File size: 10,176 Bytes
350d601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""SUPERB: Speech processing Universal PERformance Benchmark."""


import base64
import json
import textwrap

import datasets
import numpy as np

_CITATION = """\
@article{DBLP:journals/corr/abs-2105-01051,
  author    = {Shu{-}Wen Yang and
               Po{-}Han Chi and
               Yung{-}Sung Chuang and
               Cheng{-}I Jeff Lai and
               Kushal Lakhotia and
               Yist Y. Lin and
               Andy T. Liu and
               Jiatong Shi and
               Xuankai Chang and
               Guan{-}Ting Lin and
               Tzu{-}Hsien Huang and
               Wei{-}Cheng Tseng and
               Ko{-}tik Lee and
               Da{-}Rong Liu and
               Zili Huang and
               Shuyan Dong and
               Shang{-}Wen Li and
               Shinji Watanabe and
               Abdelrahman Mohamed and
               Hung{-}yi Lee},
  title     = {{SUPERB:} Speech processing Universal PERformance Benchmark},
  journal   = {CoRR},
  volume    = {abs/2105.01051},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.01051},
  archivePrefix = {arXiv},
  eprint    = {2105.01051},
  timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DESCRIPTION = """\
Self-supervised learning (SSL) has proven vital for advancing research in
natural language processing (NLP) and computer vision (CV). The paradigm
pretrains a shared model on large volumes of unlabeled data and achieves
state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
speech processing community lacks a similar setup to systematically explore the
paradigm. To bridge this gap, we introduce Speech processing Universal
PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
performance of a shared model across a wide range of speech processing tasks
with minimal architecture changes and labeled data. Among multiple usages of the
shared model, we especially focus on extracting the representation learned from
SSL due to its preferable re-usability. We present a simple framework to solve
SUPERB tasks by learning task-specialized lightweight prediction heads on top of
the frozen shared model. Our results demonstrate that the framework is promising
as SSL representations show competitive generalizability and accessibility
across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
benchmark toolkit to fuel the research in representation learning and general
speech processing.
"""


class SuperbConfig(datasets.BuilderConfig):
    """BuilderConfig for Superb."""

    def __init__(
        self,
        features,
        url,
        data_url=None,
        supervised_keys=None,
        task_templates=None,
        **kwargs,
    ):
        super().__init__(version=datasets.Version("1.9.0", ""), **kwargs)
        self.features = features
        self.data_url = data_url
        self.url = url
        self.supervised_keys = supervised_keys
        self.task_templates = task_templates


class Superb(datasets.GeneratorBasedBuilder):
    """Superb dataset."""

    BUILDER_CONFIGS = [
        SuperbConfig(
            name="ks",
            description=textwrap.dedent(
                """\
            Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
            words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
            inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0] for the task.
            The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
            false positive. The evaluation metric is accuracy (ACC)"""
            ),
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "label": datasets.ClassLabel(
                        names=[
                            "yes",
                            "no",
                            "up",
                            "down",
                            "left",
                            "right",
                            "on",
                            "off",
                            "stop",
                            "go",
                            "_silence_",
                            "_unknown_",
                        ]
                    ),
                    "speech": datasets.Sequence(datasets.Value("float32")),
                }
            ),
            url="https://www.tensorflow.org/datasets/catalog/speech_commands",
            data_url="ks.json",
        ),
        SuperbConfig(
            name="ic",
            description=textwrap.dedent(
                """\
            Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
            speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent
            labels: action, object, and location. The evaluation metric is accuracy (ACC)."""
            ),
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "action": datasets.ClassLabel(
                        names=["activate", "bring", "change language", "deactivate", "decrease", "increase"]
                    ),
                    "object": datasets.ClassLabel(
                        names=[
                            "Chinese",
                            "English",
                            "German",
                            "Korean",
                            "heat",
                            "juice",
                            "lamp",
                            "lights",
                            "music",
                            "newspaper",
                            "none",
                            "shoes",
                            "socks",
                            "volume",
                        ]
                    ),
                    "location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]),
                    "speech": datasets.Sequence(datasets.Value("float32")),
                }
            ),
            url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/",
            data_url="ic.json",
        ),
        SuperbConfig(
            name="si",
            description=textwrap.dedent(
                """\
            Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
            classification, where speakers are in the same predefined set for both training and testing. The widely
            used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC)."""
            ),
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "label": datasets.ClassLabel(names=[f"id{i+10001}" for i in range(1251)]),
                    "speech": datasets.Sequence(datasets.Value("float32")),
                }
            ),
            url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html",
            data_url="si.json",
        ),
        SuperbConfig(
            name="er",
            description=textwrap.dedent(
                """\
            Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
            IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion
            classes to leave the final four classes with a similar amount of data points and cross-validates on five
            folds of the standard splits. The evaluation metric is accuracy (ACC)."""
            ),
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
                    "speech": datasets.Sequence(datasets.Value("float32")),
                }
            ),
            url="https://sail.usc.edu/iemocap/",
            data_url="er.json",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=self.config.features,
            supervised_keys=self.config.supervised_keys,
            homepage=self.config.url,
            citation=_CITATION,
            task_templates=self.config.task_templates,
        )

    def _split_generators(self, dl_manager):
        data_path = dl_manager.download_and_extract(self.config.data_url)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data_path": data_path},
            )
        ]

    def _generate_examples(self, data_path):
        """Generate examples."""
        with open(data_path, "r", encoding="utf-8") as f:
            for key, line in enumerate(f):
                example = json.loads(line)
                example["speech"] = np.frombuffer(base64.b64decode(example["speech"]), dtype=np.float32)

                yield key, example