File size: 10,839 Bytes
bc95f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e326fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import argparse
import shutil
import pickle
import logging
from omegaconf import OmegaConf
import re
import random
import tarfile
from pydantic import BaseModel
from pathlib import Path

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def setup_parser():
    parser = argparse.ArgumentParser(description="Generate a domain shift dataset")
    parser.add_argument("--config", type=str, required=True, help="Path to config file")
    parser.add_argument(
        "--output_dir", type=str, required=True, help="Path to output directory"
    )
    parser.add_argument(
        "--full_candidate_subsets_path",
        type=str,
        required=True,
        help="Path to full-candidate-subsets.pkl",
    )
    parser.add_argument(
        "--visual_genome_images_dir",
        type=str,
        required=True,
        help="Path to VisualGenome images directory allImages/images",
    )
    return parser


def get_ms_domain_name(obj: str, context: str) -> str:
    return f"{obj}({context})"


class DataSplits(BaseModel):
    train: dict[str, list[str]]
    test: dict[str, list[str]]


class MetashiftData(BaseModel):
    selected_classes: list[str]
    spurious_class: str
    train_context: str
    test_context: str
    data_splits: DataSplits


class MetashiftFactory(object):
    object_context_to_id: dict[str, list[int]]
    visual_genome_images_dir: str

    def __init__(
        self,
        full_candidate_subsets_path: str,
        visual_genome_images_dir: str,
    ):
        """
        full_candidate_subsets_path: Path to `full-candidate-subsets.pkl`
        visual_genome_images_dir: Path to VisualGenome images directory `allImages/images`
        """
        with open(full_candidate_subsets_path, "rb") as f:
            self.object_context_to_id = pickle.load(f)
        self.visual_genome_images_dir = visual_genome_images_dir

    def _get_all_domains_with_object(self, obj: str) -> set[str]:
        """Get all domains with given object and any context.
        Example:
            - _get_all_domains_with_object(table) => [table(dog), table(cat), ...]
        """
        return {
            key
            for key in self.object_context_to_id.keys()
            if re.match(f"^{obj}\\(.*\\)$", key)
        }

    def _get_all_image_ids_with_object(self, obj: str) -> set[str]:
        """Get all image ids with given object and any context.
        Example:
            - get_all_image_ids_with_object(table) => [id~table(dog), id~table(cat), ...]
            - where id~domain, means an image sampled from the given domain.
        """
        domains = self._get_all_domains_with_object(obj)
        return {_id for domain in domains for _id in self.object_context_to_id[domain]}

    def _get_image_ids(self, obj: str, context: str | None, exclude_context: str | None = None) -> set[str]:
        """Get image ids for the domain `obj(context)`, optionally excluding a specific context."""
        if exclude_context is not None:
            all_ids = self._get_all_image_ids_with_object(obj)
            exclude_ids = self.object_context_to_id[get_ms_domain_name(obj, exclude_context)]
            return all_ids - exclude_ids
        elif context is not None:
            return self.object_context_to_id[get_ms_domain_name(obj, context)]
        else:
            return self._get_all_image_ids_with_object(obj)

    def _get_class_domains(
        self, domains_specification: dict[str, tuple[str, str | None]]
    ) -> dict[str, tuple[list[str], list[str]]]:
        """Get train and test image ids for the given domains specification."""
        domain_ids = dict()
        for cls, (train_context, test_context) in domains_specification.items():
            if train_context == test_context:
                # try alternative to remove the need of double context entries
                train_ids = self._get_image_ids(cls, context=train_context)
                test_ids = self._get_image_ids(cls, context=None, exclude_context=test_context)
                domain_ids[cls] = [train_ids, test_ids]
                logger.info(
                    f"{get_ms_domain_name(cls, train_context or '*')}: {len(train_ids)}"
                    " -> "
                    f"{get_ms_domain_name(cls, test_context or '*')}: {len(test_ids)}"
                )
            else:
                train_ids = self._get_image_ids(cls, train_context)
                test_ids = self._get_image_ids(cls, test_context)
                domain_ids[cls] = [train_ids, test_ids]
                logger.info(
                    f"{get_ms_domain_name(cls, train_context or '*')}: {len(train_ids)}"
                    " -> "
                    f"{get_ms_domain_name(cls, test_context or '*')}: {len(test_ids)}"
                )
        return domain_ids

    def _sample_from_domains(
        self,
        seed: int,
        domains: dict[str, tuple[list[str], list[str]]],
        num_train_images_per_class: int,
        num_test_images_per_class: int,
    ) -> dict[str, tuple[list[str], list[str]]]:
        """Return sampled domain data from the given full domains."""
        # TODO: Do we have to ensure that there's no overlap between classes?
        # For example, we could have repeated files in training for different classes.
        sampled_domains = dict()
        for cls, (train_ids, test_ids) in domains.items():
            try:
                sampled_train_ids = random.Random(seed).sample(
                    list(train_ids), num_train_images_per_class
                )
                test_ids = test_ids - set(sampled_train_ids)
                sampled_test_ids = random.Random(seed).sample(
                    list(test_ids), num_test_images_per_class
                )
            except ValueError:
                logger.error(
                    f"{cls}: {len(train_ids)} train images, {len(test_ids)} test images"
                )
                raise Exception("Not enough images for this class")
            sampled_domains[cls] = (sampled_train_ids, sampled_test_ids)
        return sampled_domains

    def create(
        self,
        seed: int,
        selected_classes: list[str],
        spurious_class: str,
        train_spurious_context: str,
        test_spurious_context: str,
        num_train_images_per_class: int,
        num_test_images_per_class: int,
    ) -> MetashiftData:
        """Return (metadata, data) splits for the given data shift."""
        domains_specification = {
            **{cls: (None, None) for cls in selected_classes},
            spurious_class: (
                train_spurious_context,
                test_spurious_context,
            ),  # overwrite spurious_class
        }
        domains = self._get_class_domains(domains_specification)
        sampled_domains = self._sample_from_domains(
            seed=seed,
            domains=domains,
            num_train_images_per_class=num_train_images_per_class,
            num_test_images_per_class=num_test_images_per_class,
        )
        data_splits = {"train": dict(), "test": dict()}
        for cls, (train_ids, test_ids) in sampled_domains.items():
            data_splits["train"][cls] = train_ids
            data_splits["test"][cls] = test_ids

        return MetashiftData(
            selected_classes=selected_classes,
            spurious_class=spurious_class,
            train_context=train_spurious_context,
            test_context=test_spurious_context,
            data_splits=DataSplits(
                train=data_splits["train"],
                test=data_splits["test"],
            ),
        )

    def _get_unique_ids_from_info(self, info: dict[str, MetashiftData]):
        """Get unique ids from info struct."""
        unique_ids = set()
        for data in info.values():
            for ids in data.data_splits.train.values():
                unique_ids.update(ids)
            for ids in data.data_splits.test.values():
                unique_ids.update(ids)
        return unique_ids

    def _replace_ids_with_paths(
        self, info: dict[str, MetashiftData], data_path: Path, out_path: Path
    ) -> MetashiftData:
        """Replace ids with paths."""
        new_data = dict()
        for dataset_name, data in info.items():
            for cls, ids in data.data_splits.train.items():
                data.data_splits.train[cls] = [
                    str(data_path / f"{_id}.jpg") for _id in ids
                ]
            for cls, ids in data.data_splits.test.items():
                data.data_splits.test[cls] = [
                    str(data_path / f"{_id}.jpg") for _id in ids
                ]
            new_data[dataset_name] = data
        return new_data

    def save_all(self, out_dir: str, info: dict[str, MetashiftData]):
        """Save all datasets to the given directory."""
        out_path = Path(out_dir)
        data_path = out_path / "data"
        data_path.mkdir(parents=True, exist_ok=True)

        unique_ids = self._get_unique_ids_from_info(info)
        data = self._replace_ids_with_paths(info, data_path, out_path)
        # for dataset_name, data in info.items():
        #     with open(out_path / f"{dataset_name}.json", "w") as f:
        #         f.write(data.model_dump_json(indent=2))

        # with tarfile.open(data_path / "images.tar.gz", "w:gz") as tar:
        #     for _id in unique_ids:
        #         tar.add(
        #             Path(self.visual_genome_images_dir) / f"{_id}.jpg",
        #         )


def get_dataset_name(task_name: str, experiment_name: str) -> str:
    return f"{task_name}_{experiment_name}"


def main():
    parser = setup_parser()
    args = parser.parse_args()
    config = OmegaConf.load(args.config)
    metashift_factory = MetashiftFactory(
        full_candidate_subsets_path=args.full_candidate_subsets_path,
        visual_genome_images_dir=args.visual_genome_images_dir,
    )
    info: dict[str, MetashiftData] = dict()
    for task_config in config.tasks:
        for experiment_config in task_config.experiments:
            data = metashift_factory.create(
                seed=task_config.seed,
                selected_classes=task_config.selected_classes,
                spurious_class=experiment_config.spurious_class,
                train_spurious_context=experiment_config.train_context,
                test_spurious_context=experiment_config.test_context,
                num_test_images_per_class=task_config.num_images_per_class_test,
                num_train_images_per_class=task_config.num_images_per_class_train,
            )
            dataset_name = get_dataset_name(task_config.name, experiment_config.name)
            assert dataset_name not in info
            info[dataset_name] = data

    metashift_factory.save_all(args.output_dir, info)


if __name__ == "__main__":
    main()