00
2023-10-13 13:54:00+00:00
2023-10-13 13:45:30+00:00
CONTRIBUTOR
null
Fix #6291
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6297/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6297/timeline
null
null
0
{'diff_url': 'https://github.com/huggingface/datasets/pull/6297.diff', 'html_url': 'https://github.com/huggingface/datasets/pull/6297', 'merged_at': '2023-10-13T13:45:30Z', 'patch_url': 'https://github.com/huggingface/datasets/pull/6297.patch', 'url': 'https://api.github.com/repos/huggingface/datasets/pulls/6297'}
true
https://api.github.com/repos/huggingface/datasets/issues/6296
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6296/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6296/comments
https://api.github.com/repos/huggingface/datasets/issues/6296/events
https://github.com/huggingface/datasets/pull/6296
1,938,453,845
PR_kwDODunzps5cjUs1
6,296
Move `exceptions.py` to `utils/exceptions.py`
{'avatar_url': 'https://avatars.githubusercontent.com/u/47462742?v=4', 'events_url': 'https://api.github.com/users/mariosasko/events{/privacy}', 'followers_url': 'https://api.github.com/users/mariosasko/followers', 'following_url': 'https://api.github.com/users/mariosasko/following{/other_user}', 'gists_url': 'https://api.github.com/users/mariosasko/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/mariosasko', 'id': 47462742, 'login': 'mariosasko', 'node_id': 'MDQ6VXNlcjQ3NDYyNzQy', 'organizations_url': 'https://api.github.com/users/mariosasko/orgs', 'received_events_url': 'https://api.github.com/users/mariosasko/received_events', 'repos_url': 'https://api.github.com/users/mariosasko/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/mariosasko/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/mariosasko/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/mariosasko'}
[]
open
false
null
[]
null
['<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006695 / 0.011353 (-0.004658) | 0.004321 / 0.011008 (-0.006687) | 0.084558 / 0.038508 (0.046050) | 0.076290 / 0.023109 (0.053181) | 0.312331 / 0.275898 (0.036433) | 0.349854 / 0.323480 (0.026374) | 0.004267 / 0.007986 (-0.003719) | 0.003595 / 0.004328 (-0.000733) | 0.065077 / 0.004250 (0.060826) | 0.057461 / 0.037052 (0.020409) | 0.314989 / 0.258489 (0.056500) | 0.364767 / 0.293841 (0.070926) | 0.031726 / 0.128546 (-0.096820) | 0.008674 / 0.075646 (-0.066972) | 0.288282 / 0.419271 (-0.130990) | 0.052845 / 0.043533 (0.009312) | 0.317501 / 0.255139 (0.062362) | 0.333241 / 0.283200 (0.050041) | 0.026412 / 0.141683 (-0.115271) | 1.475648 / 1.452155 (0.023493) | 1.551656 / 1.492716 (0.058939) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.276512 / 0.018006 (0.258506) | 0.576350 / 0.000490 (0.575861) | 0.009518 / 0.000200 (0.009318) | 0.000280 / 0.000054 (0.000226) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029332 / 0.037411 (-0.008079) | 0.082904 / 0.014526 (0.068379) | 0.102516 / 0.176557 (-0.074041) | 0.159355 / 0.737135 (-0.577780) | 0.104112 / 0.296338 (-0.192226) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.379144 / 0.215209 (0.163935) | 3.785283 / 2.077655 (1.707629) | 1.833753 / 1.504120 (0.329633) | 1.667906 / 1.541195 (0.126711) | 1.751551 / 1.468490 (0.283061) | 0.480998 / 4.584777 (-4.103779) | 3.533433 / 3.745712 (-0.212279) | 3.343363 / 5.269862 (-1.926498) | 2.094169 / 4.565676 (-2.471508) | 0.056613 / 0.424275 (-0.367662) | 0.007410 / 0.007607 (-0.000197) | 0.455077 / 0.226044 (0.229033) | 4.541380 / 2.268929 (2.272452) | 2.269151 / 55.444624 (-53.175473) | 1.955663 / 6.876477 (-4.920814) | 2.227663 / 2.142072 (0.085591) | 0.580597 / 4.805227 (-4.224630) | 0.135034 / 6.500664 (-6.365630) | 0.062091 / 0.075469 (-0.013378) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.276295 / 1.841788 (-0.565492) | 20.072827 / 8.074308 (11.998519) | 14.296462 / 10.191392 (4.105070) | 0.164936 / 0.680424 (-0.515488) | 0.018415 / 0.534201 (-0.515786) | 0.390894 / 0.579283 (-0.188389) | 0.415515 / 0.434364 (-0.018849) | 0.462798 / 0.540337 (-0.077540) | 0.650099 / 1.386936 (-0.736837) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007218 / 0.011353 (-0.004135) | 0.004246 / 0.011008 (-0.006763) | 0.065818 / 0.038508 (0.027310) | 0.087315 / 0.023109 (0.064206) | 0.406449 / 0.275898 (0.130551) | 0.442008 / 0.323480 (0.118528) | 0.005752 / 0.007986 (-0.002233) | 0.003624 / 0.004328 (-0.000704) | 0.065349 / 0.004250 (0.061099) | 0.062423 / 0.037052 (0.025371) | 0.410099 / 0.258489 (0.151610) | 0.448929 / 0.293841 (0.155088) | 0.032498 / 0.128546 (-0.096048) | 0.008877 / 0.075646 (-0.066770) | 0.071611 / 0.419271 (-0.347661) | 0.048038 / 0.043533 (0.004506) | 0.407957 / 0.255139 (0.152818) | 0.424045 / 0.283200 (0.140846) | 0.025222 / 0.141683 (-0.116461) | 1.496191 / 1.452155 (0.044037) | 1.580765 / 1.492716 (0.088048) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274798 / 0.018006 (0.256792) | 0.581410 / 0.000490 (0.580920) | 0.007302 / 0.000200 (0.007102) | 0.000160 / 0.000054 (0.000106) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034068 / 0.037411 (-0.003343) | 0.096116 / 0.014526 (0.081590) | 0.110234 / 0.176557 (-0.066323) | 0.163246 / 0.737135 (-0.573889) | 0.110250 / 0.296338 (-0.186089) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442381 / 0.215209 (0.227172) | 4.427061 / 2.077655 (2.349406) | 2.361013 / 1.504120 (0.856893) | 2.185048 / 1.541195 (0.643853) | 2.312544 / 1.468490 (0.844054) | 0.498347 / 4.584777 (-4.086430) | 3.640839 / 3.745712 (-0.104873) | 3.353405 / 5.269862 (-1.916457) | 2.082038 / 4.565676 (-2.483638) | 0.058786 / 0.424275 (-0.365489) | 0.007403 / 0.007607 (-0.000205) | 0.517894 / 0.226044 (0.291850) | 5.184257 / 2.268929 (2.915329) | 2.838467 / 55.444624 (-52.606157) | 2.511116 / 6.876477 (-4.365361) | 2.757816 / 2.142072 (0.615743) | 0.644050 / 4.805227 (-4.161177) | 0.136446 / 6.500664 (-6.364218) | 0.062219 / 0.075469 (-0.013250) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350916 / 1.841788 (-0.490872) | 20.549280 / 8.074308 (12.474972) | 14.697569 / 10.191392 (4.506177) | 0.149818 / 0.680424 (-0.530606) | 0.020187 / 0.534201 (-0.514014) | 0.396008 / 0.579283 (-0.183275) | 0.427535 / 0.434364 (-0.006829) | 0.484544 / 0.540337 (-0.055794) | 0.687076 / 1.386936 (-0.699860) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02a0d7cc9bdbc745c355c0bf8a210d8bf0b90327 "CML watermark")\n' "I'd rather be consistent with `huggingface_hub` and have this module in `utils/` with the exceptions exposed in `utils/__init__.py` ..." "Ok, I'll close this PR.\r\n\r\n> Maybe we could ask huggingface_hub to align with the rest of open-source libraries and expose the errors/exceptions at the root of the library...\r\n\r\ncc @Wauplin \r\n\r\nIt would be nice to have an HF style guide to ensure consistency across our libraries 🙂. " "I can expose exceptions at root level yes.\r\n\r\nAbout having guidelines and consistency, let's try to do our best but it's not really in the essence of HF to formalize stuff in libraries :unamused: "]
2023-10-11 18:28:00+00:00
2023-10-12 13:54:29+00:00
null
CONTRIBUTOR
null
I didn't notice the path while reviewing the PR yesterday :(
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6296/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6296/timeline
null
null
0
{'diff_url': 'https://github.com/huggingface/datasets/pull/6296.diff', 'html_url': 'https://github.com/huggingface/datasets/pull/6296', 'merged_at': None, 'patch_url': 'https://github.com/huggingface/datasets/pull/6296.patch', 'url': 'https://api.github.com/repos/huggingface/datasets/pulls/6296'}
true
https://api.github.com/repos/huggingface/datasets/issues/6295
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6295/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6295/comments
https://api.github.com/repos/huggingface/datasets/issues/6295/events
https://github.com/huggingface/datasets/pull/6295
1,937,362,102
PR_kwDODunzps5cfiW8
6,295
Fix parquet columns argument in streaming mode
{'avatar_url': 'https://avatars.githubusercontent.com/u/42851186?v=4', 'events_url': 'https://api.github.com/users/lhoestq/events{/privacy}', 'followers_url': 'https://api.github.com/users/lhoestq/followers', 'following_url': 'https://api.github.com/users/lhoestq/following{/other_user}', 'gists_url': 'https://api.github.com/users/lhoestq/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/lhoestq', 'id': 42851186, 'login': 'lhoestq', 'node_id': 'MDQ6VXNlcjQyODUxMTg2', 'organizations_url': 'https://api.github.com/users/lhoestq/orgs', 'received_events_url': 'https://api.github.com/users/lhoestq/received_events', 'repos_url': 'https://api.github.com/users/lhoestq/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/lhoestq/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/lhoestq/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/lhoestq'}
[]
closed
false
null
[]
null
['<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008112 / 0.011353 (-0.003241) | 0.004762 / 0.011008 (-0.006247) | 0.101349 / 0.038508 (0.062841) | 0.092361 / 0.023109 (0.069252) | 0.418429 / 0.275898 (0.142531) | 0.427332 / 0.323480 (0.103852) | 0.006112 / 0.007986 (-0.001874) | 0.003920 / 0.004328 (-0.000408) | 0.076813 / 0.004250 (0.072563) | 0.064361 / 0.037052 (0.027309) | 0.420526 / 0.258489 (0.162037) | 0.441576 / 0.293841 (0.147735) | 0.044760 / 0.128546 (-0.083787) | 0.010054 / 0.075646 (-0.065592) | 0.346063 / 0.419271 (-0.073209) | 0.077453 / 0.043533 (0.033920) | 0.412871 / 0.255139 (0.157732) | 0.408307 / 0.283200 (0.125107) | 0.033398 / 0.141683 (-0.108285) | 1.755825 / 1.452155 (0.303671) | 1.852347 / 1.492716 (0.359630) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274201 / 0.018006 (0.256194) | 0.536375 / 0.000490 (0.535885) | 0.008076 / 0.000200 (0.007876) | 0.000159 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033567 / 0.037411 (-0.003845) | 0.102378 / 0.014526 (0.087852) | 0.114176 / 0.176557 (-0.062381) | 0.180576 / 0.737135 (-0.556560) | 0.114801 / 0.296338 (-0.181538) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450300 / 0.215209 (0.235091) | 4.490940 / 2.077655 (2.413285) | 2.172412 / 1.504120 (0.668292) | 1.978746 / 1.541195 (0.437551) | 2.065602 / 1.468490 (0.597112) | 0.571260 / 4.584777 (-4.013517) | 4.185485 / 3.745712 (0.439773) | 3.885594 / 5.269862 (-1.384268) | 2.532942 / 4.565676 (-2.032735) | 0.067612 / 0.424275 (-0.356663) | 0.008694 / 0.007607 (0.001087) | 0.533375 / 0.226044 (0.307331) | 5.321261 / 2.268929 (3.052333) | 2.697788 / 55.444624 (-52.746836) | 2.331328 / 6.876477 (-4.545149) | 2.585168 / 2.142072 (0.443096) | 0.681760 / 4.805227 (-4.123467) | 0.157687 / 6.500664 (-6.342977) | 0.071014 / 0.075469 (-0.004455) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.525689 / 1.841788 (-0.316098) | 23.162280 / 8.074308 (15.087972) | 16.644941 / 10.191392 (6.453548) | 0.182588 / 0.680424 (-0.497836) | 0.021653 / 0.534201 (-0.512548) | 0.466556 / 0.579283 (-0.112727) | 0.511902 / 0.434364 (0.077538) | 0.553707 / 0.540337 (0.013370) | 0.777830 / 1.386936 (-0.609106) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007954 / 0.011353 (-0.003399) | 0.004645 / 0.011008 (-0.006363) | 0.079096 / 0.038508 (0.040587) | 0.088200 / 0.023109 (0.065090) | 0.508882 / 0.275898 (0.232984) | 0.545986 / 0.323480 (0.222506) | 0.006233 / 0.007986 (-0.001752) | 0.004016 / 0.004328 (-0.000312) | 0.078103 / 0.004250 (0.073853) | 0.066354 / 0.037052 (0.029302) | 0.504132 / 0.258489 (0.245643) | 0.543714 / 0.293841 (0.249873) | 0.038140 / 0.128546 (-0.090407) | 0.011201 / 0.075646 (-0.064446) | 0.085713 / 0.419271 (-0.333559) | 0.057169 / 0.043533 (0.013637) | 0.488161 / 0.255139 (0.233022) | 0.516231 / 0.283200 (0.233031) | 0.027868 / 0.141683 (-0.113814) | 1.794084 / 1.452155 (0.341930) | 1.884993 / 1.492716 (0.392276) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263108 / 0.018006 (0.245102) | 0.495761 / 0.000490 (0.495272) | 0.007056 / 0.000200 (0.006856) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039089 / 0.037411 (0.001678) | 0.113332 / 0.014526 (0.098806) | 0.130137 / 0.176557 (-0.046419) | 0.189330 / 0.737135 (-0.547805) | 0.125860 / 0.296338 (-0.170479) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.530496 / 0.215209 (0.315287) | 5.349235 / 2.077655 (3.271581) | 2.975886 / 1.504120 (1.471766) | 2.786368 / 1.541195 (1.245173) | 2.920448 / 1.468490 (1.451958) | 0.575677 / 4.584777 (-4.009100) | 4.215535 / 3.745712 (0.469823) | 3.879984 / 5.269862 (-1.389878) | 2.420193 / 4.565676 (-2.145484) | 0.068506 / 0.424275 (-0.355769) | 0.008785 / 0.007607 (0.001178) | 0.611471 / 0.226044 (0.385427) | 6.118399 / 2.268929 (3.849471) | 3.509376 / 55.444624 (-51.935248) | 3.149219 / 6.876477 (-3.727257) | 3.413861 / 2.142072 (1.271788) | 0.697586 / 4.805227 (-4.107641) | 0.157767 / 6.500664 (-6.342897) | 0.071539 / 0.075469 (-0.003930) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625196 / 1.841788 (-0.216591) | 24.347319 / 8.074308 (16.273011) | 17.365789 / 10.191392 (7.174397) | 0.217590 / 0.680424 (-0.462834) | 0.023885 / 0.534201 (-0.510316) | 0.477226 / 0.579283 (-0.102057) | 0.529319 / 0.434364 (0.094955) | 0.622299 / 0.540337 (0.081962) | 0.835295 / 1.386936 (-0.551641) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3de42c8fae86c602fc71ac6d166e5c77f4149446 "CML watermark")\n' 'CI errors are unrelated or due to flaky tests' '<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006288 / 0.011353 (-0.005065) | 0.003836 / 0.011008 (-0.007172) | 0.080958 / 0.038508 (0.042450) | 0.065934 / 0.023109 (0.042825) | 0.312597 / 0.275898 (0.036699) | 0.351216 / 0.323480 (0.027736) | 0.004864 / 0.007986 (-0.003121) | 0.002961 / 0.004328 (-0.001368) | 0.063142 / 0.004250 (0.058892) | 0.049822 / 0.037052 (0.012770) | 0.320305 / 0.258489 (0.061816) | 0.363151 / 0.293841 (0.069310) | 0.027561 / 0.128546 (-0.100985) | 0.008176 / 0.075646 (-0.067470) | 0.261290 / 0.419271 (-0.157982) | 0.045517 / 0.043533 (0.001984) | 0.309218 / 0.255139 (0.054079) | 0.340140 / 0.283200 (0.056940) | 0.021000 / 0.141683 (-0.120683) | 1.448699 / 1.452155 (-0.003456) | 1.523904 / 1.492716 (0.031188) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224294 / 0.018006 (0.206288) | 0.434928 / 0.000490 (0.434439) | 0.007541 / 0.000200 (0.007341) | 0.000286 / 0.000054 (0.000232) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025257 / 0.037411 (-0.012154) | 0.077364 / 0.014526 (0.062838) | 0.085825 / 0.176557 (-0.090732) | 0.148121 / 0.737135 (-0.589014) | 0.086838 / 0.296338 (-0.209500) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396900 / 0.215209 (0.181691) | 3.953381 / 2.077655 (1.875727) | 1.933561 / 1.504120 (0.429441) | 1.760549 / 1.541195 (0.219354) | 1.824014 / 1.468490 (0.355523) | 0.495385 / 4.584777 (-4.089392) | 3.005558 / 3.745712 (-0.740154) | 2.931022 / 5.269862 (-2.338840) | 1.905113 / 4.565676 (-2.660563) | 0.057232 / 0.424275 (-0.367043) | 0.006472 / 0.007607 (-0.001135) | 0.464261 / 0.226044 (0.238216) | 4.629388 / 2.268929 (2.360459) | 2.342004 / 55.444624 (-53.102620) | 1.977295 / 6.876477 (-4.899181) | 2.167151 / 2.142072 (0.025079) | 0.582483 / 4.805227 (-4.222744) | 0.129444 / 6.500664 (-6.371220) | 0.061057 / 0.075469 (-0.014412) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259444 / 1.841788 (-0.582344) | 18.189338 / 8.074308 (10.115030) | 14.313174 / 10.191392 (4.121782) | 0.146209 / 0.680424 (-0.534215) | 0.017115 / 0.534201 (-0.517086) | 0.336643 / 0.579283 (-0.242640) | 0.370824 / 0.434364 (-0.063540) | 0.387032 / 0.540337 (-0.153306) | 0.546688 / 1.386936 (-0.840248) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006371 / 0.011353 (-0.004982) | 0.003693 / 0.011008 (-0.007315) | 0.062499 / 0.038508 (0.023991) | 0.066367 / 0.023109 (0.043257) | 0.451481 / 0.275898 (0.175583) | 0.482495 / 0.323480 (0.159015) | 0.005676 / 0.007986 (-0.002310) | 0.002940 / 0.004328 (-0.001389) | 0.063011 / 0.004250 (0.058760) | 0.051500 / 0.037052 (0.014447) | 0.455482 / 0.258489 (0.196993) | 0.488888 / 0.293841 (0.195047) | 0.028714 / 0.128546 (-0.099832) | 0.008178 / 0.075646 (-0.067468) | 0.067218 / 0.419271 (-0.352053) | 0.041323 / 0.043533 (-0.002210) | 0.454007 / 0.255139 (0.198868) | 0.476241 / 0.283200 (0.193041) | 0.021530 / 0.141683 (-0.120153) | 1.457859 / 1.452155 (0.005705) | 1.506437 / 1.492716 (0.013721) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228280 / 0.018006 (0.210274) | 0.427574 / 0.000490 (0.427084) | 0.003793 / 0.000200 (0.003593) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028420 / 0.037411 (-0.008992) | 0.087935 / 0.014526 (0.073409) | 0.092761 / 0.176557 (-0.083796) | 0.148084 / 0.737135 (-0.589051) | 0.095301 / 0.296338 (-0.201037) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462457 / 0.215209 (0.247248) | 4.618016 / 2.077655 (2.540361) | 2.540531 / 1.504120 (1.036412) | 2.384696 / 1.541195 (0.843501) | 2.493108 / 1.468490 (1.024618) | 0.511689 / 4.584777 (-4.073088) | 3.173701 / 3.745712 (-0.572011) | 2.917046 / 5.269862 (-2.352816) | 1.916294 / 4.565676 (-2.649382) | 0.058969 / 0.424275 (-0.365306) | 0.006461 / 0.007607 (-0.001147) | 0.540997 / 0.226044 (0.314952) | 5.406596 / 2.268929 (3.137667) | 3.071189 / 55.444624 (-52.373435) | 2.701982 / 6.876477 (-4.174494) | 2.860194 / 2.142072 (0.718121) | 0.602684 / 4.805227 (-4.202543) | 0.127384 / 6.500664 (-6.373280) | 0.061718 / 0.075469 (-0.013751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340587 / 1.841788 (-0.501201) | 18.543831 / 8.074308 (10.469523) | 14.847319 / 10.191392 (4.655927) | 0.146523 / 0.680424 (-0.533901) | 0.018172 / 0.534201 (-0.516029) | 0.333276 / 0.579283 (-0.246007) | 0.375874 / 0.434364 (-0.058490) | 0.396766 / 0.540337 (-0.143572) | 0.572562 / 1.386936 (-0.814374) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2d9fcc0840f9d94f63635e9b40a1a7f11b34ea2 "CML watermark")\n']
2023-10-11 10:01:01+00:00
2023-10-11 16:30:24+00:00
2023-10-11 16:21:36+00:00
MEMBER
null
It was failing when there's a DatasetInfo with non-None info.features from the YAML (therefore containing columns that should be ignored) Fix https://github.com/huggingface/datasets/issues/6293
{'+1': 1, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 1, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6295/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6295/timeline
null
null
0
{'diff_url': 'https://github.com/huggingface/datasets/pull/6295.diff', 'html_url': 'https://github.com/huggingface/datasets/pull/6295', 'merged_at': '2023-10-11T16:21:36Z', 'patch_url': 'https://github.com/huggingface/datasets/pull/6295.patch', 'url': 'https://api.github.com/repos/huggingface/datasets/pulls/6295'}
true
https://api.github.com/repos/huggingface/datasets/issues/6294
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6294/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6294/comments
https://api.github.com/repos/huggingface/datasets/issues/6294/events
https://github.com/huggingface/datasets/issues/6294
1,937,359,605
I_kwDODunzps5zecL1
6,294
IndexError: Invalid key is out of bounds for size 0 despite having a populated dataset
{'avatar_url': 'https://avatars.githubusercontent.com/u/61892155?v=4', 'events_url': 'https://api.github.com/users/ZYM66/events{/privacy}', 'followers_url': 'https://api.github.com/users/ZYM66/followers', 'following_url': 'https://api.github.com/users/ZYM66/following{/other_user}', 'gists_url': 'https://api.github.com/users/ZYM66/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/ZYM66', 'id': 61892155, 'login': 'ZYM66', 'node_id': 'MDQ6VXNlcjYxODkyMTU1', 'organizations_url': 'https://api.github.com/users/ZYM66/orgs', 'received_events_url': 'https://api.github.com/users/ZYM66/received_events', 'repos_url': 'https://api.github.com/users/ZYM66/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/ZYM66/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/ZYM66/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/ZYM66'}
[]
open
false
null
[]
null
['It looks to be the same issue as the one reported in /static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Findexerror-invalid-key-16-is-out-of-bounds-for-size-0.%5Cr%5Cn%5Cr%5CnCan you check the length of `train_dataset` before the `train_sampler = self._get_train_sampler()` (and after `_remove_unused_columns`) line?']
2023-10-11 09:59:38+00:00
2023-10-11 13:10:31+00:00
null
NONE
null
### Describe the bug I am encountering an `IndexError` when trying to access data from a DataLoader which wraps around a dataset I've loaded using the `datasets` library. The error suggests that the dataset size is `0`, but when I check the length and print the dataset, it's clear that it has `1166` entries. ### Steps to reproduce the bug 1. Load a dataset with `1166` entries. 2. Create a DataLoader using this dataset. 3. Try iterating over the DataLoader. code: ```python def get_train_dataloader(self) -> DataLoader: if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_dataset = self.train_dataset data_collator = self.data_collator print(len(train_dataset)) print(train_dataset) if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description="training") else: data_collator = self._get_collator_with_removed_columns(data_collator, description="training") train_sampler = self._get_train_sampler() dl = DataLoader( train_dataset, batch_size=self._train_batch_size, sampler=train_sampler, collate_fn=data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, worker_init_fn=seed_worker, ) print(dl) print(len(dl)) for i in dl: print(i) break return dl ``` output : ``` 1166 Dataset({ features: ['input_ids', 'special_tokens_mask'], num_rows: 1166 }) <torch.utils.data.dataloader.DataLoader object ...> 146 ``` Error: ``` Traceback (most recent call last): File "/home/dl/zym/llamaJP/TestUseContinuePretrainLlama.py", line 266, in <module> train() File "/home/dl/zym/llamaJP/TestUseContinuePretrainLlama.py", line 260, in train trainer.train() File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/transformers/trainer.py", line 1506, in train return inner_training_loop( File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/transformers/trainer.py", line 1520, in _inner_training_loop train_dataloader = self.get_train_dataloader() File "/home/dl/zym/llamaJP/TestUseContinuePretrainLlama.py", line 80, in get_train_dataloader for i in dl: File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 630, in __next__ data = self._next_data() File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 674, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch data = self.dataset.__getitems__(possibly_batched_index) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2807, in __getitems__ batch = self.__getitem__(keys) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2803, in __getitem__ return self._getitem(key) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2787, in _getitem pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 583, in query_table _check_valid_index_key(key, size) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 536, in _check_valid_index_key _check_valid_index_key(int(max(key)), size=size) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 526, in _check_valid_index_key raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") IndexError: Invalid key: 1116 is out of bounds for size 0 ``` ### Expected behavior I expect to be able to iterate over the DataLoader without encountering an IndexError since the dataset is populated. ### Environment info - `datasets` library version: [2.14.5] - Platform: [Linux] - Python version: 3.10 - Other libraries involved: HuggingFace Transformers
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6294/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6294/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6293
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6293/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6293/comments
https://api.github.com/repos/huggingface/datasets/issues/6293/events
https://github.com/huggingface/datasets/issues/6293
1,937,238,047
I_kwDODunzps5zd-gf
6,293
Choose columns to stream parquet data in streaming mode
{'avatar_url': 'https://avatars.githubusercontent.com/u/42851186?v=4', 'events_url': 'https://api.github.com/users/lhoestq/events{/privacy}', 'followers_url': 'https://api.github.com/users/lhoestq/followers', 'following_url': 'https://api.github.com/users/lhoestq/following{/other_user}', 'gists_url': 'https://api.github.com/users/lhoestq/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/lhoestq', 'id': 42851186, 'login': 'lhoestq', 'node_id': 'MDQ6VXNlcjQyODUxMTg2', 'organizations_url': 'https://api.github.com/users/lhoestq/orgs', 'received_events_url': 'https://api.github.com/users/lhoestq/received_events', 'repos_url': 'https://api.github.com/users/lhoestq/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/lhoestq/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/lhoestq/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/lhoestq'}
[{'color': 'd73a4a', 'default': True, 'description': "Something isn't working", 'id': 1935892857, 'name': 'bug', 'node_id': 'MDU6TGFiZWwxOTM1ODkyODU3', 'url': 'https://api.github.com/repos/huggingface/datasets/labels/bug'}]
closed
false
null
[]
null
[]
2023-10-11 08:59:36+00:00
2023-10-11 16:21:38+00:00
2023-10-11 16:21:38+00:00
MEMBER
null
Currently passing columns= to load_dataset in streaming mode fails ``` Tried to load parquet data with columns '['link']' with mismatching features '{'caption': Value(dtype='string', id=None), 'image': {'bytes': Value(dtype='binary', id=None), 'path': Value(dtype='null', id=None)}, 'link': Value(dtype='string', id=None), 'message_id': Value(dtype='string', id=None), 'timestamp': Value(dtype='string', id=None)}' ``` similar to https://github.com/huggingface/datasets/issues/6039 reported at https://huggingface.co/datasets/laion/dalle-3-dataset/discussions/3#65259a09617407d4520f4ad9
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6293/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6293/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6292
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6292/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6292/comments
https://api.github.com/repos/huggingface/datasets/issues/6292/events
https://github.com/huggingface/datasets/issues/6292
1,937,050,470
I_kwDODunzps5zdQtm
6,292
how to load the image of dtype float32 or float64
{'avatar_url': 'https://avatars.githubusercontent.com/u/26437644?v=4', 'events_url': 'https://api.github.com/users/wanglaofei/events{/privacy}', 'followers_url': 'https://api.github.com/users/wanglaofei/followers', 'following_url': 'https://api.github.com/users/wanglaofei/following{/other_user}', 'gists_url': 'https://api.github.com/users/wanglaofei/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/wanglaofei', 'id': 26437644, 'login': 'wanglaofei', 'node_id': 'MDQ6VXNlcjI2NDM3NjQ0', 'organizations_url': 'https://api.github.com/users/wanglaofei/orgs', 'received_events_url': 'https://api.github.com/users/wanglaofei/received_events', 'repos_url': 'https://api.github.com/users/wanglaofei/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/wanglaofei/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/wanglaofei/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/wanglaofei'}
[]
open
false
null
[]
null
['Hi! Can you provide a code that reproduces the issue?\r\n\r\nAlso, which version of `datasets` are you using? You can check this by running `python -c "import datasets; print(datasets.__version__)"` inside the env. We added support for "float images" in `datasets 2.9`.']
2023-10-11 07:27:16+00:00
2023-10-11 13:19:11+00:00
null
NONE
null
_FEATURES = datasets.Features( { "image": datasets.Image(), "text": datasets.Value("string"), }, ) The datasets builder seems only support the unit8 data. How to load the float dtype data?
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6292/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6292/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6291
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6291/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6291/comments
https://api.github.com/repos/huggingface/datasets/issues/6291/events
https://github.com/huggingface/datasets/issues/6291
1,936,129,871
I_kwDODunzps5zZv9P
6,291
Casting type from Array2D int to Array2D float crashes
{'avatar_url': 'https://avatars.githubusercontent.com/u/22567306?v=4', 'events_url': 'https://api.github.com/users/AlanBlanchet/events{/privacy}', 'followers_url': 'https://api.github.com/users/AlanBlanchet/followers', 'following_url': 'https://api.github.com/users/AlanBlanchet/following{/other_user}', 'gists_url': 'https://api.github.com/users/AlanBlanchet/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/AlanBlanchet', 'id': 22567306, 'login': 'AlanBlanchet', 'node_id': 'MDQ6VXNlcjIyNTY3MzA2', 'organizations_url': 'https://api.github.com/users/AlanBlanchet/orgs', 'received_events_url': 'https://api.github.com/users/AlanBlanchet/received_events', 'repos_url': 'https://api.github.com/users/AlanBlanchet/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/AlanBlanchet/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/AlanBlanchet/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/AlanBlanchet'}
[]
closed
false
null
[]
null
["Thanks for reporting! I've opened a PR with a fix"]
2023-10-10 20:10:10+00:00
2023-10-13 13:45:31+00:00
2023-10-13 13:45:31+00:00
NONE
null
### Describe the bug I am on a school project and the initial type for feature annotations are `Array2D(shape=(None, 4))`. I am trying to cast this type to a `float64` and pyarrow gives me this error : ``` Traceback (most recent call last): File "/home/alan/dev/ClassezDesImagesAvecDesAlgorithmesDeDeeplearning/src/sdd/data/dataset.py", line 141, in <module> dataset = StanfordDogsDataset(size, 5).original(True).demo() File "<attrs generated init __main__.StanfordDogsDataset>", line 4, in __init__ File "/home/alan/dev/ClassezDesImagesAvecDesAlgorithmesDeDeeplearning/src/sdd/data/dataset.py", line 33, in __attrs_post_init__ self.dataset = self.dataset.cast_column( File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/fingerprint.py", line 511, in wrapper out = func(dataset, *args, **kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2110, in cast_column return self.cast(features) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2055, in cast dataset = dataset.map( File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 592, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3097, in map for rank, done, content in Dataset._map_single(**dataset_kwargs): File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3474, in _map_single batch = apply_function_on_filtered_inputs( File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3353, in apply_function_on_filtered_inputs processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 2328, in table_cast return cast_table_to_schema(table, schema) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 2287, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 2287, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1831, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1831, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 2143, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 1369, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: double>>, got list<item: list<item: int32>> ``` ### Steps to reproduce the bug ```python dataset = datasets.load_dataset("Alanox/stanford-dogs", split="full") dataset = dataset.cast_column("annotations", Array2D((None, 4), "float64")) ``` ### Expected behavior It should simply cast the column feature type to a `float64` without error ### Environment info datasets == 2.14.5
{'+1': 0, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 0, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6291/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6291/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6290
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6290/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6290/comments
https://api.github.com/repos/huggingface/datasets/issues/6290/events
https://github.com/huggingface/datasets/issues/6290
1,935,629,679
I_kwDODunzps5zX11v
6,290
Incremental dataset (e.g. `.push_to_hub(..., append=True)`)
{'avatar_url': 'https://avatars.githubusercontent.com/u/11801849?v=4', 'events_url': 'https://api.github.com/users/Wauplin/events{/privacy}', 'followers_url': 'https://api.github.com/users/Wauplin/followers', 'following_url': 'https://api.github.com/users/Wauplin/following{/other_user}', 'gists_url': 'https://api.github.com/users/Wauplin/gists{/gist_id}', 'gravatar_id': '', 'html_url': 'https://github.com/Wauplin', 'id': 11801849, 'login': 'Wauplin', 'node_id': 'MDQ6VXNlcjExODAxODQ5', 'organizations_url': 'https://api.github.com/users/Wauplin/orgs', 'received_events_url': 'https://api.github.com/users/Wauplin/received_events', 'repos_url': 'https://api.github.com/users/Wauplin/repos', 'site_admin': False, 'starred_url': 'https://api.github.com/users/Wauplin/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/Wauplin/subscriptions', 'type': 'User', 'url': 'https://api.github.com/users/Wauplin'}
[{'color': 'a2eeef', 'default': True, 'description': 'New feature or request', 'id': 1935892871, 'name': 'enhancement', 'node_id': 'MDU6TGFiZWwxOTM1ODkyODcx', 'url': 'https://api.github.com/repos/huggingface/datasets/labels/enhancement'}]
open
false
null
[]
null
['Yea I think waiting for #6269 would be best, or branching from it. For reference, this [PR](https://github.com/LAION-AI/Discord-Scrapers/pull/2) is progressing pretty well which will do similar using the hf hub for our LAION dataset bot https://github.com/LAION-AI/Discord-Scrapers/pull/2. ']
2023-10-10 15:18:03+00:00
2023-10-13 16:05:26+00:00
null
CONTRIBUTOR
null
### Feature request Have the possibility to do `ds.push_to_hub(..., append=True)`. ### Motivation Requested in this [comment](https://huggingface.co/datasets/laion/dalle-3-dataset/discussions/3#65252597c4edc168202a5eaa) and this [comment](https://huggingface.co/datasets/laion/dalle-3-dataset/discussions/4#6524f675c9607bdffb208d8f). Discussed internally on [slack](https://huggingface.slack.com/archives/C02EMARJ65P/p1696950642610639?thread_ts=1690554266.830949&cid=C02EMARJ65P). ### Your contribution What I suggest to do for parquet datasets is to use `CommitOperationCopy` + `CommitOperationDelete` from `huggingface_hub`: 1. list files 2. copy files from parquet-0001-of-0004 to parquet-0001-of-0005 3. delete files like parquet-0001-of-0004 4. generate + add last parquet file parquet-0005-of-0005 => make a single commit with all commit operations at once I think it should be quite straightforward to implement. Happy to review a PR (maybe conflicting with the ongoing "1 commit push_to_hub" PR https://github.com/huggingface/datasets/pull/6269)
{'+1': 3, '-1': 0, 'confused': 0, 'eyes': 0, 'heart': 0, 'hooray': 0, 'laugh': 0, 'rocket': 0, 'total_count': 3, 'url': 'https://api.github.com/repos/huggingface/datasets/issues/6290/reactions'}
https://api.github.com/repos/huggingface/datasets/issues/6290/timeline
null
null
null
null
false

annotations_creators:

  • other language:
  • en language_creators:
  • other license: [] multilinguality:
  • monolingual pretty_name: Github Issues size_categories:
  • 1K<n<10K source_datasets:
  • original tags:
  • github-issues
  • huggingface-nlp-course
  • datasets task_categories:
  • text-classification
  • text-retrieval task_ids:
  • multi-class-classification
  • multi-label-classification
  • document-retrieval
Downloads last month
32