pcbm_survey / scripts /generate.py
dgcnz's picture
Suggested change in comment (#1)
bc95f24 verified
raw
history blame
10.8 kB
import argparse
import shutil
import pickle
import logging
from omegaconf import OmegaConf
import re
import random
import tarfile
from pydantic import BaseModel
from pathlib import Path
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def setup_parser():
parser = argparse.ArgumentParser(description="Generate a domain shift dataset")
parser.add_argument("--config", type=str, required=True, help="Path to config file")
parser.add_argument(
"--output_dir", type=str, required=True, help="Path to output directory"
)
parser.add_argument(
"--full_candidate_subsets_path",
type=str,
required=True,
help="Path to full-candidate-subsets.pkl",
)
parser.add_argument(
"--visual_genome_images_dir",
type=str,
required=True,
help="Path to VisualGenome images directory allImages/images",
)
return parser
def get_ms_domain_name(obj: str, context: str) -> str:
return f"{obj}({context})"
class DataSplits(BaseModel):
train: dict[str, list[str]]
test: dict[str, list[str]]
class MetashiftData(BaseModel):
selected_classes: list[str]
spurious_class: str
train_context: str
test_context: str
data_splits: DataSplits
class MetashiftFactory(object):
object_context_to_id: dict[str, list[int]]
visual_genome_images_dir: str
def __init__(
self,
full_candidate_subsets_path: str,
visual_genome_images_dir: str,
):
"""
full_candidate_subsets_path: Path to `full-candidate-subsets.pkl`
visual_genome_images_dir: Path to VisualGenome images directory `allImages/images`
"""
with open(full_candidate_subsets_path, "rb") as f:
self.object_context_to_id = pickle.load(f)
self.visual_genome_images_dir = visual_genome_images_dir
def _get_all_domains_with_object(self, obj: str) -> set[str]:
"""Get all domains with given object and any context.
Example:
- _get_all_domains_with_object(table) => [table(dog), table(cat), ...]
"""
return {
key
for key in self.object_context_to_id.keys()
if re.match(f"^{obj}\\(.*\\)$", key)
}
def _get_all_image_ids_with_object(self, obj: str) -> set[str]:
"""Get all image ids with given object and any context.
Example:
- get_all_image_ids_with_object(table) => [id~table(dog), id~table(cat), ...]
- where id~domain, means an image sampled from the given domain.
"""
domains = self._get_all_domains_with_object(obj)
return {_id for domain in domains for _id in self.object_context_to_id[domain]}
def _get_image_ids(self, obj: str, context: str | None, exclude_context: str | None = None) -> set[str]:
"""Get image ids for the domain `obj(context)`, optionally excluding a specific context."""
if exclude_context is not None:
all_ids = self._get_all_image_ids_with_object(obj)
exclude_ids = self.object_context_to_id[get_ms_domain_name(obj, exclude_context)]
return all_ids - exclude_ids
elif context is not None:
return self.object_context_to_id[get_ms_domain_name(obj, context)]
else:
return self._get_all_image_ids_with_object(obj)
def _get_class_domains(
self, domains_specification: dict[str, tuple[str, str | None]]
) -> dict[str, tuple[list[str], list[str]]]:
"""Get train and test image ids for the given domains specification."""
domain_ids = dict()
for cls, (train_context, test_context) in domains_specification.items():
if train_context == test_context:
# try alternative to remove the need of double context entries
train_ids = self._get_image_ids(cls, context=train_context)
test_ids = self._get_image_ids(cls, context=None, exclude_context=test_context)
domain_ids[cls] = [train_ids, test_ids]
logger.info(
f"{get_ms_domain_name(cls, train_context or '*')}: {len(train_ids)}"
" -> "
f"{get_ms_domain_name(cls, test_context or '*')}: {len(test_ids)}"
)
else:
train_ids = self._get_image_ids(cls, train_context)
test_ids = self._get_image_ids(cls, test_context)
domain_ids[cls] = [train_ids, test_ids]
logger.info(
f"{get_ms_domain_name(cls, train_context or '*')}: {len(train_ids)}"
" -> "
f"{get_ms_domain_name(cls, test_context or '*')}: {len(test_ids)}"
)
return domain_ids
def _sample_from_domains(
self,
seed: int,
domains: dict[str, tuple[list[str], list[str]]],
num_train_images_per_class: int,
num_test_images_per_class: int,
) -> dict[str, tuple[list[str], list[str]]]:
"""Return sampled domain data from the given full domains."""
# TODO: Do we have to ensure that there's no overlap between classes?
# For example, we could have repeated files in training for different classes.
sampled_domains = dict()
for cls, (train_ids, test_ids) in domains.items():
try:
sampled_train_ids = random.Random(seed).sample(
list(train_ids), num_train_images_per_class
)
test_ids = test_ids - set(sampled_train_ids)
sampled_test_ids = random.Random(seed).sample(
list(test_ids), num_test_images_per_class
)
except ValueError:
logger.error(
f"{cls}: {len(train_ids)} train images, {len(test_ids)} test images"
)
raise Exception("Not enough images for this class")
sampled_domains[cls] = (sampled_train_ids, sampled_test_ids)
return sampled_domains
def create(
self,
seed: int,
selected_classes: list[str],
spurious_class: str,
train_spurious_context: str,
test_spurious_context: str,
num_train_images_per_class: int,
num_test_images_per_class: int,
) -> MetashiftData:
"""Return (metadata, data) splits for the given data shift."""
domains_specification = {
**{cls: (None, None) for cls in selected_classes},
spurious_class: (
train_spurious_context,
test_spurious_context,
), # overwrite spurious_class
}
domains = self._get_class_domains(domains_specification)
sampled_domains = self._sample_from_domains(
seed=seed,
domains=domains,
num_train_images_per_class=num_train_images_per_class,
num_test_images_per_class=num_test_images_per_class,
)
data_splits = {"train": dict(), "test": dict()}
for cls, (train_ids, test_ids) in sampled_domains.items():
data_splits["train"][cls] = train_ids
data_splits["test"][cls] = test_ids
return MetashiftData(
selected_classes=selected_classes,
spurious_class=spurious_class,
train_context=train_spurious_context,
test_context=test_spurious_context,
data_splits=DataSplits(
train=data_splits["train"],
test=data_splits["test"],
),
)
def _get_unique_ids_from_info(self, info: dict[str, MetashiftData]):
"""Get unique ids from info struct."""
unique_ids = set()
for data in info.values():
for ids in data.data_splits.train.values():
unique_ids.update(ids)
for ids in data.data_splits.test.values():
unique_ids.update(ids)
return unique_ids
def _replace_ids_with_paths(
self, info: dict[str, MetashiftData], data_path: Path, out_path: Path
) -> MetashiftData:
"""Replace ids with paths."""
new_data = dict()
for dataset_name, data in info.items():
for cls, ids in data.data_splits.train.items():
data.data_splits.train[cls] = [
str(data_path / f"{_id}.jpg") for _id in ids
]
for cls, ids in data.data_splits.test.items():
data.data_splits.test[cls] = [
str(data_path / f"{_id}.jpg") for _id in ids
]
new_data[dataset_name] = data
return new_data
def save_all(self, out_dir: str, info: dict[str, MetashiftData]):
"""Save all datasets to the given directory."""
out_path = Path(out_dir)
data_path = out_path / "data"
data_path.mkdir(parents=True, exist_ok=True)
unique_ids = self._get_unique_ids_from_info(info)
data = self._replace_ids_with_paths(info, data_path, out_path)
# for dataset_name, data in info.items():
# with open(out_path / f"{dataset_name}.json", "w") as f:
# f.write(data.model_dump_json(indent=2))
# with tarfile.open(data_path / "images.tar.gz", "w:gz") as tar:
# for _id in unique_ids:
# tar.add(
# Path(self.visual_genome_images_dir) / f"{_id}.jpg",
# )
def get_dataset_name(task_name: str, experiment_name: str) -> str:
return f"{task_name}_{experiment_name}"
def main():
parser = setup_parser()
args = parser.parse_args()
config = OmegaConf.load(args.config)
metashift_factory = MetashiftFactory(
full_candidate_subsets_path=args.full_candidate_subsets_path,
visual_genome_images_dir=args.visual_genome_images_dir,
)
info: dict[str, MetashiftData] = dict()
for task_config in config.tasks:
for experiment_config in task_config.experiments:
data = metashift_factory.create(
seed=task_config.seed,
selected_classes=task_config.selected_classes,
spurious_class=experiment_config.spurious_class,
train_spurious_context=experiment_config.train_context,
test_spurious_context=experiment_config.test_context,
num_test_images_per_class=task_config.num_images_per_class_test,
num_train_images_per_class=task_config.num_images_per_class_train,
)
dataset_name = get_dataset_name(task_config.name, experiment_config.name)
assert dataset_name not in info
info[dataset_name] = data
metashift_factory.save_all(args.output_dir, info)
if __name__ == "__main__":
main()