|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SUPERB: Speech processing Universal PERformance Benchmark.""" |
|
|
|
|
|
import base64 |
|
import json |
|
import textwrap |
|
|
|
import datasets |
|
import numpy as np |
|
|
|
_CITATION = """\ |
|
@article{DBLP:journals/corr/abs-2105-01051, |
|
author = {Shu{-}Wen Yang and |
|
Po{-}Han Chi and |
|
Yung{-}Sung Chuang and |
|
Cheng{-}I Jeff Lai and |
|
Kushal Lakhotia and |
|
Yist Y. Lin and |
|
Andy T. Liu and |
|
Jiatong Shi and |
|
Xuankai Chang and |
|
Guan{-}Ting Lin and |
|
Tzu{-}Hsien Huang and |
|
Wei{-}Cheng Tseng and |
|
Ko{-}tik Lee and |
|
Da{-}Rong Liu and |
|
Zili Huang and |
|
Shuyan Dong and |
|
Shang{-}Wen Li and |
|
Shinji Watanabe and |
|
Abdelrahman Mohamed and |
|
Hung{-}yi Lee}, |
|
title = {{SUPERB:} Speech processing Universal PERformance Benchmark}, |
|
journal = {CoRR}, |
|
volume = {abs/2105.01051}, |
|
year = {2021}, |
|
url = {https://arxiv.org/abs/2105.01051}, |
|
archivePrefix = {arXiv}, |
|
eprint = {2105.01051}, |
|
timestamp = {Thu, 01 Jul 2021 13:30:22 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Self-supervised learning (SSL) has proven vital for advancing research in |
|
natural language processing (NLP) and computer vision (CV). The paradigm |
|
pretrains a shared model on large volumes of unlabeled data and achieves |
|
state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the |
|
speech processing community lacks a similar setup to systematically explore the |
|
paradigm. To bridge this gap, we introduce Speech processing Universal |
|
PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the |
|
performance of a shared model across a wide range of speech processing tasks |
|
with minimal architecture changes and labeled data. Among multiple usages of the |
|
shared model, we especially focus on extracting the representation learned from |
|
SSL due to its preferable re-usability. We present a simple framework to solve |
|
SUPERB tasks by learning task-specialized lightweight prediction heads on top of |
|
the frozen shared model. Our results demonstrate that the framework is promising |
|
as SSL representations show competitive generalizability and accessibility |
|
across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a |
|
benchmark toolkit to fuel the research in representation learning and general |
|
speech processing. |
|
""" |
|
|
|
|
|
class SuperbConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Superb.""" |
|
|
|
def __init__( |
|
self, |
|
features, |
|
url, |
|
data_url=None, |
|
supervised_keys=None, |
|
task_templates=None, |
|
**kwargs, |
|
): |
|
super().__init__(version=datasets.Version("1.9.0", ""), **kwargs) |
|
self.features = features |
|
self.data_url = data_url |
|
self.url = url |
|
self.supervised_keys = supervised_keys |
|
self.task_templates = task_templates |
|
|
|
|
|
class Superb(datasets.GeneratorBasedBuilder): |
|
"""Superb dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SuperbConfig( |
|
name="ks", |
|
description=textwrap.dedent( |
|
"""\ |
|
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of |
|
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and |
|
inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0] for the task. |
|
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the |
|
false positive. The evaluation metric is accuracy (ACC)""" |
|
), |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"label": datasets.ClassLabel( |
|
names=[ |
|
"yes", |
|
"no", |
|
"up", |
|
"down", |
|
"left", |
|
"right", |
|
"on", |
|
"off", |
|
"stop", |
|
"go", |
|
"_silence_", |
|
"_unknown_", |
|
] |
|
), |
|
"speech": datasets.Sequence(datasets.Value("float32")), |
|
} |
|
), |
|
url="https://www.tensorflow.org/datasets/catalog/speech_commands", |
|
data_url="ks.json", |
|
), |
|
SuperbConfig( |
|
name="ic", |
|
description=textwrap.dedent( |
|
"""\ |
|
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of |
|
speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent |
|
labels: action, object, and location. The evaluation metric is accuracy (ACC).""" |
|
), |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"action": datasets.ClassLabel( |
|
names=["activate", "bring", "change language", "deactivate", "decrease", "increase"] |
|
), |
|
"object": datasets.ClassLabel( |
|
names=[ |
|
"Chinese", |
|
"English", |
|
"German", |
|
"Korean", |
|
"heat", |
|
"juice", |
|
"lamp", |
|
"lights", |
|
"music", |
|
"newspaper", |
|
"none", |
|
"shoes", |
|
"socks", |
|
"volume", |
|
] |
|
), |
|
"location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]), |
|
"speech": datasets.Sequence(datasets.Value("float32")), |
|
} |
|
), |
|
url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/", |
|
data_url="ic.json", |
|
), |
|
SuperbConfig( |
|
name="si", |
|
description=textwrap.dedent( |
|
"""\ |
|
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class |
|
classification, where speakers are in the same predefined set for both training and testing. The widely |
|
used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC).""" |
|
), |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=[f"id{i+10001}" for i in range(1251)]), |
|
"speech": datasets.Sequence(datasets.Value("float32")), |
|
} |
|
), |
|
url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html", |
|
data_url="si.json", |
|
), |
|
SuperbConfig( |
|
name="er", |
|
description=textwrap.dedent( |
|
"""\ |
|
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset |
|
IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion |
|
classes to leave the final four classes with a similar amount of data points and cross-validates on five |
|
folds of the standard splits. The evaluation metric is accuracy (ACC).""" |
|
), |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]), |
|
"speech": datasets.Sequence(datasets.Value("float32")), |
|
} |
|
), |
|
url="https://sail.usc.edu/iemocap/", |
|
data_url="er.json", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=self.config.features, |
|
supervised_keys=self.config.supervised_keys, |
|
homepage=self.config.url, |
|
citation=_CITATION, |
|
task_templates=self.config.task_templates, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_path = dl_manager.download_and_extract(self.config.data_url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"data_path": data_path}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_path): |
|
"""Generate examples.""" |
|
with open(data_path, "r", encoding="utf-8") as f: |
|
for key, line in enumerate(f): |
|
example = json.loads(line) |
|
example["speech"] = np.frombuffer(base64.b64decode(example["speech"]), dtype=np.float32) |
|
|
|
yield key, example |
|
|