peer_read / README.md
albertvillanova's picture
Reorder split names (#2)
53e1932
metadata
annotations_creators:
  - expert-generated
language_creators:
  - found
language:
  - en
license:
  - unknown
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - text-classification
task_ids: []
paperswithcode_id: peerread
pretty_name: PeerRead
tags:
  - acceptability-classification
dataset_info:
  - config_name: parsed_pdfs
    features:
      - name: name
        dtype: string
      - name: metadata
        struct:
          - name: source
            dtype: string
          - name: title
            dtype: string
          - name: authors
            sequence: string
          - name: emails
            sequence: string
          - name: sections
            sequence:
              - name: heading
                dtype: string
              - name: text
                dtype: string
          - name: references
            sequence:
              - name: title
                dtype: string
              - name: author
                sequence: string
              - name: venue
                dtype: string
              - name: citeRegEx
                dtype: string
              - name: shortCiteRegEx
                dtype: string
              - name: year
                dtype: int32
          - name: referenceMentions
            sequence:
              - name: referenceID
                dtype: int32
              - name: context
                dtype: string
              - name: startOffset
                dtype: int32
              - name: endOffset
                dtype: int32
          - name: year
            dtype: int32
          - name: abstractText
            dtype: string
          - name: creator
            dtype: string
    splits:
      - name: train
        num_bytes: 571263679
        num_examples: 11090
      - name: test
        num_bytes: 34284777
        num_examples: 637
      - name: validation
        num_bytes: 32488519
        num_examples: 637
    download_size: 1246688292
    dataset_size: 638036975
  - config_name: reviews
    features:
      - name: id
        dtype: string
      - name: conference
        dtype: string
      - name: comments
        dtype: string
      - name: subjects
        dtype: string
      - name: version
        dtype: string
      - name: date_of_submission
        dtype: string
      - name: title
        dtype: string
      - name: authors
        sequence: string
      - name: accepted
        dtype: bool
      - name: abstract
        dtype: string
      - name: histories
        sequence:
          sequence: string
      - name: reviews
        sequence:
          - name: date
            dtype: string
          - name: title
            dtype: string
          - name: other_keys
            dtype: string
          - name: originality
            dtype: string
          - name: comments
            dtype: string
          - name: is_meta_review
            dtype: bool
          - name: is_annotated
            dtype: bool
          - name: recommendation
            dtype: string
          - name: replicability
            dtype: string
          - name: presentation_format
            dtype: string
          - name: clarity
            dtype: string
          - name: meaningful_comparison
            dtype: string
          - name: substance
            dtype: string
          - name: reviewer_confidence
            dtype: string
          - name: soundness_correctness
            dtype: string
          - name: appropriateness
            dtype: string
          - name: impact
            dtype: string
    splits:
      - name: train
        num_bytes: 15234922
        num_examples: 11090
      - name: test
        num_bytes: 878906
        num_examples: 637
      - name: validation
        num_bytes: 864799
        num_examples: 637
    download_size: 1246688292
    dataset_size: 16978627

Dataset Card for peer_read

Table of Contents

Dataset Description

Dataset Summary

PearRead is a dataset of scientific peer reviews available to help researchers study this important artifact. The dataset consists of over 14K paper drafts and the corresponding accept/reject decisions in top-tier venues including ACL, NIPS and ICLR, as well as over 10K textual peer reviews written by experts for a subset of the papers.

Supported Tasks and Leaderboards

[More Information Needed]

Languages

en-English

Dataset Structure

Data Instances

[More Information Needed]

Data Fields

parsed_pdfs

  • name: string Filename in the dataset
  • metadata: dict Paper metadata
    • source: string Paper source
    • authors: list<string> List of paper authors
    • title: string Paper title
    • sections: list<dict> List of section heading and corresponding description
      • heading: string Section heading
      • text: string Section description
    • references: string List of references
      • title: string Title of reference paper
      • author: list<string> List of reference paper authors
      • venue: string Reference venue
      • citeRegEx: string Reference citeRegEx
      • shortCiteRegEx: string Reference shortCiteRegEx
      • year: int Reference publish year
    • referenceMentions: list<string> List of reference mentions
      • referenceID: int Reference mention ID
      • context: string Reference mention context
      • startOffset: int Reference startOffset
      • endOffset: int Reference endOffset
    • year: int Paper publish year
    • abstractText: string Paper abstract
    • creator: string Paper creator

reviews

  • id: int Review ID
  • conference: string Conference name
  • comments: string Review comments
  • subjects: string Review subjects
  • version: string Review version
  • date_of_submission: string Submission date
  • title: string Paper title
  • authors: list<string> List of paper authors
  • accepted: bool Paper accepted flag
  • abstract: string Paper abstract
  • histories: list<string> Paper details with link
  • reviews: dict Paper reviews
    • date: string Date of review
    • title: string Paper title
    • other_keys: string Reviewer other details
    • originality: string Originality score
    • comments: string Reviewer comments
    • is_meta_review: bool Review type flag
    • recommendation: string Reviewer recommendation
    • replicability: string Replicability score
    • presentation_format: string Presentation type
    • clarity: string Clarity score
    • meaningful_comparison: string Meaningful comparison score
    • substance: string Substance score
    • reviewer_confidence: string Reviewer confidence score
    • soundness_correctness: string Soundness correctness score
    • appropriateness: string Appropriateness score
    • impact: string Impact score

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

Dongyeop Kang, Waleed Ammar, Bhavana Dalvi Mishra, Madeleine van Zuylen, Sebastian Kohlmeier, Eduard Hovy, Roy Schwartz

Licensing Information

[More Information Needed]

Citation Information

@inproceedings{kang18naacl, title = {A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications}, author = {Dongyeop Kang and Waleed Ammar and Bhavana Dalvi and Madeleine van Zuylen and Sebastian Kohlmeier and Eduard Hovy and Roy Schwartz}, booktitle = {Meeting of the North American Chapter of the Association for Computational Linguistics (NAACL)}, address = {New Orleans, USA}, month = {June}, url = {https://arxiv.org/abs/1804.09635}, year = {2018} }

Contributions

Thanks to @vinaykudari for adding this dataset.