Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
fgrezes commited on
Commit
ba995cc
·
1 Parent(s): 6f2dad6

removed huggingface req

Browse files
Files changed (1) hide show
  1. scoring-scripts/compute_seqeval.py +45 -24
scoring-scripts/compute_seqeval.py CHANGED
@@ -1,28 +1,49 @@
1
- from datasets import load_metric
2
- from ast import literal_eval
3
- def compute_seqeval(references_dataset, predictions_dataset, ref_col='ner_tags', pred_col='pred_ner_tags'):
4
- # computes the seqeval scores
5
-
6
- # sort by id
7
- references_dataset = references_dataset.sort('unique_id')
8
- predictions_dataset = predictions_dataset.sort('unique_id')
9
-
10
- # load the huggingface metric function
11
- seqeval = load_metric('seqeval')
 
 
 
 
 
 
 
 
12
 
13
  # check that tokens match
14
- assert(references_dataset['tokens']==predictions_dataset['tokens'])
15
-
16
- # ensure IOB2?
17
-
18
- # compute scores
19
- seqeval_results = seqeval.compute(predictions = predictions_dataset[pred_col],
20
- references = references_dataset[ref_col],
21
- scheme = 'IOB2',
22
- suffix = False,
23
- )
24
 
25
- # change all values to regular (not numpy) floats (otherwise cannot be serialized to json)
26
- seqeval_results = literal_eval(str(seqeval_results))
27
 
28
- return(seqeval_results)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from seqeval.metrics import classification_report, f1_score, precision_score, recall_score, accuracy_score
2
+ from seqeval.scheme import IOB2
3
+ import numpy as np
4
+ def compute_seqeval_jsonl(references_jsonl, predictions_jsonl, ref_col='ner_tags', pred_col='pred_ner_tags'):
5
+ '''
6
+ Computes the seqeval scores between two datasets loaded from jsonl (list of dicts with same keys).
7
+ Sorts the datasets by 'unique_id' and verifies that the tokens match.
8
+ '''
9
+ # extract the tags and reverse the dict
10
+ ref_dict = {k:[e[k] for e in references_jsonl] for k in references_jsonl[0].keys()}
11
+ pred_dict = {k:[e[k] for e in predictions_jsonl] for k in predictions_jsonl[0].keys()}
12
+
13
+ # sort by unique_id
14
+ ref_idx = np.argsort(ref_dict['unique_id'])
15
+ pred_idx = np.argsort(pred_dict['unique_id'])
16
+ ref_ner_tags = np.array(ref_dict[ref_col], dtype=object)[ref_idx]
17
+ pred_ner_tags = np.array(pred_dict[pred_col], dtype=object)[pred_idx]
18
+ ref_tokens = np.array(ref_dict['tokens'], dtype=object)[ref_idx]
19
+ pred_tokens = np.array(pred_dict['tokens'], dtype=object)[pred_idx]
20
 
21
  # check that tokens match
22
+ assert((ref_tokens==pred_tokens).all())
 
 
 
 
 
 
 
 
 
23
 
 
 
24
 
25
+ # get report
26
+ report = classification_report(y_true=ref_ner_tags, y_pred=pred_ner_tags,
27
+ scheme=IOB2, output_dict=True,
28
+ )
29
+
30
+ # extract values we care about
31
+ report.pop("macro avg")
32
+ report.pop("weighted avg")
33
+ overall_score = report.pop("micro avg")
34
+
35
+ seqeval_results = {
36
+ type_name: {
37
+ "precision": score["precision"],
38
+ "recall": score["recall"],
39
+ "f1": score["f1-score"],
40
+ "suport": score["support"],
41
+ }
42
+ for type_name, score in report.items()
43
+ }
44
+ seqeval_results["overall_precision"] = overall_score["precision"]
45
+ seqeval_results["overall_recall"] = overall_score["recall"]
46
+ seqeval_results["overall_f1"] = overall_score["f1-score"]
47
+ seqeval_results["overall_accuracy"] = accuracy_score(y_true=ref_ner_tags, y_pred=pred_ner_tags)
48
+
49
+ return(seqeval_results)