Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
WIESP2022-NER / scoring-scripts /compute_seqeval.py
fgrezes's picture
removed huggingface req
ba995cc
raw
history blame
2.13 kB
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score, accuracy_score
from seqeval.scheme import IOB2
import numpy as np
def compute_seqeval_jsonl(references_jsonl, predictions_jsonl, ref_col='ner_tags', pred_col='pred_ner_tags'):
'''
Computes the seqeval scores between two datasets loaded from jsonl (list of dicts with same keys).
Sorts the datasets by 'unique_id' and verifies that the tokens match.
'''
# extract the tags and reverse the dict
ref_dict = {k:[e[k] for e in references_jsonl] for k in references_jsonl[0].keys()}
pred_dict = {k:[e[k] for e in predictions_jsonl] for k in predictions_jsonl[0].keys()}
# sort by unique_id
ref_idx = np.argsort(ref_dict['unique_id'])
pred_idx = np.argsort(pred_dict['unique_id'])
ref_ner_tags = np.array(ref_dict[ref_col], dtype=object)[ref_idx]
pred_ner_tags = np.array(pred_dict[pred_col], dtype=object)[pred_idx]
ref_tokens = np.array(ref_dict['tokens'], dtype=object)[ref_idx]
pred_tokens = np.array(pred_dict['tokens'], dtype=object)[pred_idx]
# check that tokens match
assert((ref_tokens==pred_tokens).all())
# get report
report = classification_report(y_true=ref_ner_tags, y_pred=pred_ner_tags,
scheme=IOB2, output_dict=True,
)
# extract values we care about
report.pop("macro avg")
report.pop("weighted avg")
overall_score = report.pop("micro avg")
seqeval_results = {
type_name: {
"precision": score["precision"],
"recall": score["recall"],
"f1": score["f1-score"],
"suport": score["support"],
}
for type_name, score in report.items()
}
seqeval_results["overall_precision"] = overall_score["precision"]
seqeval_results["overall_recall"] = overall_score["recall"]
seqeval_results["overall_f1"] = overall_score["f1-score"]
seqeval_results["overall_accuracy"] = accuracy_score(y_true=ref_ner_tags, y_pred=pred_ner_tags)
return(seqeval_results)