url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
2.51B
node_id
stringlengths
18
32
number
int64
1
7.14k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
sequencelengths
0
30
created_at
timestamp[ns]
updated_at
timestamp[ns]
closed_at
timestamp[ns]
author_association
stringclasses
4 values
active_lock_reason
float64
draft
float64
0
1
pull_request
dict
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
float64
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/7143
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7143/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7143/comments
https://api.github.com/repos/huggingface/datasets/issues/7143/events
https://github.com/huggingface/datasets/pull/7143
2,512,327,211
PR_kwDODunzps56xCm6
7,143
Modify add_column() to optionally accept a pyarrow schema as param
{ "avatar_url": "https://avatars.githubusercontent.com/u/20443618?v=4", "events_url": "https://api.github.com/users/varadhbhatnagar/events{/privacy}", "followers_url": "https://api.github.com/users/varadhbhatnagar/followers", "following_url": "https://api.github.com/users/varadhbhatnagar/following{/other_user}", "gists_url": "https://api.github.com/users/varadhbhatnagar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/varadhbhatnagar", "id": 20443618, "login": "varadhbhatnagar", "node_id": "MDQ6VXNlcjIwNDQzNjE4", "organizations_url": "https://api.github.com/users/varadhbhatnagar/orgs", "received_events_url": "https://api.github.com/users/varadhbhatnagar/received_events", "repos_url": "https://api.github.com/users/varadhbhatnagar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/varadhbhatnagar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/varadhbhatnagar/subscriptions", "type": "User", "url": "https://api.github.com/users/varadhbhatnagar" }
[]
open
false
null
[]
null
[ "Requesting review @lhoestq \r\nI will also update the docs if this looks good.", "Cool ! maybe you can rename the argument `feature` and with type `FeatureType` ? This way it would work the same way as `.cast_column()` ?", "@lhoestq Since there is no way to get a `pyarrow.Schema` from a `FeatureType`, I had to go via `Features`. How does this look?", "The docs for this PR live [here](/static-proxy?url=https%3A%2F%2Fmoon-ci-docs.huggingface.co%2Fdocs%2Fdatasets%2Fpr_7143). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@lhoestq done!" ]
2024-09-08T10:56:57
2024-09-08T11:10:17
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7143.diff", "html_url": "https://github.com/huggingface/datasets/pull/7143", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7143.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7143" }
[Open Issue](https://github.com/huggingface/datasets/issues/7142) **Before (Add + Cast)**: ``` from datasets import load_dataset, Value ds = load_dataset("rotten_tomatoes", split="test") lst = [i for i in range(len(ds))] ds = ds.add_column("new_col", lst) # Assigns int64 to new_col by default print(ds.features) ds = ds.cast_column("new_col", Value(dtype="uint16", id=None)) print(ds.features) ``` **Before (Numpy Workaround)**: ``` from datasets import load_dataset import numpy as np ds = load_dataset("rotten_tomatoes", split="test") lst = [i for i in range(len(ds))] ds = ds.add_column("new_col", np.array(lst, dtype=np.uint16)) print(ds.features) ``` **After**: ``` from datasets import load_dataset import pyarrow as pa ds = load_dataset("rotten_tomatoes", split="test") lst = [i for i in range(len(ds))] schema = pa.schema([("new_col", pa.uint16())]) ds = ds.add_column("new_col", lst, pyarrow_schema=schema) print(ds.features) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7143/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7143/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7142
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7142/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7142/comments
https://api.github.com/repos/huggingface/datasets/issues/7142/events
https://github.com/huggingface/datasets/issues/7142
2,512,244,938
I_kwDODunzps6VvdDK
7,142
Specifying datatype when adding a column to a dataset.
{ "avatar_url": "https://avatars.githubusercontent.com/u/20443618?v=4", "events_url": "https://api.github.com/users/varadhbhatnagar/events{/privacy}", "followers_url": "https://api.github.com/users/varadhbhatnagar/followers", "following_url": "https://api.github.com/users/varadhbhatnagar/following{/other_user}", "gists_url": "https://api.github.com/users/varadhbhatnagar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/varadhbhatnagar", "id": 20443618, "login": "varadhbhatnagar", "node_id": "MDQ6VXNlcjIwNDQzNjE4", "organizations_url": "https://api.github.com/users/varadhbhatnagar/orgs", "received_events_url": "https://api.github.com/users/varadhbhatnagar/received_events", "repos_url": "https://api.github.com/users/varadhbhatnagar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/varadhbhatnagar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/varadhbhatnagar/subscriptions", "type": "User", "url": "https://api.github.com/users/varadhbhatnagar" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "#self-assign" ]
2024-09-08T07:34:24
2024-09-08T07:35:26
null
NONE
null
null
null
### Feature request There should be a way to specify the datatype of a column in `datasets.add_column()`. ### Motivation To specify a custom datatype, we have to use `datasets.add_column()` followed by `datasets.cast_column()` which is slow for large datasets. Another workaround is to pass a `numpy.array()` of desired type to the `datasets.add_column()` function. IMO this functionality should be natively supported. /static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fadd-column-with-a-particular-type-in-datasets%2F95674 ### Your contribution I can submit a PR for this.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7142/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7142/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7141
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7141/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7141/comments
https://api.github.com/repos/huggingface/datasets/issues/7141/events
https://github.com/huggingface/datasets/issues/7141
2,510,797,653
I_kwDODunzps6Vp7tV
7,141
Older datasets throwing safety errors with 2.21.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/1050316?v=4", "events_url": "https://api.github.com/users/alvations/events{/privacy}", "followers_url": "https://api.github.com/users/alvations/followers", "following_url": "https://api.github.com/users/alvations/following{/other_user}", "gists_url": "https://api.github.com/users/alvations/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvations", "id": 1050316, "login": "alvations", "node_id": "MDQ6VXNlcjEwNTAzMTY=", "organizations_url": "https://api.github.com/users/alvations/orgs", "received_events_url": "https://api.github.com/users/alvations/received_events", "repos_url": "https://api.github.com/users/alvations/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvations/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvations/subscriptions", "type": "User", "url": "https://api.github.com/users/alvations" }
[]
closed
false
null
[]
null
[ "I am also getting this error with this dataset: https://huggingface.co/datasets/google/IFEval", "Me too, didn't have this issue few hours ago.", "same observation. I even downgraded `datasets==2.20.0` and `huggingface_hub==0.23.5` leading me to believe it's an issue on the server.\r\n\r\nany known workarounds?\r\n", "Not a good idea, but commenting out the whole security block at `/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py` is a temporary workaround:\r\n\r\n```\r\n #security = kwargs.pop(\"security\", None)\r\n #if security is not None:\r\n # security = BlobSecurityInfo(\r\n # safe=security[\"safe\"], av_scan=security[\"avScan\"], pickle_import_scan=security[\"pickleImportScan\"]\r\n # )\r\n #self.security = security\r\n```\r\n", "Uploading a dataset to Huggingface also results in the following error in the Dataset Preview:\r\n```\r\nThe full dataset viewer is not available (click to read why). Only showing a preview of the rows.\r\n'safe'\r\nError code: UnexpectedError\r\nNeed help to make the dataset viewer work? Make sure to review [how to configure the dataset viewer](link1), and [open a discussion](link2) for direct support.\r\n```\r\nI used jsonl format for the dataset in this case. Same exact dataset worked previously.", "Same issue here. Even reverting to older version of `datasets` (e.g., `2.19.0`) results in same error:\r\n\r\n```python\r\n>>> datasets.load_dataset('allenai/ai2_arc', 'ARC-Easy')\r\n\r\nFile \"/Users/lucas/miniforge3/envs/oe-eval-internal/lib/python3.10/site-packages/huggingface_hub/hf_api.py\", line 3048, in <listcomp>\r\n RepoFile(**path_info) if path_info[\"type\"] == \"file\" else RepoFolder(**path_info)\r\n File \"/Users/lucas/miniforge3/envs/oe-eval-internal/lib/python3.10/site-packages/huggingface_hub/hf_api.py\", line 534, in __init__\r\n safe=security[\"safe\"], av_scan=security[\"avScan\"], pickle_import_scan=security[\"pickleImportScan\"]\r\nKeyError: 'safe'\r\n```", "i just had this issue a few minutes ago, crawled the internet and found nothing. came here to open an issue and found this. it is really frustrating. anyone found a fix?", "hi, me and my team have the same problem", "Yeah, this just suddenly appeared without client-side code changes, within the last hours.\r\n\r\nHere's a patch to fix the issue temporarily:\r\n```python\r\nimport huggingface_hub\r\ndef patched_repofolder_init(self, **kwargs):\r\n self.path = kwargs.pop(\"path\")\r\n self.tree_id = kwargs.pop(\"oid\")\r\n last_commit = kwargs.pop(\"lastCommit\", None) or kwargs.pop(\"last_commit\", None)\r\n if last_commit is not None:\r\n last_commit = huggingface_hub.hf_api.LastCommitInfo(\r\n oid=last_commit[\"id\"],\r\n title=last_commit[\"title\"],\r\n date=huggingface_hub.utils.parse_datetime(last_commit[\"date\"]),\r\n )\r\n self.last_commit = last_commit\r\n\r\n\r\ndef patched_repo_file_init(self, **kwargs):\r\n self.path = kwargs.pop(\"path\")\r\n self.size = kwargs.pop(\"size\")\r\n self.blob_id = kwargs.pop(\"oid\")\r\n lfs = kwargs.pop(\"lfs\", None)\r\n if lfs is not None:\r\n lfs = huggingface_hub.hf_api.BlobLfsInfo(size=lfs[\"size\"], sha256=lfs[\"oid\"], pointer_size=lfs[\"pointerSize\"])\r\n self.lfs = lfs\r\n last_commit = kwargs.pop(\"lastCommit\", None) or kwargs.pop(\"last_commit\", None)\r\n if last_commit is not None:\r\n last_commit = huggingface_hub.hf_api.LastCommitInfo(\r\n oid=last_commit[\"id\"],\r\n title=last_commit[\"title\"],\r\n date=huggingface_hub.utils.parse_datetime(last_commit[\"date\"]),\r\n )\r\n self.last_commit = last_commit\r\n self.security = None\r\n\r\n # backwards compatibility\r\n self.rfilename = self.path\r\n self.lastCommit = self.last_commit\r\n\r\n\r\nhuggingface_hub.hf_api.RepoFile.__init__ = patched_repo_file_init\r\nhuggingface_hub.hf_api.RepoFolder.__init__ = patched_repofolder_init\r\n```\r\n", "Also discussed here:\r\n/static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fi-keep-getting-keyerror-safe-when-loading-my-datasets%2F105669%2F1", "i'm thinking this should be a server issue, i mean no client code was changed on my end. so weird!", "As far as I can tell, this seems to be happening with **all** datasets that use RepoFolder (probably represents most datasets on huggingface, right?)", "> Here is a temporary fix for the problem: /static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fi-keep-getting-keyerror-safe-when-loading-my-datasets%2F105669%2F12%3Fu%3Dmlscientist%5Cr%5Cn%5Cr%5Cnthis doesn't seem to work!", "In case you are using Colab or similar, remember to restart your session after modyfing the hf_api.py file", "No need to modify the file directly, just monkey-patch.\r\n\r\nI'm now more sure that the error appears because the backend expects the api code to look like it does on `main`. If `RepoFile` and `RepoFolder` look about like they look on main, they work again.\r\n\r\nIf not fixed like above, a secondary error that will appear is \r\n```\r\n return self.info(path, expand_info=False)[\"type\"] == \"directory\"\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n\r\n \"tree_id\": path_info.tree_id,\r\n ^^^^^^^^^^^^^^^^^\r\nAttributeError: 'RepoFolder' object has no attribute 'tree_id'\r\n```\r\n", "We've reverted the deployment, please let us know if the issue still persists!", "thanks @muellerzr!" ]
2024-09-06T16:26:30
2024-09-06T21:14:14
2024-09-06T19:09:29
NONE
null
null
null
### Describe the bug The dataset loading was throwing some safety errors for this popular dataset `wmt14`. [in]: ``` import datasets # train_data = datasets.load_dataset("wmt14", "de-en", split="train") train_data = datasets.load_dataset("wmt14", "de-en", split="train") val_data = datasets.load_dataset("wmt14", "de-en", split="validation[:10%]") ``` [out]: ``` --------------------------------------------------------------------------- KeyError Traceback (most recent call last) [<ipython-input-9-445f0ecc4817>](https://localhost:8080/#) in <cell line: 4>() 2 3 # train_data = datasets.load_dataset("wmt14", "de-en", split="train") ----> 4 train_data = datasets.load_dataset("wmt14", "de-en", split="train") 5 val_data = datasets.load_dataset("wmt14", "de-en", split="validation[:10%]") 12 frames [/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py](https://localhost:8080/#) in __init__(self, **kwargs) 636 if security is not None: 637 security = BlobSecurityInfo( --> 638 safe=security["safe"], av_scan=security["avScan"], pickle_import_scan=security["pickleImportScan"] 639 ) 640 self.security = security KeyError: 'safe' ``` ### Steps to reproduce the bug See above. ### Expected behavior Dataset properly loaded. ### Environment info version: 2.21.0
{ "+1": 26, "-1": 0, "confused": 2, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 28, "url": "https://api.github.com/repos/huggingface/datasets/issues/7141/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7141/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7139
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7139/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7139/comments
https://api.github.com/repos/huggingface/datasets/issues/7139/events
https://github.com/huggingface/datasets/issues/7139
2,508,078,858
I_kwDODunzps6Vfj8K
7,139
Use load_dataset to load imagenet-1K But find a empty dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/105094708?v=4", "events_url": "https://api.github.com/users/fscdc/events{/privacy}", "followers_url": "https://api.github.com/users/fscdc/followers", "following_url": "https://api.github.com/users/fscdc/following{/other_user}", "gists_url": "https://api.github.com/users/fscdc/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fscdc", "id": 105094708, "login": "fscdc", "node_id": "U_kgDOBkOeNA", "organizations_url": "https://api.github.com/users/fscdc/orgs", "received_events_url": "https://api.github.com/users/fscdc/received_events", "repos_url": "https://api.github.com/users/fscdc/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fscdc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fscdc/subscriptions", "type": "User", "url": "https://api.github.com/users/fscdc" }
[]
open
false
null
[]
null
[]
2024-09-05T15:12:22
2024-09-05T15:12:22
null
NONE
null
null
null
### Describe the bug ```python def get_dataset(data_path, train_folder="train", val_folder="val"): traindir = os.path.join(data_path, train_folder) valdir = os.path.join(data_path, val_folder) def transform_val_examples(examples): transform = Compose([ Resize(256), CenterCrop(224), ToTensor(), ]) examples["image"] = [transform(image.convert("RGB")) for image in examples["image"]] return examples def transform_train_examples(examples): transform = Compose([ RandomResizedCrop(224), RandomHorizontalFlip(), ToTensor(), ]) examples["image"] = [transform(image.convert("RGB")) for image in examples["image"]] return examples # @fengsicheng: This way is very slow for big dataset like ImageNet-1K (but can pass the network problem using local dataset) # train_set = load_dataset("imagefolder", data_dir=traindir, num_proc=4) # test_set = load_dataset("imagefolder", data_dir=valdir, num_proc=4) train_set = load_dataset("imagenet-1K", split="train", trust_remote_code=True) test_set = load_dataset("imagenet-1K", split="test", trust_remote_code=True) print(train_set["label"]) train_set.set_transform(transform_train_examples) test_set.set_transform(transform_val_examples) return train_set, test_set ``` above the code, but output of the print is a list of None: <img width="952" alt="image" src="https://github.com/user-attachments/assets/c4e2fdd8-3b8f-481e-8f86-9bbeb49d79fb"> ### Steps to reproduce the bug 1. just ran the code 2. see the print ### Expected behavior I do not know how to fix this, can anyone provide help or something? It is hurry for me ### Environment info - `datasets` version: 2.21.0 - Platform: Linux-5.4.0-190-generic-x86_64-with-glibc2.31 - Python version: 3.10.14 - `huggingface_hub` version: 0.24.6 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7139/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7139/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7138
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7138/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7138/comments
https://api.github.com/repos/huggingface/datasets/issues/7138/events
https://github.com/huggingface/datasets/issues/7138
2,507,738,308
I_kwDODunzps6VeQzE
7,138
Cache only changed columns?
{ "avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4", "events_url": "https://api.github.com/users/Modexus/events{/privacy}", "followers_url": "https://api.github.com/users/Modexus/followers", "following_url": "https://api.github.com/users/Modexus/following{/other_user}", "gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Modexus", "id": 37351874, "login": "Modexus", "node_id": "MDQ6VXNlcjM3MzUxODc0", "organizations_url": "https://api.github.com/users/Modexus/orgs", "received_events_url": "https://api.github.com/users/Modexus/received_events", "repos_url": "https://api.github.com/users/Modexus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Modexus/subscriptions", "type": "User", "url": "https://api.github.com/users/Modexus" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "so I guess a workaround to this is to simply remove all columns except the ones to cache and then add them back with `concatenate_datasets(..., axis=1)`." ]
2024-09-05T12:56:47
2024-09-05T13:56:13
null
CONTRIBUTOR
null
null
null
### Feature request Cache only the actual changes to the dataset i.e. changed columns. ### Motivation I realized that caching actually saves the complete dataset again. This is especially problematic for image datasets if one wants to only change another column e.g. some metadata and then has to save 5 TB again. ### Your contribution Is this even viable in the current architecture of the package? I quickly looked into it and it seems it would require significant changes. I would spend some time looking into this but maybe somebody could help with the feasibility and some plan to implement before spending too much time on it?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7138/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7138/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7137
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7137/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7137/comments
https://api.github.com/repos/huggingface/datasets/issues/7137/events
https://github.com/huggingface/datasets/issues/7137
2,506,851,048
I_kwDODunzps6Va4Lo
7,137
dataset_info sequence format unexpected behavior in README.md YAML
{ "avatar_url": "https://avatars.githubusercontent.com/u/13214530?v=4", "events_url": "https://api.github.com/users/ain-soph/events{/privacy}", "followers_url": "https://api.github.com/users/ain-soph/followers", "following_url": "https://api.github.com/users/ain-soph/following{/other_user}", "gists_url": "https://api.github.com/users/ain-soph/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ain-soph", "id": 13214530, "login": "ain-soph", "node_id": "MDQ6VXNlcjEzMjE0NTMw", "organizations_url": "https://api.github.com/users/ain-soph/orgs", "received_events_url": "https://api.github.com/users/ain-soph/received_events", "repos_url": "https://api.github.com/users/ain-soph/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ain-soph/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ain-soph/subscriptions", "type": "User", "url": "https://api.github.com/users/ain-soph" }
[]
open
false
null
[]
null
[ "The non-sequence case works well (`dict[str, str]` instead of `list[dict[str, str]]`), which makes me believe it shall be a bug for `sequence` and my proposed behavior shall be expected.\r\n```\r\ndataset_info:\r\n- config_name: default\r\n features:\r\n - name: answers\r\n dtype:\r\n - name: text\r\n dtype: string\r\n - name: label\r\n dtype: string\r\n\r\n\r\n# data\r\n{\"answers\": {\"text\": \"ADDRESS\", \"label\": \"abc\"}}\r\n```" ]
2024-09-05T06:06:06
2024-09-05T06:10:56
null
NONE
null
null
null
### Describe the bug When working on `dataset_info` yaml, I find my data column with format `list[dict[str, str]]` cannot be coded correctly. My data looks like ``` {"answers":[{"text": "ADDRESS", "label": "abc"}]} ``` My `dataset_info` in README.md is: ``` dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string ``` **Error log**: ``` pyarrow.lib.ArrowNotImplementedError: Unsupported cast from list<item: struct<text: string, label: string>> to struct using function cast_struct ``` ## Potential Reason After some analysis, it turns out that my yaml config is requiring `dict[str, list[str]]` instead of `list[dict[str, str]]`. It would work if I change my data to ``` {"answers":{"text": ["ADDRESS"], "label": ["abc", "def"]}} ``` These following 2 different `dataset_info` are actually equivalent. ``` dataset_info: - config_name: default features: - name: answers dtype: - name: text sequence: string - name: label sequence: string dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string ``` ### Steps to reproduce the bug ``` # README.md --- dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string configs: - config_name: default default: true data_files: - split: train path: - "test.jsonl" --- # test.jsonl # expected but not working {"answers":[{"text": "ADDRESS", "label": "abc"}]} # unexpected but working {"answers":{"text": ["ADDRESS"], "label": ["abc", "def"]}} ``` ### Expected behavior ``` dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string ``` Should work on following data format: ``` {"answers":[{"text":"ADDRESS", "label": "abc"}]} ``` ### Environment info - `datasets` version: 2.21.0 - Platform: macOS-14.6.1-arm64-arm-64bit - Python version: 3.12.4 - `huggingface_hub` version: 0.24.5 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7137/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7137/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7136
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7136/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7136/comments
https://api.github.com/repos/huggingface/datasets/issues/7136/events
https://github.com/huggingface/datasets/pull/7136
2,506,115,857
PR_kwDODunzps56b9R-
7,136
Do not consume unnecessary memory during sharding
{ "avatar_url": "https://avatars.githubusercontent.com/u/12694897?v=4", "events_url": "https://api.github.com/users/janEbert/events{/privacy}", "followers_url": "https://api.github.com/users/janEbert/followers", "following_url": "https://api.github.com/users/janEbert/following{/other_user}", "gists_url": "https://api.github.com/users/janEbert/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/janEbert", "id": 12694897, "login": "janEbert", "node_id": "MDQ6VXNlcjEyNjk0ODk3", "organizations_url": "https://api.github.com/users/janEbert/orgs", "received_events_url": "https://api.github.com/users/janEbert/received_events", "repos_url": "https://api.github.com/users/janEbert/repos", "site_admin": false, "starred_url": "https://api.github.com/users/janEbert/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/janEbert/subscriptions", "type": "User", "url": "https://api.github.com/users/janEbert" }
[]
open
false
null
[]
null
[]
2024-09-04T19:26:06
2024-09-04T19:28:23
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7136.diff", "html_url": "https://github.com/huggingface/datasets/pull/7136", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7136.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7136" }
When sharding `IterableDataset`s, a temporary list is created that is then indexed. There is no need to create a temporary list of a potentially very large step/world size, with standard `islice` functionality, so we avoid it. ```shell pytest tests/test_distributed.py -k iterable ``` Runs successfully.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7136/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7136/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7135
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7135/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7135/comments
https://api.github.com/repos/huggingface/datasets/issues/7135/events
https://github.com/huggingface/datasets/issues/7135
2,503,318,328
I_kwDODunzps6VNZs4
7,135
Bug: Type Mismatch in Dataset Mapping
{ "avatar_url": "https://avatars.githubusercontent.com/u/45327989?v=4", "events_url": "https://api.github.com/users/marko1616/events{/privacy}", "followers_url": "https://api.github.com/users/marko1616/followers", "following_url": "https://api.github.com/users/marko1616/following{/other_user}", "gists_url": "https://api.github.com/users/marko1616/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/marko1616", "id": 45327989, "login": "marko1616", "node_id": "MDQ6VXNlcjQ1MzI3OTg5", "organizations_url": "https://api.github.com/users/marko1616/orgs", "received_events_url": "https://api.github.com/users/marko1616/received_events", "repos_url": "https://api.github.com/users/marko1616/repos", "site_admin": false, "starred_url": "https://api.github.com/users/marko1616/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/marko1616/subscriptions", "type": "User", "url": "https://api.github.com/users/marko1616" }
[]
open
false
null
[]
null
[ "By the way, following code is working. This show the inconsistentcy.\r\n```python\r\nfrom datasets import Dataset\r\n\r\n# Original data\r\ndata = {\r\n 'text': ['Hello', 'world', 'this', 'is', 'a', 'test'],\r\n 'label': [0, 1, 0, 1, 1, 0]\r\n}\r\n\r\n# Creating a Dataset object\r\ndataset = Dataset.from_dict(data)\r\n\r\n# Mapping function to convert label to string\r\ndef add_one(example):\r\n example['label'] += 1\r\n return example\r\n\r\n# Applying the mapping function\r\ndataset = dataset.map(add_one)\r\n\r\n# Iterating over the dataset to show results\r\nfor item in dataset:\r\n print(item)\r\n print(type(item['label']))\r\n```", "Hello, thanks for submitting an issue.\r\n\r\nFWIU, the issue is that `datasets` tries to limit casting [ref](https://github.com/huggingface/datasets/blob/ca58154bba185c1916ca5eea4e33b27258642044/src/datasets/arrow_writer.py#L526) and as such will try to convert your strings back to int to preserve the `Features`. \r\n\r\nA quick solution would be to use `dataset.cast` or to supply `features` when calling `dataset.map`.\r\n\r\n\r\n```python\r\n# using Dataset.cast\r\ndataset = dataset.cast_column('label', Value('string'))\r\n\r\n# Alternative, supply features\r\ndataset = dataset.map(add_one, features=Features({**dataset.features, 'label': Value('string')}))\r\n```", "LGTM! Thanks for the review.\r\n\r\nJust to clarify, is this intended behavior, or is it something that might be addressed in a future update?\r\nI'll leave this issue open until it's fixed if this is not the intended behavior." ]
2024-09-03T16:37:01
2024-09-05T14:09:05
null
NONE
null
null
null
# Issue: Type Mismatch in Dataset Mapping ## Description There is an issue with the `map` function in the `datasets` library where the mapped output does not reflect the expected type change. After applying a mapping function to convert an integer label to a string, the resulting type remains an integer instead of a string. ## Reproduction Code Below is a Python script that demonstrates the problem: ```python from datasets import Dataset # Original data data = { 'text': ['Hello', 'world', 'this', 'is', 'a', 'test'], 'label': [0, 1, 0, 1, 1, 0] } # Creating a Dataset object dataset = Dataset.from_dict(data) # Mapping function to convert label to string def add_one(example): example['label'] = str(example['label']) return example # Applying the mapping function dataset = dataset.map(add_one) # Iterating over the dataset to show results for item in dataset: print(item) print(type(item['label'])) ``` ## Expected Output After applying the mapping function, the expected output should have the `label` field as strings: ```plaintext {'text': 'Hello', 'label': '0'} <class 'str'> {'text': 'world', 'label': '1'} <class 'str'> {'text': 'this', 'label': '0'} <class 'str'> {'text': 'is', 'label': '1'} <class 'str'> {'text': 'a', 'label': '1'} <class 'str'> {'text': 'test', 'label': '0'} <class 'str'> ``` ## Actual Output The actual output still shows the `label` field values as integers: ```plaintext {'text': 'Hello', 'label': 0} <class 'int'> {'text': 'world', 'label': 1} <class 'int'> {'text': 'this', 'label': 0} <class 'int'> {'text': 'is', 'label': 1} <class 'int'> {'text': 'a', 'label': 1} <class 'int'> {'text': 'test', 'label': 0} <class 'int'> ``` ## Why necessary In the case of Image process we often need to convert PIL to tensor with same column name. Thank for every dev who review this issue. 🤗
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7135/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7135/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7134
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7134/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7134/comments
https://api.github.com/repos/huggingface/datasets/issues/7134/events
https://github.com/huggingface/datasets/issues/7134
2,499,484,041
I_kwDODunzps6U-xmJ
7,134
Attempting to return a rank 3 grayscale image from dataset.map results in extreme slowdown
{ "avatar_url": "https://avatars.githubusercontent.com/u/46371349?v=4", "events_url": "https://api.github.com/users/navidmafi/events{/privacy}", "followers_url": "https://api.github.com/users/navidmafi/followers", "following_url": "https://api.github.com/users/navidmafi/following{/other_user}", "gists_url": "https://api.github.com/users/navidmafi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/navidmafi", "id": 46371349, "login": "navidmafi", "node_id": "MDQ6VXNlcjQ2MzcxMzQ5", "organizations_url": "https://api.github.com/users/navidmafi/orgs", "received_events_url": "https://api.github.com/users/navidmafi/received_events", "repos_url": "https://api.github.com/users/navidmafi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/navidmafi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/navidmafi/subscriptions", "type": "User", "url": "https://api.github.com/users/navidmafi" }
[]
open
false
null
[]
null
[]
2024-09-01T13:55:41
2024-09-02T10:34:53
null
NONE
null
null
null
### Describe the bug Background: Digital images are often represented as a (Height, Width, Channel) tensor. This is the same for huggingface datasets that contain images. These images are loaded in Pillow containers which offer, for example, the `.convert` method. I can convert an image from a (H,W,3) shape to a grayscale (H,W) image and I have no problems with this. But when attempting to return a (H,W,1) shaped matrix from a map function, it never completes and sometimes even results in an OOM from the OS. I've used various methods to expand a (H,W) shaped array to a (H,W,1) array. But they all resulted in extremely long map operations consuming a lot of CPU and RAM. ### Steps to reproduce the bug Below is a minimal example using two methods to get the desired output. Both of which don't work ```py import tensorflow as tf import datasets import numpy as np ds = datasets.load_dataset("project-sloth/captcha-images") to_gray_pillow = lambda sample: {'image': np.expand_dims(sample['image'].convert("L"), axis=-1)} ds_gray = ds.map(to_gray_pillow) # Alternatively ds = datasets.load_dataset("project-sloth/captcha-images").with_format("tensorflow") to_gray_tf = lambda sample: {'image': tf.expand_dims(tf.image.rgb_to_grayscale(sample['image']), axis=-1)} ds_gray = ds.map(to_gray_tf) ``` ### Expected behavior I expect the map operation to complete and return a new dataset containing grayscale images in a (H,W,1) shape. ### Environment info datasets 2.21.0 python tested with both 3.11 and 3.12 host os : linux
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7134/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7134/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7133
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7133/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7133/comments
https://api.github.com/repos/huggingface/datasets/issues/7133/events
https://github.com/huggingface/datasets/pull/7133
2,496,474,495
PR_kwDODunzps557zng
7,133
remove filecheck to enable symlinks
{ "avatar_url": "https://avatars.githubusercontent.com/u/23191892?v=4", "events_url": "https://api.github.com/users/fschlatt/events{/privacy}", "followers_url": "https://api.github.com/users/fschlatt/followers", "following_url": "https://api.github.com/users/fschlatt/following{/other_user}", "gists_url": "https://api.github.com/users/fschlatt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fschlatt", "id": 23191892, "login": "fschlatt", "node_id": "MDQ6VXNlcjIzMTkxODky", "organizations_url": "https://api.github.com/users/fschlatt/orgs", "received_events_url": "https://api.github.com/users/fschlatt/received_events", "repos_url": "https://api.github.com/users/fschlatt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fschlatt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fschlatt/subscriptions", "type": "User", "url": "https://api.github.com/users/fschlatt" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](/static-proxy?url=https%3A%2F%2Fmoon-ci-docs.huggingface.co%2Fdocs%2Fdatasets%2Fpr_7133). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "The CI is failing, looks like it breaks imagefolder loading.\r\n\r\nI just checked fsspec internals and maybe instead we can detect symlink by checking `islink` and `size` to make sure it's a file\r\n```python\r\nif info[\"type\"] == \"file\" or (info.get(\"islink\") and info[\"size\"])\r\n```\r\n", "hmm actually `size` doesn't seem to filter symlinked directories, we need another way", "Does fsspec perhaps allow resolving symlinks? Something like https://docs.python.org/3/library/pathlib.html#pathlib.Path.resolve", "there is `info[\"destination\"]` in case of a symlink, so maybe\r\n\r\n\r\n```python\r\nif info[\"type\"] == \"file\" or (info.get(\"islink\") and info.get(\"destination\") and os.path.isfile(info[\"destination\"]))\r\n```" ]
2024-08-30T07:36:56
2024-09-04T12:46:56
null
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7133.diff", "html_url": "https://github.com/huggingface/datasets/pull/7133", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7133.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7133" }
Enables streaming from local symlinks #7083 @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7133/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7133/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7132
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7132/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7132/comments
https://api.github.com/repos/huggingface/datasets/issues/7132/events
https://github.com/huggingface/datasets/pull/7132
2,494,510,464
PR_kwDODunzps551k1C
7,132
Fix data file module inference
{ "avatar_url": "https://avatars.githubusercontent.com/u/1714412?v=4", "events_url": "https://api.github.com/users/HennerM/events{/privacy}", "followers_url": "https://api.github.com/users/HennerM/followers", "following_url": "https://api.github.com/users/HennerM/following{/other_user}", "gists_url": "https://api.github.com/users/HennerM/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HennerM", "id": 1714412, "login": "HennerM", "node_id": "MDQ6VXNlcjE3MTQ0MTI=", "organizations_url": "https://api.github.com/users/HennerM/orgs", "received_events_url": "https://api.github.com/users/HennerM/received_events", "repos_url": "https://api.github.com/users/HennerM/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HennerM/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HennerM/subscriptions", "type": "User", "url": "https://api.github.com/users/HennerM" }
[]
open
false
null
[]
null
[ "Hi ! datasets saved using `save_to_disk` should be loaded with `load_from_disk` ;)", "It is convienient to just pass in a path to a local dataset or one from the hub and use the same function to load it. Is it not possible to get this fix merged in to allow this? ", "We can modify `save_to_disk` to write the dataset in a structure supported by the Hub in this case, it's kind of a legacy function anyway" ]
2024-08-29T13:48:16
2024-09-02T19:52:13
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7132.diff", "html_url": "https://github.com/huggingface/datasets/pull/7132", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7132.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7132" }
I saved a dataset with two splits to disk with `DatasetDict.save_to_disk`. The train is bigger and ended up in 10 shards, whereas the test split only resulted in 1 split. Now when trying to load the dataset, an error is raised that not all splits have the same data format: > ValueError: Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('test'): ('json', {})} This is not expected because both splits are saved as arrow files. I did some debugging and found that this is the case because the list of data_files includes a `state.json` file. Now this means for train split I get 10 ".arrow" and 1 ".json" file. Since datasets picks based on the most common extension this is correctly inferred as "arrow". In the test split, there is 1 .arrow and 1 .json file. Given the function description: > It picks the module based on the most common file extension. In case of a draw ".parquet" is the favorite, and then alphabetical order. This is not quite true though, because in a tie the extensions are actually based on reverse-alphabetical order: ``` for (ext, _), _ in sorted(extensions_counter.items(), key=sort_key, *reverse=True*): ``` Which thus leads to the module wrongly inferred as "json", whereas it should be "arrow", matching the train split. I first thought about adding "state.json" in the list of excluded files for the inference: https://github.com/huggingface/datasets/blob/main/src/datasets/load.py#L513. However, I think from digging into the code it looks like the right thing to do is to exclude it in the list of `data_files` to start with, because it is more of a metadata than a data file.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7132/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7132/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7129
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7129/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7129/comments
https://api.github.com/repos/huggingface/datasets/issues/7129/events
https://github.com/huggingface/datasets/issues/7129
2,491,942,650
I_kwDODunzps6UiAb6
7,129
Inconsistent output in documentation example: `num_classes` not displayed in `ClassLabel` output
{ "avatar_url": "https://avatars.githubusercontent.com/u/17179696?v=4", "events_url": "https://api.github.com/users/sergiopaniego/events{/privacy}", "followers_url": "https://api.github.com/users/sergiopaniego/followers", "following_url": "https://api.github.com/users/sergiopaniego/following{/other_user}", "gists_url": "https://api.github.com/users/sergiopaniego/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sergiopaniego", "id": 17179696, "login": "sergiopaniego", "node_id": "MDQ6VXNlcjE3MTc5Njk2", "organizations_url": "https://api.github.com/users/sergiopaniego/orgs", "received_events_url": "https://api.github.com/users/sergiopaniego/received_events", "repos_url": "https://api.github.com/users/sergiopaniego/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sergiopaniego/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sergiopaniego/subscriptions", "type": "User", "url": "https://api.github.com/users/sergiopaniego" }
[]
open
false
null
[]
null
[]
2024-08-28T12:27:48
2024-08-28T12:27:48
null
NONE
null
null
null
In the documentation for [ClassLabel](https://huggingface.co/docs/datasets/v2.21.0/en/package_reference/main_classes#datasets.ClassLabel), there is an example of usage with the following code: ```` from datasets import Features features = Features({'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'])}) features ```` which expects to output (as stated in the documentation): ```` {'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'], id=None)} ```` but it generates the following ```` {'label': ClassLabel(names=['bad', 'ok', 'good'], id=None)} ```` If my understanding is correct, this happens because although num_classes is used during the init of the object, it is afterward ignored: https://github.com/huggingface/datasets/blob/be5cff059a2a5b89d7a97bc04739c4919ab8089f/src/datasets/features/features.py#L975 I would like to work on this issue if this is something needed 😄
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7129/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7129/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7128
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7128/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7128/comments
https://api.github.com/repos/huggingface/datasets/issues/7128/events
https://github.com/huggingface/datasets/issues/7128
2,490,274,775
I_kwDODunzps6UbpPX
7,128
Filter Large Dataset Entry by Entry
{ "avatar_url": "https://avatars.githubusercontent.com/u/36057290?v=4", "events_url": "https://api.github.com/users/QiyaoWei/events{/privacy}", "followers_url": "https://api.github.com/users/QiyaoWei/followers", "following_url": "https://api.github.com/users/QiyaoWei/following{/other_user}", "gists_url": "https://api.github.com/users/QiyaoWei/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/QiyaoWei", "id": 36057290, "login": "QiyaoWei", "node_id": "MDQ6VXNlcjM2MDU3Mjkw", "organizations_url": "https://api.github.com/users/QiyaoWei/orgs", "received_events_url": "https://api.github.com/users/QiyaoWei/received_events", "repos_url": "https://api.github.com/users/QiyaoWei/repos", "site_admin": false, "starred_url": "https://api.github.com/users/QiyaoWei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/QiyaoWei/subscriptions", "type": "User", "url": "https://api.github.com/users/QiyaoWei" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-08-27T20:31:09
2024-08-27T20:31:09
null
NONE
null
null
null
### Feature request I am not sure if this is a new feature, but I wanted to post this problem here, and hear if others have ways of optimizing and speeding up this process. Let's say I have a really large dataset that I cannot load into memory. At this point, I am only aware of `streaming=True` to load the dataset. Now, the dataset consists of many tables. Ideally, I would want to have some simple filtering criterion, such that I only see the "good" tables. Here is an example of what the code might look like: ``` dataset = load_dataset( "really-large-dataset", streaming=True ) # And let's say we process the dataset bit by bit because we want intermediate results dataset = islice(dataset, 10000) # Define a function to filter the data def filter_function(table): if some_condition: return True else: return False # Use the filter function on your dataset filtered_dataset = (ex for ex in dataset if filter_function(ex)) ``` And then I work on the processed dataset, which would be magnitudes faster than working on the original. I would love to hear if the problem setup + solution makes sense to people, and if anyone has suggestions! ### Motivation See description above ### Your contribution Happy to make PR if this is a new feature
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7128/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7128/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7127
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7127/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7127/comments
https://api.github.com/repos/huggingface/datasets/issues/7127/events
https://github.com/huggingface/datasets/issues/7127
2,486,524,966
I_kwDODunzps6UNVwm
7,127
Caching shuffles by np.random.Generator results in unintiutive behavior
{ "avatar_url": "https://avatars.githubusercontent.com/u/11832922?v=4", "events_url": "https://api.github.com/users/el-hult/events{/privacy}", "followers_url": "https://api.github.com/users/el-hult/followers", "following_url": "https://api.github.com/users/el-hult/following{/other_user}", "gists_url": "https://api.github.com/users/el-hult/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/el-hult", "id": 11832922, "login": "el-hult", "node_id": "MDQ6VXNlcjExODMyOTIy", "organizations_url": "https://api.github.com/users/el-hult/orgs", "received_events_url": "https://api.github.com/users/el-hult/received_events", "repos_url": "https://api.github.com/users/el-hult/repos", "site_admin": false, "starred_url": "https://api.github.com/users/el-hult/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/el-hult/subscriptions", "type": "User", "url": "https://api.github.com/users/el-hult" }
[]
open
false
null
[]
null
[ "I first thought this was a mistake of mine, and also posted on stack overflow. https://stackoverflow.com/questions/78913797/iterating-a-huggingface-dataset-from-disk-using-generator-seems-broken-how-to-d \r\n\r\nIt seems to me the issue is the caching step in \r\n\r\nhttps://github.com/huggingface/datasets/blob/be5cff059a2a5b89d7a97bc04739c4919ab8089f/src/datasets/arrow_dataset.py#L4306-L4316\r\n\r\nbecause the shuffle happens after checking the cache, the rng state won't advance if the cache is used. This is VERY confusing. Also not documented.\r\n\r\nMy proposal is that you remove the API for using a Generator, and only keep the seed-based API since that is functional and cache-compatible." ]
2024-08-26T10:29:48
2024-08-26T10:35:57
null
NONE
null
null
null
### Describe the bug Create a dataset. Save it to disk. Load from disk. Shuffle, usning a `np.random.Generator`. Iterate. Shuffle again. Iterate. The iterates are different since the supplied np.random.Generator has progressed between the shuffles. Load dataset from disk again. Shuffle and Iterate. See same result as before. Shuffle and iterate, and this time it does not have the same shuffling as ion previous run. The motivation is I have a deep learning loop with ``` for epoch in range(10): for batch in dataset.shuffle(generator=generator).iter(batch_size=32): .... # do stuff ``` where I want a new shuffling at every epoch. Instead I get the same shuffling. ### Steps to reproduce the bug Run the code below two times. ```python import datasets import numpy as np generator = np.random.default_rng(0) ds = datasets.Dataset.from_dict(mapping={"X":range(1000)}) ds.save_to_disk("tmp") print("First loop: ", end="") for _ in range(10): print(next(ds.shuffle(generator=generator).iter(batch_size=1))['X'], end=", ") print("") print("Second loop: ", end="") ds = datasets.Dataset.load_from_disk("tmp") for _ in range(10): print(next(ds.shuffle(generator=generator).iter(batch_size=1))['X'], end=", ") print("") ``` The output is: ``` $ python main.py Saving the dataset (1/1 shards): 100%|███████████████████████████████████████████████████████████████████████| 1000/1000 [00:00<00:00, 495019.95 examples/s] First loop: 459, 739, 72, 943, 241, 181, 845, 830, 896, 334, Second loop: 741, 847, 944, 795, 483, 842, 717, 865, 231, 840, $ python main.py Saving the dataset (1/1 shards): 100%|████████████████████████████████████████████████████████████████████████| 1000/1000 [00:00<00:00, 22243.40 examples/s] First loop: 459, 739, 72, 943, 241, 181, 845, 830, 896, 334, Second loop: 741, 741, 741, 741, 741, 741, 741, 741, 741, 741, ``` The second loop, on the second run, only spits out "741, 741, 741...." which is *not* the desired output ### Expected behavior I want the dataset to shuffle at every epoch since I provide it with a generator for shuffling. ### Environment info Datasets version 2.21.0 Ubuntu linux.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7127/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7127/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7126
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7126/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7126/comments
https://api.github.com/repos/huggingface/datasets/issues/7126/events
https://github.com/huggingface/datasets/pull/7126
2,485,939,495
PR_kwDODunzps55Y-Ws
7,126
Disable implicit token in CI
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](/static-proxy?url=https%3A%2F%2Fmoon-ci-docs.huggingface.co%2Fdocs%2Fdatasets%2Fpr_7126). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005232 / 0.011353 (-0.006121) | 0.003428 / 0.011008 (-0.007580) | 0.062673 / 0.038508 (0.024164) | 0.030111 / 0.023109 (0.007002) | 0.238017 / 0.275898 (-0.037881) | 0.262655 / 0.323480 (-0.060825) | 0.003015 / 0.007986 (-0.004971) | 0.002664 / 0.004328 (-0.001665) | 0.050010 / 0.004250 (0.045759) | 0.045620 / 0.037052 (0.008567) | 0.251800 / 0.258489 (-0.006689) | 0.278829 / 0.293841 (-0.015011) | 0.029838 / 0.128546 (-0.098709) | 0.011703 / 0.075646 (-0.063943) | 0.204503 / 0.419271 (-0.214768) | 0.036173 / 0.043533 (-0.007359) | 0.242850 / 0.255139 (-0.012289) | 0.263811 / 0.283200 (-0.019389) | 0.019027 / 0.141683 (-0.122656) | 1.168028 / 1.452155 (-0.284126) | 1.208975 / 1.492716 (-0.283742) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091309 / 0.018006 (0.073303) | 0.299583 / 0.000490 (0.299093) | 0.000215 / 0.000200 (0.000015) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018451 / 0.037411 (-0.018960) | 0.062516 / 0.014526 (0.047991) | 0.073983 / 0.176557 (-0.102573) | 0.120952 / 0.737135 (-0.616184) | 0.075275 / 0.296338 (-0.221063) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286870 / 0.215209 (0.071661) | 2.810498 / 2.077655 (0.732843) | 1.490028 / 1.504120 (-0.014092) | 1.362249 / 1.541195 (-0.178946) | 1.368939 / 1.468490 (-0.099551) | 0.736643 / 4.584777 (-3.848134) | 2.414237 / 3.745712 (-1.331475) | 2.898911 / 5.269862 (-2.370951) | 1.840630 / 4.565676 (-2.725047) | 0.077872 / 0.424275 (-0.346403) | 0.005087 / 0.007607 (-0.002520) | 0.337054 / 0.226044 (0.111009) | 3.390734 / 2.268929 (1.121806) | 1.844174 / 55.444624 (-53.600451) | 1.532741 / 6.876477 (-5.343736) | 1.551650 / 2.142072 (-0.590422) | 0.778642 / 4.805227 (-4.026585) | 0.131899 / 6.500664 (-6.368765) | 0.041801 / 0.075469 (-0.033668) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.958362 / 1.841788 (-0.883425) | 11.323330 / 8.074308 (3.249022) | 9.396199 / 10.191392 (-0.795193) | 0.131154 / 0.680424 (-0.549270) | 0.014705 / 0.534201 (-0.519496) | 0.302424 / 0.579283 (-0.276859) | 0.261870 / 0.434364 (-0.172494) | 0.340788 / 0.540337 (-0.199550) | 0.433360 / 1.386936 (-0.953576) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005571 / 0.011353 (-0.005782) | 0.003388 / 0.011008 (-0.007621) | 0.050366 / 0.038508 (0.011858) | 0.032633 / 0.023109 (0.009524) | 0.261847 / 0.275898 (-0.014051) | 0.292197 / 0.323480 (-0.031283) | 0.005070 / 0.007986 (-0.002916) | 0.002753 / 0.004328 (-0.001575) | 0.048613 / 0.004250 (0.044363) | 0.040272 / 0.037052 (0.003219) | 0.275441 / 0.258489 (0.016952) | 0.309175 / 0.293841 (0.015334) | 0.032403 / 0.128546 (-0.096143) | 0.011734 / 0.075646 (-0.063912) | 0.059532 / 0.419271 (-0.359740) | 0.033886 / 0.043533 (-0.009647) | 0.263453 / 0.255139 (0.008314) | 0.281997 / 0.283200 (-0.001203) | 0.018522 / 0.141683 (-0.123161) | 1.150364 / 1.452155 (-0.301791) | 1.204090 / 1.492716 (-0.288627) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093129 / 0.018006 (0.075123) | 0.303691 / 0.000490 (0.303201) | 0.000231 / 0.000200 (0.000031) | 0.000062 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022084 / 0.037411 (-0.015327) | 0.076354 / 0.014526 (0.061828) | 0.087710 / 0.176557 (-0.088847) | 0.128907 / 0.737135 (-0.608228) | 0.088603 / 0.296338 (-0.207735) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301161 / 0.215209 (0.085952) | 2.954780 / 2.077655 (0.877125) | 1.601366 / 1.504120 (0.097246) | 1.477225 / 1.541195 (-0.063970) | 1.482355 / 1.468490 (0.013865) | 0.722461 / 4.584777 (-3.862315) | 0.981439 / 3.745712 (-2.764273) | 2.927006 / 5.269862 (-2.342856) | 1.884444 / 4.565676 (-2.681233) | 0.079044 / 0.424275 (-0.345231) | 0.005530 / 0.007607 (-0.002077) | 0.347082 / 0.226044 (0.121037) | 3.491984 / 2.268929 (1.223056) | 1.944317 / 55.444624 (-53.500307) | 1.645792 / 6.876477 (-5.230685) | 1.649506 / 2.142072 (-0.492567) | 0.800822 / 4.805227 (-4.004405) | 0.133936 / 6.500664 (-6.366729) | 0.041198 / 0.075469 (-0.034271) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.029764 / 1.841788 (-0.812024) | 11.928840 / 8.074308 (3.854532) | 10.021390 / 10.191392 (-0.170002) | 0.141608 / 0.680424 (-0.538816) | 0.014921 / 0.534201 (-0.519280) | 0.302050 / 0.579283 (-0.277233) | 0.124151 / 0.434364 (-0.310213) | 0.347143 / 0.540337 (-0.193195) | 0.467649 / 1.386936 (-0.919287) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e4c87a6bf57b3aa094c28895c5b89b91b3509c58 \"CML watermark\")\n" ]
2024-08-26T05:29:46
2024-08-26T06:05:01
2024-08-26T05:59:15
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7126.diff", "html_url": "https://github.com/huggingface/datasets/pull/7126", "merged_at": "2024-08-26T05:59:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/7126.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7126" }
Disable implicit token in CI. This PR allows running CI tests locally without implicitly using the local user HF token. For example, run locally the tests in: - #7124
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7126/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7126/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7125
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7125/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7125/comments
https://api.github.com/repos/huggingface/datasets/issues/7125/events
https://github.com/huggingface/datasets/pull/7125
2,485,912,246
PR_kwDODunzps55Y4TM
7,125
Fix wrong SHA in CI tests of HubDatasetModuleFactoryWithParquetExport
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](/static-proxy?url=https%3A%2F%2Fmoon-ci-docs.huggingface.co%2Fdocs%2Fdatasets%2Fpr_7125). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005741 / 0.011353 (-0.005612) | 0.004011 / 0.011008 (-0.006998) | 0.063962 / 0.038508 (0.025454) | 0.031512 / 0.023109 (0.008403) | 0.242249 / 0.275898 (-0.033649) | 0.269601 / 0.323480 (-0.053879) | 0.004502 / 0.007986 (-0.003483) | 0.002835 / 0.004328 (-0.001494) | 0.049878 / 0.004250 (0.045628) | 0.048012 / 0.037052 (0.010959) | 0.250454 / 0.258489 (-0.008035) | 0.283266 / 0.293841 (-0.010575) | 0.030752 / 0.128546 (-0.097794) | 0.012655 / 0.075646 (-0.062991) | 0.211043 / 0.419271 (-0.208229) | 0.037165 / 0.043533 (-0.006367) | 0.246815 / 0.255139 (-0.008324) | 0.264306 / 0.283200 (-0.018893) | 0.018343 / 0.141683 (-0.123340) | 1.140452 / 1.452155 (-0.311702) | 1.214849 / 1.492716 (-0.277867) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098048 / 0.018006 (0.080042) | 0.292201 / 0.000490 (0.291712) | 0.000217 / 0.000200 (0.000017) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018732 / 0.037411 (-0.018679) | 0.062887 / 0.014526 (0.048361) | 0.074353 / 0.176557 (-0.102204) | 0.120794 / 0.737135 (-0.616341) | 0.077066 / 0.296338 (-0.219272) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.276335 / 0.215209 (0.061126) | 2.722905 / 2.077655 (0.645250) | 1.423080 / 1.504120 (-0.081040) | 1.305443 / 1.541195 (-0.235752) | 1.342142 / 1.468490 (-0.126348) | 0.741899 / 4.584777 (-3.842878) | 2.407567 / 3.745712 (-1.338145) | 3.070263 / 5.269862 (-2.199599) | 1.935732 / 4.565676 (-2.629944) | 0.081371 / 0.424275 (-0.342904) | 0.005207 / 0.007607 (-0.002401) | 0.328988 / 0.226044 (0.102943) | 3.240771 / 2.268929 (0.971842) | 1.801028 / 55.444624 (-53.643597) | 1.490593 / 6.876477 (-5.385884) | 1.521317 / 2.142072 (-0.620756) | 0.794051 / 4.805227 (-4.011176) | 0.136398 / 6.500664 (-6.364266) | 0.042902 / 0.075469 (-0.032567) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.974186 / 1.841788 (-0.867602) | 12.280011 / 8.074308 (4.205703) | 9.453389 / 10.191392 (-0.738003) | 0.132627 / 0.680424 (-0.547797) | 0.014608 / 0.534201 (-0.519593) | 0.309298 / 0.579283 (-0.269985) | 0.275911 / 0.434364 (-0.158452) | 0.348261 / 0.540337 (-0.192077) | 0.439031 / 1.386936 (-0.947905) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006248 / 0.011353 (-0.005105) | 0.004369 / 0.011008 (-0.006639) | 0.050588 / 0.038508 (0.012080) | 0.032880 / 0.023109 (0.009771) | 0.268979 / 0.275898 (-0.006919) | 0.294714 / 0.323480 (-0.028766) | 0.004518 / 0.007986 (-0.003467) | 0.002995 / 0.004328 (-0.001333) | 0.048776 / 0.004250 (0.044525) | 0.041696 / 0.037052 (0.004644) | 0.283413 / 0.258489 (0.024924) | 0.322137 / 0.293841 (0.028296) | 0.032809 / 0.128546 (-0.095737) | 0.012559 / 0.075646 (-0.063087) | 0.060456 / 0.419271 (-0.358815) | 0.034564 / 0.043533 (-0.008968) | 0.267263 / 0.255139 (0.012124) | 0.292633 / 0.283200 (0.009434) | 0.019011 / 0.141683 (-0.122672) | 1.199820 / 1.452155 (-0.252335) | 1.251829 / 1.492716 (-0.240887) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097615 / 0.018006 (0.079609) | 0.313764 / 0.000490 (0.313274) | 0.000220 / 0.000200 (0.000020) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024365 / 0.037411 (-0.013046) | 0.089301 / 0.014526 (0.074775) | 0.092964 / 0.176557 (-0.083592) | 0.131724 / 0.737135 (-0.605412) | 0.094792 / 0.296338 (-0.201546) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.305119 / 0.215209 (0.089910) | 2.932192 / 2.077655 (0.854537) | 1.610573 / 1.504120 (0.106453) | 1.487502 / 1.541195 (-0.053693) | 1.533300 / 1.468490 (0.064810) | 0.717223 / 4.584777 (-3.867554) | 0.964402 / 3.745712 (-2.781310) | 3.111398 / 5.269862 (-2.158464) | 1.957942 / 4.565676 (-2.607734) | 0.079160 / 0.424275 (-0.345116) | 0.005639 / 0.007607 (-0.001968) | 0.358971 / 0.226044 (0.132927) | 3.564401 / 2.268929 (1.295472) | 2.043079 / 55.444624 (-53.401546) | 1.742681 / 6.876477 (-5.133795) | 1.784758 / 2.142072 (-0.357314) | 0.798508 / 4.805227 (-4.006719) | 0.133905 / 6.500664 (-6.366759) | 0.043008 / 0.075469 (-0.032461) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.031715 / 1.841788 (-0.810073) | 13.374312 / 8.074308 (5.300004) | 10.789098 / 10.191392 (0.597706) | 0.133663 / 0.680424 (-0.546761) | 0.016692 / 0.534201 (-0.517509) | 0.304716 / 0.579283 (-0.274567) | 0.129074 / 0.434364 (-0.305290) | 0.346440 / 0.540337 (-0.193897) | 0.464593 / 1.386936 (-0.922343) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#880a52cea337032d39e90e6f0dcc55198a75a285 \"CML watermark\")\n" ]
2024-08-26T05:09:35
2024-08-26T05:33:15
2024-08-26T05:27:09
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7125.diff", "html_url": "https://github.com/huggingface/datasets/pull/7125", "merged_at": "2024-08-26T05:27:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/7125.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7125" }
Fix wrong SHA in CI tests of HubDatasetModuleFactoryWithParquetExport.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7125/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7125/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7124
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7124/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7124/comments
https://api.github.com/repos/huggingface/datasets/issues/7124/events
https://github.com/huggingface/datasets/pull/7124
2,485,890,442
PR_kwDODunzps55YzWr
7,124
Test get_dataset_config_info with non-existing/gated/private dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](/static-proxy?url=https%3A%2F%2Fmoon-ci-docs.huggingface.co%2Fdocs%2Fdatasets%2Fpr_7124). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005339 / 0.011353 (-0.006014) | 0.003640 / 0.011008 (-0.007368) | 0.064012 / 0.038508 (0.025504) | 0.030424 / 0.023109 (0.007314) | 0.239966 / 0.275898 (-0.035932) | 0.264361 / 0.323480 (-0.059119) | 0.004247 / 0.007986 (-0.003739) | 0.002847 / 0.004328 (-0.001481) | 0.049640 / 0.004250 (0.045390) | 0.044903 / 0.037052 (0.007851) | 0.250174 / 0.258489 (-0.008315) | 0.281423 / 0.293841 (-0.012418) | 0.029419 / 0.128546 (-0.099127) | 0.012221 / 0.075646 (-0.063426) | 0.205907 / 0.419271 (-0.213365) | 0.036654 / 0.043533 (-0.006878) | 0.245805 / 0.255139 (-0.009334) | 0.265029 / 0.283200 (-0.018170) | 0.018081 / 0.141683 (-0.123602) | 1.113831 / 1.452155 (-0.338324) | 1.156443 / 1.492716 (-0.336274) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.134389 / 0.018006 (0.116383) | 0.300637 / 0.000490 (0.300147) | 0.000240 / 0.000200 (0.000040) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019111 / 0.037411 (-0.018300) | 0.062585 / 0.014526 (0.048059) | 0.075909 / 0.176557 (-0.100647) | 0.121382 / 0.737135 (-0.615753) | 0.074980 / 0.296338 (-0.221359) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285062 / 0.215209 (0.069853) | 2.850130 / 2.077655 (0.772476) | 1.519877 / 1.504120 (0.015757) | 1.388711 / 1.541195 (-0.152484) | 1.397284 / 1.468490 (-0.071206) | 0.723100 / 4.584777 (-3.861677) | 2.393184 / 3.745712 (-1.352529) | 2.908418 / 5.269862 (-2.361443) | 1.871024 / 4.565676 (-2.694653) | 0.078230 / 0.424275 (-0.346045) | 0.005158 / 0.007607 (-0.002449) | 0.345622 / 0.226044 (0.119577) | 3.357611 / 2.268929 (1.088683) | 1.844492 / 55.444624 (-53.600132) | 1.584237 / 6.876477 (-5.292240) | 1.577158 / 2.142072 (-0.564915) | 0.789702 / 4.805227 (-4.015525) | 0.132045 / 6.500664 (-6.368619) | 0.042304 / 0.075469 (-0.033165) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977166 / 1.841788 (-0.864622) | 11.306118 / 8.074308 (3.231810) | 9.490778 / 10.191392 (-0.700614) | 0.143536 / 0.680424 (-0.536888) | 0.015304 / 0.534201 (-0.518897) | 0.313892 / 0.579283 (-0.265391) | 0.267009 / 0.434364 (-0.167355) | 0.345560 / 0.540337 (-0.194778) | 0.435649 / 1.386936 (-0.951287) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005700 / 0.011353 (-0.005653) | 0.003490 / 0.011008 (-0.007519) | 0.049990 / 0.038508 (0.011482) | 0.032070 / 0.023109 (0.008961) | 0.272622 / 0.275898 (-0.003276) | 0.298265 / 0.323480 (-0.025215) | 0.004379 / 0.007986 (-0.003606) | 0.002786 / 0.004328 (-0.001543) | 0.048271 / 0.004250 (0.044020) | 0.040102 / 0.037052 (0.003050) | 0.286433 / 0.258489 (0.027944) | 0.319306 / 0.293841 (0.025465) | 0.032872 / 0.128546 (-0.095675) | 0.011870 / 0.075646 (-0.063776) | 0.059886 / 0.419271 (-0.359385) | 0.034281 / 0.043533 (-0.009252) | 0.275588 / 0.255139 (0.020450) | 0.292951 / 0.283200 (0.009751) | 0.018095 / 0.141683 (-0.123588) | 1.130870 / 1.452155 (-0.321285) | 1.190761 / 1.492716 (-0.301955) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093346 / 0.018006 (0.075340) | 0.307506 / 0.000490 (0.307016) | 0.000214 / 0.000200 (0.000014) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022873 / 0.037411 (-0.014538) | 0.077070 / 0.014526 (0.062544) | 0.089152 / 0.176557 (-0.087404) | 0.130186 / 0.737135 (-0.606949) | 0.090244 / 0.296338 (-0.206095) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297950 / 0.215209 (0.082740) | 2.942360 / 2.077655 (0.864705) | 1.614324 / 1.504120 (0.110204) | 1.495795 / 1.541195 (-0.045400) | 1.506155 / 1.468490 (0.037665) | 0.730307 / 4.584777 (-3.854470) | 0.966312 / 3.745712 (-2.779400) | 2.928955 / 5.269862 (-2.340906) | 1.940049 / 4.565676 (-2.625627) | 0.079589 / 0.424275 (-0.344686) | 0.006004 / 0.007607 (-0.001604) | 0.356630 / 0.226044 (0.130585) | 3.516652 / 2.268929 (1.247724) | 1.963196 / 55.444624 (-53.481429) | 1.674489 / 6.876477 (-5.201988) | 1.677558 / 2.142072 (-0.464514) | 0.806447 / 4.805227 (-3.998780) | 0.133819 / 6.500664 (-6.366845) | 0.040762 / 0.075469 (-0.034707) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.038495 / 1.841788 (-0.803293) | 11.829186 / 8.074308 (3.754878) | 10.214158 / 10.191392 (0.022766) | 0.140590 / 0.680424 (-0.539834) | 0.014729 / 0.534201 (-0.519472) | 0.300557 / 0.579283 (-0.278726) | 0.122772 / 0.434364 (-0.311592) | 0.344618 / 0.540337 (-0.195720) | 0.460064 / 1.386936 (-0.926872) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#be5cff059a2a5b89d7a97bc04739c4919ab8089f \"CML watermark\")\n" ]
2024-08-26T04:53:59
2024-08-26T06:15:33
2024-08-26T06:09:42
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7124.diff", "html_url": "https://github.com/huggingface/datasets/pull/7124", "merged_at": "2024-08-26T06:09:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/7124.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7124" }
Test get_dataset_config_info with non-existing/gated/private dataset. Related to: - #7109 See also: - https://github.com/huggingface/dataset-viewer/pull/3037: https://github.com/huggingface/dataset-viewer/pull/3037/commits/bb1a7e00c53c242088597cab6572e4fd57797ecb
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7124/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7124/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7123
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7123/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7123/comments
https://api.github.com/repos/huggingface/datasets/issues/7123/events
https://github.com/huggingface/datasets/issues/7123
2,484,003,937
I_kwDODunzps6UDuRh
7,123
Make dataset viewer more flexible in displaying metadata alongside images
{ "avatar_url": "https://avatars.githubusercontent.com/u/38985481?v=4", "events_url": "https://api.github.com/users/egrace479/events{/privacy}", "followers_url": "https://api.github.com/users/egrace479/followers", "following_url": "https://api.github.com/users/egrace479/following{/other_user}", "gists_url": "https://api.github.com/users/egrace479/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/egrace479", "id": 38985481, "login": "egrace479", "node_id": "MDQ6VXNlcjM4OTg1NDgx", "organizations_url": "https://api.github.com/users/egrace479/orgs", "received_events_url": "https://api.github.com/users/egrace479/received_events", "repos_url": "https://api.github.com/users/egrace479/repos", "site_admin": false, "starred_url": "https://api.github.com/users/egrace479/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/egrace479/subscriptions", "type": "User", "url": "https://api.github.com/users/egrace479" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-08-23T22:56:01
2024-08-23T23:01:42
null
NONE
null
null
null
### Feature request To display images with their associated metadata in the dataset viewer, a `metadata.csv` file is required. In the case of a dataset with multiple subsets, this would require the CSVs to be contained in the same folder as the images since they all need to be named `metadata.csv`. The request is that this be made more flexible for datasets with multiple subsets to avoid the need to put a `metadata.csv` into each image directory where they are not as easily accessed. ### Motivation When creating datasets with multiple subsets I can't get the images to display alongside their associated metadata (it's usually one or the other that will show up). Since this requires a file specifically named `metadata.csv`, I then have to place that file within the image directory, which makes it much more difficult to access. Additionally, it still doesn't necessarily display the images alongside their metadata correctly (see, for instance, [this discussion](https://huggingface.co/datasets/imageomics/2018-NEON-beetles/discussions/8)). It was suggested I bring this discussion to GitHub on another dataset struggling with a similar issue ([discussion](https://huggingface.co/datasets/imageomics/fish-vista/discussions/4)). In that case, it's a mix of data subsets, where some just reference the image URLs, while others actually have the images uploaded. The ones with images uploaded are not displaying images, but renaming that file to just `metadata.csv` would diminish the clarity of the construction of the dataset itself (and I'm not entirely convinced it would solve the issue). ### Your contribution I can make a suggestion for one approach to address the issue: For instance, even if it could just end in `_metadata.csv` or `-metadata.csv`, that would be very helpful to allow for more flexibility of dataset structure without impacting clarity. I would think that the functionality on the backend looking for `metadata.csv` could reasonably be adapted to look for such an ending on a filename (maybe also check that it has a `file_name` column?). Presumably, requiring the `configs` in a setup like on [this dataset](https://huggingface.co/datasets/imageomics/rare-species/blob/main/README.md) could also help in figuring out how it should work? ``` configs: - config_name: <image subset> data_files: - <image-metadata>.csv - <path/to/images>/*.jpg ``` I'd also be happy to look at whatever solution is decided upon and contribute to the ideation. Thanks for your time and consideration! The dataset viewer really is fabulous when it works :)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7123/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7123/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7122
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7122/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7122/comments
https://api.github.com/repos/huggingface/datasets/issues/7122/events
https://github.com/huggingface/datasets/issues/7122
2,482,491,258
I_kwDODunzps6T9896
7,122
[interleave_dataset] sample batches from a single source at a time
{ "avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4", "events_url": "https://api.github.com/users/memray/events{/privacy}", "followers_url": "https://api.github.com/users/memray/followers", "following_url": "https://api.github.com/users/memray/following{/other_user}", "gists_url": "https://api.github.com/users/memray/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/memray", "id": 4197249, "login": "memray", "node_id": "MDQ6VXNlcjQxOTcyNDk=", "organizations_url": "https://api.github.com/users/memray/orgs", "received_events_url": "https://api.github.com/users/memray/received_events", "repos_url": "https://api.github.com/users/memray/repos", "site_admin": false, "starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/memray/subscriptions", "type": "User", "url": "https://api.github.com/users/memray" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-08-23T07:21:15
2024-08-23T07:21:15
null
NONE
null
null
null
### Feature request interleave_dataset and [RandomlyCyclingMultiSourcesExamplesIterable](https://github.com/huggingface/datasets/blob/3813ce846e52824b38e53895810682f0a496a2e3/src/datasets/iterable_dataset.py#L816) enable us to sample data examples from different sources. But can we also sample batches in a similar manner (each batch only contains data from a single source)? ### Motivation Some recent research [[1](https://blog.salesforceairesearch.com/sfr-embedded-mistral/), [2](https://arxiv.org/pdf/2310.07554)] shows that source homogenous batching can be helpful for contrastive learning. Can we add a function called `RandomlyCyclingMultiSourcesBatchesIterable` to support this functionality? ### Your contribution I can contribute a PR. But I wonder what the best way is to test its correctness and robustness.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7122/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7122/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7121
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7121/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7121/comments
https://api.github.com/repos/huggingface/datasets/issues/7121/events
https://github.com/huggingface/datasets/pull/7121
2,480,978,483
PR_kwDODunzps55Iukl
7,121
Fix typed examples iterable state dict
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](/static-proxy?url=https%3A%2F%2Fmoon-ci-docs.huggingface.co%2Fdocs%2Fdatasets%2Fpr_7121). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005273 / 0.011353 (-0.006079) | 0.003789 / 0.011008 (-0.007219) | 0.062811 / 0.038508 (0.024303) | 0.031055 / 0.023109 (0.007946) | 0.238663 / 0.275898 (-0.037235) | 0.269706 / 0.323480 (-0.053774) | 0.004105 / 0.007986 (-0.003881) | 0.002781 / 0.004328 (-0.001547) | 0.048800 / 0.004250 (0.044549) | 0.045759 / 0.037052 (0.008707) | 0.260467 / 0.258489 (0.001978) | 0.288800 / 0.293841 (-0.005041) | 0.029341 / 0.128546 (-0.099205) | 0.012413 / 0.075646 (-0.063233) | 0.203493 / 0.419271 (-0.215778) | 0.037270 / 0.043533 (-0.006263) | 0.246130 / 0.255139 (-0.009009) | 0.269046 / 0.283200 (-0.014154) | 0.017788 / 0.141683 (-0.123895) | 1.175537 / 1.452155 (-0.276617) | 1.197909 / 1.492716 (-0.294808) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098258 / 0.018006 (0.080251) | 0.305283 / 0.000490 (0.304794) | 0.000216 / 0.000200 (0.000016) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019066 / 0.037411 (-0.018345) | 0.062723 / 0.014526 (0.048197) | 0.075827 / 0.176557 (-0.100730) | 0.121371 / 0.737135 (-0.615764) | 0.075167 / 0.296338 (-0.221171) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296650 / 0.215209 (0.081441) | 2.910593 / 2.077655 (0.832939) | 1.510798 / 1.504120 (0.006678) | 1.375461 / 1.541195 (-0.165733) | 1.386423 / 1.468490 (-0.082067) | 0.743818 / 4.584777 (-3.840959) | 2.437848 / 3.745712 (-1.307864) | 2.943661 / 5.269862 (-2.326201) | 1.888977 / 4.565676 (-2.676699) | 0.080126 / 0.424275 (-0.344149) | 0.005168 / 0.007607 (-0.002439) | 0.348699 / 0.226044 (0.122654) | 3.477686 / 2.268929 (1.208758) | 1.901282 / 55.444624 (-53.543343) | 1.574847 / 6.876477 (-5.301629) | 1.594359 / 2.142072 (-0.547714) | 0.793415 / 4.805227 (-4.011812) | 0.133982 / 6.500664 (-6.366682) | 0.042435 / 0.075469 (-0.033034) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963057 / 1.841788 (-0.878731) | 11.597217 / 8.074308 (3.522909) | 9.285172 / 10.191392 (-0.906220) | 0.130510 / 0.680424 (-0.549914) | 0.013964 / 0.534201 (-0.520237) | 0.299334 / 0.579283 (-0.279949) | 0.267775 / 0.434364 (-0.166589) | 0.336922 / 0.540337 (-0.203416) | 0.430493 / 1.386936 (-0.956443) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005701 / 0.011353 (-0.005652) | 0.003941 / 0.011008 (-0.007067) | 0.050204 / 0.038508 (0.011696) | 0.032275 / 0.023109 (0.009166) | 0.271076 / 0.275898 (-0.004822) | 0.295565 / 0.323480 (-0.027914) | 0.004393 / 0.007986 (-0.003592) | 0.002881 / 0.004328 (-0.001447) | 0.048032 / 0.004250 (0.043782) | 0.040430 / 0.037052 (0.003378) | 0.281631 / 0.258489 (0.023142) | 0.317964 / 0.293841 (0.024124) | 0.032318 / 0.128546 (-0.096228) | 0.012348 / 0.075646 (-0.063298) | 0.060336 / 0.419271 (-0.358936) | 0.034148 / 0.043533 (-0.009385) | 0.273803 / 0.255139 (0.018664) | 0.292068 / 0.283200 (0.008868) | 0.018693 / 0.141683 (-0.122990) | 1.155704 / 1.452155 (-0.296451) | 1.192245 / 1.492716 (-0.300472) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097588 / 0.018006 (0.079582) | 0.311760 / 0.000490 (0.311270) | 0.000232 / 0.000200 (0.000032) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022825 / 0.037411 (-0.014586) | 0.077698 / 0.014526 (0.063172) | 0.088567 / 0.176557 (-0.087989) | 0.129689 / 0.737135 (-0.607446) | 0.090626 / 0.296338 (-0.205712) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299791 / 0.215209 (0.084582) | 2.978558 / 2.077655 (0.900903) | 1.594095 / 1.504120 (0.089975) | 1.468476 / 1.541195 (-0.072719) | 1.482880 / 1.468490 (0.014390) | 0.717553 / 4.584777 (-3.867224) | 0.977501 / 3.745712 (-2.768211) | 2.954289 / 5.269862 (-2.315572) | 1.895473 / 4.565676 (-2.670203) | 0.078452 / 0.424275 (-0.345824) | 0.005508 / 0.007607 (-0.002099) | 0.350882 / 0.226044 (0.124837) | 3.480878 / 2.268929 (1.211949) | 1.965240 / 55.444624 (-53.479385) | 1.672448 / 6.876477 (-5.204029) | 1.674319 / 2.142072 (-0.467753) | 0.789049 / 4.805227 (-4.016178) | 0.132715 / 6.500664 (-6.367949) | 0.041081 / 0.075469 (-0.034388) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.022953 / 1.841788 (-0.818834) | 12.123349 / 8.074308 (4.049041) | 10.336115 / 10.191392 (0.144723) | 0.142233 / 0.680424 (-0.538191) | 0.015416 / 0.534201 (-0.518785) | 0.303088 / 0.579283 (-0.276195) | 0.124942 / 0.434364 (-0.309422) | 0.338454 / 0.540337 (-0.201883) | 0.460039 / 1.386936 (-0.926897) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3813ce846e52824b38e53895810682f0a496a2e3 \"CML watermark\")\n" ]
2024-08-22T14:45:03
2024-08-22T14:54:56
2024-08-22T14:49:06
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7121.diff", "html_url": "https://github.com/huggingface/datasets/pull/7121", "merged_at": "2024-08-22T14:49:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/7121.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7121" }
fix https://github.com/huggingface/datasets/issues/7085 as noted by @VeryLazyBoy and reported by @AjayP13
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7121/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7121/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7120
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7120/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7120/comments
https://api.github.com/repos/huggingface/datasets/issues/7120/events
https://github.com/huggingface/datasets/pull/7120
2,480,674,237
PR_kwDODunzps55HrBy
7,120
don't mention the script if trust_remote_code=False
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](/static-proxy?url=https%3A%2F%2Fmoon-ci-docs.huggingface.co%2Fdocs%2Fdatasets%2Fpr_7120). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Note that in this case, we could even expect this kind of message:\r\n\r\n```\r\nDataFilesNotFoundError: Unable to find 'hf://datasets/Omega02gdfdd/bioclip-demo-zero-shot-mistakes@12b0313ba4c3189ee5a24cb76200959e9bf7492e/data.csv'\r\n```\r\n\r\nWe generally return `DataFilesNotFoundError` for this case (data files passed as an argument), not sure why it does not occur with this dataset.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005484 / 0.011353 (-0.005869) | 0.003932 / 0.011008 (-0.007077) | 0.063177 / 0.038508 (0.024669) | 0.031311 / 0.023109 (0.008202) | 0.254881 / 0.275898 (-0.021017) | 0.273818 / 0.323480 (-0.049662) | 0.003312 / 0.007986 (-0.004674) | 0.003251 / 0.004328 (-0.001078) | 0.049307 / 0.004250 (0.045057) | 0.046189 / 0.037052 (0.009137) | 0.268182 / 0.258489 (0.009693) | 0.303659 / 0.293841 (0.009818) | 0.029312 / 0.128546 (-0.099234) | 0.013649 / 0.075646 (-0.061997) | 0.204240 / 0.419271 (-0.215032) | 0.036607 / 0.043533 (-0.006926) | 0.252232 / 0.255139 (-0.002907) | 0.271960 / 0.283200 (-0.011239) | 0.018043 / 0.141683 (-0.123640) | 1.148601 / 1.452155 (-0.303553) | 1.212313 / 1.492716 (-0.280403) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096354 / 0.018006 (0.078348) | 0.302575 / 0.000490 (0.302085) | 0.000246 / 0.000200 (0.000046) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019023 / 0.037411 (-0.018389) | 0.064821 / 0.014526 (0.050295) | 0.077046 / 0.176557 (-0.099510) | 0.122896 / 0.737135 (-0.614239) | 0.078300 / 0.296338 (-0.218038) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283681 / 0.215209 (0.068472) | 2.801473 / 2.077655 (0.723818) | 1.505611 / 1.504120 (0.001491) | 1.385832 / 1.541195 (-0.155363) | 1.430284 / 1.468490 (-0.038206) | 0.752041 / 4.584777 (-3.832736) | 2.406138 / 3.745712 (-1.339574) | 2.941370 / 5.269862 (-2.328492) | 1.887681 / 4.565676 (-2.677996) | 0.078693 / 0.424275 (-0.345582) | 0.005266 / 0.007607 (-0.002341) | 0.336484 / 0.226044 (0.110440) | 3.372262 / 2.268929 (1.103334) | 1.861541 / 55.444624 (-53.583084) | 1.572782 / 6.876477 (-5.303694) | 1.592387 / 2.142072 (-0.549685) | 0.796557 / 4.805227 (-4.008670) | 0.134923 / 6.500664 (-6.365741) | 0.043007 / 0.075469 (-0.032462) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982690 / 1.841788 (-0.859097) | 11.700213 / 8.074308 (3.625905) | 9.122642 / 10.191392 (-1.068750) | 0.141430 / 0.680424 (-0.538994) | 0.014971 / 0.534201 (-0.519230) | 0.300938 / 0.579283 (-0.278345) | 0.268315 / 0.434364 (-0.166049) | 0.339891 / 0.540337 (-0.200447) | 0.428302 / 1.386936 (-0.958634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005732 / 0.011353 (-0.005621) | 0.003905 / 0.011008 (-0.007103) | 0.049900 / 0.038508 (0.011392) | 0.032255 / 0.023109 (0.009145) | 0.267929 / 0.275898 (-0.007969) | 0.295595 / 0.323480 (-0.027885) | 0.004437 / 0.007986 (-0.003549) | 0.003008 / 0.004328 (-0.001321) | 0.048357 / 0.004250 (0.044107) | 0.040118 / 0.037052 (0.003066) | 0.282859 / 0.258489 (0.024370) | 0.319243 / 0.293841 (0.025402) | 0.032793 / 0.128546 (-0.095754) | 0.012091 / 0.075646 (-0.063555) | 0.060082 / 0.419271 (-0.359189) | 0.034426 / 0.043533 (-0.009107) | 0.273668 / 0.255139 (0.018529) | 0.292110 / 0.283200 (0.008910) | 0.019002 / 0.141683 (-0.122680) | 1.165850 / 1.452155 (-0.286304) | 1.209195 / 1.492716 (-0.283521) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099267 / 0.018006 (0.081261) | 0.316746 / 0.000490 (0.316256) | 0.000267 / 0.000200 (0.000067) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023117 / 0.037411 (-0.014294) | 0.076691 / 0.014526 (0.062165) | 0.092190 / 0.176557 (-0.084367) | 0.130620 / 0.737135 (-0.606515) | 0.091068 / 0.296338 (-0.205271) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296419 / 0.215209 (0.081210) | 2.933964 / 2.077655 (0.856309) | 1.595015 / 1.504120 (0.090895) | 1.467610 / 1.541195 (-0.073585) | 1.487386 / 1.468490 (0.018896) | 0.730927 / 4.584777 (-3.853850) | 0.971276 / 3.745712 (-2.774436) | 2.969735 / 5.269862 (-2.300127) | 1.916126 / 4.565676 (-2.649550) | 0.078863 / 0.424275 (-0.345412) | 0.005506 / 0.007607 (-0.002101) | 0.345191 / 0.226044 (0.119147) | 3.407481 / 2.268929 (1.138553) | 1.955966 / 55.444624 (-53.488659) | 1.677365 / 6.876477 (-5.199112) | 1.716052 / 2.142072 (-0.426020) | 0.797208 / 4.805227 (-4.008020) | 0.132853 / 6.500664 (-6.367811) | 0.041691 / 0.075469 (-0.033778) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.042331 / 1.841788 (-0.799456) | 12.186080 / 8.074308 (4.111772) | 10.288961 / 10.191392 (0.097569) | 0.141897 / 0.680424 (-0.538526) | 0.015321 / 0.534201 (-0.518880) | 0.308302 / 0.579283 (-0.270981) | 0.123292 / 0.434364 (-0.311072) | 0.348515 / 0.540337 (-0.191823) | 0.473045 / 1.386936 (-0.913891) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cedffa52879ebc5e4df43f0bcf8660ee7229f0dc \"CML watermark\")\n" ]
2024-08-22T12:32:32
2024-08-22T14:39:52
2024-08-22T14:33:52
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7120.diff", "html_url": "https://github.com/huggingface/datasets/pull/7120", "merged_at": "2024-08-22T14:33:52Z", "patch_url": "https://github.com/huggingface/datasets/pull/7120.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7120" }
See https://huggingface.co/datasets/Omega02gdfdd/bioclip-demo-zero-shot-mistakes for example. The error is: ``` FileNotFoundError: Couldn't find a dataset script at /src/services/worker/Omega02gdfdd/bioclip-demo-zero-shot-mistakes/bioclip-demo-zero-shot-mistakes.py or any data file in the same directory. Couldn't find 'Omega02gdfdd/bioclip-demo-zero-shot-mistakes' on the Hugging Face Hub either: FileNotFoundError: Unable to find 'hf://datasets/Omega02gdfdd/bioclip-demo-zero-shot-mistakes@12b0313ba4c3189ee5a24cb76200959e9bf7492e/data.csv' with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip'] ``` The issue there is that a `configs` parameter is set in the README, while the mentioned data file (`data.csv`) does not exist.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7120/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7120/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7119
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7119/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7119/comments
https://api.github.com/repos/huggingface/datasets/issues/7119/events
https://github.com/huggingface/datasets/pull/7119
2,477,766,493
PR_kwDODunzps54-GjY
7,119
Install transformers with numpy-2 CI
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](/static-proxy?url=https%3A%2F%2Fmoon-ci-docs.huggingface.co%2Fdocs%2Fdatasets%2Fpr_7119). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005156 / 0.011353 (-0.006197) | 0.003365 / 0.011008 (-0.007643) | 0.063451 / 0.038508 (0.024943) | 0.029510 / 0.023109 (0.006401) | 0.244825 / 0.275898 (-0.031074) | 0.265157 / 0.323480 (-0.058323) | 0.004239 / 0.007986 (-0.003747) | 0.002732 / 0.004328 (-0.001596) | 0.050412 / 0.004250 (0.046162) | 0.043608 / 0.037052 (0.006556) | 0.256635 / 0.258489 (-0.001854) | 0.277472 / 0.293841 (-0.016369) | 0.029329 / 0.128546 (-0.099217) | 0.012318 / 0.075646 (-0.063329) | 0.204751 / 0.419271 (-0.214520) | 0.036468 / 0.043533 (-0.007065) | 0.246773 / 0.255139 (-0.008366) | 0.263932 / 0.283200 (-0.019268) | 0.017053 / 0.141683 (-0.124629) | 1.173249 / 1.452155 (-0.278905) | 1.234186 / 1.492716 (-0.258531) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092398 / 0.018006 (0.074391) | 0.309473 / 0.000490 (0.308983) | 0.000220 / 0.000200 (0.000020) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018553 / 0.037411 (-0.018858) | 0.062546 / 0.014526 (0.048020) | 0.073943 / 0.176557 (-0.102613) | 0.120498 / 0.737135 (-0.616638) | 0.075185 / 0.296338 (-0.221153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296899 / 0.215209 (0.081690) | 2.919088 / 2.077655 (0.841433) | 1.533146 / 1.504120 (0.029026) | 1.395441 / 1.541195 (-0.145754) | 1.399089 / 1.468490 (-0.069401) | 0.742750 / 4.584777 (-3.842027) | 2.390317 / 3.745712 (-1.355395) | 2.883166 / 5.269862 (-2.386695) | 1.854003 / 4.565676 (-2.711674) | 0.077140 / 0.424275 (-0.347136) | 0.005176 / 0.007607 (-0.002432) | 0.349391 / 0.226044 (0.123347) | 3.466043 / 2.268929 (1.197114) | 1.870619 / 55.444624 (-53.574005) | 1.559173 / 6.876477 (-5.317303) | 1.605480 / 2.142072 (-0.536592) | 0.786753 / 4.805227 (-4.018474) | 0.134869 / 6.500664 (-6.365795) | 0.042176 / 0.075469 (-0.033293) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.954256 / 1.841788 (-0.887532) | 11.194758 / 8.074308 (3.120449) | 9.129670 / 10.191392 (-1.061722) | 0.138318 / 0.680424 (-0.542106) | 0.014299 / 0.534201 (-0.519902) | 0.303704 / 0.579283 (-0.275579) | 0.262513 / 0.434364 (-0.171851) | 0.346539 / 0.540337 (-0.193798) | 0.429524 / 1.386936 (-0.957412) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005692 / 0.011353 (-0.005661) | 0.003423 / 0.011008 (-0.007586) | 0.050618 / 0.038508 (0.012110) | 0.031053 / 0.023109 (0.007944) | 0.275901 / 0.275898 (0.000003) | 0.294404 / 0.323480 (-0.029076) | 0.004303 / 0.007986 (-0.003682) | 0.002728 / 0.004328 (-0.001600) | 0.049757 / 0.004250 (0.045507) | 0.039997 / 0.037052 (0.002945) | 0.287291 / 0.258489 (0.028802) | 0.319186 / 0.293841 (0.025345) | 0.032558 / 0.128546 (-0.095988) | 0.012088 / 0.075646 (-0.063558) | 0.060746 / 0.419271 (-0.358525) | 0.034046 / 0.043533 (-0.009486) | 0.276170 / 0.255139 (0.021031) | 0.293673 / 0.283200 (0.010474) | 0.018018 / 0.141683 (-0.123665) | 1.158453 / 1.452155 (-0.293701) | 1.198599 / 1.492716 (-0.294118) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093134 / 0.018006 (0.075127) | 0.304511 / 0.000490 (0.304021) | 0.000216 / 0.000200 (0.000016) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022991 / 0.037411 (-0.014421) | 0.077548 / 0.014526 (0.063022) | 0.087887 / 0.176557 (-0.088670) | 0.131786 / 0.737135 (-0.605349) | 0.088747 / 0.296338 (-0.207591) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302811 / 0.215209 (0.087602) | 2.959276 / 2.077655 (0.881621) | 1.591348 / 1.504120 (0.087229) | 1.464731 / 1.541195 (-0.076464) | 1.474112 / 1.468490 (0.005622) | 0.741573 / 4.584777 (-3.843204) | 0.959229 / 3.745712 (-2.786483) | 2.895750 / 5.269862 (-2.374111) | 1.896051 / 4.565676 (-2.669625) | 0.079012 / 0.424275 (-0.345264) | 0.005494 / 0.007607 (-0.002113) | 0.355699 / 0.226044 (0.129655) | 3.524833 / 2.268929 (1.255905) | 1.972358 / 55.444624 (-53.472266) | 1.667249 / 6.876477 (-5.209228) | 1.658635 / 2.142072 (-0.483438) | 0.813184 / 4.805227 (-3.992044) | 0.134226 / 6.500664 (-6.366438) | 0.041087 / 0.075469 (-0.034382) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.038963 / 1.841788 (-0.802824) | 11.785835 / 8.074308 (3.711526) | 10.397027 / 10.191392 (0.205635) | 0.141748 / 0.680424 (-0.538676) | 0.014738 / 0.534201 (-0.519463) | 0.300056 / 0.579283 (-0.279227) | 0.127442 / 0.434364 (-0.306922) | 0.345013 / 0.540337 (-0.195324) | 0.449598 / 1.386936 (-0.937338) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#70bac27ef861b2b11f581a291a6b76adeee24f98 \"CML watermark\")\n" ]
2024-08-21T11:14:59
2024-08-21T11:42:35
2024-08-21T11:36:50
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7119.diff", "html_url": "https://github.com/huggingface/datasets/pull/7119", "merged_at": "2024-08-21T11:36:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/7119.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7119" }
Install transformers with numpy-2 CI. Note that transformers no longer pins numpy < 2 since transformers-4.43.0: - https://github.com/huggingface/transformers/pull/32018 - https://github.com/huggingface/transformers/releases/tag/v4.43.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7119/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7119/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7118
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7118/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7118/comments
https://api.github.com/repos/huggingface/datasets/issues/7118/events
https://github.com/huggingface/datasets/pull/7118
2,477,676,893
PR_kwDODunzps549yu4
7,118
Allow numpy-2.1 and test it without audio extra
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](/static-proxy?url=https%3A%2F%2Fmoon-ci-docs.huggingface.co%2Fdocs%2Fdatasets%2Fpr_7118). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005674 / 0.011353 (-0.005679) | 0.003919 / 0.011008 (-0.007089) | 0.062665 / 0.038508 (0.024157) | 0.031750 / 0.023109 (0.008641) | 0.234809 / 0.275898 (-0.041089) | 0.264454 / 0.323480 (-0.059026) | 0.004265 / 0.007986 (-0.003720) | 0.002757 / 0.004328 (-0.001572) | 0.048921 / 0.004250 (0.044671) | 0.050765 / 0.037052 (0.013713) | 0.246185 / 0.258489 (-0.012305) | 0.287011 / 0.293841 (-0.006829) | 0.030754 / 0.128546 (-0.097792) | 0.012368 / 0.075646 (-0.063278) | 0.203841 / 0.419271 (-0.215431) | 0.037579 / 0.043533 (-0.005953) | 0.238165 / 0.255139 (-0.016974) | 0.264375 / 0.283200 (-0.018824) | 0.018663 / 0.141683 (-0.123020) | 1.143897 / 1.452155 (-0.308258) | 1.218130 / 1.492716 (-0.274586) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102112 / 0.018006 (0.084106) | 0.303214 / 0.000490 (0.302724) | 0.000232 / 0.000200 (0.000032) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019401 / 0.037411 (-0.018010) | 0.062444 / 0.014526 (0.047919) | 0.076497 / 0.176557 (-0.100060) | 0.122309 / 0.737135 (-0.614826) | 0.077178 / 0.296338 (-0.219160) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282931 / 0.215209 (0.067722) | 2.783587 / 2.077655 (0.705932) | 1.464076 / 1.504120 (-0.040044) | 1.333912 / 1.541195 (-0.207282) | 1.367391 / 1.468490 (-0.101099) | 0.736702 / 4.584777 (-3.848075) | 2.413625 / 3.745712 (-1.332087) | 2.949549 / 5.269862 (-2.320313) | 1.910308 / 4.565676 (-2.655369) | 0.077419 / 0.424275 (-0.346856) | 0.005159 / 0.007607 (-0.002448) | 0.345595 / 0.226044 (0.119551) | 3.433205 / 2.268929 (1.164277) | 1.844443 / 55.444624 (-53.600181) | 1.527475 / 6.876477 (-5.349002) | 1.544315 / 2.142072 (-0.597758) | 0.803942 / 4.805227 (-4.001285) | 0.134131 / 6.500664 (-6.366533) | 0.042638 / 0.075469 (-0.032831) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975158 / 1.841788 (-0.866629) | 11.726187 / 8.074308 (3.651879) | 9.403347 / 10.191392 (-0.788045) | 0.131583 / 0.680424 (-0.548840) | 0.014358 / 0.534201 (-0.519843) | 0.301360 / 0.579283 (-0.277923) | 0.266529 / 0.434364 (-0.167835) | 0.341669 / 0.540337 (-0.198668) | 0.425751 / 1.386936 (-0.961186) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005911 / 0.011353 (-0.005442) | 0.004093 / 0.011008 (-0.006915) | 0.049936 / 0.038508 (0.011428) | 0.031828 / 0.023109 (0.008719) | 0.273874 / 0.275898 (-0.002025) | 0.296871 / 0.323480 (-0.026609) | 0.004470 / 0.007986 (-0.003516) | 0.002902 / 0.004328 (-0.001426) | 0.048848 / 0.004250 (0.044597) | 0.042320 / 0.037052 (0.005268) | 0.287957 / 0.258489 (0.029468) | 0.321033 / 0.293841 (0.027192) | 0.032996 / 0.128546 (-0.095550) | 0.012244 / 0.075646 (-0.063403) | 0.060493 / 0.419271 (-0.358779) | 0.034630 / 0.043533 (-0.008902) | 0.277254 / 0.255139 (0.022115) | 0.292822 / 0.283200 (0.009623) | 0.017966 / 0.141683 (-0.123717) | 1.167432 / 1.452155 (-0.284723) | 1.231837 / 1.492716 (-0.260880) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099970 / 0.018006 (0.081964) | 0.313240 / 0.000490 (0.312750) | 0.000217 / 0.000200 (0.000017) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022928 / 0.037411 (-0.014483) | 0.077058 / 0.014526 (0.062532) | 0.090147 / 0.176557 (-0.086409) | 0.129416 / 0.737135 (-0.607720) | 0.091021 / 0.296338 (-0.205318) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300697 / 0.215209 (0.085488) | 2.944649 / 2.077655 (0.866995) | 1.609106 / 1.504120 (0.104986) | 1.483762 / 1.541195 (-0.057433) | 1.519433 / 1.468490 (0.050943) | 0.714129 / 4.584777 (-3.870648) | 0.991848 / 3.745712 (-2.753864) | 2.966340 / 5.269862 (-2.303521) | 1.905427 / 4.565676 (-2.660249) | 0.079041 / 0.424275 (-0.345234) | 0.005671 / 0.007607 (-0.001936) | 0.356037 / 0.226044 (0.129993) | 3.504599 / 2.268929 (1.235670) | 1.979207 / 55.444624 (-53.465417) | 1.695030 / 6.876477 (-5.181447) | 1.703978 / 2.142072 (-0.438095) | 0.800871 / 4.805227 (-4.004357) | 0.134414 / 6.500664 (-6.366250) | 0.041743 / 0.075469 (-0.033726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.029879 / 1.841788 (-0.811909) | 12.132252 / 8.074308 (4.057944) | 10.596576 / 10.191392 (0.405184) | 0.132237 / 0.680424 (-0.548187) | 0.016239 / 0.534201 (-0.517962) | 0.301831 / 0.579283 (-0.277452) | 0.127966 / 0.434364 (-0.306398) | 0.341081 / 0.540337 (-0.199256) | 0.448996 / 1.386936 (-0.937940) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0a0fa48a68c3502edfa50273b881f909e4e6e70c \"CML watermark\")\n" ]
2024-08-21T10:29:35
2024-08-21T11:05:03
2024-08-21T10:58:15
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7118.diff", "html_url": "https://github.com/huggingface/datasets/pull/7118", "merged_at": "2024-08-21T10:58:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/7118.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7118" }
Allow numpy-2.1 and test it without audio extra. This PR reverts: - #7114 Note that audio extra tests can be included again with numpy-2.1 once next numba-0.61.0 version is released.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7118/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7118/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7117
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7117/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7117/comments
https://api.github.com/repos/huggingface/datasets/issues/7117/events
https://github.com/huggingface/datasets/issues/7117
2,476,555,659
I_kwDODunzps6TnT2L
7,117
Audio dataset load everything in RAM and is very slow
{ "avatar_url": "https://avatars.githubusercontent.com/u/64205064?v=4", "events_url": "https://api.github.com/users/Jourdelune/events{/privacy}", "followers_url": "https://api.github.com/users/Jourdelune/followers", "following_url": "https://api.github.com/users/Jourdelune/following{/other_user}", "gists_url": "https://api.github.com/users/Jourdelune/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Jourdelune", "id": 64205064, "login": "Jourdelune", "node_id": "MDQ6VXNlcjY0MjA1MDY0", "organizations_url": "https://api.github.com/users/Jourdelune/orgs", "received_events_url": "https://api.github.com/users/Jourdelune/received_events", "repos_url": "https://api.github.com/users/Jourdelune/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Jourdelune/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jourdelune/subscriptions", "type": "User", "url": "https://api.github.com/users/Jourdelune" }
[]
open
false
null
[]
null
[ "Hi ! I think the issue comes from the fact that you return `row` entirely, and therefore the dataset has to re-encode the audio data in `row`.\r\n\r\nCan you try this instead ?\r\n\r\n```python\r\n# map the dataset\r\ndef transcribe_audio(row):\r\n audio = row[\"audio\"] # get the audio but do nothing with it\r\n return {\"transcribed\": True}\r\n```\r\n\r\nPS: no need to iter on the dataset to trigger the `map` function on a `Dataset` - `map` runs directly when it's called (contrary to `IterableDataset` taht you can get when streaming, which are lazy)", "No, that doesn't change anything, I manage to solve this problem by setting with_indices=True in the map function and directly retrieving the audio corresponding to the index.\r\n```py\r\nfrom datasets import load_dataset\r\nimport time\r\n\r\nds = load_dataset(\"WaveGenAI/audios2\", split=\"train[:50]\")\r\n\r\n\r\n# map the dataset\r\ndef transcribe_audio(row, idx):\r\n audio = ds[idx][\"audio\"] # get the audio but do nothing with it\r\n row[\"transcribed\"] = True\r\n return row\r\n\r\n\r\ntime1 = time.time()\r\nds = ds.map(\r\n transcribe_audio, with_indices=True\r\n) # set low writer_batch_size to avoid memory issues\r\n\r\nfor row in ds:\r\n pass # do nothing, just iterate to trigger the map function\r\n\r\nprint(f\"Time taken: {time.time() - time1:.2f} seconds\")\r\n```", "Hmm maybe accessing `row[\"audio\"]` makes `map()` reencode what's inside `row[\"audio\"]` in case there are in-place modifications" ]
2024-08-20T21:18:12
2024-08-26T13:11:55
null
NONE
null
null
null
Hello, I'm working with an audio dataset. I want to transcribe the audio that the dataset contain, and for that I use whisper. My issue is that the dataset load everything in the RAM when I map the dataset, obviously, when RAM usage is too high, the program crashes. To fix this issue, I'm using writer_batch_size that I set to 10, but in this case, the mapping of the dataset is extremely slow. To illustrate this, on 50 examples, with `writer_batch_size` set to 10, it takes 123.24 seconds to process the dataset, but without `writer_batch_size` set to 10, it takes about ten seconds to process the dataset, but then the process remains blocked (I assume that it is writing the dataset and therefore suffers from the same problem as `writer_batch_size`) ### Steps to reproduce the bug Hug ram usage but fast (but actually slow when saving the dataset): ```py from datasets import load_dataset import time ds = load_dataset("WaveGenAI/audios2", split="train[:50]") # map the dataset def transcribe_audio(row): audio = row["audio"] # get the audio but do nothing with it row["transcribed"] = True return row time1 = time.time() ds = ds.map( transcribe_audio ) for row in ds: pass # do nothing, just iterate to trigger the map function print(f"Time taken: {time.time() - time1:.2f} seconds") ``` Low ram usage but very very slow: ```py from datasets import load_dataset import time ds = load_dataset("WaveGenAI/audios2", split="train[:50]") # map the dataset def transcribe_audio(row): audio = row["audio"] # get the audio but do nothing with it row["transcribed"] = True return row time1 = time.time() ds = ds.map( transcribe_audio, writer_batch_size=10 ) # set low writer_batch_size to avoid memory issues for row in ds: pass # do nothing, just iterate to trigger the map function print(f"Time taken: {time.time() - time1:.2f} seconds") ``` ### Expected behavior I think the processing should be much faster, on only 50 audio examples, the mapping takes several minutes while nothing is done (just loading the audio). ### Environment info - `datasets` version: 2.21.0 - Platform: Linux-6.10.5-arch1-1-x86_64-with-glibc2.40 - Python version: 3.10.4 - `huggingface_hub` version: 0.24.5 - PyArrow version: 17.0.0 - Pandas version: 1.5.3 - `fsspec` version: 2024.6.1 # Extra The dataset has been generated by using audio folder, so I don't think anything specific in my code is causing this problem. ```py import argparse from datasets import load_dataset parser = argparse.ArgumentParser() parser.add_argument("--folder", help="folder path", default="/media/works/test/") args = parser.parse_args() dataset = load_dataset("audiofolder", data_dir=args.folder) # push the dataset to hub dataset.push_to_hub("WaveGenAI/audios") ``` Also, it's the combination of `audio = row["audio"]` and `row["transcribed"] = True` which causes problems, `row["transcribed"] = True `alone does nothing and `audio = row["audio"]` alone sometimes causes problems, sometimes not.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7117/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7117/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7116
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7116/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7116/comments
https://api.github.com/repos/huggingface/datasets/issues/7116/events
https://github.com/huggingface/datasets/issues/7116
2,475,522,721
I_kwDODunzps6TjXqh
7,116
datasets cannot handle nested json if features is given.
{ "avatar_url": "https://avatars.githubusercontent.com/u/38550511?v=4", "events_url": "https://api.github.com/users/ljw20180420/events{/privacy}", "followers_url": "https://api.github.com/users/ljw20180420/followers", "following_url": "https://api.github.com/users/ljw20180420/following{/other_user}", "gists_url": "https://api.github.com/users/ljw20180420/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ljw20180420", "id": 38550511, "login": "ljw20180420", "node_id": "MDQ6VXNlcjM4NTUwNTEx", "organizations_url": "https://api.github.com/users/ljw20180420/orgs", "received_events_url": "https://api.github.com/users/ljw20180420/received_events", "repos_url": "https://api.github.com/users/ljw20180420/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ljw20180420/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ljw20180420/subscriptions", "type": "User", "url": "https://api.github.com/users/ljw20180420" }
[]
closed
false
null
[]
null
[ "Hi ! `Sequence` has a weird behavior for dictionaries (from tensorflow-datasets), use a regular list instead:\r\n\r\n```python\r\nds = datasets.load_dataset('json', data_files=\"./temp.json\", features=datasets.Features({\r\n 'ref1': datasets.Value('string'),\r\n 'ref2': datasets.Value('string'),\r\n 'cuts': [{\r\n \"cut1\": datasets.Value(\"uint16\"),\r\n \"cut2\": datasets.Value(\"uint16\")\r\n }]\r\n}))\r\n```", "> Hi ! `Sequence` has a weird behavior for dictionaries (from tensorflow-datasets), use a regular list instead:\r\n> \r\n> ```python\r\n> ds = datasets.load_dataset('json', data_files=\"./temp.json\", features=datasets.Features({\r\n> 'ref1': datasets.Value('string'),\r\n> 'ref2': datasets.Value('string'),\r\n> 'cuts': [{\r\n> \"cut1\": datasets.Value(\"uint16\"),\r\n> \"cut2\": datasets.Value(\"uint16\")\r\n> }]\r\n> }))\r\n> ```\r\nThank you!\r\n", "It works." ]
2024-08-20T12:27:49
2024-09-03T10:18:23
2024-09-03T10:18:07
NONE
null
null
null
### Describe the bug I have a json named temp.json. ```json {"ref1": "ABC", "ref2": "DEF", "cuts":[{"cut1": 3, "cut2": 5}]} ``` I want to load it. ```python ds = datasets.load_dataset('json', data_files="./temp.json", features=datasets.Features({ 'ref1': datasets.Value('string'), 'ref2': datasets.Value('string'), 'cuts': datasets.Sequence({ "cut1": datasets.Value("uint16"), "cut2": datasets.Value("uint16") }) })) ``` The above code does not work. However, I can load it without giving features. ```python ds = datasets.load_dataset('json', data_files="./temp.json") ``` Is it possible to load integers as uint16 to save some memory? ### Steps to reproduce the bug As in the bug description. ### Expected behavior The data are loaded and integers are uint16. ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.21.0 - Platform: Linux-5.15.0-118-generic-x86_64-with-glibc2.35 - Python version: 3.11.9 - `huggingface_hub` version: 0.24.5 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7116/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7116/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7115
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7115/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7115/comments
https://api.github.com/repos/huggingface/datasets/issues/7115/events
https://github.com/huggingface/datasets/issues/7115
2,475,363,142
I_kwDODunzps6TiwtG
7,115
module 'pyarrow.lib' has no attribute 'ListViewType'
{ "avatar_url": "https://avatars.githubusercontent.com/u/175128880?v=4", "events_url": "https://api.github.com/users/neurafusionai/events{/privacy}", "followers_url": "https://api.github.com/users/neurafusionai/followers", "following_url": "https://api.github.com/users/neurafusionai/following{/other_user}", "gists_url": "https://api.github.com/users/neurafusionai/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/neurafusionai", "id": 175128880, "login": "neurafusionai", "node_id": "U_kgDOCnBBMA", "organizations_url": "https://api.github.com/users/neurafusionai/orgs", "received_events_url": "https://api.github.com/users/neurafusionai/received_events", "repos_url": "https://api.github.com/users/neurafusionai/repos", "site_admin": false, "starred_url": "https://api.github.com/users/neurafusionai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/neurafusionai/subscriptions", "type": "User", "url": "https://api.github.com/users/neurafusionai" }
[]
open
false
null
[]
null
[ "https://github.com/neurafusionai/Hugging_Face/blob/main/meta_opt_350m_customer_support_lora_v1.ipynb\r\n\r\ncouldnt train because of GPU\r\nI didnt pip install datasets -U\r\nbut looks like restarting worked" ]
2024-08-20T11:05:44
2024-08-20T12:06:20
null
NONE
null
null
null
### Describe the bug Code: `!pipuninstall -y pyarrow !pip install --no-cache-dir pyarrow !pip uninstall -y pyarrow !pip install pyarrow --no-cache-dir !pip install --upgrade datasets transformers pyarrow !pip install pyarrow.parquet ! pip install pyarrow-core libparquet !pip install pyarrow --no-cache-dir !pip install pyarrow !pip install transformers !pip install --upgrade datasets !pip install datasets ! pip install pyarrow ! pip install pyarrow.lib ! pip install pyarrow.parquet !pip install transformers import pyarrow as pa print(pa.__version__) from datasets import load_dataset import pyarrow.parquet as pq import pyarrow.lib as lib import pandas as pd from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments from datasets import load_dataset from transformers import AutoTokenizer ! pip install pyarrow-core libparquet # Load the dataset for content moderation dataset = load_dataset("PolyAI/banking77") # Example dataset for customer support # Initialize the tokenizer tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") # Tokenize the dataset def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) # Apply tokenization to the entire dataset tokenized_datasets = dataset.map(tokenize_function, batched=True) # Check the first few tokenized samples print(tokenized_datasets['train'][0]) from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments # Load the model model = AutoModelForSequenceClassification.from_pretrained("facebook/opt-350m", num_labels=77) # Define training arguments training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, eval_strategy="epoch", # save_strategy="epoch", logging_dir="./logs", learning_rate=2e-5, ) # Initialize the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], ) # Train the model trainer.train() # Evaluate the model trainer.evaluate() ` AttributeError Traceback (most recent call last) [<ipython-input-23-60bed3143a93>](https://localhost:8080/#) in <cell line: 22>() 20 21 ---> 22 from datasets import load_dataset 23 import pyarrow.parquet as pq 24 import pyarrow.lib as lib 5 frames [/usr/local/lib/python3.10/dist-packages/datasets/__init__.py](https://localhost:8080/#) in <module> 15 __version__ = "2.21.0" 16 ---> 17 from .arrow_dataset import Dataset 18 from .arrow_reader import ReadInstruction 19 from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder [/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in <module> 74 75 from . import config ---> 76 from .arrow_reader import ArrowReader 77 from .arrow_writer import ArrowWriter, OptimizedTypedSequence 78 from .data_files import sanitize_patterns [/usr/local/lib/python3.10/dist-packages/datasets/arrow_reader.py](https://localhost:8080/#) in <module> 27 28 import pyarrow as pa ---> 29 import pyarrow.parquet as pq 30 from tqdm.contrib.concurrent import thread_map 31 [/usr/local/lib/python3.10/dist-packages/pyarrow/parquet/__init__.py](https://localhost:8080/#) in <module> 18 # flake8: noqa 19 ---> 20 from .core import * [/usr/local/lib/python3.10/dist-packages/pyarrow/parquet/core.py](https://localhost:8080/#) in <module> 31 32 try: ---> 33 import pyarrow._parquet as _parquet 34 except ImportError as exc: 35 raise ImportError( /usr/local/lib/python3.10/dist-packages/pyarrow/_parquet.pyx in init pyarrow._parquet() AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType' ### Steps to reproduce the bug https://colab.research.google.com/drive/1HNbsg3tHxUJOHVtYIaRnNGY4T2PnLn4a?usp=sharing ### Expected behavior Looks like there is an issue with datasets and pyarrow ### Environment info google colab python huggingface Found existing installation: pyarrow 17.0.0 Uninstalling pyarrow-17.0.0: Successfully uninstalled pyarrow-17.0.0 Collecting pyarrow Downloading pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (3.3 kB) Requirement already satisfied: numpy>=1.16.6 in /usr/local/lib/python3.10/dist-packages (from pyarrow) (1.26.4) Downloading pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (39.9 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 39.9/39.9 MB 188.9 MB/s eta 0:00:00 Installing collected packages: pyarrow ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible. ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible. Successfully installed pyarrow-17.0.0 WARNING: The following packages were previously imported in this runtime: [pyarrow] You must restart the runtime in order to use newly installed versions.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7115/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7115/timeline
null
null
false

Dataset card for Github issues demo

Dataset summary

GitHub Issues is a dataset consisting of GitHub issues and pull requests associated with the 🤗 Datasets repository. It is intended for educational purposes and can be used for semantic search or multulabel text classification. The contents of each GitHub issue are in English and concern the domain of datasets for NLP, computer vision, and beyond.

Downloads last month
43