Datasets:
metadata
pretty_name: LINDSEA Pragmatics
license:
- cc-by-4.0
task_categories:
- text-generation
- text-classification
language:
- id
dataset_info:
features:
- name: id
dtype: string
- name: label
dtype: string
- name: prompts
list:
- name: question_translated
dtype: string
- name: text
dtype: string
- name: choices_translated
dtype: string
- name: prompt_templates
sequence: string
- name: metadata
struct:
- name: language
dtype: string
- name: linguistic_phenomenon
dtype: string
- name: category
dtype: string
- name: lexical_item
dtype: string
- name: question
dtype: string
- name: choices
dtype: string
splits:
- name: id
num_bytes: 46162
num_examples: 100
- name: id_fewshot
num_bytes: 644
num_examples: 5
download_size: 15436
dataset_size: 46806
configs:
- config_name: default
data_files:
- split: id
path: data/id-*
- split: id_fewshot
path: data/id_fewshot-*
size_categories:
- n<1K
LINDSEA Pragmatics
LINDSEA Pragmatics is a linguistic diagnostic from BHASA that evaluates a model's understanding of linguistic phenomena, pragmatics in particular, for Indonesian.
Supported Tasks and Leaderboards
LINDSEA Pragmatics is designed for evaluating chat or instruction-tuned large language models (LLMs).
Languages
- Indonesian (id)
Dataset Details
LINDSEA Pragmatics only has an Indonesian (id) split, with additional splits containing fewshot examples. Below are the statistics for this dataset. The number of tokens only refer to the strings of text found within the prompts
column.
Split | # of examples | # of GPT-4o tokens | # of Gemma 2 tokens | # of Llama 3 tokens |
---|---|---|---|---|
id | 100 | 1752 | 1912 | 2253 |
id_fewshot | 5 | 84 | 91 | 111 |
total | 105 | 1836 | 2003 | 2364 |
Data Sources
License
For the license/s of the dataset/s, please refer to the data sources table above.
We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data.
References
@misc{leong2023bhasaholisticsoutheastasian,
title={BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models},
author={Wei Qi Leong and Jian Gang Ngui and Yosephine Susanto and Hamsawardhini Rengarajan and Kengatharaiyer Sarveswaran and William Chandra Tjhi},
year={2023},
eprint={2309.06085},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2309.06085},
}