prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
print("\n===================================================================================================") import argparse import copy import gc import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl mpl.use('Agg') import h5py import os import random from tqdm import tqdm import torch import torchvision import torch.nn as nn import torch.backends.cudnn as cudnn from torchvision.utils import save_image import timeit from PIL import Image from opts import parse_opts args = parse_opts() wd = args.root_path os.chdir(wd) from utils import * from models import * from trainer import train_cgan, sample_cgan_given_labels from eval_metrics import cal_FID, cal_labelscore, inception_score ####################################################################################### ''' Settings ''' ####################################################################################### #------------------------------- # seeds random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True cudnn.benchmark = False np.random.seed(args.seed) #------------------------------- # output folders path_to_output = os.path.join(wd, "output/output_arch_{}_dimz_{}_lrg_{}_lrd_{}".format(args.GAN_arch, args.dim_z, args.lr_g, args.lr_d)) os.makedirs(path_to_output, exist_ok=True) save_models_folder = os.path.join(path_to_output, 'saved_models') os.makedirs(save_models_folder, exist_ok=True) save_images_folder = os.path.join(path_to_output, 'saved_images') os.makedirs(save_images_folder, exist_ok=True) ####################################################################################### ''' Data loader ''' ####################################################################################### # data loader data_filename = args.data_path + '/UTKFace_{}x{}.h5'.format(args.img_size, args.img_size) hf = h5py.File(data_filename, 'r') labels = hf['labels'][:] labels = labels.astype(float) images = hf['images'][:] hf.close() # subset of UTKFace selected_labels = np.arange(args.min_label, args.max_label+1) for i in range(len(selected_labels)): curr_label = selected_labels[i] index_curr_label = np.where(labels==curr_label)[0] if i == 0: images_subset = images[index_curr_label] labels_subset = labels[index_curr_label] else: images_subset = np.concatenate((images_subset, images[index_curr_label]), axis=0) labels_subset = np.concatenate((labels_subset, labels[index_curr_label])) # for i images = images_subset labels = labels_subset del images_subset, labels_subset; gc.collect() raw_images = copy.deepcopy(images) raw_labels = copy.deepcopy(labels) ### show some real images if args.show_real_imgs: unique_labels_show = sorted(list(set(labels))) nrow = len(unique_labels_show); ncol = 10 images_show = np.zeros((nrow*ncol, images.shape[1], images.shape[2], images.shape[3])) for i in range(nrow): curr_label = unique_labels_show[i] indx_curr_label = np.where(labels==curr_label)[0] np.random.shuffle(indx_curr_label) indx_curr_label = indx_curr_label[0:ncol] for j in range(ncol): images_show[i*ncol+j,:,:,:] = images[indx_curr_label[j]] print(images_show.shape) images_show = (images_show/255.0-0.5)/0.5 images_show = torch.from_numpy(images_show) save_image(images_show.data, save_images_folder +'/real_images_grid_{}x{}.png'.format(nrow, ncol), nrow=ncol, normalize=True) # for each age, take no more than args.max_num_img_per_label images image_num_threshold = args.max_num_img_per_label print("\n Original set has {} images; For each age, take no more than {} images>>>".format(len(images), image_num_threshold)) unique_labels_tmp = np.sort(np.array(list(set(labels)))) for i in tqdm(range(len(unique_labels_tmp))): indx_i = np.where(labels == unique_labels_tmp[i])[0] if len(indx_i)>image_num_threshold: np.random.shuffle(indx_i) indx_i = indx_i[0:image_num_threshold] if i == 0: sel_indx = indx_i else: sel_indx = np.concatenate((sel_indx, indx_i)) images = images[sel_indx] labels = labels[sel_indx] print("{} images left.".format(len(images))) hist_filename = wd + "/histogram_before_replica_unnormalized_age_" + str(args.img_size) + 'x' + str(args.img_size) num_bins = len(list(set(labels))) plt.figure() plt.hist(labels, num_bins, facecolor='blue', density=False) plt.savefig(hist_filename) ## replicate minority samples to alleviate the imbalance max_num_img_per_label_after_replica = np.min([args.max_num_img_per_label_after_replica, args.max_num_img_per_label]) if max_num_img_per_label_after_replica>1: unique_labels_replica = np.sort(np.array(list(set(labels)))) num_labels_replicated = 0 print("Start replicating monority samples >>>") for i in tqdm(range(len(unique_labels_replica))): # print((i, num_labels_replicated)) curr_label = unique_labels_replica[i] indx_i = np.where(labels == curr_label)[0] if len(indx_i) < max_num_img_per_label_after_replica: num_img_less = max_num_img_per_label_after_replica - len(indx_i) indx_replica = np.random.choice(indx_i, size = num_img_less, replace=True) if num_labels_replicated == 0: images_replica = images[indx_replica] labels_replica = labels[indx_replica] else: images_replica = np.concatenate((images_replica, images[indx_replica]), axis=0) labels_replica = np.concatenate((labels_replica, labels[indx_replica])) num_labels_replicated+=1 #end for i images =
np.concatenate((images, images_replica), axis=0)
numpy.concatenate
# -*- coding: utf-8 -*- #%% Import required libraries import numpy as np import numpy.ma as ma import random import math from initialise import Initialise_model, Initialise_inputs #%% Core model stochastic script def Stochastic_Process(j): Profile, num_profiles = Initialise_model(j) peak_enlarg, mu_peak, s_peak, Year_behaviour, User_list = Initialise_inputs(j) ''' Calculation of the peak time range, which is used to discriminate between off-peak and on-peak coincident switch-on probability Calculates first the overall Peak Window (taking into account all User classes). The peak window is just a time window in which coincident switch-on of multiple appliances assumes a higher probability than off-peak Within the peak window, a random peak time is calculated and then enlarged into a peak_time_range following again a random procedure ''' windows_curve = np.zeros(1440) #creates an empty daily profile Tot_curve = np.zeros(1440) #creates another empty daily profile for Us in User_list: App_count = 0 for App in Us.App_list: #Calculate windows curve, i.e. the theoretical maximum curve that can be obtained, for each app, by switching-on always all the 'n' apps altogether in any time-step of the functioning windows single_wcurve = Us.App_list[App_count].daily_use*np.mean(Us.App_list[App_count].POWER)*Us.App_list[App_count].number #this computes the curve for the specific App windows_curve = np.vstack([windows_curve, single_wcurve]) #this stacks the specific App curve in an overall curve comprising all the Apps within a User class App_count += 1 Us.windows_curve = windows_curve #after having iterated for all the Apps within a User class, saves the overall User class theoretical maximum curve Us.windows_curve = np.transpose(np.sum(Us.windows_curve, axis = 0))*Us.num_users Tot_curve = Tot_curve + Us.windows_curve #adds the User's theoretical max profile to the total theoretical max comprising all classes peak_window = np.transpose(np.argwhere(Tot_curve == np.amax(Tot_curve))) #Find the peak window within the theoretical max profile peak_time = round(random.normalvariate(round(np.average(peak_window)),1/3*(peak_window[0,-1]-peak_window[0,0]))) #Within the peak_window, randomly calculate the peak_time using a gaussian distribution peak_time_range = np.arange((peak_time-round(math.fabs(peak_time-(random.gauss(peak_time,(peak_enlarg*peak_time)))))),(peak_time+round(math.fabs(peak_time-random.gauss(peak_time,(peak_enlarg*peak_time)))))) #the peak_time is randomly enlarged based on the calibration parameter peak_enlarg ''' The core stochastic process starts here. For each profile requested by the software user, each Appliance instance within each User instance is separately and stochastically generated ''' for prof_i in range(num_profiles): #the whole code is repeated for each profile that needs to be generated Tot_Classes = np.zeros(1440) #initialise an empty daily profile that will be filled with the sum of the hourly profiles of each User instance for Us in User_list: #iterates for each User instance (i.e. for each user class) Us.load = np.zeros(1440) #initialise empty load for User instance for i in range(Us.num_users): #iterates for every single user within a User class. Each single user has its own separate randomisation if Us.user_preference == 0: rand_daily_pref = 0 pass else: rand_daily_pref = random.randint(1,Us.user_preference) for App in Us.App_list: #iterates for all the App types in the given User class #initialises variables for the cycle tot_time = 0 App.daily_use = np.zeros(1440) if random.uniform(0,1) > App.occasional_use: #evaluates if occasional use happens or not continue else: pass if App.Pref_index == 0: pass else: if rand_daily_pref == App.Pref_index: #evaluates if daily preference coincides with the randomised daily preference number pass else: continue if App.wd_we == Year_behaviour[prof_i] or App.wd_we == 2 : #checks if the app is allowed in the given yearly behaviour pattern pass else: continue #recalculate windows start and ending times randomly, based on the inputs rand_window_1 = np.array([int(random.uniform((App.window_1[0]-App.random_var_1),(App.window_1[0]+App.random_var_1))),int(random.uniform((App.window_1[1]-App.random_var_1),(App.window_1[1]+App.random_var_1)))]) if rand_window_1[0] < 0: rand_window_1[0] = 0 if rand_window_1[1] > 1440: rand_window_1[1] = 1440 rand_window_2 = np.array([int(random.uniform((App.window_2[0]-App.random_var_2),(App.window_2[0]+App.random_var_2))),int(random.uniform((App.window_2[1]-App.random_var_2),(App.window_2[1]+App.random_var_2)))]) if rand_window_2[0] < 0: rand_window_2[0] = 0 if rand_window_2[1] > 1440: rand_window_2[1] = 1440 rand_window_3 = np.array([int(random.uniform((App.window_3[0]-App.random_var_3),(App.window_3[0]+App.random_var_3))),int(random.uniform((App.window_3[1]-App.random_var_3),(App.window_3[1]+App.random_var_3)))]) if rand_window_3[0] < 0: rand_window_3[0] = 0 if rand_window_3[1] > 1440: rand_window_3[1] = 1440 #redefines functioning windows based on the previous randomisation of the boundaries if App.flat == 'yes': #if the app is "flat" the code stops right after filling the newly created windows without applying any further stochasticity App.daily_use[rand_window_1[0]:rand_window_1[1]] = np.full(np.diff(rand_window_1),App.POWER[prof_i]*App.number) App.daily_use[rand_window_2[0]:rand_window_2[1]] = np.full(np.diff(rand_window_2),App.POWER[prof_i]*App.number) App.daily_use[rand_window_3[0]:rand_window_3[1]] = np.full(np.diff(rand_window_3),App.POWER[prof_i]*App.number) Us.load = Us.load + App.daily_use continue else: #otherwise, for "non-flat" apps it puts a mask on the newly defined windows and continues App.daily_use[rand_window_1[0]:rand_window_1[1]] = np.full(np.diff(rand_window_1),0.001) App.daily_use[rand_window_2[0]:rand_window_2[1]] = np.full(np.diff(rand_window_2),0.001) App.daily_use[rand_window_3[0]:rand_window_3[1]] = np.full(np.diff(rand_window_3),0.001) App.daily_use_masked = np.zeros_like(ma.masked_not_equal(App.daily_use,0.001)) App.power = App.POWER[prof_i] #random variability is applied to the total functioning time and to the duration of the duty cycles, if they have been specified random_var_t = random.uniform((1-App.r_t),(1+App.r_t)) if App.activate == 1: App.p_11 = App.P_11*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 App.p_12 = App.P_12*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 random_cycle1 = np.concatenate(((np.ones(int(App.t_11*(random.uniform((1+App.r_c1),(1-App.r_c1)))))*App.p_11),(np.ones(int(App.t_12*(random.uniform((1+App.r_c1),(1-App.r_c1)))))*App.p_12))) #randomise also the fixed cycle random_cycle2 = random_cycle1 random_cycle3 = random_cycle1 elif App.activate == 2: App.p_11 = App.P_11*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 App.p_12 = App.P_12*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 App.p_21 = App.P_21*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 App.p_22 = App.P_22*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 random_cycle1 = np.concatenate(((np.ones(int(App.t_11*(random.uniform((1+App.r_c1),(1-App.r_c1)))))*App.p_11),(np.ones(int(App.t_12*(random.uniform((1+App.r_c1),(1-App.r_c1)))))*App.p_12))) #randomise also the fixed cycle random_cycle2 = np.concatenate(((np.ones(int(App.t_21*(random.uniform((1+App.r_c2),(1-App.r_c2)))))*App.p_21),(np.ones(int(App.t_22*(random.uniform((1+App.r_c2),(1-App.r_c2)))))*App.p_22))) #randomise also the fixed cycle random_cycle3 = random_cycle1 elif App.activate == 3: App.p_11 = App.P_11*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 App.p_12 = App.P_12*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 App.p_21 = App.P_12*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 App.p_22 = App.P_22*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 App.p_31 = App.P_31*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 App.p_32 = App.P_32*(random.uniform((1-App.Thermal_P_var),(1+App.Thermal_P_var))) #randomly variates the power of thermal apps, otherwise variability is 0 random_cycle1 = random.choice([np.concatenate(((np.ones(int(App.t_11*(random.uniform((1+App.r_c1),(1-App.r_c1)))))*App.p_11),(np.ones(int(App.t_12*(random.uniform((1+App.r_c1),(1-App.r_c1)))))*App.p_12))),np.concatenate(((np.ones(int(App.t_12*(random.uniform((1+App.r_c1),(1-App.r_c1)))))*App.p_12),(np.ones(int(App.t_11*(random.uniform((1+App.r_c1),(1-App.r_c1)))))*App.p_11)))]) #randomise also the fixed cycle random_cycle2 = random.choice([np.concatenate(((np.ones(int(App.t_21*(random.uniform((1+App.r_c2),(1-App.r_c2)))))*App.p_21),(np.ones(int(App.t_22*(random.uniform((1+App.r_c2),(1-App.r_c2)))))*App.p_22))),np.concatenate(((np.ones(int(App.t_22*(random.uniform((1+App.r_c2),(1-App.r_c2)))))*App.p_22),(np.ones(int(App.t_21*(random.uniform((1+App.r_c2),(1-App.r_c2)))))*App.p_21)))]) random_cycle3 = random.choice([np.concatenate(((np.ones(int(App.t_31*(random.uniform((1+App.r_c3),(1-App.r_c3)))))*App.p_31),(np.ones(int(App.t_32*(random.uniform((1+App.r_c3),(1-App.r_c3)))))*App.p_32))),np.concatenate(((np.ones(int(App.t_32*(random.uniform((1+App.r_c3),(1-App.r_c3)))))*App.p_32),(np.ones(int(App.t_31*(random.uniform((1+App.r_c3),(1-App.r_c3)))))*App.p_31)))])#this is to avoid that all cycles are sincronous else: pass rand_time = round(random.uniform(App.func_time,int(App.func_time*random_var_t))) #control to check that the total randomised time of use does not exceed the total space available in the windows if rand_time > 0.99*(np.diff(rand_window_1)+np.diff(rand_window_2)+np.diff(rand_window_3)): rand_time = int(0.99*(np.diff(rand_window_1)+np.diff(rand_window_2)+np.diff(rand_window_3))) max_free_spot = rand_time #free spots are used to detect if there's still space for switch_ons. Before calculating actual free spots, the max free spot is set equal to the entire randomised func_time while tot_time <= rand_time: #this is the key cycle, which runs for each App until the switch_ons and their duration equals the randomised total time of use of the App #check how many windows to consider if App.num_windows == 1: switch_on = int(random.choice([random.uniform(rand_window_1[0],(rand_window_1[1]))])) elif App.num_windows == 2: switch_on = int(random.choice([random.uniform(rand_window_1[0],(rand_window_1[1])),random.uniform(rand_window_2[0],(rand_window_2[1]))])) else: switch_on = int(random.choice([random.uniform(rand_window_1[0],(rand_window_1[1])),random.uniform(rand_window_2[0],(rand_window_2[1])),random.uniform(rand_window_3[0],(rand_window_3[1]))])) #Identifies a random switch on time within the available functioning windows if App.daily_use[switch_on] == 0.001: #control to check if the app is not already on at the randomly selected switch-on time if switch_on in range(rand_window_1[0],rand_window_1[1]): if np.any(App.daily_use[switch_on:rand_window_1[1]]!=0.001): #control to check if there are any other switch on times after the current one next_switch = [switch_on + k[0] for k in np.where(App.daily_use[switch_on:]!=0.001)] #identifies the position of next switch on time and sets it as a limit for the duration of the current switch on if (next_switch[0] - switch_on) >= App.func_cycle and max_free_spot >= App.func_cycle: upper_limit = min((next_switch[0]-switch_on),min(rand_time,rand_window_1[1]-switch_on)) elif (next_switch[0] - switch_on) < App.func_cycle and max_free_spot >= App.func_cycle: #if next switch_on event does not allow for a minimum functioning cycle without overlapping, but there are other larger free spots, the cycle tries again from the beginning continue else: upper_limit = next_switch[0]-switch_on #if there are no other options to reach the total time of use, empty spaces are filled without minimum cycle restrictions until reaching the limit else: upper_limit = min(rand_time,rand_window_1[1]-switch_on) #if there are no other switch-on events after the current one, the upper duration limit is set this way if upper_limit >= App.func_cycle: #if the upper limit is higher than minimum functioning time, an array of indexes is created to be later put in the profile indexes = np.arange(switch_on,switch_on+(int(random.uniform(App.func_cycle,upper_limit)))) #a random duration is chosen between the upper limit and the minimum cycle else: indexes = np.arange(switch_on,switch_on+upper_limit) #this is the case in which empty spaces need to be filled without constraints to reach the total time goal elif switch_on in range(rand_window_2[0],rand_window_2[1]): #if random switch_on happens in windows2, same code as above is repeated for windows2 if np.any(App.daily_use[switch_on:rand_window_2[1]]!=0.001): next_switch = [switch_on + k[0] for k in np.where(App.daily_use[switch_on:]!=0.001)] if (next_switch[0] - switch_on) >= App.func_cycle and max_free_spot >= App.func_cycle: upper_limit = min((next_switch[0]-switch_on),min(rand_time,rand_window_2[1]-switch_on)) elif (next_switch[0] - switch_on) < App.func_cycle and max_free_spot >= App.func_cycle: continue else: upper_limit = next_switch[0]-switch_on else: upper_limit = min(rand_time,rand_window_2[1]-switch_on) if upper_limit >= App.func_cycle: indexes = np.arange(switch_on,switch_on+(int(random.uniform(App.func_cycle,upper_limit)))) else: indexes = np.arange(switch_on,switch_on+upper_limit) else: #if switch_on is not in window1 nor in window2, it shall be in window3. Same code is repreated if np.any(App.daily_use[switch_on:rand_window_3[1]]!=0.001): next_switch = [switch_on + k[0] for k in np.where(App.daily_use[switch_on:]!=0.001)] if (next_switch[0] - switch_on) >= App.func_cycle and max_free_spot >= App.func_cycle: upper_limit = min((next_switch[0]-switch_on),min(rand_time,rand_window_3[1]-switch_on)) elif (next_switch[0] - switch_on) < App.func_cycle and max_free_spot >= App.func_cycle: continue else: upper_limit = next_switch[0]-switch_on else: upper_limit = min(rand_time,rand_window_3[1]-switch_on) if upper_limit >= App.func_cycle: indexes = np.arange(switch_on,switch_on+(int(random.uniform(App.func_cycle,upper_limit)))) else: indexes =
np.arange(switch_on,switch_on+upper_limit)
numpy.arange
"""Tests for neurodsp.sim.aperiodic.""" import numpy as np from scipy.optimize import curve_fit from neurodsp.tests.settings import N_SECONDS, FS, EXP1, EXP2, KNEE, EPS from neurodsp.tests.tutils import check_sim_output from neurodsp.sim.aperiodic import * from neurodsp.sim.aperiodic import _create_powerlaw from neurodsp.spectral import compute_spectrum ################################################################################################### ################################################################################################### def test_sim_poisson_pop(): sig = sim_poisson_pop(N_SECONDS, FS) check_sim_output(sig) def test_sim_synaptic_current(): sig = sim_synaptic_current(N_SECONDS, FS) check_sim_output(sig) def test_sim_knee(): # Build the signal and run a smoke test sig = sim_knee(N_SECONDS, FS, EXP1, EXP2, KNEE) check_sim_output(sig) # Check against the power spectrum when you take the Fourier transform sig_len = int(FS*N_SECONDS) freqs = np.linspace(0, FS/2, num=sig_len//2, endpoint=True) # Ignore the DC component to avoid division by zero in the Lorentzian freqs = freqs[1:] true_psd = np.array([1/(freq**-EXP1*(freq**(-EXP2-EXP1) + KNEE)) for freq in freqs]) # Only look at the frequencies (ignoring DC component) up to the nyquist rate sig_hat = np.fft.fft(sig)[1:sig_len//2] numerical_psd = np.abs(sig_hat)**2 np.allclose(true_psd, numerical_psd, atol=EPS) # Accuracy test for a single exponent sig = sim_knee(n_seconds=N_SECONDS, fs=FS, chi1=0, chi2=EXP2, knee=KNEE) freqs, powers = compute_spectrum(sig, FS, f_range=(1, 200)) def _estimate_single_knee(xs, offset, knee, exponent): return
np.zeros_like(xs)
numpy.zeros_like
""" YTArray class. """ from __future__ import print_function #----------------------------------------------------------------------------- # Copyright (c) 2013, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import copy import numpy as np from distutils.version import LooseVersion from functools import wraps from numpy import \ add, subtract, multiply, divide, logaddexp, logaddexp2, true_divide, \ floor_divide, negative, power, remainder, mod, absolute, rint, \ sign, conj, exp, exp2, log, log2, log10, expm1, log1p, sqrt, square, \ reciprocal, sin, cos, tan, arcsin, arccos, arctan, arctan2, \ hypot, sinh, cosh, tanh, arcsinh, arccosh, arctanh, deg2rad, rad2deg, \ bitwise_and, bitwise_or, bitwise_xor, invert, left_shift, right_shift, \ greater, greater_equal, less, less_equal, not_equal, equal, logical_and, \ logical_or, logical_xor, logical_not, maximum, minimum, fmax, fmin, \ isreal, iscomplex, isfinite, isinf, isnan, signbit, copysign, nextafter, \ modf, ldexp, frexp, fmod, floor, ceil, trunc, fabs, spacing try: # numpy 1.13 or newer from numpy import positive, divmod as divmod_, isnat, heaviside except ImportError: positive, divmod_, isnat, heaviside = (None,)*4 from yt.units.unit_object import Unit, UnitParseError from yt.units.unit_registry import UnitRegistry from yt.units.dimensions import \ angle, \ current_mks, \ dimensionless, \ em_dimensions from yt.utilities.exceptions import \ YTUnitOperationError, YTUnitConversionError, \ YTUfuncUnitError, YTIterableUnitCoercionError, \ YTInvalidUnitEquivalence, YTEquivalentDimsError from yt.utilities.lru_cache import lru_cache from numbers import Number as numeric_type from yt.utilities.on_demand_imports import _astropy from sympy import Rational from yt.units.unit_lookup_table import \ default_unit_symbol_lut from yt.units.equivalencies import equivalence_registry from yt.utilities.logger import ytLogger as mylog from .pint_conversions import convert_pint_units NULL_UNIT = Unit() POWER_SIGN_MAPPING = {multiply: 1, divide: -1} # redefine this here to avoid a circular import from yt.funcs def iterable(obj): try: len(obj) except: return False return True def return_arr(func): @wraps(func) def wrapped(*args, **kwargs): ret, units = func(*args, **kwargs) if ret.shape == (): return YTQuantity(ret, units) else: # This could be a subclass, so don't call YTArray directly. return type(args[0])(ret, units) return wrapped @lru_cache(maxsize=128, typed=False) def sqrt_unit(unit): return unit**0.5 @lru_cache(maxsize=128, typed=False) def multiply_units(unit1, unit2): return unit1 * unit2 def preserve_units(unit1, unit2=None): return unit1 @lru_cache(maxsize=128, typed=False) def power_unit(unit, power): return unit**power @lru_cache(maxsize=128, typed=False) def square_unit(unit): return unit*unit @lru_cache(maxsize=128, typed=False) def divide_units(unit1, unit2): return unit1/unit2 @lru_cache(maxsize=128, typed=False) def reciprocal_unit(unit): return unit**-1 def passthrough_unit(unit, unit2=None): return unit def return_without_unit(unit, unit2=None): return None def arctan2_unit(unit1, unit2): return NULL_UNIT def comparison_unit(unit1, unit2=None): return None def invert_units(unit): raise TypeError( "Bit-twiddling operators are not defined for YTArray instances") def bitop_units(unit1, unit2): raise TypeError( "Bit-twiddling operators are not defined for YTArray instances") def get_inp_u_unary(ufunc, inputs, out_arr=None): inp = inputs[0] u = getattr(inp, 'units', None) if u is None: u = NULL_UNIT if u.dimensions is angle and ufunc in trigonometric_operators: inp = inp.in_units('radian').v if out_arr is not None: out_arr = ufunc(inp).view(np.ndarray) return out_arr, inp, u def get_inp_u_binary(ufunc, inputs): inp1 = coerce_iterable_units(inputs[0]) inp2 = coerce_iterable_units(inputs[1]) unit1 = getattr(inp1, 'units', None) unit2 = getattr(inp2, 'units', None) ret_class = get_binary_op_return_class(type(inp1), type(inp2)) if unit1 is None: unit1 = Unit(registry=getattr(unit2, 'registry', None)) if unit2 is None and ufunc is not power: unit2 = Unit(registry=getattr(unit1, 'registry', None)) elif ufunc is power: unit2 = inp2 if isinstance(unit2, np.ndarray): if isinstance(unit2, YTArray): if unit2.units.is_dimensionless: pass else: raise YTUnitOperationError(ufunc, unit1, unit2) unit2 = 1.0 return (inp1, inp2), (unit1, unit2), ret_class def handle_preserve_units(inps, units, ufunc, ret_class): if units[0] != units[1]: any_nonzero = [np.any(inps[0]), np.any(inps[1])] if any_nonzero[0] == np.bool_(False): units = (units[1], units[1]) elif any_nonzero[1] == np.bool_(False): units = (units[0], units[0]) else: if not units[0].same_dimensions_as(units[1]): raise YTUnitOperationError(ufunc, *units) inps = (inps[0], ret_class(inps[1]).to( ret_class(inps[0]).units)) return inps, units def handle_comparison_units(inps, units, ufunc, ret_class, raise_error=False): if units[0] != units[1]: u1d = units[0].is_dimensionless u2d = units[1].is_dimensionless any_nonzero = [np.any(inps[0]), np.any(inps[1])] if any_nonzero[0] == np.bool_(False): units = (units[1], units[1]) elif any_nonzero[1] == np.bool_(False): units = (units[0], units[0]) elif not any([u1d, u2d]): if not units[0].same_dimensions_as(units[1]): raise YTUnitOperationError(ufunc, *units) else: if raise_error: raise YTUfuncUnitError(ufunc, *units) inps = (inps[0], ret_class(inps[1]).to( ret_class(inps[0]).units)) return inps, units def handle_multiply_divide_units(unit, units, out, out_arr): if unit.is_dimensionless and unit.base_value != 1.0: if not units[0].is_dimensionless: if units[0].dimensions == units[1].dimensions: out_arr = np.multiply(out_arr.view(np.ndarray), unit.base_value, out=out) unit = Unit(registry=unit.registry) return out, out_arr, unit def coerce_iterable_units(input_object): if isinstance(input_object, np.ndarray): return input_object if iterable(input_object): if any([isinstance(o, YTArray) for o in input_object]): ff = getattr(input_object[0], 'units', NULL_UNIT, ) if any([ff != getattr(_, 'units', NULL_UNIT) for _ in input_object]): raise YTIterableUnitCoercionError(input_object) # This will create a copy of the data in the iterable. return YTArray(input_object) return input_object else: return input_object def sanitize_units_mul(this_object, other_object): inp = coerce_iterable_units(this_object) ret = coerce_iterable_units(other_object) # If the other object is a YTArray and has the same dimensions as the object # under consideration, convert so we don't mix units with the same # dimensions. if isinstance(ret, YTArray): if inp.units.same_dimensions_as(ret.units): ret.in_units(inp.units) return ret def sanitize_units_add(this_object, other_object, op_string): inp = coerce_iterable_units(this_object) ret = coerce_iterable_units(other_object) # Make sure the other object is a YTArray before we use the `units` # attribute. if isinstance(ret, YTArray): if not inp.units.same_dimensions_as(ret.units): # handle special case of adding or subtracting with zero or # array filled with zero if not np.any(other_object): return ret.view(np.ndarray) elif not np.any(this_object): return ret raise YTUnitOperationError(op_string, inp.units, ret.units) ret = ret.in_units(inp.units) else: # If the other object is not a YTArray, then one of the arrays must be # dimensionless or filled with zeros if not inp.units.is_dimensionless and np.any(ret): raise YTUnitOperationError(op_string, inp.units, dimensionless) return ret def validate_comparison_units(this, other, op_string): # Check that other is a YTArray. if hasattr(other, 'units'): if this.units.expr is other.units.expr: if this.units.base_value == other.units.base_value: return other if not this.units.same_dimensions_as(other.units): raise YTUnitOperationError(op_string, this.units, other.units) return other.in_units(this.units) return other @lru_cache(maxsize=128, typed=False) def _unit_repr_check_same(my_units, other_units): """ Takes a Unit object, or string of known unit symbol, and check that it is compatible with this quantity. Returns Unit object. """ # let Unit() handle units arg if it's not already a Unit obj. if not isinstance(other_units, Unit): other_units = Unit(other_units, registry=my_units.registry) equiv_dims = em_dimensions.get(my_units.dimensions, None) if equiv_dims == other_units.dimensions: if current_mks in equiv_dims.free_symbols: base = "SI" else: base = "CGS" raise YTEquivalentDimsError(my_units, other_units, base) if not my_units.same_dimensions_as(other_units): raise YTUnitConversionError( my_units, my_units.dimensions, other_units, other_units.dimensions) return other_units unary_operators = ( negative, absolute, rint, sign, conj, exp, exp2, log, log2, log10, expm1, log1p, sqrt, square, reciprocal, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh, deg2rad, rad2deg, invert, logical_not, isreal, iscomplex, isfinite, isinf, isnan, signbit, floor, ceil, trunc, modf, frexp, fabs, spacing, positive, isnat, ) binary_operators = ( add, subtract, multiply, divide, logaddexp, logaddexp2, true_divide, power, remainder, mod, arctan2, hypot, bitwise_and, bitwise_or, bitwise_xor, left_shift, right_shift, greater, greater_equal, less, less_equal, not_equal, equal, logical_and, logical_or, logical_xor, maximum, minimum, fmax, fmin, copysign, nextafter, ldexp, fmod, divmod_, heaviside ) trigonometric_operators = ( sin, cos, tan, ) class YTArray(np.ndarray): """ An ndarray subclass that attaches a symbolic unit object to the array data. Parameters ---------- input_array : :obj:`!iterable` A tuple, list, or array to attach units to input_units : String unit specification, unit symbol object, or astropy units The units of the array. Powers must be specified using python syntax (cm**3, not cm^3). registry : ~yt.units.unit_registry.UnitRegistry The registry to create units from. If input_units is already associated with a unit registry and this is specified, this will be used instead of the registry associated with the unit object. dtype : data-type The dtype of the array data. Defaults to the dtype of the input data, or, if none is found, uses np.float64 bypass_validation : boolean If True, all input validation is skipped. Using this option may produce corrupted, invalid units or array data, but can lead to significant speedups in the input validation logic adds significant overhead. If set, input_units *must* be a valid unit object. Defaults to False. Examples -------- >>> from yt import YTArray >>> a = YTArray([1, 2, 3], 'cm') >>> b = YTArray([4, 5, 6], 'm') >>> a + b YTArray([ 401., 502., 603.]) cm >>> b + a YTArray([ 4.01, 5.02, 6.03]) m NumPy ufuncs will pass through units where appropriate. >>> import numpy as np >>> a = YTArray(np.arange(8) - 4, 'g/cm**3') >>> np.abs(a) YTArray([4, 3, 2, 1, 0, 1, 2, 3]) g/cm**3 and strip them when it would be annoying to deal with them. >>> np.log10(a) array([ -inf, 0. , 0.30103 , 0.47712125, 0.60205999, 0.69897 , 0.77815125, 0.84509804]) YTArray is tightly integrated with yt datasets: >>> import yt >>> ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030') >>> a = ds.arr(np.ones(5), 'code_length') >>> a.in_cgs() YTArray([ 3.08600000e+24, 3.08600000e+24, 3.08600000e+24, 3.08600000e+24, 3.08600000e+24]) cm This is equivalent to: >>> b = YTArray(np.ones(5), 'code_length', registry=ds.unit_registry) >>> np.all(a == b) True """ _ufunc_registry = { add: preserve_units, subtract: preserve_units, multiply: multiply_units, divide: divide_units, logaddexp: return_without_unit, logaddexp2: return_without_unit, true_divide: divide_units, floor_divide: divide_units, negative: passthrough_unit, power: power_unit, remainder: preserve_units, mod: preserve_units, fmod: preserve_units, absolute: passthrough_unit, fabs: passthrough_unit, rint: return_without_unit, sign: return_without_unit, conj: passthrough_unit, exp: return_without_unit, exp2: return_without_unit, log: return_without_unit, log2: return_without_unit, log10: return_without_unit, expm1: return_without_unit, log1p: return_without_unit, sqrt: sqrt_unit, square: square_unit, reciprocal: reciprocal_unit, sin: return_without_unit, cos: return_without_unit, tan: return_without_unit, sinh: return_without_unit, cosh: return_without_unit, tanh: return_without_unit, arcsin: return_without_unit, arccos: return_without_unit, arctan: return_without_unit, arctan2: arctan2_unit, arcsinh: return_without_unit, arccosh: return_without_unit, arctanh: return_without_unit, hypot: preserve_units, deg2rad: return_without_unit, rad2deg: return_without_unit, bitwise_and: bitop_units, bitwise_or: bitop_units, bitwise_xor: bitop_units, invert: invert_units, left_shift: bitop_units, right_shift: bitop_units, greater: comparison_unit, greater_equal: comparison_unit, less: comparison_unit, less_equal: comparison_unit, not_equal: comparison_unit, equal: comparison_unit, logical_and: comparison_unit, logical_or: comparison_unit, logical_xor: comparison_unit, logical_not: return_without_unit, maximum: preserve_units, minimum: preserve_units, fmax: preserve_units, fmin: preserve_units, isreal: return_without_unit, iscomplex: return_without_unit, isfinite: return_without_unit, isinf: return_without_unit, isnan: return_without_unit, signbit: return_without_unit, copysign: passthrough_unit, nextafter: preserve_units, modf: passthrough_unit, ldexp: bitop_units, frexp: return_without_unit, floor: passthrough_unit, ceil: passthrough_unit, trunc: passthrough_unit, spacing: passthrough_unit, positive: passthrough_unit, divmod_: passthrough_unit, isnat: return_without_unit, heaviside: preserve_units, } __array_priority__ = 2.0 def __new__(cls, input_array, input_units=None, registry=None, dtype=None, bypass_validation=False): if dtype is None: dtype = getattr(input_array, 'dtype', np.float64) if bypass_validation is True: obj = np.asarray(input_array, dtype=dtype).view(cls) obj.units = input_units if registry is not None: obj.units.registry = registry return obj if input_array is NotImplemented: return input_array.view(cls) if registry is None and isinstance(input_units, (str, bytes)): if input_units.startswith('code_'): raise UnitParseError( "Code units used without referring to a dataset. \n" "Perhaps you meant to do something like this instead: \n" "ds.arr(%s, \"%s\")" % (input_array, input_units) ) if isinstance(input_array, YTArray): ret = input_array.view(cls) if input_units is None: if registry is None: ret.units = input_array.units else: units = Unit(str(input_array.units), registry=registry) ret.units = units elif isinstance(input_units, Unit): ret.units = input_units else: ret.units = Unit(input_units, registry=registry) return ret elif isinstance(input_array, np.ndarray): pass elif iterable(input_array) and input_array: if isinstance(input_array[0], YTArray): return YTArray(np.array(input_array, dtype=dtype), input_array[0].units, registry=registry) # Input array is an already formed ndarray instance # We first cast to be our class type obj = np.asarray(input_array, dtype=dtype).view(cls) # Check units type if input_units is None: # Nothing provided. Make dimensionless... units = Unit() elif isinstance(input_units, Unit): if registry and registry is not input_units.registry: units = Unit(str(input_units), registry=registry) else: units = input_units else: # units kwarg set, but it's not a Unit object. # don't handle all the cases here, let the Unit class handle if # it's a str. units = Unit(input_units, registry=registry) # Attach the units obj.units = units return obj def __repr__(self): """ """ return super(YTArray, self).__repr__()+' '+self.units.__repr__() def __str__(self): """ """ return str(self.view(np.ndarray)) + ' ' + str(self.units) # # Start unit conversion methods # def convert_to_units(self, units): """ Convert the array and units to the given units. Parameters ---------- units : Unit object or str The units you want to convert to. """ new_units = _unit_repr_check_same(self.units, units) (conversion_factor, offset) = self.units.get_conversion_factor(new_units) self.units = new_units values = self.d values *= conversion_factor if offset: np.subtract(self, offset*self.uq, self) return self def convert_to_base(self, unit_system="cgs"): """ Convert the array and units to the equivalent base units in the specified unit system. Parameters ---------- unit_system : string, optional The unit system to be used in the conversion. If not specified, the default base units of cgs are used. Examples -------- >>> E = YTQuantity(2.5, "erg/s") >>> E.convert_to_base(unit_system="galactic") """ return self.convert_to_units(self.units.get_base_equivalent(unit_system)) def convert_to_cgs(self): """ Convert the array and units to the equivalent cgs units. """ return self.convert_to_units(self.units.get_cgs_equivalent()) def convert_to_mks(self): """ Convert the array and units to the equivalent mks units. """ return self.convert_to_units(self.units.get_mks_equivalent()) def in_units(self, units, equivalence=None, **kwargs): """ Creates a copy of this array with the data in the supplied units, and returns it. Optionally, an equivalence can be specified to convert to an equivalent quantity which is not in the same dimensions. .. note:: All additional keyword arguments are passed to the equivalency, which should be used if that particular equivalency requires them. Parameters ---------- units : Unit object or string The units you want to get a new quantity in. equivalence : string, optional The equivalence you wish to use. To see which equivalencies are supported for this unitful quantity, try the :meth:`list_equivalencies` method. Default: None Returns ------- YTArray """ if equivalence is None: new_units = _unit_repr_check_same(self.units, units) (conversion_factor, offset) = self.units.get_conversion_factor(new_units) new_array = type(self)(self.ndview * conversion_factor, new_units) if offset: np.subtract(new_array, offset*new_array.uq, new_array) return new_array else: return self.to_equivalent(units, equivalence, **kwargs) def to(self, units, equivalence=None, **kwargs): """ An alias for YTArray.in_units(). See the docstrings of that function for details. """ return self.in_units(units, equivalence=equivalence, **kwargs) def to_value(self, units=None, equivalence=None, **kwargs): """ Creates a copy of this array with the data in the supplied units, and returns it without units. Output is therefore a bare NumPy array. Optionally, an equivalence can be specified to convert to an equivalent quantity which is not in the same dimensions. .. note:: All additional keyword arguments are passed to the equivalency, which should be used if that particular equivalency requires them. Parameters ---------- units : Unit object or string, optional The units you want to get the bare quantity in. If not specified, the value will be returned in the current units. equivalence : string, optional The equivalence you wish to use. To see which equivalencies are supported for this unitful quantity, try the :meth:`list_equivalencies` method. Default: None Returns ------- NumPy array """ if units is None: v = self.value else: v = self.in_units(units, equivalence=equivalence, **kwargs).value if isinstance(self, YTQuantity): return float(v) else: return v def in_base(self, unit_system="cgs"): """ Creates a copy of this array with the data in the specified unit system, and returns it in that system's base units. Parameters ---------- unit_system : string, optional The unit system to be used in the conversion. If not specified, the default base units of cgs are used. Examples -------- >>> E = YTQuantity(2.5, "erg/s") >>> E_new = E.in_base(unit_system="galactic") """ return self.in_units(self.units.get_base_equivalent(unit_system)) def in_cgs(self): """ Creates a copy of this array with the data in the equivalent cgs units, and returns it. Returns ------- Quantity object with data converted to cgs units. """ return self.in_units(self.units.get_cgs_equivalent()) def in_mks(self): """ Creates a copy of this array with the data in the equivalent mks units, and returns it. Returns ------- Quantity object with data converted to mks units. """ return self.in_units(self.units.get_mks_equivalent()) def to_equivalent(self, unit, equiv, **kwargs): """ Convert a YTArray or YTQuantity to an equivalent, e.g., something that is related by only a constant factor but not in the same units. Parameters ---------- unit : string The unit that you wish to convert to. equiv : string The equivalence you wish to use. To see which equivalencies are supported for this unitful quantity, try the :meth:`list_equivalencies` method. Examples -------- >>> a = yt.YTArray(1.0e7,"K") >>> a.to_equivalent("keV", "thermal") """ conv_unit = Unit(unit, registry=self.units.registry) if self.units.same_dimensions_as(conv_unit): return self.in_units(conv_unit) this_equiv = equivalence_registry[equiv]() oneway_or_equivalent = ( conv_unit.has_equivalent(equiv) or this_equiv._one_way) if self.has_equivalent(equiv) and oneway_or_equivalent: new_arr = this_equiv.convert( self, conv_unit.dimensions, **kwargs) if isinstance(new_arr, tuple): try: return type(self)(new_arr[0], new_arr[1]).in_units(unit) except YTUnitConversionError: raise YTInvalidUnitEquivalence(equiv, self.units, unit) else: return new_arr.in_units(unit) else: raise YTInvalidUnitEquivalence(equiv, self.units, unit) def list_equivalencies(self): """ Lists the possible equivalencies associated with this YTArray or YTQuantity. """ self.units.list_equivalencies() def has_equivalent(self, equiv): """ Check to see if this YTArray or YTQuantity has an equivalent unit in *equiv*. """ return self.units.has_equivalent(equiv) def ndarray_view(self): """ Returns a view into the array, but as an ndarray rather than ytarray. Returns ------- View of this array's data. """ return self.view(np.ndarray) def to_ndarray(self): """ Creates a copy of this array with the unit information stripped """ return np.array(self) @classmethod def from_astropy(cls, arr, unit_registry=None): """ Convert an AstroPy "Quantity" to a YTArray or YTQuantity. Parameters ---------- arr : AstroPy Quantity The Quantity to convert from. unit_registry : yt UnitRegistry, optional A yt unit registry to use in the conversion. If one is not supplied, the default one will be used. """ # Converting from AstroPy Quantity u = arr.unit ap_units = [] for base, exponent in zip(u.bases, u.powers): unit_str = base.to_string() # we have to do this because AstroPy is silly and defines # hour as "h" if unit_str == "h": unit_str = "hr" ap_units.append("%s**(%s)" % (unit_str, Rational(exponent))) ap_units = "*".join(ap_units) if isinstance(arr.value, np.ndarray): return YTArray(arr.value, ap_units, registry=unit_registry) else: return YTQuantity(arr.value, ap_units, registry=unit_registry) def to_astropy(self, **kwargs): """ Creates a new AstroPy quantity with the same unit information. """ if _astropy.units is None: raise ImportError("You don't have AstroPy installed, so you can't convert to " + "an AstroPy quantity.") return self.value*_astropy.units.Unit(str(self.units), **kwargs) @classmethod def from_pint(cls, arr, unit_registry=None): """ Convert a Pint "Quantity" to a YTArray or YTQuantity. Parameters ---------- arr : Pint Quantity The Quantity to convert from. unit_registry : yt UnitRegistry, optional A yt unit registry to use in the conversion. If one is not supplied, the default one will be used. Examples -------- >>> from pint import UnitRegistry >>> import numpy as np >>> ureg = UnitRegistry() >>> a = np.random.random(10) >>> b = ureg.Quantity(a, "erg/cm**3") >>> c = yt.YTArray.from_pint(b) """ p_units = [] for base, exponent in arr._units.items(): bs = convert_pint_units(base) p_units.append("%s**(%s)" % (bs, Rational(exponent))) p_units = "*".join(p_units) if isinstance(arr.magnitude, np.ndarray): return YTArray(arr.magnitude, p_units, registry=unit_registry) else: return YTQuantity(arr.magnitude, p_units, registry=unit_registry) def to_pint(self, unit_registry=None): """ Convert a YTArray or YTQuantity to a Pint Quantity. Parameters ---------- arr : YTArray or YTQuantity The unitful quantity to convert from. unit_registry : Pint UnitRegistry, optional The Pint UnitRegistry to use in the conversion. If one is not supplied, the default one will be used. NOTE: This is not the same as a yt UnitRegistry object. Examples -------- >>> a = YTQuantity(4.0, "cm**2/s") >>> b = a.to_pint() """ from pint import UnitRegistry if unit_registry is None: unit_registry = UnitRegistry() powers_dict = self.units.expr.as_powers_dict() units = [] for unit, pow in powers_dict.items(): # we have to do this because Pint doesn't recognize # "yr" as "year" if str(unit).endswith("yr") and len(str(unit)) in [2,3]: unit = str(unit).replace("yr","year") units.append("%s**(%s)" % (unit, Rational(pow))) units = "*".join(units) return unit_registry.Quantity(self.value, units) # # End unit conversion methods # def write_hdf5(self, filename, dataset_name=None, info=None, group_name=None): r"""Writes a YTArray to hdf5 file. Parameters ---------- filename: string The filename to create and write a dataset to dataset_name: string The name of the dataset to create in the file. info: dictionary A dictionary of supplementary info to write to append as attributes to the dataset. group_name: string An optional group to write the arrays to. If not specified, the arrays are datasets at the top level by default. Examples -------- >>> a = YTArray([1,2,3], 'cm') >>> myinfo = {'field':'dinosaurs', 'type':'field_data'} >>> a.write_hdf5('test_array_data.h5', dataset_name='dinosaurs', ... info=myinfo) """ from yt.utilities.on_demand_imports import _h5py as h5py from yt.extern.six.moves import cPickle as pickle if info is None: info = {} info['units'] = str(self.units) info['unit_registry'] = np.void(pickle.dumps(self.units.registry.lut)) if dataset_name is None: dataset_name = 'array_data' f = h5py.File(filename) if group_name is not None: if group_name in f: g = f[group_name] else: g = f.create_group(group_name) else: g = f if dataset_name in g.keys(): d = g[dataset_name] # Overwrite without deleting if we can get away with it. if d.shape == self.shape and d.dtype == self.dtype: d[...] = self for k in d.attrs.keys(): del d.attrs[k] else: del f[dataset_name] d = g.create_dataset(dataset_name, data=self) else: d = g.create_dataset(dataset_name, data=self) for k, v in info.items(): d.attrs[k] = v f.close() @classmethod def from_hdf5(cls, filename, dataset_name=None, group_name=None): r"""Attempts read in and convert a dataset in an hdf5 file into a YTArray. Parameters ---------- filename: string The filename to of the hdf5 file. dataset_name: string The name of the dataset to read from. If the dataset has a units attribute, attempt to infer units as well. group_name: string An optional group to read the arrays from. If not specified, the arrays are datasets at the top level by default. """ import h5py from yt.extern.six.moves import cPickle as pickle if dataset_name is None: dataset_name = 'array_data' f = h5py.File(filename) if group_name is not None: g = f[group_name] else: g = f dataset = g[dataset_name] data = dataset[:] units = dataset.attrs.get('units', '') if 'unit_registry' in dataset.attrs.keys(): unit_lut = pickle.loads(dataset.attrs['unit_registry'].tostring()) else: unit_lut = None f.close() registry = UnitRegistry(lut=unit_lut, add_default_symbols=False) return cls(data, units, registry=registry) # # Start convenience methods # @property def value(self): """Get a copy of the array data as a numpy ndarray""" return np.array(self) v = value @property def ndview(self): """Get a view of the array data.""" return self.ndarray_view() d = ndview @property def unit_quantity(self): """Get a YTQuantity with the same unit as this array and a value of 1.0""" return YTQuantity(1.0, self.units) uq = unit_quantity @property def unit_array(self): """Get a YTArray filled with ones with the same unit and shape as this array""" return np.ones_like(self) ua = unit_array def __getitem__(self, item): ret = super(YTArray, self).__getitem__(item) if ret.shape == (): return YTQuantity(ret, self.units, bypass_validation=True) else: if hasattr(self, 'units'): ret.units = self.units return ret # # Start operation methods # if LooseVersion(np.__version__) < LooseVersion('1.13.0'): def __add__(self, right_object): """ Add this ytarray to the object on the right of the `+` operator. Must check for the correct (same dimension) units. """ ro = sanitize_units_add(self, right_object, "addition") return super(YTArray, self).__add__(ro) def __radd__(self, left_object): """ See __add__. """ lo = sanitize_units_add(self, left_object, "addition") return super(YTArray, self).__radd__(lo) def __iadd__(self, other): """ See __add__. """ oth = sanitize_units_add(self, other, "addition") np.add(self, oth, out=self) return self def __sub__(self, right_object): """ Subtract the object on the right of the `-` from this ytarray. Must check for the correct (same dimension) units. """ ro = sanitize_units_add(self, right_object, "subtraction") return super(YTArray, self).__sub__(ro) def __rsub__(self, left_object): """ See __sub__. """ lo = sanitize_units_add(self, left_object, "subtraction") return super(YTArray, self).__rsub__(lo) def __isub__(self, other): """ See __sub__. """ oth = sanitize_units_add(self, other, "subtraction") np.subtract(self, oth, out=self) return self def __neg__(self): """ Negate the data. """ return super(YTArray, self).__neg__() def __mul__(self, right_object): """ Multiply this YTArray by the object on the right of the `*` operator. The unit objects handle being multiplied. """ ro = sanitize_units_mul(self, right_object) return super(YTArray, self).__mul__(ro) def __rmul__(self, left_object): """ See __mul__. """ lo = sanitize_units_mul(self, left_object) return super(YTArray, self).__rmul__(lo) def __imul__(self, other): """ See __mul__. """ oth = sanitize_units_mul(self, other) np.multiply(self, oth, out=self) return self def __div__(self, right_object): """ Divide this YTArray by the object on the right of the `/` operator. """ ro = sanitize_units_mul(self, right_object) return super(YTArray, self).__div__(ro) def __rdiv__(self, left_object): """ See __div__. """ lo = sanitize_units_mul(self, left_object) return super(YTArray, self).__rdiv__(lo) def __idiv__(self, other): """ See __div__. """ oth = sanitize_units_mul(self, other) np.divide(self, oth, out=self) return self def __truediv__(self, right_object): ro = sanitize_units_mul(self, right_object) return super(YTArray, self).__truediv__(ro) def __rtruediv__(self, left_object): """ See __div__. """ lo = sanitize_units_mul(self, left_object) return super(YTArray, self).__rtruediv__(lo) def __itruediv__(self, other): """ See __div__. """ oth = sanitize_units_mul(self, other) np.true_divide(self, oth, out=self) return self def __floordiv__(self, right_object): ro = sanitize_units_mul(self, right_object) return super(YTArray, self).__floordiv__(ro) def __rfloordiv__(self, left_object): """ See __div__. """ lo = sanitize_units_mul(self, left_object) return super(YTArray, self).__rfloordiv__(lo) def __ifloordiv__(self, other): """ See __div__. """ oth = sanitize_units_mul(self, other) np.floor_divide(self, oth, out=self) return self def __or__(self, right_object): return super(YTArray, self).__or__(right_object) def __ror__(self, left_object): return super(YTArray, self).__ror__(left_object) def __ior__(self, other): np.bitwise_or(self, other, out=self) return self def __xor__(self, right_object): return super(YTArray, self).__xor__(right_object) def __rxor__(self, left_object): return super(YTArray, self).__rxor__(left_object) def __ixor__(self, other): np.bitwise_xor(self, other, out=self) return self def __and__(self, right_object): return super(YTArray, self).__and__(right_object) def __rand__(self, left_object): return super(YTArray, self).__rand__(left_object) def __iand__(self, other):
np.bitwise_and(self, other, out=self)
numpy.bitwise_and
import random import numpy as np import pandas as pd import pytest from mizarlabs import static from mizarlabs.transformers.microstructural_features.second_generation import ( AmihudLambda, ) from mizarlabs.transformers.microstructural_features.second_generation import ( HasbrouckLambda, ) from mizarlabs.transformers.microstructural_features.second_generation import KyleLambda @pytest.mark.parametrize("window", random.choices(range(10, 40), k=3)) @pytest.mark.usefixtures("dollar_bar_dataframe") def test_kyle_lambda(dollar_bar_dataframe: pd.DataFrame, window: int): """ Checks the following: 1) if the no. of NaNs is as expected, i.e. equal to the window. 2) if all values after the warming up period are computed. 3) if all values are positive, as Kyle's Lambda is always positive. """ kyle_lambda_transformer = KyleLambda(window) kyle_lambda_transformer_values = kyle_lambda_transformer.transform( dollar_bar_dataframe[[static.CLOSE, static.BASE_ASSET_VOLUME]].astype(float) ) assert np.isnan(kyle_lambda_transformer_values).sum() == window assert
np.isnan(kyle_lambda_transformer_values[:window])
numpy.isnan
import numpy as np import pytest from scipy.stats import (bootstrap, BootstrapDegenerateDistributionWarning, monte_carlo_test, permutation_test) from numpy.testing import assert_allclose, assert_equal, suppress_warnings from scipy import stats from scipy import special from .. import _resampling as _resampling from scipy._lib._util import rng_integers from scipy.optimize import root def test_bootstrap_iv(): message = "`data` must be a sequence of samples." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean) message = "`data` must contain at least one sample." with pytest.raises(ValueError, match=message): bootstrap(tuple(), np.mean) message = "each sample in `data` must contain two or more observations..." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1]), np.mean) message = ("When `paired is True`, all samples must have the same length ") with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1, 2, 3, 4]), np.mean, paired=True) message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean, vectorized='ekki') message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, axis=1.5) message = "could not convert string to float" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, confidence_level='ni') message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=1000.5) message = "`method` must be in" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, method='ekki') message = "`method = 'BCa' is only available for one-sample statistics" def statistic(x, y, axis): mean1 = np.mean(x, axis) mean2 = np.mean(y, axis) return mean1 - mean2 with pytest.raises(ValueError, match=message): bootstrap(([.1, .2, .3], [.1, .2, .3]), statistic, method='BCa') message = "'herring' cannot be used to seed a" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, random_state='herring') @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_bootstrap_batch(method, axis): # for one-sample statistics, batch size shouldn't affect the result np.random.seed(0) x = np.random.rand(10, 11, 12) res1 = bootstrap((x,), np.mean, batch=None, method=method, random_state=0, axis=axis, n_resamples=100) res2 = bootstrap((x,), np.mean, batch=10, method=method, random_state=0, axis=axis, n_resamples=100) assert_equal(res2.confidence_interval.low, res1.confidence_interval.low) assert_equal(res2.confidence_interval.high, res1.confidence_interval.high) assert_equal(res2.standard_error, res1.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_paired(method): # test that `paired` works as expected np.random.seed(0) n = 100 x = np.random.rand(n) y = np.random.rand(n) def my_statistic(x, y, axis=-1): return ((x-y)**2).mean(axis=axis) def my_paired_statistic(i, axis=-1): a = x[i] b = y[i] res = my_statistic(a, b) return res i = np.arange(len(x)) res1 = bootstrap((i,), my_paired_statistic, random_state=0) res2 = bootstrap((x, y), my_statistic, paired=True, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) @pytest.mark.parametrize("paired", [True, False]) def test_bootstrap_vectorized(method, axis, paired): # test that paired is vectorized as expected: when samples are tiled, # CI and standard_error of each axis-slice is the same as those of the # original 1d sample if not paired and method == 'BCa': # should re-assess when BCa is extended pytest.xfail(reason="BCa currently for 1-sample statistics only") np.random.seed(0) def my_statistic(x, y, z, axis=-1): return x.mean(axis=axis) + y.mean(axis=axis) + z.mean(axis=axis) shape = 10, 11, 12 n_samples = shape[axis] x = np.random.rand(n_samples) y = np.random.rand(n_samples) z = np.random.rand(n_samples) res1 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=0, n_resamples=100) reshape = [1, 1, 1] reshape[axis] = n_samples x = np.broadcast_to(x.reshape(reshape), shape) y = np.broadcast_to(y.reshape(reshape), shape) z = np.broadcast_to(z.reshape(reshape), shape) res2 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=axis, n_resamples=100) assert_allclose(res2.confidence_interval.low, res1.confidence_interval.low) assert_allclose(res2.confidence_interval.high, res1.confidence_interval.high) assert_allclose(res2.standard_error, res1.standard_error) result_shape = list(shape) result_shape.pop(axis) assert_equal(res2.confidence_interval.low.shape, result_shape) assert_equal(res2.confidence_interval.high.shape, result_shape) assert_equal(res2.standard_error.shape, result_shape) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_against_theory(method): # based on https://www.statology.org/confidence-intervals-python/ data = stats.norm.rvs(loc=5, scale=2, size=5000, random_state=0) alpha = 0.95 dist = stats.t(df=len(data)-1, loc=np.mean(data), scale=stats.sem(data)) expected_interval = dist.interval(confidence=alpha) expected_se = dist.std() res = bootstrap((data,), np.mean, n_resamples=5000, confidence_level=alpha, method=method, random_state=0) assert_allclose(res.confidence_interval, expected_interval, rtol=5e-4) assert_allclose(res.standard_error, expected_se, atol=3e-4) tests_R = {"basic": (23.77, 79.12), "percentile": (28.86, 84.21), "BCa": (32.31, 91.43)} @pytest.mark.parametrize("method, expected", tests_R.items()) def test_bootstrap_against_R(method, expected): # Compare against R's "boot" library # library(boot) # stat <- function (x, a) { # mean(x[a]) # } # x <- c(10, 12, 12.5, 12.5, 13.9, 15, 21, 22, # 23, 34, 50, 81, 89, 121, 134, 213) # # Use a large value so we get a few significant digits for the CI. # n = 1000000 # bootresult = boot(x, stat, n) # result <- boot.ci(bootresult) # print(result) x = np.array([10, 12, 12.5, 12.5, 13.9, 15, 21, 22, 23, 34, 50, 81, 89, 121, 134, 213]) res = bootstrap((x,), np.mean, n_resamples=1000000, method=method, random_state=0) assert_allclose(res.confidence_interval, expected, rtol=0.005) tests_against_itself_1samp = {"basic": 1780, "percentile": 1784, "BCa": 1784} @pytest.mark.parametrize("method, expected", tests_against_itself_1samp.items()) def test_bootstrap_against_itself_1samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n = 100 # size of sample n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The true mean is 5 dist = stats.norm(loc=5, scale=1) stat_true = dist.mean() # Do the same thing 2000 times. (The code is fully vectorized.) n_replications = 2000 data = dist.rvs(size=(n_replications, n)) res = bootstrap((data,), statistic=np.mean, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 tests_against_itself_2samp = {"basic": 892, "percentile": 890} @pytest.mark.parametrize("method, expected", tests_against_itself_2samp.items()) def test_bootstrap_against_itself_2samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n1 = 100 # size of sample 1 n2 = 120 # size of sample 2 n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The statistic we're interested in is the difference in means def my_stat(data1, data2, axis=-1): mean1 = np.mean(data1, axis=axis) mean2 = np.mean(data2, axis=axis) return mean1 - mean2 # The true difference in the means is -0.1 dist1 = stats.norm(loc=0, scale=1) dist2 = stats.norm(loc=0.1, scale=1) stat_true = dist1.mean() - dist2.mean() # Do the same thing 1000 times. (The code is fully vectorized.) n_replications = 1000 data1 = dist1.rvs(size=(n_replications, n1)) data2 = dist2.rvs(size=(n_replications, n2)) res = bootstrap((data1, data2), statistic=my_stat, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 @pytest.mark.parametrize("method", ["basic", "percentile"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_3samp(method, axis): def statistic(*data, axis=0): # an arbitrary, vectorized statistic return sum((sample.mean(axis) for sample in data)) def statistic_1d(*data): # the same statistic, not vectorized for sample in data: assert sample.ndim == 1 return statistic(*data, axis=0) np.random.seed(0) x = np.random.rand(4, 5) y = np.random.rand(4, 5) z = np.random.rand(4, 5) res1 = bootstrap((x, y, z), statistic, vectorized=True, axis=axis, n_resamples=100, method=method, random_state=0) res2 = bootstrap((x, y, z), statistic_1d, vectorized=False, axis=axis, n_resamples=100, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.xfail_on_32bit("Failure is not concerning; see gh-14107") @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_1samp(method, axis): def statistic(x, axis=0): # an arbitrary, vectorized statistic return x.mean(axis=axis) def statistic_1d(x): # the same statistic, not vectorized assert x.ndim == 1 return statistic(x, axis=0) np.random.seed(0) x = np.random.rand(4, 5) res1 = bootstrap((x,), statistic, vectorized=True, axis=axis, n_resamples=100, batch=None, method=method, random_state=0) res2 = bootstrap((x,), statistic_1d, vectorized=False, axis=axis, n_resamples=100, batch=10, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_bootstrap_degenerate(method): data = 35 * [10000.] if method == "BCa": with np.errstate(invalid='ignore'): with pytest.warns(BootstrapDegenerateDistributionWarning): res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (np.nan, np.nan)) else: res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (10000., 10000.))
assert_equal(res.standard_error, 0)
numpy.testing.assert_equal
import os import datetime import numpy as np from moviepy.video.VideoClip import VideoClip from moviepy.video.fx.resize import resize VideoClip.resize = resize import mahotas from uuid import uuid4 from definitions import TmpDir def animateImagesFromResults(imglist, datetimelist, mask, settings, logger, temporalmode, temporalrange, temporalthreshold, replaceimages, varstoplot, barwidth, barlocation, duration, fps, resolution,fformat, resdata): if len(imglist) == 0: return False if mask is not None: mask, pgs, th = mask (duration,fps,resolution,barwidth) = map(float,(duration,fps,resolution[:-1],barwidth)) barwidth = barwidth/100.0 resolution = int(resolution) temporalthreshold = datetime.timedelta(hours=float(temporalthreshold)) logger.set('Generating animation...') res_captions = [] res_data = [] for i,v in enumerate(resdata): if i % 2 == 0: res_captions.append(v) else: res_data.append(v) resdata = None # if temporalmode == 'Date interval': if True: sdate = min([datetime.datetime.strptime(temporalrange[0],'%d.%m.%Y'),datetime.datetime.strptime(temporalrange[1],'%d.%m.%Y')]) edate = max([datetime.datetime.strptime(temporalrange[0],'%d.%m.%Y'),datetime.datetime.strptime(temporalrange[1],'%d.%m.%Y')]) logger.set('Number of images:'+str(np.sum((np.array(datetimelist)<=edate)*(np.array(datetimelist)>=sdate)))) if fps == 0: fps = np.sum((np.array(datetimelist)<=edate)*(np.array(datetimelist)>=sdate))/duration if fps < 1: fps = 1.0 else: #range in data sdate = min(res_data[res_captions.index('Time')]) edate = max(res_data[res_captions.index('Time')]) logger.set('Number of images:'+str(len(imglist))) if fps == 0: fps = len(datetimelist)/duration if fps < 1: fps = 1.0 logger.set('Animation duration: '+str(datetime.timedelta(seconds=duration))) logger.set('Frames per second: '+str(fps)) logger.set('Number of frames: '+str(fps*duration)) logger.set('Resolution '+str(resolution)+'p') logger.set('Format: '+str(fformat)) dateratio = (edate-sdate).total_seconds()/float(duration) animfname = str(uuid4())+'.'+fformat.lower() while os.path.isfile(os.path.join(TmpDir,animfname)): animfname = str(uuid4())+'.'+fformat.lower() animfname = os.path.join(TmpDir,animfname) datetimelist = np.array(datetimelist) range_total_secs = abs(edate-sdate).total_seconds() for i,v in enumerate(varstoplot): if v[1] != 'Time': if v[4] == '': varstoplot[i][4] = np.nanmin(res_data[res_captions.index(v[1])]) else: varstoplot[i][4] = float(v[4]) if v[5] == '': varstoplot[i][5] = np.nanmax(res_data[res_captions.index(v[1])]) else: varstoplot[i][5] = float(v[5]) def make_frame(t): res_date = res_data[res_captions.index('Time')][np.argmin(np.abs(res_data[res_captions.index('Time')]-sdate-datetime.timedelta(seconds=dateratio*t)))] if abs(res_date-sdate-datetime.timedelta(seconds=dateratio*t)) > temporalthreshold: img_file = False else: if res_date in datetimelist: img_date = res_date img_file = imglist[datetimelist.tolist().index(img_date)] try: img = mahotas.imread(img_file) except: img_file = False if res_date not in datetimelist or img_file is False: #'Closest image','Blank (Black)','Blank (White)','Monochromatic Noise' if replaceimages == 'Closest image': #xxcheck later again img_date = datetimelist[np.argmin(np.abs(datetimelist-res_date))] img_file = imglist[np.argmin(np.abs(datetimelist-res_date))] img = mahotas.imread(img_file) else: img_date = res_date if replaceimages == 'Blank (Black)': img = mahotas.imread(imglist[0])*0 if replaceimages == 'Blank (White)': img = mahotas.imread(imglist[0])*0+255 if replaceimages == 'Monochromatic Noise': img = (np.random.rand(*mahotas.imread(imglist[0]).shape[:2])*255).astype('uint8') img = np.dstack((img,img,img)) vid_date = sdate+datetime.timedelta(seconds=dateratio*t) res_toy = abs(datetime.datetime(res_date.year,1,1,0,0,0)-res_date).total_seconds()/float(abs(datetime.datetime(res_date.year,12,31,23,59,59)-datetime.datetime(res_date.year,1,1,0,0,0)).total_seconds()) if img_file == False: res_toy = 0.0 vid_toy = datetime.timedelta(seconds=dateratio*t).total_seconds()/float(range_total_secs) if barlocation == 'Right' or barlocation == 'Left': barshape = (img.shape[0],int(round(img.shape[1]*barwidth))) for v in varstoplot: if bool(int(v[0])): barframe =
np.zeros(barshape,dtype='uint8')
numpy.zeros
import random import numpy as np import enum from ..utilities.transformations import * from ..utilities.geometry import steer from ..mechanics.mechanics import * from ..mechanics.stability_margin import * from .tree import RRTTree, RRTEdge import time import scipy.optimize def qlcp_solver(c,M1,M2,G,h,A,b,nvar,lb,ub): b = b.flatten() cons = ({'type': 'ineq', 'fun': lambda z: np.dot(M2,z)*np.dot(M1,z)}, {'type': 'ineq', 'fun': lambda z: np.dot(G,z)+h }, {'type': 'ineq', 'fun': lambda z: np.dot(M1, z)}, {'type': 'eq', 'fun': lambda z: np.dot(A,z)+b }) fun = lambda z: np.dot(z[0:3],z[0:3]) - 2*np.dot(c,z[0:3]) jac = lambda z: np.concatenate((2*(z[0:3]-c), np.zeros(nvar-3))) bnds = scipy.optimize.Bounds(lb=lb,ub=ub) res = scipy.optimize.minimize(fun, np.zeros(nvar), method='SLSQP', jac=jac, bounds=bnds, constraints=cons) return res def qlcp(x, v, mnp, env, object_weight, mnp_mu=0.8, env_mu=0.3, mnp_fn_max=None): x = np.array(x) # Get variable sizes. n_m = len(mnp) n_e = len(env) n_c = n_m + n_e n_var = 3 + 4*n_e + 2*n_m # Make contact info. Ad_gcos, depths, mus = contact_info(mnp, env, mnp_mu, env_mu) depths = [0.0]*n_c # object gravity f_g = np.array([[0.0],[object_weight],[0.0]]) g_ow = np.linalg.inv(twist_to_transform(x)) f_o = np.dot(g_ow, f_g) n = np.array([[0.0],[1.0],[0.0]]) D = np.array([[1.0, -1.0],[0.0, 0.0],[0.0, 0.0]]) # Gx >= h G = np.zeros((n_c,n_var)) h = np.zeros(n_c) # Ax = b A = np.zeros((3, n_var)) b = f_o M1 = np.zeros((3*n_e,n_var)) M2 = np.zeros((3*n_e,n_var)) i_var = 3 for i in range(n_c): N_c = np.dot(Ad_gcos[i].T, n) T_c = np.dot(Ad_gcos[i].T, D) nAd_gco = np.dot(n.T, Ad_gcos[i]).flatten() TAd_gco = np.dot(D.T, Ad_gcos[i]) if i >= n_e: mu = mnp_mu A[:, i_var:i_var + 2] = np.hstack((N_c, T_c[:,0].reshape((-1,1)))) G[i, i_var:i_var + 2] = np.array([mu, -1]) i_var += 2 else: mu = env_mu A[:, i_var:i_var + 3] = np.hstack((N_c, T_c)) G[i, i_var:i_var + 3] = np.array([mu, -1, -1]) M1[i*3,0:3] = nAd_gco M1[i*3+1:i*3+3, 0:3] = TAd_gco M1[i*3+1:i*3+3,6+i*4] = 1 M2[i*3:(i+1)*3, 3+i*4:3+i*4+4] = 1 i_var += 4 lb = np.zeros(n_var) lb[0:3] = -np.inf 3+4*n_e + np.arange(1,2*n_m,2) lb[3+4*n_e + np.arange(1,2*n_m,2)] = -np.inf ub = np.full(n_var, np.inf) if mnp_fn_max is not None: ub[3+4*n_e + np.arange(0,2*n_m,2)] = mnp_fn_max res = qlcp_solver(v,M1,M2,G,h,A,b,n_var,lb,ub) if res.success: vx = res.x[0:3] else: vx = np.zeros(3) return vx class Status(enum.Enum): FAILED = 1 TRAPPED = 2 ADVANCED = 3 REACHED = 4 def smallfmod(x, y): while x > y: x -= y while x < 0: x += y return x def get_both_velocities(x_rand, x_near): x_rand = np.array(x_rand) x_rand_ = x_rand[:] x = np.array(x_near) g_v = np.identity(3) g_v[0:2, 0:2] = config2trans(x)[0:2, 0:2] v_star = np.dot(g_v.T, x_rand - np.array(x)) if v_star[2] > 0: x_rand_[2] = x_rand[2] - 2 * np.pi else: x_rand_[2] = x_rand[2] + 2 * np.pi v_star_ = np.dot(g_v.T, x_rand_ - x) return v_star, v_star_ class RRT1(object): def __init__(self, X, x_init, x_goal, envir, object, manipulator, max_samples, r=5, world='planar'): """ Template RRTKinodynamic Planner """ self.X = X self.samples_taken = 0 self.max_samples = max_samples self.x_init = x_init self.x_goal = x_goal self.neighbor_radius = r self.world = world if self.world == 'vert': self.object_weight = 10 else: self.object_weight = 0 self.trees = [] # list of all trees self.add_tree() # add initial tree self.environment = envir self.object = object self.manipulator = manipulator self.collision_manager = [] self.mnp_mu = 0.8 self.env_mu = 0.3 self.dist_weight = 1 self.goal_kch = [1, 1, 1] self.cost_weight = [0.2, 1, 1] self.step_length = 2 self.mnp_fn_max = None def add_tree(self): """ Create an empty tree and add to trees """ self.trees.append(RRTTree()) def set_world(self, key): self.world = key def dist(self, p, q): cx = (p[0] - q[0]) ** 2 cy = (p[1] - q[1]) ** 2 period = 2 * np.pi t1 = smallfmod(p[2], period) t2 = smallfmod(q[2], period) dt = t2 - t1 dt = smallfmod(dt + period / 2.0, period) - period / 2.0 ct = self.dist_weight * dt ** 2 return cx + cy + ct def goal_dist(self, p): q = self.x_goal cx = (p[0] - q[0]) ** 2 cy = (p[1] - q[1]) ** 2 period = 2 * np.pi t1 = smallfmod(p[2], period) t2 = smallfmod(q[2], period) dt = t2 - t1 dt = smallfmod(dt + period / 2.0, period) - period / 2.0 ct = dt ** 2 dist = self.goal_kch[0] * cx + self.goal_kch[1] * cy + self.goal_kch[2] * ct return dist def get_nearest(self, tree, x): """ Return vertex nearest to x :param tree: int, tree being searched :param x: tuple, vertex around which searching :return: tuple, nearest vertex to x """ min_d = np.inf for q in self.trees[tree].nodes: d = self.dist(q, x) if q in self.trees[tree].edges: if min_d > d: min_d = d q_near = q else: self.trees[tree].nodes.remove(q) return q_near def get_unexpand_nearest(self, tree): """ Return vertex nearest to x :param tree: int, tree being searched :param x: tuple, vertex around which searching :return: tuple, nearest vertex to x """ min_d = np.inf q_near = self.x_init for q in self.trees[tree].nodes: if self.trees[tree].goal_expand[q]: continue d = self.goal_dist(q) if q in self.trees[tree].edges: if min_d > d: min_d = d q_near = q else: self.trees[tree].nodes.remove(q) return q_near def get_goal_nearest(self, tree): """ Return vertex nearest to x :param tree: int, tree being searched :param x: tuple, vertex around which searching :return: tuple, nearest vertex to x """ min_d = np.inf for q in self.trees[tree].nodes: d = self.goal_dist(q) if q in self.trees[tree].edges: if min_d > d: min_d = d q_near = q else: self.trees[tree].nodes.remove(q) return q_near, min_d def reconstruct_path(self, tree, x_init, x_goal): """ Reconstruct path from start to goal :param tree: int, tree in which to find path :param x_init: tuple, starting vertex :param x_goal: tuple, ending vertex :return: sequence of vertices from start to goal """ n_nodes = 2 path = [x_goal] current = x_goal mnp_path = [None] key_path = [] key_mnp_path = [] if x_init == x_goal: return path, mnp_path while not self.trees[tree].edges[current].parent == x_init: # path.append(self.trees[tree].E[current]) n_nodes += 1 key_path.append(self.trees[tree].edges[current].parent) key_mnp_path.append(self.trees[tree].edges[current].manip) current_path = self.trees[tree].edges[current].path path += current_path mnp_path += [self.trees[tree].edges[current].manip] * len(current_path) current = self.trees[tree].edges[current].parent print(current) current_path = self.trees[tree].edges[current].path path += current_path mnp_path += [self.trees[tree].edges[current].manip] * len(current_path) key_path.append(self.trees[tree].edges[current].parent) key_mnp_path.append(self.trees[tree].edges[current].manip) path.append(x_init) mnp_path.append(None) path.reverse() mnp_path.reverse() print('number of nodes', n_nodes) return path, mnp_path, key_path, key_mnp_path def add_waypoints_to_tree(self, tree, edge): parent = edge.parent path = edge.path[:] path.reverse() mode = edge.mode mnps = edge.manip d_i = int(len(path) / 3) + 1 # print(len(path)) i = d_i while i < len(path): x_new = path[i] path_i = path[0:i + 1] path_i.reverse() _, envs = self.check_collision(x_new) edge_ = RRTEdge(parent, mnps, envs, path_i, mode) self.trees[tree].add(x_new, edge_) i += d_i def add_collision_manager(self, collision_manager, object, object_shape): self.collision_manager = collision_manager self.object = object self.object_shape = object_shape def check_collision(self, x): if_collide, w_contacts = self.environment.check_collision(self.object, x) contacts = self.object.contacts2objframe(w_contacts, x) return if_collide, contacts def check_penetration(self, contacts): ifPenetrate = False for c in contacts: if c.d < -0.05: ifPenetrate = True # print('penetrate') break return ifPenetrate def contact_modes(self, x, envs): # TODO: number of manipulator contacts should change according to mnp types # _, envs = self.check_collision(x) modes = get_contact_modes([Contact([], [], None)] * self.manipulator.npts, envs) return modes # @profile def resample_manipulator_contacts(self, tree, x): # mnp = self.object.sample_contacts(1) # ifReturn = True # mnp_config = None pre_mnp = self.trees[tree].edges[x].manip num_manip = self.manipulator.npts ifReturn = False mnp_config = None if pre_mnp is None: while not ifReturn: mnp = self.object.sample_contacts(num_manip) isReachable, mnp_config = self.manipulator.inverse_kinematics(mnp) # ifCollide, _ = self.environment.check_collision(self.manipulator, mnp_config) ifCollide = self.manipulator.if_collide_w_env(self.environment, mnp_config, x) ifReturn = isReachable and (not ifCollide) return ifReturn, mnp, mnp_config else: counter = 0 max_count = 4 # ifReturn = False while counter < max_count: counter += 1 mnp = np.array([None] * num_manip) # random find contacts that change num_manip_left = random.randint(0, num_manip - 1) manip_left = random.sample(range(num_manip), num_manip_left) # check if equilibrium if the selected manip contacts are moved if static_equilibrium(x, np.array(pre_mnp)[manip_left], self.trees[tree].edges[x].env, self.world, self.mnp_mu, self.env_mu, self.mnp_fn_max): # randomly sample manipulator contacts mnp[manip_left] = np.array(pre_mnp)[manip_left] for i in range(len(mnp)): if mnp[i] is None: mnp[i] = self.object.sample_contacts(1)[0] # check inverse kinematics isReachable, mnp_config = self.manipulator.inverse_kinematics(mnp) if isReachable: ifCollide = self.manipulator.if_collide_w_env(self.environment, mnp_config, x) # if (mnp_config[3] < 0 or mnp_config[1] < 0) and not ifCollide: # print('sampled!',x) if not ifCollide: ifReturn = True break if ifReturn and mnp[0] is None: print('sth wrong with resample manipulator contacts') return ifReturn, mnp, mnp_config # @profile def best_mnp_location(self, tree, x_near, x_rand, vel): n_sample = 5 g_v = np.identity(3) g_v[0:2, 0:2] = config2trans(x_near)[0:2, 0:2] v_star = np.dot(g_v.T,
np.array(x_rand)
numpy.array
import numpy as np import copy from sklearn.preprocessing import normalize import BasicRegression as BR import numexpr as ne import Kernel class PLSR(BR.BasicRegression): def __init__(self, n_components = None): self.n_components = n_components pass def fit(self, X, Y, d = None, max_iter = 500, eps = 1e-6): """ Fitting the data with Principal Least Squares Regression N: the number of data Mx: the number of variable in X My: the number of variable in Y X : N x Mx nparray Y : N * My nparray max_iter: the maximum number of iteratons eps: the maximum tolerant of diff. between iterations """ X_norm, Y_norm = self.preprocessing(X, Y) if d == None: d = self.n_components if d == None: d =
np.min((self.Mx, self.N))
numpy.min
# Author: <NAME> # Contributors: <NAME>, <NAME> import numpy as np import torch from nose.tools import raises from cgnet.feature.utils import (GaussianRBF, PolynomialCutoffRBF, ShiftedSoftplus, _AbstractRBFLayer) from cgnet.feature.statistics import GeometryStatistics from cgnet.feature.feature import GeometryFeature, Geometry # Define sizes for a pseudo-dataset frames = np.random.randint(10, 30) beads = np.random.randint(5, 10) g = Geometry(method='torch') @raises(NotImplementedError) def test_radial_basis_function_len(): # Make sure that a NotImplementedError is raised if an RBF layer # does not have a __len__() method # Here, we use the _AbstractRBFLayer base class as our RBF abstract_RBF = _AbstractRBFLayer() # Next, we check to see if the NotImplementedError is raised # This is done using the decorator above, because we cannot # use nose.tools.assert_raises directly on special methods len(abstract_RBF) def test_radial_basis_function(): # Make sure radial basis functions are consistent with manual calculation # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = torch.randn((frames, beads, beads - 1), dtype=torch.float64) # Define random parameters for the RBF variance = np.random.random() + 1 n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) # Calculate Gaussian expansion using the implemented layer rbf = GaussianRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, variance=variance) gauss_layer = rbf.forward(distances) # Manually calculate expansion with numpy # according to the following formula: # e_k (r_j - r_i) = exp(- \gamma (\left \| r_j - r_i \right \| - \mu_k)^2) # with centers mu_k calculated on a uniform grid between # zero and the distance cutoff and gamma as a scaling parameter. centers = np.linspace(low_cutoff, high_cutoff, n_gaussians).astype(np.float64) gamma = -0.5 / variance distances = np.expand_dims(distances, axis=3) magnitude_squared = (distances - centers)**2 gauss_manual = np.exp(gamma * magnitude_squared) # Shapes and values need to be the same np.testing.assert_equal(centers.shape, rbf.centers.shape) np.testing.assert_allclose(gauss_layer.numpy(), gauss_manual, rtol=1e-5) def test_radial_basis_function_distance_masking(): # Makes sure that if a distance mask is used, the corresponding # expanded distances returned by GaussianRBF are zero # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = torch.randn((frames, beads, beads - 1), dtype=torch.float64) # Define random parameters for the RBF variance = np.random.random() + 1 high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) n_gaussians = np.random.randint(5, 10) neighbor_cutoff = np.abs(np.random.rand()) neighbors, neighbor_mask = g.get_neighbors(distances, cutoff=neighbor_cutoff) # Calculate Gaussian expansion using the implemented layer rbf = GaussianRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, variance=variance) gauss_layer = rbf.forward(distances, distance_mask=neighbor_mask) # Lastly, we check to see that the application of the mask is correct # against a manual calculation and masking centers = np.linspace(low_cutoff, high_cutoff, n_gaussians) gamma = -0.5 / variance distances = np.expand_dims(distances, axis=3) magnitude_squared = (distances - centers)**2 gauss_manual = torch.tensor(np.exp(gamma * magnitude_squared)) gauss_manual = gauss_manual * neighbor_mask[:, :, :, None].double() np.testing.assert_array_almost_equal(gauss_layer.numpy(), gauss_manual.numpy()) def test_radial_basis_function_normalize(): # Tests to make sure that the output of GaussianRBF is properly # normalized if 'normalize_output' is specified as True # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = torch.randn((frames, beads, beads - 1), dtype=torch.float64) # Define random parameters for the RBF variance = np.random.random() + 1 n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) # Calculate Gaussian expansion using the implemented layer rbf = GaussianRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, variance=variance, normalize_output=True) gauss_layer = rbf.forward(distances) # Manually calculate expansion with numpy # according to the following formula: # e_k (r_j - r_i) = exp(- \gamma (\left \| r_j - r_i \right \| - \mu_k)^2) # with centers mu_k calculated on a uniform grid between # zero and the distance cutoff and gamma as a scaling parameter. centers = np.linspace(low_cutoff, high_cutoff, n_gaussians).astype(np.float64) gamma = -0.5 / variance distances = np.expand_dims(distances, axis=3) magnitude_squared = (distances - centers)**2 gauss_manual = np.exp(gamma * magnitude_squared) # manual output normalization gauss_manual = gauss_manual / np.sum(gauss_manual, axis=3)[:, :, :, None] # Shapes and values need to be the same np.testing.assert_equal(centers.shape, rbf.centers.shape) np.testing.assert_allclose(gauss_layer.numpy(), gauss_manual, rtol=1e-5) def test_polynomial_cutoff_rbf(): # Make sure the polynomial_cutoff radial basis functions are consistent with # manual calculations # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = np.random.randn(frames, beads, beads - 1).astype(np.float64) # Define random parameters for the polynomial_cutoff RBF n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) alpha = np.random.uniform(0.1, 1.0) # Calculate Gaussian expansion using the implemented layer polynomial_cutoff_rbf = PolynomialCutoffRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, alpha=alpha, tolerance=1e-8) polynomial_cutoff_rbf_layer = polynomial_cutoff_rbf.forward( torch.tensor(distances)) # Manually calculate expansion with numpy # First, we compute the centers and the scaling factors centers = np.linspace(np.exp(-high_cutoff), np.exp(-low_cutoff), n_gaussians).astype(np.float64) beta = np.power(((2/n_gaussians) * (1-np.exp(-high_cutoff))), -2) # Next, we compute the gaussian portion exp_distances = np.exp(-alpha * np.expand_dims(distances, axis=3)) magnitude_squared = np.power(exp_distances - centers, 2) gauss_manual = np.exp(-beta * magnitude_squared) # Next, we compute the polynomial modulation zeros = np.zeros_like(distances) modulation = np.where(distances < high_cutoff, 1 - 6.0 * np.power((distances/high_cutoff), 5) + 15.0 * np.power((distances/high_cutoff), 4) - 10.0 * np.power((distances/high_cutoff), 3), zeros) modulation = np.expand_dims(modulation, axis=3) polynomial_cutoff_rbf_manual = modulation * gauss_manual # Map tiny values to zero polynomial_cutoff_rbf_manual = np.where( np.abs(polynomial_cutoff_rbf_manual) > polynomial_cutoff_rbf.tolerance, polynomial_cutoff_rbf_manual, np.zeros_like(polynomial_cutoff_rbf_manual) ) # centers and output values need to be the same np.testing.assert_allclose(centers, polynomial_cutoff_rbf.centers, rtol=1e-5) np.testing.assert_allclose(polynomial_cutoff_rbf_layer.numpy(), polynomial_cutoff_rbf_manual, rtol=1e-5) def test_polynomial_cutoff_rbf_distance_masking(): # Makes sure that if a distance mask is used, the corresponding # expanded distances returned by PolynomialCutoffRBF are zero # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = torch.randn((frames, beads, beads - 1), dtype=torch.float64) # Define random parameters for the RBF n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) alpha = np.random.uniform(0.1, 1.0) neighbor_cutoff = np.abs(np.random.rand()) neighbors, neighbor_mask = g.get_neighbors(distances, cutoff=neighbor_cutoff) # Calculate Gaussian expansion using the implemented layer polynomial_cutoff_rbf = PolynomialCutoffRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, alpha=alpha, tolerance=1e-8) polynomial_cutoff_rbf_layer = polynomial_cutoff_rbf.forward( torch.tensor(distances), distance_mask=neighbor_mask) # Manually calculate expansion with numpy # First, we compute the centers and the scaling factors centers = np.linspace(np.exp(-high_cutoff), np.exp(-low_cutoff), n_gaussians).astype(np.float64) beta = np.power(((2/n_gaussians) * (1-np.exp(-high_cutoff))), -2) # Next, we compute the gaussian portion exp_distances = np.exp(-alpha * np.expand_dims(distances, axis=3)) magnitude_squared = np.power(exp_distances - centers, 2) gauss_manual = np.exp(-beta * magnitude_squared) # Next, we compute the polynomial modulation zeros = np.zeros_like(distances) modulation = np.where(distances < high_cutoff, 1 - 6.0 * np.power((distances/high_cutoff), 5) + 15.0 * np.power((distances/high_cutoff), 4) - 10.0 * np.power((distances/high_cutoff), 3), zeros) modulation = np.expand_dims(modulation, axis=3) polynomial_cutoff_rbf_manual = modulation * gauss_manual # Map tiny values to zero polynomial_cutoff_rbf_manual = np.where( np.abs(polynomial_cutoff_rbf_manual) > polynomial_cutoff_rbf.tolerance, polynomial_cutoff_rbf_manual, np.zeros_like(polynomial_cutoff_rbf_manual) ) polynomial_cutoff_rbf_manual = torch.tensor( polynomial_cutoff_rbf_manual) * neighbor_mask[:, :, :, None].double() np.testing.assert_array_almost_equal(polynomial_cutoff_rbf_layer.numpy(), polynomial_cutoff_rbf_manual.numpy()) def test_polynomial_cutoff_rbf_normalize(): # Tests to make sure that the output of PolynomialCutoffRBF is properly # normalized if 'normalize_output' is specified as True # Distances need to have shape (n_batch, n_beads, n_neighbors) distances = np.random.randn(frames, beads, beads - 1).astype(np.float64) # Define random parameters for the polynomial_cutoff RBF n_gaussians = np.random.randint(5, 10) high_cutoff = np.random.uniform(5.0, 10.0) low_cutoff = np.random.uniform(0.0, 4.0) alpha = np.random.uniform(0.1, 1.0) # Calculate Gaussian expansion using the implemented layer polynomial_cutoff_rbf = PolynomialCutoffRBF(high_cutoff=high_cutoff, low_cutoff=low_cutoff, n_gaussians=n_gaussians, alpha=alpha, normalize_output=True, tolerance=1e-8) polynomial_cutoff_rbf_layer = polynomial_cutoff_rbf.forward( torch.tensor(distances)) # Manually calculate expansion with numpy # First, we compute the centers and the scaling factors centers = np.linspace(np.exp(-high_cutoff), np.exp(-low_cutoff), n_gaussians).astype(np.float64) beta = np.power(((2/n_gaussians) * (1-np.exp(-high_cutoff))), -2) # Next, we compute the gaussian portion exp_distances = np.exp(-alpha *
np.expand_dims(distances, axis=3)
numpy.expand_dims
import unittest import numpy as np from numpy.testing import assert_array_equal from darkgreybox.models import Ti, TiTe, TiTeTh, TiTeThRia, TiTh class TiTest(unittest.TestCase): def test__model(self): params = { 'Ti0': {'value': 10}, 'Ria': {'value': 4}, 'Ci': {'value': 0.25}, } X = { 'Ta': np.array([10, 10, 10]), 'Ph': np.array([10, 0, 0]), } m = Ti(params=params, rec_duration=1) actual_result = m.model(m.params, X) assert_array_equal(np.array([10, 50, 10]), actual_result.var['Ti']) assert_array_equal(actual_result.Z, actual_result.var['Ti']) def test__fit(self): y = np.array([10, 10, 20]) params = { 'Ti0': {'value': 10}, 'Ria': {'value': 1}, 'Ci': {'value': 1}, } X = { 'Ta': np.array([10, 10, 10]), 'Ph': np.array([0, 10, 0]), } m = Ti(params=params, rec_duration=1) \ .fit(X=X, y=y, method='nelder') for k, v in params.items(): self.assertAlmostEqual(v['value'], m.result.params[k].value, places=3) assert_array_equal(y, m.model(m.result.params, X).Z) class TiThTest(unittest.TestCase): def test__model(self): params = { 'Ti0': {'value': 10}, 'Th0': {'value': 20}, 'Rih': {'value': 2}, 'Ria': {'value': 4}, 'Ci': {'value': 0.25}, 'Ch': {'value': 0.5} } X = { 'Ta': np.array([10, 10, 10]), 'Ph':
np.array([10, 0, 0])
numpy.array
import copy import time import psutil import numpy as np import torch import torch.optim as optim from torch.autograd import Variable, grad from HyperSphere.BO.acquisition.acquisition_functions import expected_improvement from HyperSphere.BO.utils.sobol import sobol_generate N_SPREAD = 20000 # Number of sobol sequence points as candidates for good initial points N_SPRAY = 10 # Number of random perturbations of current optimum N_INIT = 20 # Number of initial points for acquisition function maximization N_AVAILABLE_CORE = 8 # When there is this many available cpu cores new optimization is started MAX_OPTIMIZATION_STEP = 500 def suggest(x0, reference, inferences, acquisition_function=expected_improvement, bounds=None, pool=None): max_step = MAX_OPTIMIZATION_STEP n_init = x0.size(0) start_time = time.time() print(('Acqusition function optimization with %2d inits %s has begun' % (n_init, time.strftime('%H:%M:%S', time.gmtime(start_time))))) # Parallel version and non-parallel version behave differently. if pool is not None: # pool = torch.multiprocessing.Pool(n_init) if parallel else None # results = [pool.apply_async(optimize, args=(max_step, x0[p], reference, inferences, acquisition_function, bounds)) for p in range(n_init)] results = [] process_started = [False] * n_init process_running = [False] * n_init process_index = 0 while process_started.count(False) > 0: cpu_usage = psutil.cpu_percent(0.2) run_more = (100.0 - cpu_usage) * float(psutil.cpu_count()) > 100.0 * N_AVAILABLE_CORE if run_more: # RuntimeError: Cowardly refusing to serialize non-leaf tensor which requires_grad, # since autograd does not support crossing process boundaries. If you just want to # transfer the data, call detach() on the tensor before serializing (e.g., putting it on the queue). curr_results = pool.apply_async(optimize, args=(max_step, x0[process_index], reference, inferences, acquisition_function, bounds,)) results.append(curr_results) process_started[process_index] = True process_running[process_index] = True process_index += 1 while [not res.ready() for res in results].count(True) > 0: time.sleep(1) for res in results: print(type(res.get())) return_values = [res.get() for res in results] local_optima, optima_value = list(zip(*return_values)) else: local_optima = [] optima_value = [] for p in range(n_init): optimum_loc, optimum_value = optimize(max_step, x0[p], reference, inferences, acquisition_function, bounds) local_optima.append(optimum_loc) optima_value.append(optimum_value) end_time = time.time() print(('Acqusition function optimization ended %s(%s)' % (time.strftime('%H:%M:%S', time.gmtime(end_time)), time.strftime('%H:%M:%S', time.gmtime(end_time - start_time))))) suggestion = local_optima[np.nanargmin(optima_value)] mean, std, var, stdmax, varmax = mean_std_var(suggestion, inferences) return suggestion, mean, std, var, stdmax, varmax def optimize(max_step, x0, reference, inferences, acquisition_function=expected_improvement, bounds=None): if bounds is not None: if not hasattr(bounds, '__call__'): def out_of_bounds(x_input): return (x_input.data < bounds[0]).any() or (x_input.data > bounds[1]).any() else: out_of_bounds = bounds #x = Variable(x0.clone().view(1, -1), requires_grad=True) x = x0.clone().view(1, -1) x.requires_grad_() prev_loss = None ###--------------------------------------------------### # This block can be modified to use other optimization method optimizer = optim.Adam([x], lr=0.01) for s in range(max_step): prev_x = x.clone() optimizer.zero_grad() loss = -acquisition(x, reference=reference, inferences=inferences, acquisition_function=acquisition_function, in_optimization=True) curr_loss = loss.squeeze(0) #grad_tmp = grad([tmp_y], [tmp_x], retain_graph=True, allow_unused=True) #grad_tmp = tmp_y.backward() if torch.isnan(loss).any(): raise ValueError('Loss contains NaN', loss) if torch.isnan(x).any(): raise ValueError('x contains NaN', x) # grad_tmp = grad([loss.squeeze()], [x.squeeze(0)], retain_graph=True, allow_unused=True) # if grad_tmp[0] is None: # raise ValueError('gradient is None', grad_tmp[0]) ######################################################################## # PyTorch 0.3.1 code; this basically does what .backward() does # However, it also checks the stopping criteria #x.grad = torch.zeros(1,2) #prev_loss_numpy = prev_loss # curr_loss_numpy = curr_loss.detach() # ftol = (prev_loss - curr_loss) / max(1, np.abs(prev_loss), np.abs(curr_loss_numpy)) if prev_loss is not None else 1 # if torch.isnan(x.grad).any() or (ftol < 1e-9): # break # prev_x = x.clone() ######################################################################## loss.backward(retain_graph=True) if torch.isnan(x.grad).any(): raise ValueError('Encountered NaN in x.grad') curr_loss = curr_loss.detach().numpy() ftol = (prev_loss - curr_loss) / max(1, np.abs(prev_loss), np.abs(curr_loss)) if prev_loss is not None else 1 if ftol < 1e-9: break optimizer.step() prev_loss = curr_loss if bounds is not None and out_of_bounds(x): x = prev_x break ###--------------------------------------------------### optimum_loc = x.clone() optimum_value = -acquisition(x, reference=reference, inferences=inferences, acquisition_function=acquisition_function, in_optimization=True).item() return optimum_loc, optimum_value def deepcopy_inference(inference, param_samples): inferences = [] for s in range(param_samples.size(0)): model = copy.deepcopy(inference.model) deepcopied_inference = inference.__class__((inference.train_x, inference.train_y), model) deepcopied_inference.cholesky_update(param_samples[s]) inferences.append(deepcopied_inference) return inferences def acquisition(x, reference, inferences, acquisition_function=expected_improvement, in_optimization=False): acquisition_sample_list = [] numerically_stable_list = [] zero_pred_var_list = [] for s in range(len(inferences)): pred_dist = inferences[s].predict(x, in_optimization=in_optimization) pred_mean_sample = pred_dist[0] pred_var_sample = pred_dist[1] numerically_stable_list.append(pred_dist[2]) zero_pred_var_list.append(pred_dist[3]) acquisition_sample_list.append(acquisition_function(pred_mean_sample[:, 0], pred_var_sample[:, 0], reference=reference)) sample_info = (np.sum(numerically_stable_list), np.sum(zero_pred_var_list), len(numerically_stable_list)) if in_optimization: return torch.stack(acquisition_sample_list, 1).sum(1, keepdim=True) else: return torch.stack(acquisition_sample_list, 1).sum(1, keepdim=True), sample_info def mean_std_var(x, inferences): mean_sample_list = [] std_sample_list = [] var_sample_list = [] stdmax_sample_list = [] varmax_sample_list = [] for s in range(len(inferences)): pred_dist = inferences[s].predict(x) pred_mean_sample = pred_dist[0] pred_var_sample = pred_dist[1] pred_std_sample = pred_var_sample ** 0.5 varmax_sample = torch.exp(inferences[s].log_kernel_amp()) stdmax_sample = varmax_sample ** 0.5 mean_sample_list.append(pred_mean_sample.data) std_sample_list.append(pred_std_sample.data) var_sample_list.append(pred_var_sample.data) stdmax_sample_list.append(stdmax_sample.data) varmax_sample_list.append(varmax_sample.data) return torch.cat(mean_sample_list, 1).mean(1, keepdim=True), \ torch.cat(std_sample_list, 1).mean(1, keepdim=True), \ torch.cat(var_sample_list, 1).mean(1, keepdim=True), \ torch.cat(stdmax_sample_list).mean(0, keepdim=True), \ torch.cat(varmax_sample_list).mean(0, keepdim=True) def optimization_candidates(input, output, lower_bnd, upper_bnd): ndim = input.size(1) min_ind = torch.min(output.data, 0)[1] x0_spray = input.data[min_ind].view(1, -1).repeat(N_SPRAY, 1) + input.data.new(N_SPRAY, ndim).normal_() * 0.001 * (upper_bnd - lower_bnd) if hasattr(lower_bnd, 'size'): x0_spray[x0_spray < lower_bnd] = 2 * lower_bnd.view(1, -1).repeat(2 * N_SPRAY, 1) - x0_spray[x0_spray < lower_bnd] else: x0_spray[x0_spray < lower_bnd] = 2 * lower_bnd - x0_spray[x0_spray < lower_bnd] if hasattr(upper_bnd, 'size'): x0_spray[x0_spray > upper_bnd] = 2 * upper_bnd.view(1, -1).repeat(2 * N_SPRAY, 1) - x0_spray[x0_spray > upper_bnd] else: x0_spray[x0_spray > upper_bnd] = 2 * upper_bnd - x0_spray[x0_spray > upper_bnd] if ndim <= 1100: x0_spread = sobol_generate(ndim, N_SPREAD, np.random.randint(0, N_SPREAD)).type_as(input.data) * (upper_bnd - lower_bnd) + lower_bnd else: x0_spread = torch.FloatTensor(N_SPREAD, ndim).uniform_().type_as(input.data) * (upper_bnd - lower_bnd) + lower_bnd x0 = torch.cat([input.data, x0_spray, x0_spread], 0) nonzero_radius_mask = torch.sum(x0 ** 2, 1) > 0 nonzero_radius_ind = torch.sort(nonzero_radius_mask, 0, descending=True)[1][:torch.sum(nonzero_radius_mask)] x0 = x0.index_select(0, nonzero_radius_ind) return Variable(x0) def optimization_init_points(candidates, reference, inferences, acquisition_function=expected_improvement): start_time = time.time() ndim = candidates.size(1) acq_value, sample_info = acquisition(candidates, reference, inferences, acquisition_function, False) acq_value = acq_value.data nonnan_ind = acq_value == acq_value acq_value = acq_value[nonnan_ind] init_points = candidates.data[nonnan_ind.view(-1, 1).repeat(1, ndim)].view(-1, ndim) _, sort_ind = torch.sort(acq_value, 0, descending=True) is_maximum = acq_value == acq_value[sort_ind[0]] n_equal_maximum = torch.sum(is_maximum) print((('Initial points selection from %d points ' % candidates.size(0)) + time.strftime('%H:%M:%S', time.gmtime(time.time() - start_time)))) if n_equal_maximum > N_INIT: shuffled_ind = torch.sort(torch.randn(n_equal_maximum), 0)[1] return init_points[is_maximum.view(-1, 1).repeat(1, ndim)].view(-1, ndim)[(shuffled_ind < N_INIT).view(-1, 1).repeat(1, ndim)].view(-1, ndim), sample_info else: return init_points[sort_ind][:N_INIT], sample_info def one_dim_plotting(ax1, ax2, inference, param_samples, color, ls='-', label='', title_str=''): pred_x = torch.linspace(-2, 2, 100).view(-1, 1) if param_samples.dim() == 1: param_samples = param_samples.unsqueeze(0).clone() n_samples = param_samples.size()[0] pred_mean = 0 pred_var = 0 nll = 0 pred_std = 0 for s in range(n_samples): pred_mean_sample, pred_var_sample = inference.predict(Variable(pred_x), param_samples[s]) pred_std_sample = torch.sqrt(pred_var_sample) pred_mean += pred_mean_sample.data pred_var += pred_var_sample.data nll += inference.negative_log_likelihood(param_samples[s]).data.squeeze()[0] pred_std += pred_std_sample.data pred_mean /= n_samples pred_var /= n_samples nll /= n_samples pred_std /= n_samples ax1.plot(pred_x.numpy().flatten(), pred_mean.numpy().flatten(), color=color) ax1.fill_between(pred_x.numpy().flatten(), (pred_mean - 1.96 * pred_std).numpy().flatten(), (pred_mean + 1.96 * pred_std).numpy().flatten(), facecolor=color, alpha=0.2) ax1.set_title(title_str + '\n%.4E' % nll) acq = acquisition(Variable(pred_x), inference, param_samples, acquisition_function=expected_improvement, reference=reference).data # next_point = suggest(inference, param_samples_sampling, reference=reference).numpy() # ax2.fill_between(pred_x.numpy().flatten(), 0, acq.numpy().flatten(), color=color, alpha=0.2, label=label) ax2.plot(pred_x.numpy(), acq.numpy(), color=color, ls=ls, alpha=1.0, label=label) ax2.legend() # ax2.axvline(next_point, color=color, ls='--', alpha=0.5) if __name__ == '__main__': from HyperSphere.GP.kernels.modules.squared_exponential import SquaredExponentialKernel from HyperSphere.GP.models.gp_regression import GPRegression from HyperSphere.GP.inference.inference import Inference import matplotlib.pyplot as plt ndata = 6 ndim = 1 model_for_generating = GPRegression(kernel=SquaredExponentialKernel(ndim)) train_x = Variable(torch.FloatTensor(ndata, ndim).uniform_(-2, 2)) chol_L = torch.potrf( (model_for_generating.kernel(train_x) + torch.diag(model_for_generating.likelihood(train_x))).data, upper=False) train_y = model_for_generating.mean(train_x) + Variable(torch.mm(chol_L, torch.randn(ndata, 1))) # train_y = torch.sin(2 * math.pi * torch.sum(train_x, 1, keepdim=True)) + Variable(torch.FloatTensor(train_x.size(0), 1).normal_()) train_data = (train_x, train_y) param_original = model_for_generating.param_to_vec() reference = torch.min(train_y.data) model_for_learning = GPRegression(kernel=SquaredExponentialKernel(ndim)) inference = Inference(train_data, model_for_learning) model_for_learning.vec_to_param(param_original) param_samples_learning = inference.learning(n_restarts=10) model_for_learning.vec_to_param(param_original) param_samples_sampling = inference.sampling(n_sample=5, n_burnin=200, n_thin=10) if ndim == 1: ax11 = plt.subplot(221) ax11.plot(train_x.data.numpy().flatten(), train_y.data.numpy().flatten(), 'k*') ax11.axhline(reference, ls='--', alpha=0.5) ax12 = plt.subplot(222, sharex=ax11, sharey=ax11) ax12.plot(train_x.data.numpy().flatten(), train_y.data.numpy().flatten(), 'k*') ax12.axhline(reference, ls='--', alpha=0.5) ax21 = plt.subplot(223, sharex=ax11) ax22 = plt.subplot(224, sharex=ax11) # model_for_learning.elastic_vec_to_param(param_original, func) # param_original_elastic = model_for_learning.param_to_vec() # one_dim_plotting(axes[0, 0], axes[1, 0], inference, param_original, 'b') # one_dim_plotting(axes[0, 1], axes[1, 1], inference, param_original_elastic, 'r') step = 3 for i in range(-step, step+1): if i == 0: one_dim_plotting(ax11, ax21, inference, param_samples_learning, color='k', label='target') one_dim_plotting(ax12, ax22, inference, param_samples_sampling, color='k', label='target') else: color =
np.random.rand(3)
numpy.random.rand
""" This file is part of the repo: https://github.com/tencent-ailab/hifi3dface If you find the code useful, please cite our paper: "High-Fidelity 3D Digital Human Creation from RGB-D Selfies." <NAME>*, <NAME>*, <NAME>*, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. arXiv: https://arxiv.org/abs/2010.05562 Copyright (c) [2020] [Tencent AI Lab] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # from __future__ import absolute_import # from __future__ import division # from __future__ import print_function import cv2, os, importlib, math import os.path as osp import numpy as np import scipy.io as scio import tensorflow as tf def create_mtcnn_pb(sess): pnet_fun = lambda img: sess.run( ("pnet/conv4-2/BiasAdd:0", "pnet/prob1:0"), feed_dict={"pnet/input:0": img} ) rnet_fun = lambda img: sess.run( ("rnet/conv5-2/conv5-2:0", "rnet/prob1:0"), feed_dict={"rnet/input:0": img} ) onet_fun = lambda img: sess.run( ("onet/conv6-2/conv6-2:0", "onet/conv6-3/conv6-3:0", "onet/prob1:0"), feed_dict={"onet/input:0": img}, ) return pnet_fun, rnet_fun, onet_fun def detect_face(img, minsize, pnet, rnet, onet, threshold, factor): """Detects faces in an image, and returns bounding boxes and points for them. img: input image minsize: minimum faces' size pnet, rnet, onet: caffemodel threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold factor: the factor used to create a scaling pyramid of face sizes to detect in the image. """ factor_count = 0 total_boxes = np.empty((0, 9)) points = np.empty(0) h = img.shape[0] w = img.shape[1] minl = np.amin([h, w]) m = 12.0 / minsize minl = minl * m # create scale pyramid scales = [] while minl >= 12: scales += [m * np.power(factor, factor_count)] minl = minl * factor factor_count += 1 # first stage for scale in scales: hs = int(np.ceil(h * scale)) ws = int(np.ceil(w * scale)) im_data = imresample(img, (hs, ws)) im_data = (im_data - 127.5) * 0.0078125 img_x = np.expand_dims(im_data, 0) img_y = np.transpose(img_x, (0, 2, 1, 3)) out = pnet(img_y) out0 = np.transpose(out[0], (0, 2, 1, 3)) out1 = np.transpose(out[1], (0, 2, 1, 3)) boxes, _ = generateBoundingBox( out1[0, :, :, 1].copy(), out0[0, :, :, :].copy(), scale, threshold[0] ) # inter-scale nms pick = nms(boxes.copy(), 0.5, "Union") if boxes.size > 0 and pick.size > 0: boxes = boxes[pick, :] total_boxes = np.append(total_boxes, boxes, axis=0) numbox = total_boxes.shape[0] if numbox > 0: pick = nms(total_boxes.copy(), 0.7, "Union") total_boxes = total_boxes[pick, :] regw = total_boxes[:, 2] - total_boxes[:, 0] regh = total_boxes[:, 3] - total_boxes[:, 1] qq1 = total_boxes[:, 0] + total_boxes[:, 5] * regw qq2 = total_boxes[:, 1] + total_boxes[:, 6] * regh qq3 = total_boxes[:, 2] + total_boxes[:, 7] * regw qq4 = total_boxes[:, 3] + total_boxes[:, 8] * regh total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:, 4]])) total_boxes = rerec(total_boxes.copy()) total_boxes[:, 0:4] = np.fix(total_boxes[:, 0:4]).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) numbox = total_boxes.shape[0] if numbox > 0: # second stage tempimg = np.zeros((24, 24, 3, numbox)) for k in range(0, numbox): tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) tmp[dy[k] - 1 : edy[k], dx[k] - 1 : edx[k], :] = img[ y[k] - 1 : ey[k], x[k] - 1 : ex[k], : ] if ( tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0 ): tempimg[:, :, :, k] = imresample(tmp, (24, 24)) else: return np.empty() tempimg = (tempimg - 127.5) * 0.0078125 tempimg1 = np.transpose(tempimg, (3, 1, 0, 2)) out = rnet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) score = out1[1, :] ipass = np.where(score > threshold[1]) total_boxes = np.hstack( [total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)] ) mv = out0[:, ipass[0]] if total_boxes.shape[0] > 0: pick = nms(total_boxes, 0.7, "Union") total_boxes = total_boxes[pick, :] total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:, pick])) total_boxes = rerec(total_boxes.copy()) numbox = total_boxes.shape[0] if numbox > 0: # third stage total_boxes = np.fix(total_boxes).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) tempimg = np.zeros((48, 48, 3, numbox)) for k in range(0, numbox): tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) tmp[dy[k] - 1 : edy[k], dx[k] - 1 : edx[k], :] = img[ y[k] - 1 : ey[k], x[k] - 1 : ex[k], : ] if ( tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0 ): tempimg[:, :, :, k] = imresample(tmp, (48, 48)) else: return np.empty() tempimg = (tempimg - 127.5) * 0.0078125 tempimg1 = np.transpose(tempimg, (3, 1, 0, 2)) out = onet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) out2 = np.transpose(out[2]) score = out2[1, :] points = out1 ipass = np.where(score > threshold[2]) points = points[:, ipass[0]] total_boxes = np.hstack( [total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)] ) mv = out0[:, ipass[0]] w = total_boxes[:, 2] - total_boxes[:, 0] + 1 h = total_boxes[:, 3] - total_boxes[:, 1] + 1 points[0:5, :] = ( np.tile(w, (5, 1)) * points[0:5, :] + np.tile(total_boxes[:, 0], (5, 1)) - 1 ) points[5:10, :] = ( np.tile(h, (5, 1)) * points[5:10, :] +
np.tile(total_boxes[:, 1], (5, 1))
numpy.tile
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.lod_tensor import create_lod_tensor, create_random_int_lodtensor import numpy as np import unittest class TestLoDTensor(unittest.TestCase): def test_pybind_recursive_seq_lens(self): tensor = fluid.LoDTensor() recursive_seq_lens = [] tensor.set_recursive_sequence_lengths(recursive_seq_lens) recursive_seq_lens = [[], [1], [3]] self.assertRaises(Exception, tensor.set_recursive_sequence_lengths, recursive_seq_lens) recursive_seq_lens = [[0], [2], [3]] self.assertRaises(Exception, tensor.set_recursive_sequence_lengths, recursive_seq_lens) recursive_seq_lens = [[1, 2, 3]] tensor.set_recursive_sequence_lengths(recursive_seq_lens) self.assertEqual(tensor.recursive_sequence_lengths(), recursive_seq_lens) tensor.set(
np.random.random([6, 1])
numpy.random.random
import os import pickle import regex import hashlib from multiprocessing import Pool import numpy as np import soundfile as sf from scipy import signal from scipy.signal import get_window from librosa.filters import mel from numpy.random import RandomState import argparse from utils import * def butter_highpass(cutoff, fs, order=5): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = signal.butter(order, normal_cutoff, btype='high', analog=False) return b, a def pySTFT(x, fft_length=1024, hop_length=256): x = np.pad(x, int(fft_length//2), mode='reflect') noverlap = fft_length - hop_length shape = x.shape[:-1]+((x.shape[-1]-noverlap)//hop_length, fft_length) strides = x.strides[:-1]+(hop_length*x.strides[-1], x.strides[-1]) result = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) fft_window = get_window('hann', fft_length, fftbins=True) result = np.fft.rfft(fft_window * result, n=fft_length).T return
np.abs(result)
numpy.abs
import numpy as np import os import torch import torchvision from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from torch.utils.data import Dataset, random_split from torchvision import transforms import PIL.Image as Image from sklearn.datasets import load_boston np.random.seed(42) torch.manual_seed(42) #TODO: Add func for att imbalance from torch.utils.data import Dataset class custom_subset(Dataset): r""" Subset of a dataset at specified indices. Arguments: dataset (Dataset): The whole Dataset indices (sequence): Indices in the whole set selected for subset labels(sequence) : targets as required for the indices. will be the same length as indices """ def __init__(self, dataset, indices, labels): self.dataset = torch.utils.data.Subset(dataset, indices) self.targets = labels.type(torch.long) def __getitem__(self, idx): image = self.dataset[idx][0] target = self.targets[idx] return (image, target) def __len__(self): return len(self.targets) class DataHandler_CIFAR10(Dataset): """ Data Handler to load CIFAR10 dataset. This class extends :class:`torch.utils.data.Dataset` to handle loading data even without labels Parameters ---------- X: numpy array Data to be loaded y: numpy array, optional Labels to be loaded (default: None) select: bool True if loading data without labels, False otherwise """ def __init__(self, X, Y=None, select=True, use_test_transform = False): """ Constructor """ self.select = select if(use_test_transform): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) else: transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) if not self.select: self.X = X self.targets = Y self.transform = transform else: self.X = X self.transform = transform def __getitem__(self, index): if not self.select: x, y = self.X[index], self.targets[index] x = Image.fromarray(x) x = self.transform(x) return (x, y) else: x = self.X[index] x = Image.fromarray(x) x = self.transform(x) return x def __len__(self): return len(self.X) def create_random_train(fullset, split_cfg, num_cls, isnumpy, augVal): np.random.seed(42) full_idx = list(range(len(fullset))) train_idx = list(np.random.choice(np.array(full_idx), size=split_cfg['train_size'], replace=False)) lake_idx = list(set(full_idx) - set(train_idx)) val_idx = list(np.random.choice(np.array(lake_idx), size=split_cfg['val_size'], replace=False)) lake_idx = list(set(lake_idx) - set(val_idx)) train_set = custom_subset(fullset, train_idx, torch.Tensor(fullset.targets)[train_idx]) val_set = custom_subset(fullset, val_idx, torch.Tensor(fullset.targets)[val_idx]) lake_set = custom_subset(fullset, lake_idx, torch.Tensor(fullset.targets)[lake_idx]) return train_set, val_set, lake_set def create_uniform_train(fullset, split_cfg, num_cls, isnumpy, augVal): np.random.seed(42) train_idx = [] val_idx = [] lake_idx = [] for i in range(num_cls): #all_classes full_idx_class = list(torch.where(torch.Tensor(fullset.targets) == i)[0].cpu().numpy()) class_train_idx = list(np.random.choice(np.array(full_idx_class), size=split_cfg['train_size']//num_cls, replace=False)) remain_idx = list(set(full_idx_class) - set(class_train_idx)) train_idx += class_train_idx lake_idx += remain_idx val_idx = list(np.random.choice(np.array(lake_idx), size=split_cfg['val_size'], replace=False)) lake_idx = list(set(lake_idx) - set(val_idx)) train_set = custom_subset(fullset, train_idx, torch.Tensor(fullset.targets)[train_idx]) val_set = custom_subset(fullset, val_idx, torch.Tensor(fullset.targets)[val_idx]) lake_set = custom_subset(fullset, lake_idx, torch.Tensor(fullset.targets)[lake_idx]) return train_set, val_set, lake_set def create_class_imb(fullset, split_cfg, num_cls, isnumpy, augVal): np.random.seed(42) train_idx = [] val_idx = [] lake_idx = [] selected_classes = np.random.choice(np.arange(num_cls), size=split_cfg['num_cls_imbalance'], replace=False) #classes to imbalance for i in range(num_cls): #all_classes full_idx_class = list(torch.where(torch.Tensor(fullset.targets) == i)[0].cpu().numpy()) if(i in selected_classes): class_train_idx = list(np.random.choice(np.array(full_idx_class), size=split_cfg['per_imbclass_train'], replace=False)) remain_idx = list(set(full_idx_class) - set(class_train_idx)) class_val_idx = list(np.random.choice(np.array(remain_idx), size=split_cfg['per_imbclass_val'], replace=False)) remain_idx = list(set(remain_idx) - set(class_val_idx)) class_lake_idx = list(np.random.choice(np.array(remain_idx), size=split_cfg['per_imbclass_lake'], replace=False)) else: class_train_idx = list(np.random.choice(np.array(full_idx_class), size=split_cfg['per_class_train'], replace=False)) remain_idx = list(set(full_idx_class) - set(class_train_idx)) class_val_idx = list(np.random.choice(np.array(remain_idx), size=split_cfg['per_class_val'], replace=False)) remain_idx = list(set(remain_idx) - set(class_val_idx)) class_lake_idx = list(np.random.choice(
np.array(remain_idx)
numpy.array
import unittest import backend as F import numpy as np import gzip import tempfile import os import pandas as pd import yaml import pytest import dgl.data as data import dgl.data.csv_dataset as csv_ds from dgl import DGLError @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_minigc(): ds = data.MiniGCDataset(16, 10, 20) g, l = list(zip(*ds)) print(g, l) @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_gin(): ds_n_graphs = { 'MUTAG': 188, 'IMDBBINARY': 1000, 'IMDBMULTI': 1500, 'PROTEINS': 1113, 'PTC': 344, } for name, n_graphs in ds_n_graphs.items(): ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False) assert len(ds) == n_graphs, (len(ds), name) @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_fraud(): g = data.FraudDataset('amazon')[0] assert g.num_nodes() == 11944 g = data.FraudAmazonDataset()[0] assert g.num_nodes() == 11944 g = data.FraudYelpDataset()[0] assert g.num_nodes() == 45954 @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_fakenews(): ds = data.FakeNewsDataset('politifact', 'bert') assert len(ds) == 314 ds = data.FakeNewsDataset('gossipcop', 'profile') assert len(ds) == 5464 @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_tudataset_regression(): ds = data.TUDataset('ZINC_test', force_reload=True) assert len(ds) == 5000 @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_data_hash(): class HashTestDataset(data.DGLDataset): def __init__(self, hash_key=()): super(HashTestDataset, self).__init__( 'hashtest', hash_key=hash_key) def _load(self): pass a = HashTestDataset((True, 0, '1', (1, 2, 3))) b = HashTestDataset((True, 0, '1', (1, 2, 3))) c = HashTestDataset((True, 0, '1', (1, 2, 4))) assert a.hash == b.hash assert a.hash != c.hash @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_citation_graph(): # cora g = data.CoraGraphDataset()[0] assert g.num_nodes() == 2708 assert g.num_edges() == 10556 dst = F.asnumpy(g.edges()[1]) assert np.array_equal(dst, np.sort(dst)) # Citeseer g = data.CiteseerGraphDataset()[0] assert g.num_nodes() == 3327 assert g.num_edges() == 9228 dst = F.asnumpy(g.edges()[1]) assert np.array_equal(dst, np.sort(dst)) # Pubmed g = data.PubmedGraphDataset()[0] assert g.num_nodes() == 19717 assert g.num_edges() == 88651 dst = F.asnumpy(g.edges()[1]) assert np.array_equal(dst, np.sort(dst)) @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_gnn_benchmark(): # AmazonCoBuyComputerDataset g = data.AmazonCoBuyComputerDataset()[0] assert g.num_nodes() == 13752 assert g.num_edges() == 491722 dst = F.asnumpy(g.edges()[1]) assert np.array_equal(dst, np.sort(dst)) # AmazonCoBuyPhotoDataset g = data.AmazonCoBuyPhotoDataset()[0] assert g.num_nodes() == 7650 assert g.num_edges() == 238163 dst = F.asnumpy(g.edges()[1]) assert np.array_equal(dst, np.sort(dst)) # CoauthorPhysicsDataset g = data.CoauthorPhysicsDataset()[0] assert g.num_nodes() == 34493 assert g.num_edges() == 495924 dst = F.asnumpy(g.edges()[1]) assert np.array_equal(dst, np.sort(dst)) # CoauthorCSDataset g = data.CoauthorCSDataset()[0] assert g.num_nodes() == 18333 assert g.num_edges() == 163788 dst = F.asnumpy(g.edges()[1]) assert np.array_equal(dst, np.sort(dst)) # CoraFullDataset g = data.CoraFullDataset()[0] assert g.num_nodes() == 19793 assert g.num_edges() == 126842 dst = F.asnumpy(g.edges()[1]) assert np.array_equal(dst, np.sort(dst)) @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_reddit(): # RedditDataset g = data.RedditDataset()[0] assert g.num_nodes() == 232965 assert g.num_edges() == 114615892 dst = F.asnumpy(g.edges()[1]) assert np.array_equal(dst, np.sort(dst)) @unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.") def test_extract_archive(): # gzip with tempfile.TemporaryDirectory() as src_dir: gz_file = 'gz_archive' gz_path = os.path.join(src_dir, gz_file + '.gz') content = b"test extract archive gzip" with gzip.open(gz_path, 'wb') as f: f.write(content) with tempfile.TemporaryDirectory() as dst_dir: data.utils.extract_archive(gz_path, dst_dir, overwrite=True) assert os.path.exists(os.path.join(dst_dir, gz_file)) def _test_construct_graphs_homo(): # node_ids could be non-sorted, duplicated, not labeled from 0 to num_nodes-1 num_nodes = 100 num_edges = 1000 num_dims = 3 num_dup_nodes = int(num_nodes*0.2) node_ids = np.random.choice( np.arange(num_nodes*2), size=num_nodes, replace=False) assert len(node_ids) == num_nodes np.random.shuffle(node_ids) node_ids = np.hstack((node_ids, node_ids[:num_dup_nodes])) t_ndata = {'feat': np.random.rand(num_nodes+num_dup_nodes, num_dims), 'label': np.random.randint(2, size=num_nodes+num_dup_nodes)} _, u_indices = np.unique(node_ids, return_index=True) ndata = {'feat': t_ndata['feat'][u_indices], 'label': t_ndata['label'][u_indices]} node_data = csv_ds.NodeData(node_ids, t_ndata) src_ids = np.random.choice(node_ids, size=num_edges) dst_ids = np.random.choice(node_ids, size=num_edges) edata = {'feat': np.random.rand( num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)} edge_data = csv_ds.EdgeData(src_ids, dst_ids, edata) graphs, data_dict = csv_ds.DGLGraphConstructor.construct_graphs( node_data, edge_data) assert len(graphs) == 1 assert len(data_dict) == 0 g = graphs[0] assert g.is_homogeneous assert g.num_nodes() == num_nodes assert g.num_edges() == num_edges def assert_data(lhs, rhs): for key, value in lhs.items(): assert key in rhs assert F.array_equal(F.tensor(value), rhs[key]) assert_data(ndata, g.ndata) assert_data(edata, g.edata) def _test_construct_graphs_hetero(): # node_ids could be non-sorted, duplicated, not labeled from 0 to num_nodes-1 num_nodes = 100 num_edges = 1000 num_dims = 3 num_dup_nodes = int(num_nodes*0.2) ntypes = ['user', 'item'] node_data = [] node_ids_dict = {} ndata_dict = {} for ntype in ntypes: node_ids = np.random.choice( np.arange(num_nodes*2), size=num_nodes, replace=False) assert len(node_ids) == num_nodes np.random.shuffle(node_ids) node_ids = np.hstack((node_ids, node_ids[:num_dup_nodes])) t_ndata = {'feat':
np.random.rand(num_nodes+num_dup_nodes, num_dims)
numpy.random.rand
# -*- coding:utf-8 -*- """ File Name: inferece3_RulerDivDet.py Description : DF第三步:Retinanet工程-标尺及标尺刻度检测 Author : royce.mao date: 2019/09/02 """ import argparse import skimage import os import cv2 import tqdm import time import torch import numpy as np import tensorflow as tf from utils import load_image from torchvision import ops from PIL import Image import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models MEAN_RET = np.array([[[0.485, 0.456, 0.406]]]) STD_RET = np.array([[[0.229, 0.224, 0.225]]]) MEAN_RES = (0.49139968, 0.48215827, 0.44653124) STD_RES = (0.24703233, 0.24348505, 0.26158768) # CLASS_MAPPING = {"6":0, "7":1} RET_MAPPING = {"div":0} RES_MAPPING = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, 'back': 10} DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(DEVICE, 'is avaliable!') # Retinanet工程inference class Detection(object): def __init__(self,): # model self.model_ret = torch.load(parser.ret_weights) # cfg.RET_WEIGHTS self.model_ret.eval() self.model_ret.to(DEVICE) # mapping self.labels = {} for key, value in RET_MAPPING.items(): self.labels[value] = key super(Detection, self).__init__() def build_transform(self, image, min_size=608, max_size=1024): """ 数据增广 :param image: numpy(H,W,C) :param min_size: :param max_size: :return: tensor(B,C,H,W), scale因子 """ H, W, C = image.shape scale1 = min_size / min(H, W) scale2 = max_size / max(H, W) scale = min(scale1, scale2) # resize the image with the computed scale img = skimage.transform.resize(image, (int(round(H * scale)), int(round((W * scale)))), mode='constant') img -= MEAN_RET img /= STD_RET new_H, new_W, new_C = img.shape pad_H = 32 - new_H % 32 pad_W = 32 - new_W % 32 new_image = np.zeros((new_H + pad_H, new_W + pad_W, new_C)).astype(np.float32) new_image[:new_H, :new_W, :] = img.astype(np.float32) new_image = np.expand_dims(new_image, axis=0) # add batch dim return torch.from_numpy(new_image).permute(0, 3, 1, 2), scale def unbuild_transform(self, image, boxes, scale): """ 增广的图像返回(逆增广) :param image: tensor(C,H,W) :param boxes: 2维tensor(num_div, (x1,y1,x2,y2)) :param scale: :return: numpy(H,W,C), 2维numpy(num_div, 坐标还原后的(x1,y1,x2,y2)) """ # img的像素值还原 for t, m, s in zip(image, MEAN_RET[0][0], STD_RET[0][0]): t.mul_(s).add_(m) img = np.array(255 * image).copy() img[img < 0] = 0 img[img > 255] = 255 # box的size还原到原图 boxes[:, :4] /= scale # img的size还原到原图 C, H, W = img.shape img = np.transpose(img, (1, 2, 0)) img = skimage.transform.resize(img, (int(round(H / scale)), int(round((W / scale)))), mode='constant') # img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB) return img, boxes def __call__(self, image_path, image_name): """ :param image_path: :return: """ coords = [] with torch.no_grad(): # 进入网络输入 img_tensor, scale = self.build_transform(load_image(image_path)) # 网络前向传播输出 start_time = time.time() scores, classification, proposals = self.model_ret(img_tensor.to(DEVICE).float()) time_ret = time.time() - start_time # nms keep = ops.nms(proposals, scores, 0.01) # 固定0.3 # unbuild_transform idxs = np.where(scores.cpu().numpy() > parser.threshold) # todo: 阈值过滤 img_restore, boxes_restore = self.unbuild_transform(img_tensor[0].cpu(), proposals[keep], scale) for i in range(idxs[0].shape[0]): try: bbox = boxes_restore[idxs[0][i], :] x1 = int(bbox[0]) y1 = int(bbox[1]) x2 = int(bbox[2]) y2 = int(bbox[3]) # coords.append([x1,y1,x2,y2]) except Exception as e: return None, None, time_consume return np.array(coords), img_restore, time_ret # ResNet18对label做修正 class RoiAlign(object): def __init__(self): """ """ super(RoiAlign, self).__init__() self.model_res = torch.load(parser.res_weights) # cfg.RES_WEIGHTS self.model_res.eval() self.model_res.to(DEVICE) # mapping self.labels = {} for key, value in RES_MAPPING.items(): self.labels[value] = key # transforms self.test_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(MEAN_RES, STD_RES) ]) def xyxy2yxyx(self, coords, img): """ :param coords: list 比如:[[x1,y1,x2,y2],[...]] :param img: numpy 需要crop的img对象 :return: """ H, W = img.shape[1:3] coords = np.array(coords, dtype=np.float32) print(coords) coords[:, ::2] = coords[:, ::2] / W coords[:, 1::2] = coords[:, 1::2] / H return coords[:, [1, 0, 3, 2]] def crop_and_resize(self, crop_size, coords, img): """ :param coords: :param img: :return: labels (pred list) """ # crop and resize img = np.expand_dims(img, axis=0) boxes = self.xyxy2yxyx(coords, img) divs = tf.image.crop_and_resize(img, boxes, box_ind=[0] * len(boxes), crop_size=parser.crop_size) sess = tf.Session() divs_img = divs.eval(session=sess) # 转numpy divs_img = divs_img.astype('uint8') # infer # print(divs_img.shape) divs_tensor_list = [self.test_transforms(Image.fromarray(div_img)) for div_img in divs_img] divs_tensor = torch.stack(divs_tensor_list) with torch.no_grad(): start_time = time.time() logits = self.model_res(divs_tensor.to(DEVICE)) time_res = time.time() - start_time preds = logits.max(1, keepdim=True)[1] labels = [self.labels[pred.item()] for pred in preds] return labels, time_res def draw_caption(image, box, caption): b =
np.array(box)
numpy.array
from functools import partial import numpy as np from matplotlib import pyplot as plt from os.path import expanduser # from https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html def plot_prediction_uncertainty_and_data(x, f, X, y, y_pred, sigma=None, ylim=None, xlim=None, title='', filename='regression_results.png'): plt.clf() plt.figure() plt.plot(x, f(x), 'r:', label=r'$f(x) = objective$') plt.plot(X, y, 'r.', markersize=10, label='Observations') if isinstance(y_pred, (tuple, list, np.ndarray)) and isinstance(y_pred[0], (tuple, list, np.ndarray)) and len(y_pred[0]) > 1: for row_index, y_pred_row in enumerate(y_pred): plt.plot(x, y_pred_row, 'b-', label='Prediction' if row_index == 0 else None) else: plt.plot(x, y_pred, 'b-', label='Prediction') if sigma is not None: plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') if ylim is not None: plt.ylim(ylim[0], ylim[1]) if xlim is not None: plt.xlim(xlim[0], xlim[1]) plt.legend(loc='upper left') plt.title(title) plt.savefig(expanduser('~/Downloads/' + filename), dpi=300) plt.show() def gaussian(X1, X2, widths=None): sqdist = np.sum(X1 ** 2, 1).reshape(-1, 1) + np.sum(X2 ** 2, 1) - 2 * np.dot(X1, X2.T) return np.exp(-0.5 / np.array(widths) ** 2 * sqdist) def dot_product(X1, X2): return np.outer(X1, X2) def kernel(X1, X2=None, widths=None, noise_parameter=0.0, mean=0.0, add_constant=False, _normalize=True, multiplier=1): """ Isotropic squared exponential kernel. Args: X1: Array of m points (m x d). X2: Array of n points (n x d). Returns: (m x n) matrix. """ if X2 is None: self_kernel = True X2 = X1 else: self_kernel = False X2 = X2 core_kernel = gaussian(X1, X2, widths=widths) if self_kernel: white_noise = np.eye(len(core_kernel)) * noise_parameter constant = (np.ones(core_kernel.shape)) * mean else: white_noise = np.zeros(core_kernel.shape) constant = np.ones(core_kernel.shape) * mean unnormalized_kernel = core_kernel + white_noise ** 2 + constant if _normalize: normalized_kernel = (unnormalized_kernel.T / np.sqrt(np.diag( kernel(X1, widths=widths, noise_parameter=0, mean=0, add_constant=add_constant, _normalize=False)))).T normalized_kernel = normalized_kernel / np.sqrt( np.diag(kernel(X2, widths=widths, noise_parameter=0, mean=0, add_constant=add_constant, _normalize=False))) if add_constant: return multiplier * np.hstack([np.ones((len(normalized_kernel), 1)), normalized_kernel]) else: return multiplier * normalized_kernel else: if add_constant: return multiplier * np.hstack([np.ones((len(unnormalized_kernel), 1)), unnormalized_kernel]) else: return multiplier * unnormalized_kernel ###### # Settings ###### compare_specialized_modules = False # this requires access to our libraries which aren't yet public basis_domain = (-5, 5) plot_domain = (-1, 2) training_domain = (0, 1) ylim = (-2, 2) widths = [0.5] wavelength = 0.5 phase = 0 vertical_shift = 0 objective_scale = 5 noise_parameter_scale = 0.1 number_of_basis_functions = 100 number_of_evaluation_points = 500 number_of_training_points = 20 fit_intercept = True constant_kernel_weight = 1e5 plot_range = (-4 * objective_scale + vertical_shift, 4 * objective_scale + vertical_shift) render_plots = True ##### def objective(X): return objective_scale * np.sin((X / wavelength + phase) * 2 * np.pi) + vertical_shift def get_average_subsequent_differences_in_list(ini_list): diff_list = [] for x, y in zip(ini_list[0::], ini_list[1::]): diff_list.append(y - x) return np.average(diff_list) number_of_dirac_basis_functions = max(1000, number_of_basis_functions) basis_centers = np.linspace(basis_domain[0], basis_domain[1], number_of_basis_functions).reshape(-1, 1) dirac_basis_centers = np.linspace(basis_domain[0], basis_domain[1], number_of_dirac_basis_functions).reshape(-1, 1) dirac_basis_increment = get_average_subsequent_differences_in_list(dirac_basis_centers) X = np.linspace(plot_domain[0], plot_domain[1], number_of_evaluation_points).reshape(-1, 1) X_train = np.linspace(training_domain[0], training_domain[1], number_of_training_points).reshape(-1, 1) Y_train = objective(X_train).reshape(-1, 1) noise_parameter = max(1e-5, noise_parameter_scale) * objective_scale prior_noise_parameter = objective_scale GP_RBF_kernel = partial(kernel, widths=widths, noise_parameter=1e-3, mean=constant_kernel_weight) GP_kernel = partial(kernel, widths=widths, noise_parameter=noise_parameter / objective_scale, mean=constant_kernel_weight, multiplier=objective_scale ** 2) incorrect_kernel = partial(kernel, widths=[x / 5 for x in widths], noise_parameter=noise_parameter) BLR_basis = partial(kernel, X2=basis_centers, widths=[x / np.sqrt(2) for x in widths], mean=0.0, add_constant=fit_intercept) # note that noise_parameter only applies if X2 is None dirac_basis = partial(kernel, X2=dirac_basis_centers, widths=[dirac_basis_increment for x in widths], mean=0.0) # note that noise_parameter only applies if X2 is None def normalize_basis(basis, apply_sqrt=True, ignore_first_column=False): if ignore_first_column: basis_for_norm = basis[:, 1:] output_basis = basis.copy() output_basis[:, 1:] = (basis[:, 1:].T / np.sqrt(np.diag(basis_for_norm @ basis_for_norm.T))).T return output_basis else: return (basis.T / np.sqrt(np.diag(basis @ basis.T))).T # regular (manual) basis X_train_basis = BLR_basis(X_train) X_basis = BLR_basis(X) normalization_constant = np.average(np.diag(X_train_basis @ X_train_basis.T)) ** -0.5 X_train_basis = normalize_basis(X_train_basis, ignore_first_column=fit_intercept) X_basis = normalize_basis(X_basis, ignore_first_column=fit_intercept) # apply eigenbasis K = GP_RBF_kernel(dirac_basis_centers) eigenvalues, eigenvectors = np.linalg.eigh(K) eigenbasis = eigenvectors.T X_train_dirac_basis = dirac_basis(X_train) X_dirac_basis = dirac_basis(X) X_train_dirac_basis = np.square(normalize_basis(X_train_dirac_basis)) X_dirac_basis = np.square(normalize_basis(X_dirac_basis)) X_train_eigenbasis = X_train_dirac_basis @ eigenbasis.T @ np.diag(np.sqrt(eigenvalues)) X_eigenbasis = X_dirac_basis @ eigenbasis.T @ np.diag(np.sqrt(eigenvalues)) eigenvalues, eigenvectors = np.linalg.eigh(noise_parameter ** -2 * X_train_basis.T @ X_train_basis) number_of_effective_parameters = sum(x / (prior_noise_parameter ** -2 + x) for x in np.real(eigenvalues)) print(f'number of effective parameters (gamma): {number_of_effective_parameters}') print(f'number of training points: {number_of_training_points}') ###### # BLR ###### if fit_intercept: number_of_features_with_intercept = number_of_basis_functions + 1 else: number_of_features_with_intercept = number_of_basis_functions regularization_matrix = noise_parameter ** 2 * prior_noise_parameter ** -2 * np.eye(number_of_features_with_intercept) if fit_intercept: regularization_matrix[0, 0] = 0 S_matrix = np.linalg.pinv(X_train_basis.T @ X_train_basis + regularization_matrix) beta_means = S_matrix @ X_train_basis.T @ Y_train BLR_predictions = X_basis @ beta_means BLR_predictions_at_X_train = X_train_basis @ beta_means BLR_cov = noise_parameter ** 2 * (X_basis @ S_matrix @ X_basis.T + np.eye(len(X_basis))) BLR_sigmas = np.sqrt(np.abs(np.diag(BLR_cov))).reshape(-1, 1) empirical_noise_parameter = np.sqrt(np.sum((X_train_basis @ beta_means - Y_train) ** 2) / len(BLR_predictions)) ###### # BLR -- Eigenbasis ###### prior_covariance_eigen_matrix = prior_noise_parameter ** 2 * np.eye(len(X_train_eigenbasis.T)) covariance_eigen_matrix = np.linalg.pinv( noise_parameter ** -2 * X_train_eigenbasis.T @ X_train_eigenbasis + np.linalg.pinv(prior_covariance_eigen_matrix)) beta_eigen_means = noise_parameter ** -2 * covariance_eigen_matrix @ X_train_eigenbasis.T @ Y_train BLR_eigen_predictions = X_eigenbasis @ beta_eigen_means BLR_eigen_predictions_at_X_train = X_train_eigenbasis @ beta_eigen_means BLR_eigen_cov = X_eigenbasis @ covariance_eigen_matrix @ X_eigenbasis.T + noise_parameter ** 2 * np.eye( len(X_eigenbasis)) BLR_eigen_sigmas = np.sqrt(np.abs(np.diag(BLR_eigen_cov))).reshape(-1, 1) eigen_empirical_noise_parameter = np.sqrt( np.sum((X_train_eigenbasis @ beta_eigen_means - Y_train) ** 2) / len(BLR_eigen_predictions)) ###### # BLR - Specialized modules ###### if compare_specialized_modules: from src.bayes_linear_regressor import BayesLinearRegressor, BayesLinearAlgebraLinearRegressor from src.support_regressors import BasisAdapter, TuningAdapter # note that l2_regularization_constant is alpha/beta in http://krasserm.github.io/2019/02/23/bayesian-linear-regression/ # that is, with alpha = prior_noise_parameter ** -2 = 1, # l2_regularization_constant = noise_parameter ** 2 BLR_learn_sigma_and_prior_noise_parameter_object = BasisAdapter( regressor=BayesLinearRegressor( l2_regularization_constant=None, fixed_prior_noise_parameter=None, fixed_noise_parameter=None, fit_intercept=fit_intercept ), domains=[basis_domain], sampling_factors=number_of_basis_functions, widths=[x / np.sqrt(2) for x in widths] ) # note that kernel_noise_parameter default is 0 BLR_learn_sigma_and_prior_noise_parameter_object.fit(X_train, Y_train) BLR_learn_sigma_and_prior_noise_parameter_object_predictions, \ BLR_learn_sigma_and_prior_noise_parameter_object_sigmas = \ BLR_learn_sigma_and_prior_noise_parameter_object.predict(X, return_std=True) BLR_learn_sigma_object = BasisAdapter( regressor=BayesLinearRegressor( l2_regularization_constant=None, fixed_prior_noise_parameter=prior_noise_parameter, fixed_noise_parameter=None, fit_intercept=fit_intercept ), domains=[basis_domain], sampling_factors=number_of_basis_functions, widths=[x / np.sqrt(2) for x in widths] ) # note that kernel_noise_parameter default is 0 BLR_learn_sigma_object.fit(X_train, Y_train) BLR_learn_sigma_object_predictions, BLR_learn_sigma_object_sigmas = BLR_learn_sigma_object.predict(X, return_std=True) BLR_learn_sigma_evidence_object = TuningAdapter( regressor=BasisAdapter, regressor_keyword_arguments={ 'regressor': BayesLinearRegressor, 'l2_regularization_constant': None, 'fixed_prior_noise_parameter': prior_noise_parameter, 'fixed_noise_parameter': None, 'fit_intercept': fit_intercept, 'domains': [basis_domain], 'sampling_factors': number_of_basis_functions, 'widths': [x / np.sqrt(2) for x in widths] }, hyperparameter_domains={ 'fixed_noise_parameter': [1e-5, 10] } ) BLR_learn_sigma_evidence_object.fit(X_train, Y_train) BLR_learn_sigma_evidence_object_predictions, BLR_learn_sigma_evidence_object_sigmas = BLR_learn_sigma_evidence_object.predict( X, return_std=True) BLR_learn_sigma_and_width_evidence_object = TuningAdapter( regressor=BasisAdapter, regressor_keyword_arguments={ 'regressor': BayesLinearRegressor, 'l2_regularization_constant': None, 'fixed_prior_noise_parameter': prior_noise_parameter, 'fixed_noise_parameter': None, 'fit_intercept': fit_intercept, 'domains': [basis_domain], 'sampling_factors': number_of_basis_functions, 'widths': [x / np.sqrt(2) for x in widths] }, hyperparameter_domains={ 'fixed_noise_parameter': [1e-5, 10], 'widths': [[1e-2, 10]] } ) BLR_learn_sigma_and_width_evidence_object.fit(X_train, Y_train) BLR_learn_sigma_and_width_evidence_object_predictions, BLR_learn_sigma_and_width_evidence_object_sigmas = BLR_learn_sigma_and_width_evidence_object.predict( X, return_std=True) BLR_learn_prior_noise_parameter_object = BasisAdapter( regressor=BayesLinearRegressor( l2_regularization_constant=None, fixed_prior_noise_parameter=None, fixed_noise_parameter=noise_parameter, fit_intercept=fit_intercept ), domains=[basis_domain], sampling_factors=number_of_basis_functions, widths=[x / np.sqrt(2) for x in widths] ) # note that kernel_noise_parameter default is 0 BLR_learn_prior_noise_parameter_object.fit(X_train, Y_train) BLR_learn_prior_noise_parameter_object_predictions, BLR_learn_prior_noise_parameter_object_sigmas = BLR_learn_prior_noise_parameter_object.predict( X, return_std=True) BLR_fixed_regularization_learn_sigma_object = BasisAdapter( regressor=BayesLinearRegressor( l2_regularization_constant=1e-1, # noise_parameter**2 / prior_noise_parameter**2, fixed_prior_noise_parameter=None, fixed_noise_parameter=None, fit_intercept=fit_intercept, use_empirical_noise_parameter=False ), domains=[basis_domain], sampling_factors=number_of_basis_functions, widths=[x / np.sqrt(2) for x in widths] ) # note that kernel_noise_parameter default is 0 BLR_fixed_regularization_learn_sigma_object.fit(X_train, Y_train) BLR_fixed_regularization_learn_sigma_object_predictions, \ BLR_fixed_regularization_learn_sigma_object_sigmas = \ BLR_fixed_regularization_learn_sigma_object.predict(X, return_std=True) BLR_fixed_prior_noise_parameter_object = BasisAdapter( regressor=BayesLinearRegressor( l2_regularization_constant=None, fixed_prior_noise_parameter=prior_noise_parameter, fixed_noise_parameter=noise_parameter, fit_intercept=fit_intercept ), domains=[basis_domain], sampling_factors=number_of_basis_functions, widths=[x / np.sqrt(2) for x in widths] ) # note that kernel_noise_parameter default is 0 BLR_fixed_prior_noise_parameter_object.fit(X_train, Y_train) BLR_fixed_prior_noise_parameter_object_predictions, BLR_fixed_prior_noise_parameter_object_sigmas = BLR_fixed_prior_noise_parameter_object.predict( X, return_std=True) BLR_object = BasisAdapter( regressor=BayesLinearRegressor( l2_regularization_constant=noise_parameter ** 2 / prior_noise_parameter ** 2, fixed_prior_noise_parameter=None, fixed_noise_parameter=noise_parameter, fit_intercept=fit_intercept ), domains=[basis_domain], sampling_factors=number_of_basis_functions, widths=[x / np.sqrt(2) for x in widths] ) # note that kernel_noise_parameter default is 0 BLR_object_prior_predictions, BLR_object_prior_sigmas = BLR_object.predict(X, return_std=True) BLR_object_prior_sample_y = [BLR_object.sample_y(X) for _ in range(10)] BLR_object.fit(X_train, Y_train) BLR_object_predictions, BLR_object_sigmas = BLR_object.predict(X, return_std=True) BLR_object_posterior_sample_y = [BLR_object.sample_y(X) for _ in range(10)] BLALR_object = BasisAdapter( regressor=BayesLinearAlgebraLinearRegressor( l2_regularization_constant=noise_parameter ** 2 / prior_noise_parameter ** 2, fixed_prior_noise_parameter=None, fixed_noise_parameter=noise_parameter, fit_intercept=fit_intercept ), domains=[basis_domain], sampling_factors=number_of_basis_functions, widths=[x / np.sqrt(2) for x in widths] ) # note that kernel_noise_parameter default is 0 BLALR_object.fit(X_train, Y_train) BLALR_object_predictions, BLALR_object_sigmas = BLALR_object.predict(X, return_std=True) # np.sum(np.abs(X_train_basis - BLR_object.transform(X_train))) / X_train_basis.size # np.sum(np.abs(X_basis - BLR_object.transform(X))) / X_basis.size train_index = round(X_train_basis.shape[0] / 2) basis_index = round(X_train_basis.shape[1] / 2) if render_plots: plt.clf() plt.figure() y = BLR_object.transform(X_train[train_index]).T print(np.max(y)) plt.plot(list(range(len(y))), y, 'r') plt.show() plt.clf() plt.figure() y = X_train_basis[train_index] print(np.max(y)) plt.plot(list(range(len(y))), y, 'b') plt.show() ###### # GP ###### K = GP_kernel(X_train) K_s = GP_kernel(X_train, X) K_ss = GP_kernel(X) K_inv = np.linalg.pinv(K) GP_predictions = K_s.T.dot(K_inv).dot(Y_train) GP_cov = (K_ss - K_s.T.dot(K_inv).dot(K_s)) GP_sigmas = np.sqrt(np.abs(np.diag(GP_cov))).reshape(-1, 1) ###### # Plots ###### if render_plots: plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, GP_predictions, GP_sigmas, plot_range, plot_domain, 'Gaussian Process' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_predictions, BLR_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_eigen_predictions, BLR_eigen_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression (Eigenbasis)' ) if compare_specialized_modules: plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_object_prior_predictions, BLR_object_prior_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression Prior', 'prior_regression_results.png' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_object_prior_sample_y, None, plot_range, plot_domain, 'Bayesian Linear Regression Prior Samples', 'prior_samples.png' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_object_posterior_sample_y, None, plot_range, plot_domain, 'Bayesian Linear Regression Posterior Samples', 'posterior_samples.png' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_learn_sigma_object_predictions, BLR_learn_sigma_object_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression with Learned $\sigma$ and Fixed $\sigma_p$' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_learn_sigma_evidence_object_predictions, BLR_learn_sigma_evidence_object_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression with Learned $\sigma$ and Fixed $\sigma_p$ with Evidence' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_learn_sigma_and_width_evidence_object_predictions, BLR_learn_sigma_and_width_evidence_object_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression with Learned $\sigma$ and $l$, Fixed $\sigma_p$ with Evidence' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_learn_prior_noise_parameter_object_predictions, BLR_learn_prior_noise_parameter_object_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression with Fixed $\sigma$ and Learned $\sigma_p$' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_learn_sigma_and_prior_noise_parameter_object_predictions, BLR_learn_sigma_and_prior_noise_parameter_object_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression with Learned $\sigma$ and $\sigma_p$' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_fixed_regularization_learn_sigma_object_predictions, BLR_fixed_regularization_learn_sigma_object_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression with Learned $\sigma$ and Fixed $\lambda$' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_fixed_prior_noise_parameter_object_predictions, BLR_fixed_prior_noise_parameter_object_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression with Fixed $\sigma_p$ and $\sigma$' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLR_object_predictions, BLR_object_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression with Fixed $\lambda=\sigma^2/\sigma_p^2$' ) plot_prediction_uncertainty_and_data( X, objective, X_train, Y_train, BLALR_object_predictions, BLALR_object_sigmas, plot_range, plot_domain, 'Bayesian Linear Regression with Fixed $\lambda=\sigma^2/\sigma_p^2$ (alt.)' ) ###### # Eigendecomposition ###### if render_plots: K = GP_kernel(basis_centers) eigenvalues, eigenvectors = np.linalg.eig(K) comparison = GP_kernel(basis_centers) plt.clf() plt.figure() plt.plot(basis_centers, eigenvectors.T[0], 'red', label='eigenbasis[0]') plt.plot(basis_centers, eigenvectors.T[1], 'green', label='eigenbasis[1]') plt.plot(basis_centers, eigenvectors.T[2], 'blue', label='eigenbasis[2]') plt.plot(basis_centers, eigenvectors.T[3], 'orange', label='eigenbasis[3]') plt.xlim(plot_domain) plt.legend(loc='lower right') plt.title('Bayesian Linear Regression Eigenbasis Examples') plt.savefig(expanduser('~/Downloads/eigenbasis.png'), dpi=300) plt.show() basis = BLR_basis(basis_centers) index_increment = round(len(basis) * 0.1) plt.clf() plt.figure() if fit_intercept: plt.plot(basis_centers, basis[0, 1:], 'red', label='basis 0%') plt.plot(basis_centers, basis[index_increment, 1:], 'green', label='basis 10%') plt.plot(basis_centers, basis[2 * index_increment, 1:], 'blue', label='basis 20%') plt.plot(basis_centers, basis[3 * index_increment, 1:], 'orange', label='basis 30%') else: plt.plot(basis_centers, basis[0], 'red', label='basis 0%') plt.plot(basis_centers, basis[index_increment], 'green', label='basis 10%') plt.plot(basis_centers, basis[2 * index_increment], 'blue', label='basis 20%') plt.plot(basis_centers, basis[3 * index_increment], 'orange', label='basis 30%') plt.xlim(plot_domain) plt.legend(loc='upper right') plt.title('Bayesian Linear Regression Manual Basis Examples') plt.savefig(expanduser('~/Downloads/manualbasis.png'), dpi=300) plt.show() ###### # Log-likelihood Comparison ###### K = GP_kernel(X_train) K_inv = np.linalg.pinv(K) if fit_intercept: beta_means_for_log_likelihood = beta_means[1:] else: beta_means_for_log_likelihood = beta_means log_likelihood_first_term_GP = float((Y_train.T - np.average(Y_train)) @ K_inv @ (Y_train -
np.average(Y_train)
numpy.average
import numpy as np from tqdm import tqdm import time import random import sys import pyfiglet LENGTH = 3 class Environment: def __init__(self): self.board = np.zeros((LENGTH, LENGTH)) # 0 showing an empty board self.X = -1 # number sign for X player self.O = 1 # number sign for O player self.winner = None # variable to keep track of if there is a winner self.ended = False # variable to track if the game is over or not self.total_states = 3 ** (LENGTH * LENGTH) # total number of possible states in the game def is_empty(self, i, j): return self.board[i, j] == 0 def reward(self, symbol): if not self.game_over(): return 0 return 1 if self.winner == symbol else 0 # symbol is self.X or self.O def get_state(self): """ Return the hash int for the board state Hash int is generated as Ternary number system (using 0,1,2) """ k = 0 # Number representing the cell h = 0 # Hash Number for i in range(LENGTH): for j in range(LENGTH): if self.board[i, j] == 0: v = 0 elif self.board[i, j] == self.X: v = 1 elif self.board[i, j] == self.O: v = 2 h += v*(3 ** k) k += 1 return h def game_over(self, force_recalculate=False): """ Check for winner: along row along column along diagonals check if draw else return false """ if not force_recalculate and self.ended: return self.ended # checking across rows for i in range(LENGTH): for player in (self.X, self.O): if self.board[i].sum() == player * LENGTH: self.ended = True self.winner = player return True # checking across columns for j in range(LENGTH): for player in (self.X, self.O): if self.board[:, j].sum() == player * LENGTH: self.ended = True self.winner = player return True # checking along both diagonals for player in (self.X, self.O): # principal diagonal if self.board.trace() == player * LENGTH: self.winner = player self.ended = True return True # secondary diagonal if np.fliplr(self.board).trace() == player * LENGTH: self.winner = player self.ended = True return True # check for draw condition if np.all((self.board == 0) == False): # There are still cells to fill self.winner = None self.ended = True return True # else return false self.winner = None # reset for multiple calls of function return False def draw_board(self): """ Member function to draw the board to play """ print("-------------") for i in range(LENGTH): print("|", end='') for j in range(LENGTH): if self.board[i, j] == self.X: print(' X |', end='') elif self.board[i, j] == self.O: print(' O |', end='') else: print(' |', end='') print("") print("-------------") class Agent: def __init__(self, eps=0.1, alpha=0.5): self.eps = eps # the threshold to guide explore exploit decision self.alpha = alpha # learning rate self.verbose = False # True to show agent's decision making process self.state_history = [] # To keep track of state history for an episode def setV(self, V): """ To set the value function for the agent :param V: Value function """ self.V = V def set_symbol(self, symbol): """ To give the agent a symbol to play :param symbol: self.X or self.O """ self.symbol = symbol def set_verbose(self, v): """ prints more info if b is true :param b: True or false for verbosity """ self.verbose = v def reset_history(self): """ To reset the history when episode is finished """ self.state_history = [] def take_action(self, env): """ The agent to take action given the current environment Action is taken as per epsilon greedy method :param env: Environment class object :return: """ r = np.random.rand() best_state = None if r <= self.eps: # explore by taking a random action if self.verbose: print("Taking a random action...") possible_moves = [] for i in range(LENGTH): for j in range(LENGTH): if env.is_empty(i, j): possible_moves.append((i, j)) # select a random possible move id = np.random.choice(len(possible_moves)) next_move = possible_moves[id] else: # exploit by selecting the best action pos2value = {} # To store all the position to value dict for verbose best_value = -99 next_move = None for i in range(LENGTH): for j in range(LENGTH): if env.is_empty(i, j): env.board[i, j] = self.symbol state = env.get_state() env.board[i, j] = 0 # changing it back pos2value[(i, j)] = self.V[state] if self.V[state] > best_value: best_value = self.V[state] best_state = state next_move = (i, j) if self.verbose: print("Taking a greedy action") # printing value of the position wherever empty print("-------------") for i in range(LENGTH): print("|", end='') for j in range(LENGTH): if env.board[i, j] == env.X: print(' X |', end='') elif env.board[i, j] == env.O: print(' O |', end='') else: num = round(pos2value[(i, j)], 2) print('.%d|' % (num*1e2), end='') print("") print("-------------") # making the move env.board[next_move[0], next_move[1]] = self.symbol def update_state_history(self, state): """ Updating state history for a given episode :param state: state value """ self.state_history.append(state) def update(self, env): """ Queries the environment for the latest reward. Learning epicentre """ reward = env.reward(self.symbol) target = reward for prev in reversed(self.state_history): value = self.V[prev] + self.alpha*(target - self.V[prev]) self.V[prev] = value # This value estimate converges to it's 'actual value' in the episode target = value self.reset_history() class Hooman: def __init__(self): pass def set_symbol(self, symbol): self.symbol = symbol def take_action(self, env): while True: move = input("Enter the position as i,j you want to place your move (i,j ∈ {0,1,2): ") # break if we make a valid move i, j = move.split(',') i = int(i.strip()) j = int(j.strip()) if env.is_empty(i,j): env.board[i,j] = self.symbol break else: print("Invalid move! Try again...") def update_state_history(self, state): pass def update(self, env): pass def play_game(p1, p2, env, draw=0): """ Main function that is called to play the game :param p1: player 1 object :param p2: player 2 object :param env: Environment object :param draw: draw the board for which player (1 or 2) """ # iterates until the game is over current_player = None while not env.game_over(): # alternate chances in between players p1 starts first if current_player == p1: current_player = p2 else: current_player = p1 # draw before the hooman makes a move. if draw: if draw == 1 and current_player == p1: env.draw_board() if draw == 2 and current_player == p2: env.draw_board() # The current player makes a move current_player.take_action(env) # updating state histories state = env.get_state() p1.update_state_history(state) p2.update_state_history(state) # Draws the board at the end of the game if draw: env.draw_board() if draw == 2: if env.winner == env.X: print("I won! Better luck next time Noob XD") else: print("Congrats! You won!!") else: if env.winner == env.O: print("I won! Better luck next time Noob XD") else: print("Congrats! You won!!") # doing value function updates p1.update(env) p2.update(env) def get_state_hash_winner(env, i=0, j=0): """ Returns the tuple for (state_hash, ended, winner) """ results = [] for v in (0, env.X, env.O): env.board[i, j] = v if j == LENGTH-1: if i == LENGTH-1: state = env.get_state() ended = env.game_over(force_recalculate=True) winner = env.winner results.append((state, ended, winner)) else: results += get_state_hash_winner(env, i+1, 0) # next row first column else: results += get_state_hash_winner(env, i, j+1) # next column same row return results def initialize_vx(env, state_winner_tuples): V =
np.zeros(env.total_states)
numpy.zeros
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #Coastal Pioneer WireFollowing Profilers (WFP elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data =
np.array([])
numpy.array
import random import pickle from datetime import datetime import os import torch import numpy as np import imageio import cv2 from torch.utils.data import Dataset import torchvision.transforms as transforms normalize_transform = transforms.Compose( [transforms.ConvertImageDtype(torch.float) ]) def random_points_from_grid(seed=None, num_points=9, central_area_side=30, total_area_side=50): ''' "Choose 9 points randomly from the central 30x30 area of a 50x50 grid" Becomes the initial point of the dot distortion shapes. ''' if seed is not None: random.seed(seed) points = [] for i in range(num_points): x = random.randint(total_area_side/2-central_area_side/2, total_area_side/2 + central_area_side/2) y = random.randint(total_area_side/2-central_area_side/2, total_area_side/2 + central_area_side/2) points.append((x, y)) return points def create_relative_coordinates(dot_block_image_path='dot_distortion_areas.png'): ''' I created a 21x21 pixel PNG image using GIMP that has different brightness values for each kind of 'area'. This function parses that image to return a list of tuples of relative coordinates for each area. Areas are 1,2,3,4,5. ''' im = imageio.imread(dot_block_image_path) pixel_brightness = sorted(set(im[10])) brightness_to_areas = dict() for i, num in enumerate(pixel_brightness): brightness_to_areas.update({num: i+1}) areas_array = np.zeros(im.shape) for i in range(len(areas_array)): for j in range(len(areas_array[i])): areas_array[i][j] = brightness_to_areas[im[i][j]] assert set(areas_array.flatten()) == {1, 2, 3, 4, 5} # ensure that all pixel values have been converted to areas indexes coords_per_area = [] for k in range(1,len(set(areas_array.flatten()))+1): coords_per_area.append([(i,j) for i in range(len(areas_array)) for j in range(len(areas_array[i])) if areas_array[i][j] == k]) # subtract (10,10) from all coords; turn into relative values from center pixel rel_coords_per_area = coords_per_area for i in range(len(coords_per_area)): rel_coords_per_area[i] = [(x-10,y-10) for (x,y) in coords_per_area[i]] return rel_coords_per_area relative_shifts = create_relative_coordinates() def distort_dot(coords, distortion_level, relative_shifts, area_names=[1,2,3,4,5]): ''' Randomly move dot to corresponding area_name according to a probability distribution for area_names given by distortion_level coords (tuple(int,int)): (x, y) point coordinates distortion_level (str): choose from '1', '2', '3', '4', '5', '6', '7.7' relative_shifts (list[list[tuple(int,int)]]): list of lists of relative coordinates for each area_name area_names (list[int]) ''' level_to_probs = { # level names correspond to bits per dot # value is the probability distribution over the 5 area_names '1' : (0.88, 0.10, 0.015, 0.004, 0.001), '2' : (0.75, 0.15, 0.05, 0.03, 0.02), '3' : (0.59, 0.20, 0.16, 0.03, 0.02), '4' : (0.36, 0.48, 0.06, 0.05, 0.05), '5' : (0.20, 0.30, 0.40, 0.05, 0.05), '6' : (0, 0.40, 0.32, 0.15, 0.13), '7.7': (0, 0.24, 0.16, 0.30, 0.30) } # check that all probability distributions sum to 1 for x in ['1','2','3','4','5','6','7.7']: assert sum(level_to_probs[x]) == 1.0 probs = level_to_probs[distortion_level] area_selection = np.random.choice(area_names, p=probs) pixel_shift_selection = random.choice(relative_shifts[area_selection-1]) return (coords[0] + pixel_shift_selection[0], coords[1] + pixel_shift_selection[1]) def scale_coords(coords, scale_factor=3): ''' Scale coordinates by a factor ''' return (coords[0]*scale_factor, coords[1]*scale_factor) def generate_single_dot_distortion(seed=None, distortion_level='3', relative_shifts=relative_shifts, scale_factor=3, draw_bbox=False): ''' seed: if not None, use seed to create the same category ''' img = np.zeros([150, 150, 1],np.uint8) shifted_points = [] for p in random_points_from_grid(seed=seed): shifted_points.append(distort_dot(coords=p, distortion_level=distortion_level, relative_shifts=relative_shifts)) scaled_points = [scale_coords(c, scale_factor=scale_factor) for c in shifted_points] x1, y1 = np.amin(np.array(scaled_points), axis=0) x2, y2 = np.amax(np.array(scaled_points), axis=0) bbox = (x1, y1, x2, y2) img =
np.zeros([150, 150, 1],np.uint8)
numpy.zeros
import glob, os, shutil, sys, json from pathlib import Path import pylab as plt import trimesh import open3d from easydict import EasyDict import numpy as np from tqdm import tqdm import utils from features import MeshFPFH FIX_BAD_ANNOTATION_HUMAN_15 = 0 # Labels for all datasets # ----------------------- sigg17_part_labels = ['---', 'head', 'hand', 'lower-arm', 'upper-arm', 'body', 'upper-lag', 'lower-leg', 'foot'] sigg17_shape2label = {v: k for k, v in enumerate(sigg17_part_labels)} model_net_labels = [ 'bathtub', 'bed', 'chair', 'desk', 'dresser', 'monitor', 'night_stand', 'sofa', 'table', 'toilet', 'wardrobe', 'bookshelf', 'laptop', 'door', 'lamp', 'person', 'curtain', 'piano', 'airplane', 'cup', 'cone', 'tent', 'radio', 'stool', 'range_hood', 'car', 'sink', 'guitar', 'tv_stand', 'stairs', 'mantel', 'bench', 'plant', 'bottle', 'bowl', 'flower_pot', 'keyboard', 'vase', 'xbox', 'glass_box' ] model_net_shape2label = {v: k for k, v in enumerate(model_net_labels)} model_net_weights = [265, 1186, 2300, 407, 404, 956, 381, 1645, 755, 919, 145, 1002, 260, 204, 303, 248, 330, 617, 1874, 159, 213, 295, 267, 189, 303, 587, 332, 447, 483, 275, 817, 354, 623, 868, 119, 385, 412, 1216, 278, 183] future3d_labels = ['Children Cabinet', 'Nightstand', 'Bookcase / jewelry Armoire','Wardrobe', 'Coffee Table', 'Corner/Side Table', 'Sideboard / Side Cabinet / Console Table','Wine Cabinet', 'TV Stand', 'Drawer Chest / Corner cabinet', 'Shelf', 'Round End Table', 'King-size Bed', 'Bunk Bed', 'Bed Frame', 'Single bed', 'Kids Bed', 'Dining Chair', 'Lounge Chair / Cafe Chair / Office Chair', 'Dressing Chair', 'Classic Chinese Chair','Barstool', 'Dressing Table', 'Dining Table', 'Desk', 'Three-Seat / Multi-seat Sofa', 'armchair', 'Loveseat Sofa', 'L-shaped Sofa', 'Lazy Sofa', 'Chaise Longue Sofa', 'Footstool / Sofastool / Bed End Stool / Stool', 'Pendant Lamp', 'Ceiling Lamp'] future3d_excluded_labels = ['Dressing Chair', 'Chaise Longue Sofa'] future3d_labels = [x.lower() for x in future3d_labels] future3d_super_labels = [x.lower() for x in ['Cabinet/Shelf/Desk', 'Bed', 'Chair', 'Table', 'Sofa', 'Pier/Stool', 'Lighting']] future_3d_labels_to_super = [12, 5, 5, 3, 6, 1, 2] future3d_shape2label = {v: k for k, v in enumerate(future3d_labels)} future3d_weights = [259, 1045, 262, 724, 1644, 1171, 1046, 169, 581, 643, 187, 168, 1260, 140, 395, 482, 139, 1139, 1411, 24, 32, 365, 291, 736, 198, 2479, 1741, 1169, 385, 204, 4, 885, 1915, 611] cubes_labels = [ 'apple', 'bat', 'bell', 'brick', 'camel', 'car', 'carriage', 'chopper', 'elephant', 'fork', 'guitar', 'hammer', 'heart', 'horseshoe', 'key', 'lmfish', 'octopus', 'shoe', 'spoon', 'tree', 'turtle', 'watch' ] cubes_shape2label = {v: k for k, v in enumerate(cubes_labels)} shrec11_labels = [ 'armadillo', 'man', 'centaur', 'dinosaur', 'dog2', 'ants', 'rabbit', 'dog1', 'snake', 'bird2', 'shark', 'dino_ske', 'laptop', 'santa', 'flamingo', 'horse', 'hand', 'lamp', 'two_balls', 'gorilla', 'alien', 'octopus', 'cat', 'woman', 'spiders', 'camel', 'pliers', 'myScissor', 'glasses', 'bird1' ] shrec11_shape2label = {v: k for k, v in enumerate(shrec11_labels)} coseg_labels = [ '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', ] coseg_shape2label = {v: k for k, v in enumerate(coseg_labels)} # ShapenetCore-55 shapenet_synsetIds = ['02691156', '02747177', '02773838', '02801938', '02808440', '02818832', '02828884', '02843684', '02871439', '02876657', '02880940', '02924116', '02933112', '02942699', '02946921', '02954340', '02958343', '02992529', '03001627', '03046257', '03085013', '03207941', '03211117', '03261776', '03325088', '03337140', '03467517', '03513137', '03593526', '03624134', '03636649', '03642806', '03691459', '03710193', '03759954', '03761084', '03790512', '03797390', '03928116', '03938244', '03948459', '03991062', '04004475', '04074963', '04090263', '04099429', '04225987', '04256520', '04330267', '04379243', '04401088', '04460130', '04468005', '04530566', '04554684'] shapenet_synset_to_label = {'02691156': 'airplane,aeroplane,plane', '02747177': 'ashcan,trash can,garbage can,wastebin,ash bin,ash-bin,ashbin,dustbin,trash barrel,trash bin', '02773838': 'bag,traveling bag,travelling bag,grip,suitcase', '02801938': 'basket,handbasket', '02808440': 'bathtub,bathing tub,bath,tub', '02818832': 'bed', '02828884': 'bench', '02843684': 'birdhouse', '02871439': 'bookshelf', '02876657': 'bottle', '02880940': 'bowl', '02924116': 'bus,autobus,coach,charabanc,double-decker,jitney,motorbus,motorcoach,omnibus,passenger vehi', '02933112': 'cabinet', '02942699': 'camera,photographic camera', '02946921': 'can,tin,tin can', '02954340': 'cap', '02958343': 'car,auto,automobile,machine,motorcar', '03001627': 'chair', '03046257': 'clock', '03085013': 'computer keyboard,keypad', '03207941': 'dishwasher,dish washer,dishwashing machine', '03211117': 'display,video display', '03261776': 'earphone,earpiece,headphone,phone', '03325088': 'faucet,spigot', '03337140': 'file,file cabinet,filing cabinet', '03467517': 'guitar', '03513137': 'helmet', '03593526': 'jar', '03624134': 'knife', '03636649': 'lamp', '03642806': 'laptop,laptop computer', '03691459': 'loudspeaker,speaker,speaker unit,loudspeaker system,speaker system', '03710193': 'mailbox,letter box', '03759954': 'microphone,mike', '03761084': 'microwave,microwave oven', '03790512': 'motorcycle,bike', '03797390': 'mug', '03928116': 'piano,pianoforte,forte-piano', '03938244': 'pillow', '03948459': 'pistol,handgun,side arm,shooting iron', '03991062': 'pot,flowerpot', '04004475': 'printer,printing machine', '04074963': 'remote control,remote', '04090263': 'rifle', '04099429': 'rocket,projectile', '04225987': 'skateboard', '04256520': 'sofa,couch,lounge', '04330267': 'stove', '04379243': 'table', '04401088': 'telephone,phone,telephone set', '02992529': 'cellular telephone,cellular phone,cellphone,cell,mobile phone', '04460130': 'tower', '04468005': 'train,railroad train', '04530566': 'vessel,watercraft', '04554684': 'washer,automatic washer,washing machine'} shapenet_labels = [shapenet_synset_to_label[x] for x in shapenet_synsetIds] shapenet_shapeid2label = {v: k for k, v in enumerate(shapenet_synsetIds)} def rotate_vertices(vertices, angle): y = angle * np.pi / 180 R = np.array(((np.cos(y),-np.sin(y), 0), (np.sin(y), np.cos(y), 0), (0 , 0, 1)), dtype=vertices.dtype) np.dot(vertices, R, out=vertices) def calc_mesh_area(mesh): t_mesh = trimesh.Trimesh(vertices=mesh['vertices'], faces=mesh['faces'], process=False) mesh['area_faces'] = t_mesh.area_faces mesh['area_vertices'] = np.zeros((mesh['vertices'].shape[0])) for f_index, f in enumerate(mesh['faces']): for v in f: mesh['area_vertices'][v] += mesh['area_faces'][f_index] / f.size def calc_vertex_labels_from_face_labels(mesh, face_labels): vertices = mesh['vertices'] faces = mesh['faces'] all_vetrex_labels = [[] for _ in range(vertices.shape[0])] vertex_labels = -np.ones((vertices.shape[0],), dtype=np.int) n_classes = int(np.max(face_labels)) assert np.min(face_labels) == 1 # min label is 1, for compatibility to human_seg labels representation v_labels_fuzzy = -np.ones((vertices.shape[0], n_classes)) for i in range(faces.shape[0]): label = face_labels[i] for f in faces[i]: all_vetrex_labels[f].append(label) for i in range(vertices.shape[0]): counts = np.bincount(all_vetrex_labels[i]) vertex_labels[i] = np.argmax(counts) v_labels_fuzzy[i] = np.zeros((1, n_classes)) for j in all_vetrex_labels[i]: v_labels_fuzzy[i, int(j) - 1] += 1 / len(all_vetrex_labels[i]) return vertex_labels, v_labels_fuzzy def prepare_edges_and_kdtree(mesh): vertices = mesh['vertices'] faces = mesh['faces'] mesh['edges'] = [set() for _ in range(vertices.shape[0])] for i in range(faces.shape[0]): for v in faces[i]: mesh['edges'][v] |= set(faces[i]) for i in range(vertices.shape[0]): if i in mesh['edges'][i]: mesh['edges'][i].remove(i) mesh['edges'][i] = list(mesh['edges'][i]) max_vertex_degree = np.max([len(e) for e in mesh['edges']]) for i in range(vertices.shape[0]): if len(mesh['edges'][i]) < max_vertex_degree: mesh['edges'][i] += [-1] * (max_vertex_degree - len(mesh['edges'][i])) mesh['edges'] = np.array(mesh['edges'], dtype=np.int32) mesh['kdtree_query'] = [] t_mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False) n_nbrs = min(10, vertices.shape[0] - 2) for n in range(vertices.shape[0]): d, i_nbrs = t_mesh.kdtree.query(vertices[n], n_nbrs) i_nbrs_cleared = [inbr for inbr in i_nbrs if inbr != n and inbr < vertices.shape[0]] if len(i_nbrs_cleared) > n_nbrs - 1: i_nbrs_cleared = i_nbrs_cleared[:n_nbrs - 1] mesh['kdtree_query'].append(np.array(i_nbrs_cleared, dtype=np.int32)) mesh['kdtree_query'] = np.array(mesh['kdtree_query']) assert mesh['kdtree_query'].shape[1] == (n_nbrs - 1), 'Number of kdtree_query is wrong: ' + str(mesh['kdtree_query'].shape[1]) def prepare_face_edges(mesh): tmesh = trimesh.Trimesh(mesh['vertices'], mesh['faces']) mesh['faces_edges'] = tmesh.face_adjacency mesh['faces_edges_angles'] = tmesh.face_adjacency_angles def add_fields_and_dump_model(mesh_data, fileds_needed, out_fn, dataset_name, dump_model=True): m = {} for k, v in mesh_data.items(): if k in fileds_needed: m[k] = v for field in fileds_needed: if field not in m.keys(): if field == 'labels': m[field] = np.zeros((0,)) if field == 'dataset_name': m[field] = dataset_name if field == 'walk_cache': m[field] = np.zeros((0,)) if field == 'kdtree_query' or field == 'edges': prepare_edges_and_kdtree(m) if field == 'tri_centers': t_mesh = trimesh.Trimesh(vertices=mesh_data.vertices, faces=mesh_data.faces, process=False) m[field] = t_mesh.triangles_center if field == 'tri_edges': prepare_face_edges(m) if field == 'vertex_normals': t_mesh = trimesh.Trimesh(vertices=mesh_data.vertices, faces=mesh_data.faces, process=False) m[field] = t_mesh.vertex_normals if field == 'mfpfh': fph = MeshFPFH(EasyDict(m), 2) m[field] = fph.calc_fpfh() if dump_model: np.savez(out_fn, **m) return m def get_sig17_seg_bm_labels(mesh, file, seg_path): # Finding the best match file name .. : in_to_check = file.replace('obj', 'txt') in_to_check = in_to_check.replace('off', 'txt') in_to_check = in_to_check.replace('_fix_orientation', '') if in_to_check.find('MIT_animation') != -1 and in_to_check.split('/')[-1].startswith('mesh_'): in_to_check = '/'.join(in_to_check.split('/')[:-2]) in_to_check = in_to_check.replace('MIT_animation/meshes_', 'mit/mit_') in_to_check += '.txt' elif in_to_check.find('/scape/') != -1: in_to_check = '/'.join(in_to_check.split('/')[:-1]) in_to_check += '/scape.txt' elif in_to_check.find('/faust/') != -1: in_to_check = '/'.join(in_to_check.split('/')[:-1]) in_to_check += '/faust.txt' seg_full_fn = [] for fn in Path(seg_path).rglob('*.txt'): tmp = str(fn) tmp = tmp.replace('/segs/', '/meshes/') tmp = tmp.replace('_full', '') tmp = tmp.replace('shrec_', '') tmp = tmp.replace('_corrected', '') if tmp == in_to_check: seg_full_fn.append(str(fn)) if len(seg_full_fn) == 1: seg_full_fn = seg_full_fn[0] else: print('\nin_to_check', in_to_check) print('tmp', tmp) raise Exception('!!') face_labels = np.loadtxt(seg_full_fn) if FIX_BAD_ANNOTATION_HUMAN_15 and file.endswith('test/shrec/15.off'): face_center = [] for f in mesh.faces: face_center.append(np.mean(mesh.vertices[f, :], axis=0)) face_center = np.array(face_center) idxs = (face_labels == 6) * (face_center[:, 0] < 0) * (face_center[:, 1] < -0.4) face_labels[idxs] = 7 np.savetxt(seg_full_fn + '.fixed.txt', face_labels.astype(np.int)) return face_labels def get_labels(dataset_name, mesh, file, fn2labels_map=None): v_labels_fuzzy = np.zeros((0,)) if dataset_name == 'faust': face_labels = np.load('faust_labels/faust_part_segmentation.npy').astype(np.int) vertex_labels, v_labels_fuzzy = calc_vertex_labels_from_face_labels(mesh, face_labels) model_label = np.zeros((0,)) return model_label, vertex_labels, v_labels_fuzzy elif dataset_name.startswith('coseg') or dataset_name == 'human_seg_from_meshcnn': labels_fn = '/'.join(file.split('/')[:-2]) + '/seg/' + file.split('/')[-1].split('.')[-2] + '.eseg' e_labels = np.loadtxt(labels_fn) v_labels = [[] for _ in range(mesh['vertices'].shape[0])] faces = mesh['faces'] fuzzy_labels_fn = '/'.join(file.split('/')[:-2]) + '/sseg/' + file.split('/')[-1].split('.')[-2] + '.seseg' seseg_labels = np.loadtxt(fuzzy_labels_fn) v_labels_fuzzy = np.zeros((mesh['vertices'].shape[0], seseg_labels.shape[1])) edge2key = dict() edges = [] edges_count = 0 for face_id, face in enumerate(faces): faces_edges = [] for i in range(3): cur_edge = (face[i], face[(i + 1) % 3]) faces_edges.append(cur_edge) for idx, edge in enumerate(faces_edges): edge = tuple(sorted(list(edge))) faces_edges[idx] = edge if edge not in edge2key: v_labels_fuzzy[edge[0]] += seseg_labels[edges_count] v_labels_fuzzy[edge[1]] += seseg_labels[edges_count] edge2key[edge] = edges_count edges.append(list(edge)) v_labels[edge[0]].append(e_labels[edges_count]) v_labels[edge[1]].append(e_labels[edges_count]) edges_count += 1 assert np.max(np.sum(v_labels_fuzzy != 0, axis=1)) <= 3, 'Number of non-zero labels must not acceeds 3!' vertex_labels = [] for l in v_labels: l2add = np.argmax(np.bincount(l)) vertex_labels.append(l2add) vertex_labels = np.array(vertex_labels) model_label = np.zeros((0,)) return model_label, vertex_labels, v_labels_fuzzy else: tmp = file.split('/')[-1] model_name = '_'.join(tmp.split('_')[:-1]) if dataset_name.lower().startswith('modelnet40_preprocessed'): model_label = model_net_shape2label['_'.join(model_name.split('_')[:-1])] elif dataset_name.lower().startswith('modelnet'): model_label = model_net_shape2label[model_name] elif dataset_name.lower().startswith('cubes'): model_label = cubes_shape2label[model_name] elif dataset_name.lower().startswith('shrec11'): model_name = file.split('/')[-3] if fn2labels_map is None: model_label = shrec11_shape2label[model_name] else: file_index = int(file.split('.')[-2].split('T')[-1]) model_label = fn2labels_map[file_index] else: raise Exception('Cannot find labels for the dataset') vertex_labels = np.zeros((0,)) return model_label, vertex_labels, v_labels_fuzzy def fix_labels_by_dist(vertices, orig_vertices, labels_orig): labels = -np.ones((vertices.shape[0], )) for i, vertex in enumerate(vertices): d = np.linalg.norm(vertex - orig_vertices, axis=1) orig_idx = np.argmin(d) labels[i] = labels_orig[orig_idx] return labels def get_faces_belong_to_vertices(vertices, faces): faces_belong = [] for face in faces: used = np.any([v in vertices for v in face]) if used: faces_belong.append(face) return np.array(faces_belong) def remesh(mesh_orig, target_n_faces, add_labels=False, labels_orig=None): labels = labels_orig if target_n_faces < np.asarray(mesh_orig.triangles).shape[0]: mesh = mesh_orig.simplify_quadric_decimation(target_n_faces) str_to_add = '_simplified_to_' + str(target_n_faces) mesh = mesh.remove_unreferenced_vertices() if add_labels and labels_orig.size: labels = fix_labels_by_dist(np.asarray(mesh.vertices), np.asarray(mesh_orig.vertices), labels_orig) else: mesh = mesh_orig str_to_add = '_not_changed_' + str(np.asarray(mesh_orig.triangles).shape[0]) return mesh, labels, str_to_add def load_meshes(model_fns): f_names = glob.glob(model_fns) joint_mesh_vertices = [] joint_mesh_faces = [] for fn in f_names: mesh_ = trimesh.load_mesh(fn) vertex_offset = len(joint_mesh_vertices) joint_mesh_vertices += mesh_.vertices.tolist() faces = mesh_.faces + vertex_offset joint_mesh_faces += faces.tolist() mesh = open3d.geometry.TriangleMesh() mesh.vertices = open3d.utility.Vector3dVector(joint_mesh_vertices) mesh.triangles = open3d.utility.Vector3iVector(joint_mesh_faces) return mesh def load_mesh(model_fn, classification=True): if 'FUTURE' not in model_fn: # To load and clean up mesh - "remove vertices that share position" if classification: mesh_ = trimesh.load_mesh(model_fn, process=True) if type(mesh_) is trimesh.Scene: mesh = open3d.io.read_triangle_mesh(model_fn) return mesh else: mesh_.remove_duplicate_faces() else: mesh_ = trimesh.load_mesh(model_fn, process=False) mesh = open3d.geometry.TriangleMesh() mesh.vertices = open3d.utility.Vector3dVector(mesh_.vertices) mesh.triangles = open3d.utility.Vector3iVector(mesh_.faces) else: if not '26b439df-fba5-3b38-b6c5-bc6a4c1fb0a0' in model_fn: # list of mixed-faces (four sided faces + three sided in same .obj) mesh = open3d.io.read_triangle_mesh(model_fn) else: mesh_ = trimesh.load_mesh(model_fn, process=False) mesh = open3d.geometry.TriangleMesh() mesh.vertices = open3d.utility.Vector3dVector(mesh_.vertices) mesh.triangles = open3d.utility.Vector3iVector(mesh_.faces) mesh.remove_duplicated_vertices() mesh.remove_unreferenced_vertices() mesh.remove_duplicated_triangles() mesh.remove_degenerate_triangles() return mesh def create_tmp_dataset(model_fn, p_out, n_target_faces): fileds_needed = ['vertices', 'faces', 'edge_features', 'edges_map', 'edges', 'kdtree_query', 'label', 'labels', 'dataset_name'] if not os.path.isdir(p_out): os.makedirs(p_out) mesh_orig = load_mesh(model_fn) mesh, labels, str_to_add = remesh(mesh_orig, n_target_faces) labels = np.zeros((np.asarray(mesh.vertices).shape[0],), dtype=np.int16) mesh_data = EasyDict({'vertices': np.asarray(mesh.vertices), 'faces': np.asarray(mesh.triangles), 'label': 0, 'labels': labels}) out_fn = p_out + '/tmp' add_fields_and_dump_model(mesh_data, fileds_needed, out_fn, 'tmp') def prepare_single_mesh(params): file, classification, p_out, fn_prefix, n_target_faces, add_labels, label, dataset_name = params fileds_needed = ['vertices', 'faces', 'edges', 'kdtree_query', 'label', 'labels', 'dataset_name', 'vertex_normals', 'tri_centers', 'tri_edges'] out_fn = p_out + '/' + fn_prefix + os.path.split(file)[1].split('.')[0] try: mesh = load_mesh(file, classification=classification) except: print('failed loading mesh {}'.format(file)) mesh_orig = mesh mesh_data = EasyDict({'vertices': np.asarray(mesh.vertices), 'faces': np.asarray(mesh.triangles)}) if label is None: if add_labels: if type(add_labels) is list: fn2labels_map = add_labels else: fn2labels_map = None label, labels_orig, v_labels_fuzzy = get_labels(dataset_name, mesh_data, file, fn2labels_map=fn2labels_map) else: label = np.zeros((0,)) else: labels_orig = None for this_target_n_faces in n_target_faces: mesh, labels, str_to_add = remesh(mesh_orig, this_target_n_faces, add_labels=add_labels, labels_orig=labels_orig) # str_to_add = '_simplified_{}'.format(this_target_n_faces) if 'modelnet40_retrieval' in p_out: for ang in np.linspace(-180, 180, int(360/30), endpoint=False): verts = np.asarray(mesh.vertices) rotate_vertices(verts, ang) mesh_data = EasyDict( {'vertices': verts, 'faces': np.asarray(mesh.triangles), 'label': label, 'labels': labels}) # mesh_data['labels_fuzzy'] = v_labels_fuzzy out_fc_full = out_fn + '_{:03d}'.format(int(ang) + 180) +str_to_add if os.path.exists(out_fc_full): continue try: m = add_fields_and_dump_model(mesh_data, fileds_needed, out_fc_full, dataset_name) except: print('debug {}'.format(out_fc_full)) else: verts = np.asarray(mesh.vertices) mesh_data = EasyDict( {'vertices': verts, 'faces': np.asarray(mesh.triangles), 'label': label, 'labels': labels}) # mesh_data['labels_fuzzy'] = v_labels_fuzzy out_fc_full = out_fn + str_to_add if os.path.exists(out_fc_full): continue try: m = add_fields_and_dump_model(mesh_data, fileds_needed, out_fc_full, dataset_name) except: print('debug {}'.format(out_fc_full)) def prepare_directory_from_scratch(dataset_name, pathname_expansion=None, p_out=None, n_target_faces=None, add_labels=True, size_limit=np.inf, fn_prefix='', verbose=True, classification=True, label=None, filenames=None): if not os.path.isdir(p_out): os.makedirs(p_out) if filenames is None: filenames = glob.glob(pathname_expansion) filenames.sort() if not len(filenames): print('debug') if len(filenames) > size_limit: filenames = filenames[:size_limit] for i, file in enumerate(filenames): # if i < 7183: # continue prepare_single_mesh([file, classification, p_out, fn_prefix, n_target_faces, add_labels, label, dataset_name]) # from multiprocessing import Pool # pool = Pool(8) # # inputs = [[file, classification, p_out, fn_prefix, n_target_faces, add_labels, label, dataset_name] for file in filenames] # pool.map(prepare_single_mesh, inputs) # pool.close() # pool.join() # for file in tqdm(filenames, disable=1 - verbose): # out_fn = p_out + '/' + fn_prefix + os.path.split(file)[1].split('.')[0] # mesh = load_mesh(file, classification=classification) # mesh_orig = mesh # mesh_data = EasyDict({'vertices': np.asarray(mesh.vertices), 'faces': np.asarray(mesh.triangles)}) # if label is None: # if add_labels: # if type(add_labels) is list: # fn2labels_map = add_labels # else: # fn2labels_map = None # label, labels_orig, v_labels_fuzzy = get_labels(dataset_name, mesh_data, file, fn2labels_map=fn2labels_map) # else: # label = np.zeros((0, )) # else: # labels_orig = None # for this_target_n_faces in n_target_faces: # mesh, labels, str_to_add = remesh(mesh_orig, this_target_n_faces, add_labels=add_labels, labels_orig=labels_orig) # # str_to_add = '_simplified_{}'.format(this_target_n_faces) # mesh_data = EasyDict({'vertices': np.asarray(mesh.vertices), 'faces': np.asarray(mesh.triangles), 'label': label, 'labels': labels}) # # mesh_data['labels_fuzzy'] = v_labels_fuzzy # out_fc_full = out_fn + str_to_add # if os.path.exists(out_fc_full): # continue # try: # m = add_fields_and_dump_model(mesh_data, fileds_needed, out_fc_full, dataset_name) # except: # print('debug') # ------------------------------------------------------- # def prepare_modelnet40(): n_target_faces = [1000, 2000, 4000] labels2use = model_net_labels for i, name in tqdm(enumerate(labels2use)): for part in ['test', 'train']: pin = os.path.expanduser('~') + '/Databases/ModelNet40_1k2k4k/' + name + '/' + part + '/' p_out = os.path.expanduser('~') + '/mesh_walker/datasets/modelnet40_1k2k4k/' prepare_directory_from_scratch('modelnet40_preprocessed', pathname_expansion=pin + '*.off', p_out=p_out, add_labels='modelnet', n_target_faces=n_target_faces, fn_prefix=part + '_', verbose=False) def prepare_modelnet40_retrieval(): n_target_faces = [1000, 2000, 4000] labels2use = model_net_labels for i, name in tqdm(enumerate(labels2use)): # split train files into 80 for train and 20 for test fold = os.path.expanduser('~') + '/Databases/ModelNet40/' + name + '/train/' tst_fold = os.path.expanduser('~') + '/Databases/ModelNet40/' + name + '/test/' all_train_files = [os.path.join(fold, x) for x in os.listdir(fold) if x.endswith('.off')] all_test_files = [os.path.join(tst_fold, x) for x in os.listdir(tst_fold) if x.endswith('.off')] for split_idx in range(2): if split_idx == 0: all_train_files.sort() all_test_files.sort() else: all_train_files = np.random.permutation(all_train_files) all_test_files = np.random.permutation(all_test_files) cur_files = {'train': all_train_files[:80], 'test': all_test_files[:20]} for part in ['test', 'train']: pin = os.path.expanduser('~') + '/Databases/ModelNet40/' + name + '/' + part + '/' p_out = os.path.expanduser('~') + '/mesh_walker/datasets/modelnet40_retrieval_split_{}'.format(split_idx) prepare_directory_from_scratch('modelnet', pathname_expansion=pin + '*.off', p_out=p_out, add_labels='modelnet', n_target_faces=n_target_faces, fn_prefix=part + '_', verbose=False, filenames=cur_files[part]) def prepare_modelnet40_80_20(): n_target_faces = [1000, 2000, 4000] labels2use = model_net_labels for i, name in tqdm(enumerate(labels2use)): # split train files into 80 for train and 20 for test fold = os.path.expanduser('~') + '/Databases/ModelNet40/' + name + '/train/' tst_fold = os.path.expanduser('~') + '/Databases/ModelNet40/' + name + '/test/' all_train_files = [os.path.join(fold, x) for x in os.listdir(fold) if x.endswith('.off')] all_train_files.sort() all_test_files = [os.path.join(tst_fold, x) for x in os.listdir(tst_fold) if x.endswith('.off')] all_test_files.sort() cur_files = {'train': all_train_files[:80], 'test': all_test_files[:20]} for part in ['test', 'train']: pin = os.path.expanduser('~') + '/Databases/ModelNet40/' + name + '/' + part + '/' p_out = os.path.expanduser('~') + '/mesh_walker/datasets/modelnet40_80_20' prepare_directory_from_scratch('modelnet', pathname_expansion=pin + '*.off', p_out=p_out, add_labels='modelnet', n_target_faces=n_target_faces, fn_prefix=part + '_', verbose=False, filenames=cur_files[part]) def prepare_3dfuture(): n_target_faces = [1000, 2000, 4000, np.inf] labels2use = future3d_labels splits_path = os.path.expanduser('~') + '/Databases/3D-FUTURE/GT/model_infos.json' with open(splits_path, 'r') as f: json_files = json.load(f) for i, file in tqdm(enumerate(json_files)): # if i < 7183: # continue split = 'train' if file['is_train'] else 'test' pin = os.path.expanduser('~') + '/Databases/3D-FUTURE/3D-FUTURE-model/' + file['model_id'] + '/raw_model.obj' p_out = os.path.expanduser('~') + '/mesh_walker/datasets/3dFUTURE_raw/' + split + '_' + file['model_id'] if os.path.exists(p_out): models = os.listdir(p_out) n_models = len(models) if n_models == 4: continue else: n_max = [x.split('_')[-1].split('.')[0] for x in models if 'not_changed' in x] if len(n_max): n_max = int(n_max[0]) if n_max > 2000 and n_models == 3: continue elif n_max > 1000 and n_models == 2: continue elif n_max < 1000 and n_models == 1: continue # elif n_models == 3 and np.max([int(x.split('_')[-1].split('.')[0]) for x in models]) <= 4000: # continue # elif n_models == 2 and np.max([int(x.split('_')[-1].split('.')[0]) for x in models]) <= 2000: # continue # elif n_models == 1 and np.max([int(x.split('_')[-1].split('.')[0]) for x in models]) <= 1000: # continue prepare_directory_from_scratch('3dFUTURE', pathname_expansion=pin, p_out=p_out, add_labels='3dfuture', n_target_faces=n_target_faces, fn_prefix='', label=future3d_shape2label[file['category'].lower()], verbose=False) def prepare_shapenetcore55(): import csv n_target_faces = [1000, 2000, 4000] base_path = '/media/ran/a6f25521-bcdb-4606-a6a0-5d8b26d7f1d8/home/ran/ShapeNetCore.v2/' path = base_path + 'all.csv' with open(path) as f: filelist = [{k: v for k, v in row.items()} for row in csv.DictReader(f, skipinitialspace=True)] for i, file in tqdm(enumerate(filelist)): split = file['split'] pin = os.path.join(base_path, file['synsetId'], file['modelId'], 'models', 'model_normalized.obj') p_out = os.path.expanduser('~') + '/mesh_walker/datasets/shapenetcore55/' + '_'.join([split, file['synsetId'], file['modelId']]) prepare_directory_from_scratch('shapenetcore', pathname_expansion=pin, p_out=p_out, add_labels='shapenetcore', n_target_faces=n_target_faces, fn_prefix='', label=shapenet_shapeid2label[file['synsetId']], verbose=False) def prepare_cubes(labels2use=cubes_labels, path_in=os.path.expanduser('~') + '/datasets/cubes/', p_out=os.path.expanduser('~') + '/mesh_walker/datasets_processed-tmp/cubes_tmp'): dataset_name = 'cubes' if not os.path.isdir(p_out): os.makedirs(p_out) for i, name in enumerate(labels2use): print('-->>>', name) for part in ['test', 'train']: pin = path_in + name + '/' + part + '/' prepare_directory_from_scratch(dataset_name, pathname_expansion=pin + '*.obj', p_out=p_out, add_labels=dataset_name, fn_prefix=part + '_', n_target_faces=[np.inf], classification=False) def prepare_shrec11_from_raw(): # Prepare labels per model name current_label = None model_number2label = [-1 for _ in range(600)] for line in open(os.path.expanduser('~') + '/datasets/shrec11/evaluation/test.cla'): sp_line = line.split(' ') if len(sp_line) == 3: name = sp_line[0].replace('_test', '') if name in shrec11_labels: current_label = name else: raise Exception('?') if len(sp_line) == 1 and sp_line[0] != '\n': model_number2label[int(sp_line[0])] = shrec11_shape2label[current_label] # Prepare npz files p_in = os.path.expanduser('~') + '/datasets/shrec11/raw/' p_out = os.path.expanduser('~') + '/mesh_walker/datasets_processed-tmp/shrec11_raw_1.5k/' prepare_directory_from_scratch('shrec11', pathname_expansion=p_in + '*.off', p_out=p_out, add_labels=model_number2label, n_target_faces=[1500]) # Prepare split train / test change_train_test_split(p_out, 16, 4, '16-04_C') def calc_face_labels_after_remesh(mesh_orig, mesh, face_labels): t_mesh = trimesh.Trimesh(vertices=np.array(mesh_orig.vertices), faces=np.array(mesh_orig.triangles), process=False) remeshed_face_labels = [] for face in mesh.triangles: vertices = np.array(mesh.vertices)[face] center = np.mean(vertices, axis=0) p, d, closest_face = trimesh.proximity.closest_point(t_mesh, [center]) remeshed_face_labels.append(face_labels[closest_face[0]]) return remeshed_face_labels def prepare_human_body_segmentation(): dataset_name = 'sig17_seg_benchmark' labels_fuzzy = True human_seg_path = os.path.expanduser('~') + '/mesh_walker/datasets/sig17_seg_benchmark/' p_out = os.path.expanduser('~') + '/mesh_walker/datasets/sig17_seg_benchmark-no_simplification/' fileds_needed = ['vertices', 'faces', 'edge_features', 'edges_map', 'edges', 'kdtree_query', 'label', 'labels', 'dataset_name', 'face_labels'] if labels_fuzzy: fileds_needed += ['labels_fuzzy'] n_target_faces = [np.inf] if not os.path.isdir(p_out): os.makedirs(p_out) for part in ['test', 'train']: print('part: ', part) path_meshes = human_seg_path + '/meshes/' + part seg_path = human_seg_path + '/segs/' + part all_fns = [] for fn in Path(path_meshes).rglob('*.*'): all_fns.append(fn) for fn in tqdm(all_fns): model_name = str(fn) if model_name.endswith('.obj') or model_name.endswith('.off') or model_name.endswith('.ply'): new_fn = model_name[model_name.find(part) + len(part) + 1:] new_fn = new_fn.replace('/', '_') new_fn = new_fn.split('.')[-2] out_fn = p_out + '/' + part + '__' + new_fn mesh = mesh_orig = load_mesh(model_name, classification=False) mesh_data = EasyDict({'vertices': np.asarray(mesh.vertices), 'faces': np.asarray(mesh.triangles)}) face_labels = get_sig17_seg_bm_labels(mesh_data, model_name, seg_path) labels_orig, v_labels_fuzzy = calc_vertex_labels_from_face_labels(mesh_data, face_labels) if 0: # Show segment borders b_vertices = np.where(np.sum(v_labels_fuzzy != 0, axis=1) > 1)[0] vertex_colors = np.zeros((mesh_data['vertices'].shape[0],), dtype=np.int) vertex_colors[b_vertices] = 1 utils.visualize_model(mesh_data['vertices'], mesh_data['faces'], vertex_colors_idx=vertex_colors, point_size=2) if 0: # Show face labels utils.visualize_model(mesh_data['vertices'], mesh_data['faces'], face_colors=face_labels, show_vertices=False, show_edges=False) if 0: print(model_name) print('min: ', np.min(mesh_data['vertices'], axis=0)) print('max: ',
np.max(mesh_data['vertices'], axis=0)
numpy.max
# -*- coding: utf-8 -*- """ Created on Fri Aug 21 23:47:36 2020 @author: Christian """ import hysteresis as hys from hysteresis.protocol import getReturnCycle import numpy as np import matplotlib.pyplot as plt def test_getReturnCycle(): """ Tests if the getReturnCycle function""" t = np.linspace(0,1,101) x1 = 1 - 1.5*t y1 = (3)*x1**2 - 1 x2 = x1[-1] + t*2 y2 = y1[-1] + t*4 TestCycle1 = hys.SimpleCycle(np.column_stack([x1,y1])) TestCycle2 = hys.SimpleCycle(np.column_stack([x2,y2])) TestCycle3 = getReturnCycle(TestCycle1, TestCycle2) xySolution =
np.zeros([76,2])
numpy.zeros
import numpy as np import matplotlib.pyplot as plt import os import copy as cp import random random.seed(0) import math class TrafficInteraction: # vm = 0; % minimum # velocity # v0 = 10; % initial # velocity # vM = 13; % maximum # velocity # am = -3; % minimum # acceleration # aM = 3; % maximum def __init__(self, arrive_time, dis_ctl, args, deltaT=0.1, vm=5, vM=13, am=-3, aM=3, v0=10, diff_max=220, lane_cw=2.5, loc_con=True, show_col=False, virtual_l=True, lane_num=12): # 坐标轴,车道0 从左到右, 车道1,从右到左 车道2,从下到上 车道3 从上到下 # dis_ctl # -dis_ctl 0 dis_ctl # -dis_ctl self.virtual_l = virtual_l self.virtual_data = {} self.show_col = show_col self.loc_con = loc_con self.collision_thr = args.collision_thr self.choose_veh = 15 self.safe_distance = 20 self.vm = vm self.vM = vM self.am = am self.aM = aM self.v0 = v0 self.lane_cw = lane_cw self.lane_num = lane_num self.intention_re = 0 self.thr = pow(self.vM - self.vm, 2) / 4 / self.aM + 2.2 self.choose_veh_info = [[] for i in range(self.lane_num)] self.veh_info_record = [[] for i in range(self.lane_num)] if self.lane_num == 3: # T字形 self.lane_info = [ [dis_ctl - 2 * lane_cw, 3.1415 / 2 * 3 * lane_cw, -(dis_ctl - 2 * lane_cw)], # 左转 [dis_ctl - 2 * lane_cw, 4 * lane_cw, -(dis_ctl - 2 * lane_cw)], # 直行 [dis_ctl - 2 * lane_cw, 3.1415 / 2 * lane_cw, -(dis_ctl - 2 * lane_cw)] # 右转 ] self.lane2lane = [ [2, 4, 5], [2], [4, 0, 1], [4], [0, 2, 3], [0] ] self.intention = [ [1, 2], [0, 1], [0, 2] ] elif self.lane_num == 4: # 单车道 self.lane_info = [ [dis_ctl - 2 * lane_cw, 3.1415 / 2 * 3 * lane_cw, -(dis_ctl - 2 * lane_cw)], # 左转 [dis_ctl - 2 * lane_cw, 4 * lane_cw, -(dis_ctl - 2 * lane_cw)], # 直行 [dis_ctl - 2 * lane_cw, 3.1415 / 2 * lane_cw, -(dis_ctl - 2 * lane_cw)] # 右转 ] # 顺序:如果左转直行和右转同时交汇,按照左转,直行,右转的顺序排列 self.lane2lane = [ [10, 6, 9, 3, 7, 4, 8], # 0 [10, 6, 3, 4, 9, 5], # 1 [6, 10], # 2 [1, 9, 0, 6, 10, 7, 11], # 3 [1, 9, 6, 7, 0, 8], # 4 [9, 1], # 5 [4, 0, 3, 9, 1, 10, 2], # 6 [4, 0, 9, 10, 3, 11], # 7 [0, 4], # 8 [7, 3, 6, 0, 4, 1, 5], # 9 [7, 3, 0, 1, 6, 2], # 10 [3, 7] # 11 ] self.direction_num = 12 self.direction = [ [6, 7, 8], [0, 1, 2], [9, 10, 11], [3, 4, 5] ] self.alpha = math.atan((4 - math.sqrt(2)) / (4 + math.sqrt(2))) # 图中alpha的值 self._alpha = math.atan((4 + math.sqrt(2)) / (4 - math.sqrt(2))) self.beta = math.atan(2 / math.sqrt(5)) # 图中beta的值 self._beta = math.atan(math.sqrt(5) / 2) self.gama = math.atan(1 / 2 * math.sqrt(2)) # 图中gamma的值 elif self.lane_num == 8: # 两车道 self.lane_info = [ [dis_ctl - 4 * lane_cw, 3.1415 / 2 * 5 * lane_cw, -(dis_ctl - 4 * lane_cw)], [dis_ctl - 4 * lane_cw, 8 * lane_cw, -(dis_ctl - 4 * lane_cw)], [dis_ctl - 4 * lane_cw, 3.1415 / 2 * lane_cw, -(dis_ctl - 4 * lane_cw)] ] self.lane2lane = [ [14, 4, 13, 12, 9, 10, 5], # 0 [14, 13, 8, 4, 5, 6, 12], # 1 [14, 13, 8, 4, 5, 6, 7], # 2 [14], # 3 [2, 8, 1, 0, 13, 14, 9], # 4 [2, 1, 12, 8, 9, 10, 0], # 5 [2, 1, 12, 8, 9, 10, 11], # 6 [2], # 7 [6, 12, 5, 4, 1, 2, 13], # 8 [6, 5, 0, 12, 13, 14, 4], # 9 [6, 5, 0, 12, 13, 14, 15], # 10 [6], # 11 [10, 0, 9, 8, 5, 6, 1], # 12 [10, 9, 4, 0, 1, 2, 8], # 13 [10, 9, 4, 0, 1, 2, 3], # 14 [10] # 15 ] self.intention = [ [0, 1], [1, 2], [0, 1], [1, 2], [0, 1], [1, 2], [0, 1], [1, 2] ] self.direction_num = 16 self.direction = [ [0, 1, -1], [-1, 2, 3], [4, 5, -1], [-1, 6, 7], [8, 9, -1], [-1, 10, 11], [12, 13, -1], [-1, 14, 15] ] elif self.lane_num == 12: # 三车道 self.lane_info = [ [dis_ctl - 6 * lane_cw, 3.1415 / 2 * 7 * lane_cw, -(dis_ctl - 6 * lane_cw)], [dis_ctl - 6 * lane_cw, 12 * lane_cw, -(dis_ctl - 6 * lane_cw)], [dis_ctl - 6 * lane_cw, 3.1415 / 2 * lane_cw, -(dis_ctl - 6 * lane_cw)] ] self.lane2lane = [ [10, 3, 9, 7], [10, 6, 3, 4], [], [1, 6, 0, 10], [1, 9, 6, 7], [], [4, 9, 3, 1], [4, 0, 9, 10], [], [7, 0, 6, 4], [7, 3, 0, 1], [] ] self.direction_num = 12 self.direction = [ [0, -1, -1], [-1, 1, -1], [-1, -1, 2], [3, -1, -1], [-1, 4, -1], [-1, -1, 5], [6, -1, -1], [-1, 7, -1], [-1, -1, 8], [9, -1, -1], [-1, 10, -1], [-1, -1, 11] ] self.cita = (2 * math.sqrt(10) - 6) * self.lane_cw # 曲线交点据x轴或y轴的距离 self.alpha = math.atan((6 * self.lane_cw + self.cita) / (3 * self.lane_cw)) # 交点与在半圆中中的角度(大的一个) self.beta = math.pi / 2 - self.alpha # 交点与在半圆中中的角度(小的一个) self.gama = math.atan((math.sqrt(13) * self.lane_cw) / (6 * self.lane_cw)) # 两圆交点在半角中的角度(小的) self._gama = math.pi / 2 - self.gama self.closer_veh_num = args.o_agent_num self.c_mode = args.c_mode self.merge_p = [ [0, 0, self.lane_cw, -self.lane_cw], [0, 0, -self.lane_cw, self.lane_cw], [-self.lane_cw, self.lane_cw, 0, 0], [self.lane_cw, -self.lane_cw, 0, 0] ] self.arrive_time = arrive_time self.current_time = 0 self.passed_veh = 0 self.passed_veh_step_total = 0 self.virtual_lane = [] self.virtual_lane_4 = [[] for i in range(self.direction_num)] self.virtual_lane_real_p = [[] for i in range(self.direction_num)] self.closer_cars = [] self.closer_same_l_car = [-1, -1] self.deltaT = deltaT self.dis_control = dis_ctl self.veh_num = [0 for i in range(self.lane_num)] # 每个车道车的数量 self.veh_rec = [0 for i in range(self.lane_num)] # 每个车道车的总数量 self.input = [0 for i in range(4)] # 每个入口车的总数量 self.veh_info = [[] for i in range(self.lane_num)] self.diff_max = diff_max self.collision = False self.id_seq = 0 self.delete_veh = [] init = True while init: for i in range(self.lane_num): if self.veh_num[i] > 0: init = False if init: self.scene_update() def scene_update(self): self.current_time += self.deltaT collisions = 0 estm_collisions = 0 re_state = [] reward = [] collisions_per_veh = [] actions = [] ids = [] jerks = [] self.delete_veh.clear() for i in range(self.lane_num): if len(self.veh_info[i]) > 0: for index, direction in enumerate(self.direction[i]): if direction == -1: continue self.virtual_lane_4[direction].clear() self.virtual_lane_real_p[direction].clear() for _itr in self.virtual_lane: # 目标车道 if _itr[1] == i: self.virtual_lane_real_p[direction].append([_itr[0], _itr[1], _itr[2], self.veh_info[_itr[1]][_itr[2]]["v"], direction]) if self.direction[_itr[1]][_itr[3]] == direction: # 同一车道直接添加 p, i, j, v self.virtual_lane_4[direction].append([_itr[0], _itr[1], _itr[2], self.veh_info[_itr[1]][_itr[2]]["v"], direction]) else: if self.veh_info[_itr[1]][_itr[2]]["p"] - \ self.lane_info[self.veh_info[_itr[1]][_itr[2]]['intention']][1] > 0: virtual_dis = self.veh_info[_itr[1]][_itr[2]]["p"] - \ self.lane_info[self.veh_info[_itr[1]][_itr[2]]['intention']][1] + \ self.lane_info[index][1] self.virtual_lane_4[direction].append( [virtual_dis, _itr[1], _itr[2], self.veh_info[_itr[1]][_itr[2]]["v"], direction]) elif self.direction[_itr[1]][_itr[3]] in self.lane2lane[direction]: # 与之相交的车道 virtual_d, choose = self.get_virtual_distance(self.direction[_itr[1]][_itr[3]], direction, _itr[0]) if choose: self.virtual_lane_real_p[direction].append([_itr[0], _itr[1], _itr[2], self.veh_info[_itr[1]][_itr[2]]["v"], direction]) for virtual_temp in range(len(virtual_d)): self.virtual_lane_4[direction].append([virtual_d[virtual_temp], _itr[1], _itr[2], self.veh_info[_itr[1]][_itr[2]]["v"], self.direction[_itr[1]][_itr[3]]]) self.virtual_lane_4[direction] = sorted(self.virtual_lane_4[direction], key=lambda item: item[0]) self.virtual_lane_real_p[direction] = sorted(self.virtual_lane_real_p[direction], key=lambda item: item[0]) for j, item in enumerate(self.veh_info[i]): if self.veh_info[i][j]["intention"] == index: if self.veh_info[i][j]["seq_in_lane"] == self.choose_veh: self.choose_veh_info[i].append( [self.current_time, self.veh_info[i][j]["p"], self.veh_info[i][j]["v"], self.veh_info[i][j]["action"]]) t_distance = 2 d_distance = 10 if self.veh_info[i][j]["control"]: self.veh_info_record[i][item["seq_in_lane"]].append( [self.current_time, item["p"], item["v"], item["a"]] ) sta, virtual_lane = self.get_state(i, j, self.virtual_lane_4[direction], direction) self.virtual_lane_4[direction] = virtual_lane self.veh_info[i][j]["state"] = cp.deepcopy(sta) re_state.append(np.array(sta)) actions.append([state[2] for state in sta]) ids.append([i, j]) self.veh_info[i][j]["count"] += 1 closer_car = self.closer_cars[0] if closer_car[0] >= 0: id_seq_temp = [temp_item[1:3] for temp_item in self.virtual_lane_4[direction]] if [closer_car[0], closer_car[1]] not in id_seq_temp: index_closer = -1 else: index_closer = id_seq_temp.index([closer_car[0], closer_car[1]]) d_distance = abs( self.veh_info[i][j]["p"] - self.virtual_lane_4[direction][index_closer][0]) self.veh_info[i][j]["closer_p"] = self.virtual_lane_4[direction][index_closer][0] if d_distance != 0: t_distance = (self.veh_info[i][j]["p"] - self.virtual_lane_4[direction][index_closer][0]) / \ (self.veh_info[i][j]["v"] - self.veh_info[closer_car[0]][closer_car[1]]["v"] + 0.0001) else: self.veh_info[i][j]["closer_p"] = 150 vw = 2.0 cw = 3.0 r_ = 0 if 0 < t_distance < 4: r_ += 1 / np.tanh(-t_distance / 4.0) r_ -= pow(self.veh_info[i][j]["jerk"] / self.deltaT, 2) / 3600.0 * cw if d_distance < 10: r_ += np.log(pow(d_distance / 10, 5) + 0.00001) r_ += (self.veh_info[i][j]["v"] - self.vm) / float(self.aM - self.am) * vw reward.append(min(20, max(-20, r_))) self.veh_info[i][j]["jerk_sum"] += abs(self.veh_info[i][j]["jerk"] / self.deltaT) if 0 <= closer_car[0]: veh_choose = self.veh_info[i][j] veh_closer = self.veh_info[closer_car[0]][closer_car[1]] p_choose = self.get_p(veh_choose["p"], i, self.veh_info[i][j]["intention"]) p_closer = self.get_p(veh_closer["p"], closer_car[0], self.veh_info[closer_car[0]][closer_car[1]]["intention"]) d_distance = np.sqrt( np.power((p_closer[0] - p_choose[0]), 2) + np.power((p_closer[1] - p_choose[1]), 2) ) if abs(d_distance) < self.collision_thr: self.veh_info[i][j]["collision"] += 1 # 发生碰撞 self.veh_info[closer_car[0]][closer_car[1]]["collision"] += 1 # 发生碰撞 if self.veh_info[i][j]["finish"]: self.veh_info[i][j]["control"] = False collisions += self.veh_info[i][j]["collision"] estm_collisions += self.veh_info[i][j]["estm_collision"] collisions_per_veh.append( [self.veh_info[i][j]["collision"], self.veh_info[i][j]["estm_collision"]]) if self.veh_info[i][j]["p"] < -self.dis_control + int( (self.lane_num + 1) / 2) * self.lane_cw or self.veh_info[i][j][ "collision"] > 0: # 驶出交通路口, 删除该车辆 if self.veh_info[i][j]["collision"] > 0: reward[-1] = -10 self.veh_info[i][j]["Done"] = True self.delete_veh.append([i, j]) self.veh_info[i][j]["vir_header"] = [-1, -1] elif self.veh_info[i][j]["p"] < 0 and self.veh_info[i][j]["control"]: self.veh_info[i][j]["Done"] = True self.veh_info[i][j]["finish"] = True self.veh_info[i][j]["control"] = False self.veh_info[i][j]["vir_header"] = [-1, -1] self.veh_info[i][j]["lock"] = False self.passed_veh += 1 reward[-1] = 5 jerks.append(self.veh_info[i][j]["jerk_sum"]) self.passed_veh_step_total += self.veh_info[i][j]["step"] # 添加新车 self.add_new_veh(i) # if self.show_col: # print("add new car:", i, self.veh_num[i] - 1) self.virtual_lane.clear() lock = 0 for i in range(self.lane_num): for j, veh in enumerate(self.veh_info[i]): if veh["control"] and not self.veh_info[i][j]["lock"]: if self.check_lock(i, j): lock += 1 for v in self.virtual_lane_4[0]: v_name = "%s_%s" % (v[1], self.veh_info[v[1]][v[2]]["seq_in_lane"]) if v_name not in self.virtual_data: self.virtual_data[v_name] = [] self.virtual_data[v_name].append([self.current_time, v[0], v[3]]) return ids, re_state, reward, actions, collisions, estm_collisions, collisions_per_veh, jerks, lock def add_new_veh(self, i): if self.current_time >= self.arrive_time[self.veh_rec[i]][i]: state_total = np.zeros((self.closer_veh_num + 1, (self.closer_veh_num + 1) * 4)) intention = 1 # 默认 random.seed() if self.lane_num == 3: intention = self.intention[i][random.randint(0, 1)] elif self.lane_num == 4: # intention = random.randint(0, 2) intention = self.intention_re % 3 self.intention_re += 1 elif self.lane_num == 8: intention = self.intention[i][random.randint(0, 1)] # intention = self.intention[i][self.intention_re % 2] self.intention_re += 1 elif self.lane_num == 12: intention = i % 3 p = sum(self.lane_info[intention][0:2]) self.veh_info[i].append( { "intention": intention, # 随机生成意向0~2分别表示左转,直行和右转 "buffer": [], "route": self.direction[i][intention], "count": 0, "Done": False, "p": p, "jerk": 0, "jerk_sum": 0, "lock_a": 0, "lock": False, "vir_header": [-1, -1], "vir_dis": 100, "v": self.v0, "a": 0, "action": 0, "closer_p": 150, "lane": i, "header": False, "reward": 10, "dis_front": 50, "seq_in_lane": self.veh_rec[i], "control": True, "state": state_total, "step": 0, "collision": 0, "finish": False, "estm_collision": 0, "estm_arrive_time": abs(p / self.v0), "id_info": [self.id_seq, self.veh_num[i]] }) # "id_info":[在所有车中的出现次序,在当前车道中的出现次序] self.veh_num[i] += 1 self.veh_rec[i] += 1 self.input[i % 4] += 1 self.veh_info_record[i].append([]) self.id_seq += 1 def delete_vehicle(self): # 删除旧车 self.delete_veh = sorted(self.delete_veh, key=lambda item: -item[1]) for d_i in self.delete_veh: if len(self.veh_info[d_i[0]]) > d_i[1]: self.veh_info[d_i[0]].pop(d_i[1]) if self.veh_num[d_i[0]] > 0: self.veh_num[d_i[0]] -= 1 else: print("except!!!") # 返回两车在按照碰撞点为原点的情况下的距离,lane1和p1为遍历到的车辆,lane2为每次遍历固定的lane def get_virtual_distance(self, lane1, lane2, p1): virtual_d = [] thr = 0 # if self.lane_num==4: # thr = -5 choose = False if self.lane_num == 4: if lane2 in [0, 3, 6, 9]: if lane1 == self.lane2lane[lane2][0]: delta_d1 = p1 - (4 * self.lane_cw - 3 * self.lane_cw * math.cos(self.gama)) if delta_d1 > thr: virtual_d.append(abs(delta_d1) + (3 * self.lane_cw * (0.5 * 3.1415 - self.gama))) choose = True # if lane1 == self.lane2lane[lane2][1]: # delta_d1 = p1 - (1.5 * 3.1415) * self.lane_cw * (self.alpha / (0.5 * 3.1415)) # if delta_d1 > thr: # virtual_d.append(abs(delta_d1) + (1.5 * 3.1415 * self.lane_cw * (self._alpha / (0.5 * 3.1415)))) # choose = True if lane1 == self.lane2lane[lane2][2]: delta_d1 = p1 - 1.5 * 3.1415 * self.lane_cw * self.beta / (0.5 * 3.1415) if delta_d1 > thr: virtual_d.append(abs(delta_d1) + (1.5 * 3.1415 * self.lane_cw * self._beta / (0.5 * 3.1415))) choose = True if lane1 == self.lane2lane[lane2][3]: delta_d1 = p1 - 1.5 * 3.1415 * self.lane_cw * self._beta / (0.5 * 3.1415) if delta_d1 > thr: virtual_d.append(abs(delta_d1) + 1.5 * 3.1415 * self.lane_cw * self.beta / (0.5 * 3.1415)) choose = True if lane1 == self.lane2lane[lane2][1]: delta_d1 = p1 - (1.5 * 3.1415) * self.lane_cw * (self._alpha / (0.5 * 3.1415)) if delta_d1 > thr: virtual_d.append(abs(delta_d1) + (1.5 * 3.1415) * self.lane_cw * (self.alpha / (0.5 * 3.1415))) choose = True if lane1 == self.lane2lane[lane2][4]: delta_d1 = p1 - 3 * self.lane_cw * math.cos(self.gama) if delta_d1 > thr: virtual_d.append(abs(delta_d1) + (1.5 * 3.1415 * self.lane_cw * (self.gama / (0.5 * 3.1415)))) choose = True if lane1 == self.lane2lane[lane2][5]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True if lane1 == self.lane2lane[lane2][6]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True elif lane2 in [1, 4, 7, 10]: if lane1 == self.lane2lane[lane2][0]: delta_d1 = p1 - self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + 3 * self.lane_cw) choose = True elif lane1 == self.lane2lane[lane2][1]: delta_d1 = p1 - 1.5 * 3.1415 * self.lane_cw * self.gama / (0.5 * 3.1415) if delta_d1 > thr: virtual_d.append(abs(delta_d1) + 3 * self.lane_cw * math.cos(self.gama)) choose = True elif lane1 == self.lane2lane[lane2][2]: delta_d1 = p1 - 1.5 * 3.1415 * self.lane_cw * (0.5 * 3.1415 - self.gama) / (0.5 * 3.1415) if delta_d1 > thr: virtual_d.append(abs(delta_d1) + (4 * self.lane_cw - 3 * self.lane_cw * math.cos(self.gama))) choose = True elif lane1 == self.lane2lane[lane2][3]: delta_d1 = p1 - 3 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + self.lane_cw) choose = True elif lane1 == self.lane2lane[lane2][4]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True elif lane1 == self.lane2lane[lane2][5]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True elif lane2 in [2, 5, 8, 11]: if lane1 == self.lane2lane[lane2][0]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True if lane1 == self.lane2lane[lane2][1]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True elif self.lane_num == 8: # 左转车道 # [14, 4, 13, 12, 9, 10, 5] if lane2 in [0, 4, 8, 12]: if lane1 == self.lane2lane[lane2][0]: delta_d1 = p1 - (8 * self.lane_cw - math.sqrt(24) * self.lane_cw) if delta_d1 > thr: virtual_d.append(abs(delta_d1) + math.atan(math.sqrt(24)) * 5 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][1]: delta_d1 = p1 - math.atan(3 / 4) * 5 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + math.atan(4 / 3) * 5 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][2]: delta_d1 = p1 - 4 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + math.atan(4 / 3) * 5 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][3]: # lane2==0 lane1==12 # ! delta_d1 = p1 - 5 * self.lane_cw delta_d1 = p1 - math.atan(4 / 3) * 5 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + math.atan(3 / 4) * 5 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][4]: delta_d1 = p1 - 4 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + math.atan(3 / 4) * 5 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][5]: delta_d1 = p1 - math.sqrt(24) * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + math.atan(1 / math.sqrt(24)) * 5 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][6]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True # 左边车道直行车道 # [14, 13, 8, 4, 5, 6, 12], # 1 elif lane2 in [1, 5, 9, 13]: if lane1 == self.lane2lane[lane2][0]: delta_d1 = p1 - 3 * self.lane_cw if delta_d1 > thr: virtual_d.append(delta_d1 + 7 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][1]: delta_d1 = p1 - 3 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + 5 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][2]: delta_d1 = p1 - math.atan(3 / 4) * 5 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + 4 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][3]: delta_d1 = p1 - math.atan(4 / 3) * 5 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + 4 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][4]: delta_d1 = p1 - 5 * self.lane_cw if delta_d1 > thr: virtual_d.append(delta_d1 + 3 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][5]: delta_d1 = p1 - 5 * self.lane_cw if delta_d1 > thr: virtual_d.append(delta_d1 + self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][6]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True # 右边车道直行车道 elif lane2 in [2, 6, 10, 14]: # [14, 13, 8, 4, 5, 6, 7], # 2 # if lane2 in [0, 4, 8, 12]: if lane1 == self.lane2lane[lane2][0]: delta_d1 = p1 - self.lane_cw if delta_d1 > thr: virtual_d.append(delta_d1 + 7 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][1]: delta_d1 = p1 - self.lane_cw if delta_d1 > thr: virtual_d.append(delta_d1 + 5 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][2]: delta_d1 = p1 - math.atan(1 / math.sqrt(24)) * 5 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + math.sqrt(24) * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][3]: delta_d1 = p1 - math.atan(math.sqrt(24)) * 5 * self.lane_cw if delta_d1 > thr: virtual_d.append(abs(delta_d1) + 8 * self.lane_cw - math.sqrt(24) * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][4]: delta_d1 = p1 - 7 * self.lane_cw if delta_d1 > thr: virtual_d.append(delta_d1 + 3 * self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][5]: delta_d1 = p1 - 7 * self.lane_cw if delta_d1 > thr: virtual_d.append(delta_d1 + self.lane_cw) choose = True if lane1 == self.lane2lane[lane2][6]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True # 右转车道 elif lane2 in [3, 7, 11, 15]: if lane1 == self.lane2lane[lane2][0]: delta_d1 = p1 if delta_d1 > thr: virtual_d.append(p1) choose = True elif self.lane_num == 12: # if lane2 in [1, 4, 7, 10]: # if lane1 == self.lane2lane[lane2][0]: # # 据碰撞点的距离 # delta_d1 = p1 - 3 * self.lane_cw # # delta_d2 = p2 - 9 * self.lane_cw # # delta_d = delta_d1 - delta_d2 # if delta_d1 > thr: # virtual_d.append(9 * self.lane_cw + delta_d1) # choose = True # elif lane1 == self.lane2lane[lane2][1]: # # 角度为alpha段的圆弧长度 # beta_d = self.beta * 7 * self.lane_cw # delta_d1 = p1 - beta_d # # delta_d2 = p2 - 6 * self.lane_cw - self.cita # # delta_d = delta_d1 - delta_d2 # if delta_d1 > thr: # virtual_d.append(6 * self.lane_cw - self.cita + delta_d1) # choose = True # elif lane1 == self.lane2lane[lane2][2]: # # 角度为beta段的圆弧长度 # alpha_d = self.alpha * 7 * self.lane_cw # delta_d1 = p1 - alpha_d # # delta_d2 = p2 - 6 * self.lane_cw + self.cita # # delta_d = delta_d1 - delta_d2 # if delta_d1 > thr: # virtual_d.append(6 * self.lane_cw - self.cita + delta_d1) # choose = True # elif lane1 == self.lane2lane[lane2][3]: # delta_d1 = p1 - 9 * self.lane_cw # # delta_d2 = p2 - 3 * self.lane_cw # # delta_d = delta_d1 - delta_d2 # if delta_d1 > thr: # virtual_d.append(3 * self.lane_cw + delta_d1) # choose = True # else: # if p1 > thr: # virtual_d.append(p1) # choose = True # elif lane2 in [0, 3, 6, 9]: # if lane1 == self.lane2lane[lane2][0]: # delta_d1 = p1 - 6 * self.lane_cw + self.cita # # delta_d2 = p2 - self.alpha * 7 * self.lane_cw # # delta_d = delta_d1 - delta_d2 # if delta_d1 > thr: # virtual_d.append(self.alpha * 7 * self.lane_cw + delta_d1) # choose = True # elif lane1 == self.lane2lane[lane2][1]: # delta_d1 = p1 - self.gama * 7 * self.lane_cw # # delta_d2 = p2 - self._gama * 7 * self.lane_cw # # delta_d = delta_d1 - delta_d2 # if delta_d1 > thr: # virtual_d.append(self._gama * 7 * self.lane_cw + delta_d1) # choose = True # elif lane1 == self.lane2lane[lane2][2]: # delta_d1 = p1 - self._gama * 7 * self.lane_cw # # delta_d2 = p2 - self.gama * 7 * self.lane_cw # # delta_d = delta_d1 - delta_d2 # if delta_d1 > thr: # virtual_d.append(self.gama * 7 * self.lane_cw + delta_d1) # choose = True # else: # delta_d1 = p1 - 6 * self.lane_cw - self.cita # # delta_d2 = p2 - self.beta * 7 * self.lane_cw # # delta_d = delta_d1 - delta_d2 # if delta_d1 > thr: # virtual_d.append(self.beta * 7 * self.lane_cw + delta_d1) # choose = True # else: # if p1 > thr: # virtual_d.append(p1) # choose = True if lane2 in [1, 4, 7, 10]: if lane1 == self.lane2lane[lane2][0]: # 据碰撞点的距离 delta_d1 = p1 - 3 * self.lane_cw # delta_d2 = p2 - 9 * self.lane_cw # delta_d = delta_d1 - delta_d2 if delta_d1 > thr: virtual_d.append(9 * self.lane_cw + delta_d1) choose = True elif lane1 == self.lane2lane[lane2][1]: # 角度为alpha段的圆弧长度 beta_d = self.beta * 7 * self.lane_cw delta_d1 = p1 - beta_d # delta_d2 = p2 - 6 * self.lane_cw - self.cita # delta_d = delta_d1 - delta_d2 if delta_d1 > thr: virtual_d.append(6 * self.lane_cw + self.cita + delta_d1) choose = True elif lane1 == self.lane2lane[lane2][2]: # 角度为beta段的圆弧长度 alpha_d = self.alpha * 7 * self.lane_cw delta_d1 = p1 - alpha_d # delta_d2 = p2 - 6 * self.lane_cw + self.cita # delta_d = delta_d1 - delta_d2 if delta_d1 > thr: virtual_d.append(6 * self.lane_cw - self.cita + delta_d1) choose = True elif lane1 == self.lane2lane[lane2][3]: delta_d1 = p1 - 9 * self.lane_cw # delta_d2 = p2 - 3 * self.lane_cw # delta_d = delta_d1 - delta_d2 if delta_d1 > thr: virtual_d.append(3 * self.lane_cw + delta_d1) choose = True else: if p1 > 0: virtual_d.append(p1) choose = True elif lane2 in [0, 3, 6, 9]: if lane1 == self.lane2lane[lane2][0]: delta_d1 = p1 - 6 * self.lane_cw + self.cita # delta_d2 = p2 - self.alpha * 7 * self.lane_cw # delta_d = delta_d1 - delta_d2 if delta_d1 > thr: virtual_d.append(self.alpha * 7 * self.lane_cw + delta_d1) choose = True elif lane1 == self.lane2lane[lane2][1]: delta_d1 = p1 - self.gama * 7 * self.lane_cw # delta_d2 = p2 - self._gama * 7 * self.lane_cw # delta_d = delta_d1 - delta_d2 if delta_d1 > thr: virtual_d.append(self._gama * 7 * self.lane_cw + delta_d1) choose = True elif lane1 == self.lane2lane[lane2][2]: delta_d1 = p1 - self._gama * 7 * self.lane_cw # delta_d2 = p2 - self.gama * 7 * self.lane_cw # delta_d = delta_d1 - delta_d2 if delta_d1 > thr: virtual_d.append(self.gama * 7 * self.lane_cw + delta_d1) choose = True else: delta_d1 = p1 - 6 * self.lane_cw - self.cita # delta_d2 = p2 - self.beta * 7 * self.lane_cw # delta_d = delta_d1 - delta_d2 if delta_d1 > thr: virtual_d.append(self.beta * 7 * self.lane_cw + delta_d1) choose = True else: if p1 > 0: virtual_d.append(p1) choose = True return virtual_d, choose # 根据车道的位置计算其真实位置 def get_p(self, p, i, intention): # x, y, yaw(与x轴正方向夹角) new_p = [0, 0, 0] # car_info = self.veh_info[i][j] intention_info = intention if self.lane_num == 3: if i == 0: # 直行 if intention_info == 1: new_p[0] = -1 * p + 2 * self.lane_cw new_p[1] = -1 * self.lane_cw new_p[2] = 0 # 右转 else: if p > self.lane_info[2][1]: new_p[0] = -1 * (p - self.lane_info[2][1] + 2 * self.lane_cw) new_p[1] = -1 * self.lane_cw new_p[2] = 0 elif p > 0: beta_temp = p / self.lane_cw delta_y = math.sin(beta_temp) * self.lane_cw delta_x = math.cos(beta_temp) * self.lane_cw new_p[0] = -1 * (2 * self.lane_cw - delta_x) new_p[1] = -1 * (2 * self.lane_cw - delta_y) new_p[2] = beta_temp + 1.5 * 3.1415 else: new_p[0] = -1 * self.lane_cw new_p[1] = -1 * (-1 * p + 2 * self.lane_cw) new_p[2] = 1.5 * 3.1415 elif i == 1: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = 1 * (p - self.lane_info[0][1] + 2 * self.lane_cw) new_p[1] = 1 * self.lane_cw new_p[2] = 3.1415 elif p > 0: beta_temp = p / (3 * self.lane_cw) # rad delta_y = math.sin(beta_temp) * 3 * self.lane_cw delta_x = math.cos(beta_temp) * 3 * self.lane_cw new_p[0] = -1 * (delta_x - 2 * self.lane_cw) new_p[1] = -1 * (2 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp + 3.1415 else: new_p[0] = -1 * self.lane_cw new_p[1] = -1 * (-1 * p + 2 * self.lane_cw) new_p[2] = 1.5 * 3.1415 # 直行 else: new_p[0] = p - 2 * self.lane_cw new_p[1] = 1 * self.lane_cw new_p[2] = 3.1415 else: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = 1 * self.lane_cw new_p[1] = -1 * (p - self.lane_info[0][1] + 2 * self.lane_cw) new_p[2] = 3.1415 / 2 elif p > 0: beta_temp = p / (3 * self.lane_cw) # rad delta_x = math.sin(beta_temp) * 3 * self.lane_cw delta_y = math.cos(beta_temp) * 3 * self.lane_cw new_p[0] = 1 * (delta_x - 2 * self.lane_cw) new_p[1] = -1 * (2 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp + 3.1415 / 2 else: new_p[0] = -1 * (-1 * p + 2 * self.lane_cw) new_p[1] = self.lane_cw new_p[2] = 3.1415 # 右转 else: if p > self.lane_info[2][1]: new_p[0] = 1 * self.lane_cw new_p[1] = -1 * (p - self.lane_info[2][1] + 2 * self.lane_cw) new_p[2] = 3.1415 / 2 elif p > 0: beta_temp = p / self.lane_cw delta_x = math.sin(beta_temp) * self.lane_cw delta_y = math.cos(beta_temp) * self.lane_cw new_p[0] = 1 * (2 * self.lane_cw - delta_x) new_p[1] = -1 * (2 * self.lane_cw - delta_y) new_p[2] = beta_temp else: new_p[0] = -1 * p + 2 * self.lane_cw new_p[1] = -1 * self.lane_cw new_p[2] = 0 elif self.lane_num == 4: if i == 0: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = -1 * (p - self.lane_info[0][1] + 2 * self.lane_cw) new_p[1] = -1 * self.lane_cw new_p[2] = 0 elif p > 0: beta_temp = p / (3 * self.lane_cw) # rad delta_y = math.sin(beta_temp) * 3 * self.lane_cw delta_x = math.cos(beta_temp) * 3 * self.lane_cw new_p[0] = 1 * (delta_x - 2 * self.lane_cw) new_p[1] = 1 * (2 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp else: new_p[0] = self.lane_cw new_p[1] = -1 * p + 2 * self.lane_cw new_p[2] = 3.1415 / 2 # 直行 elif intention_info == 1: new_p[0] = -1 * p + 2 * self.lane_cw new_p[1] = -1 * self.lane_cw new_p[2] = 0 # 右转 else: if p > self.lane_info[2][1]: new_p[0] = -1 * (p - self.lane_info[2][1] + 2 * self.lane_cw) new_p[1] = -1 * self.lane_cw new_p[2] = 0 elif p > 0: beta_temp = p / self.lane_cw delta_y = math.sin(beta_temp) * self.lane_cw delta_x = math.cos(beta_temp) * self.lane_cw new_p[0] = -1 * (2 * self.lane_cw - delta_x) new_p[1] = -1 * (2 * self.lane_cw - delta_y) new_p[2] = beta_temp + 1.5 * 3.1415 else: new_p[0] = -1 * self.lane_cw new_p[1] = -1 * (-1 * p + 2 * self.lane_cw) new_p[2] = 1.5 * 3.1415 elif i == 1: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = 1 * (p - self.lane_info[0][1] + 2 * self.lane_cw) new_p[1] = 1 * self.lane_cw new_p[2] = 3.1415 elif p > 0: beta_temp = p / (3 * self.lane_cw) # rad delta_y = math.sin(beta_temp) * 3 * self.lane_cw delta_x = math.cos(beta_temp) * 3 * self.lane_cw new_p[0] = -1 * (delta_x - 2 * self.lane_cw) new_p[1] = -1 * (2 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp + 3.1415 else: new_p[0] = -1 * self.lane_cw new_p[1] = -1 * (-1 * p + 2 * self.lane_cw) new_p[2] = 1.5 * 3.1415 # 直行 elif intention_info == 1: new_p[0] = p - 2 * self.lane_cw new_p[1] = 1 * self.lane_cw new_p[2] = 3.1415 # 右转 else: if p > self.lane_info[2][1]: new_p[0] = 1 * (p - self.lane_info[2][1] + 2 * self.lane_cw) new_p[1] = 1 * self.lane_cw new_p[2] = 3.1415 elif p > 0: beta_temp = p / self.lane_cw delta_y = math.sin(beta_temp) * self.lane_cw delta_x = math.cos(beta_temp) * self.lane_cw new_p[0] = 1 * (2 * self.lane_cw - delta_x) new_p[1] = 1 * (2 * self.lane_cw - delta_y) new_p[2] = beta_temp + 3.1415 / 2 else: new_p[0] = 1 * self.lane_cw new_p[1] = -1 * p + 2 * self.lane_cw new_p[2] = 3.1415 / 2 elif i == 2: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = 1 * self.lane_cw new_p[1] = -1 * (p - self.lane_info[0][1] + 2 * self.lane_cw) new_p[2] = 3.1415 / 2 elif p > 0: beta_temp = p / (3 * self.lane_cw) # rad delta_x = math.sin(beta_temp) * 3 * self.lane_cw delta_y = math.cos(beta_temp) * 3 * self.lane_cw new_p[0] = 1 * (delta_x - 2 * self.lane_cw) new_p[1] = -1 * (2 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp + 3.1415 / 2 else: new_p[0] = -1 * (-1 * p + 2 * self.lane_cw) new_p[1] = self.lane_cw new_p[2] = 3.1415 # 直行 elif intention_info == 1: new_p[0] = self.lane_cw new_p[1] = -1 * p + 2 * self.lane_cw new_p[2] = 3.1415 / 2 # 右转 else: if p > self.lane_info[2][1]: new_p[0] = 1 * self.lane_cw new_p[1] = -1 * (p - self.lane_info[2][1] + 2 * self.lane_cw) new_p[2] = 3.1415 / 2 elif p > 0: beta_temp = p / self.lane_cw delta_x = math.sin(beta_temp) * self.lane_cw delta_y = math.cos(beta_temp) * self.lane_cw new_p[0] = 1 * (2 * self.lane_cw - delta_x) new_p[1] = -1 * (2 * self.lane_cw - delta_y) new_p[2] = beta_temp else: new_p[0] = -1 * p + 2 * self.lane_cw new_p[1] = -1 * self.lane_cw new_p[2] = 0 else: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = -1 * self.lane_cw new_p[1] = 1 * (p - self.lane_info[0][1] + 2 * self.lane_cw) new_p[2] = 1.5 * 3.1415 elif p > 0: beta_temp = p / (3 * self.lane_cw) # rad delta_x = math.sin(beta_temp) * 3 * self.lane_cw delta_y = math.cos(beta_temp) * 3 * self.lane_cw new_p[0] = -1 * (delta_x - 2 * self.lane_cw) new_p[1] = 1 * (2 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp + 1.5 * 3.1415 else: new_p[0] = 1 * (-1 * p + 2 * self.lane_cw) new_p[1] = -1 * self.lane_cw new_p[2] = 0 # 直行 elif intention_info == 1: new_p[0] = -1 * self.lane_cw new_p[1] = p - 2 * self.lane_cw new_p[2] = 1.5 * 3.1415 # 右转 else: if p > self.lane_info[2][1]: new_p[0] = -1 * self.lane_cw new_p[1] = 1 * (p - self.lane_info[2][1] + 2 * self.lane_cw) new_p[2] = 1.5 * 3.1415 elif p > 0: beta_temp = p / self.lane_cw delta_x = math.sin(beta_temp) * self.lane_cw delta_y = math.cos(beta_temp) * self.lane_cw new_p[0] = -1 * (2 * self.lane_cw - delta_x) new_p[1] = 1 * (2 * self.lane_cw - delta_y) new_p[2] = beta_temp + 3.1415 else: new_p[0] = -1 * (-1 * p + 2 * self.lane_cw) new_p[1] = 1 * self.lane_cw new_p[2] = 3.1415 elif self.lane_num == 8: if i == 0: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = 1 * (p - self.lane_info[0][1] + 4 * self.lane_cw) new_p[1] = 1 * self.lane_cw new_p[2] = 3.1415 elif p > 0: beta_temp = p / (5 * self.lane_cw) # rad delta_y = math.sin(beta_temp) * 5 * self.lane_cw delta_x = math.cos(beta_temp) * 5 * self.lane_cw new_p[0] = -1 * (delta_x - 4 * self.lane_cw) new_p[1] = -1 * (4 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp + 3.1415 else: new_p[0] = -1 * self.lane_cw new_p[1] = -1 * (-1 * p + 4 * self.lane_cw) new_p[2] = 1.5 * 3.1415 # 直行 elif intention_info == 1: new_p[0] = p - 4 * self.lane_cw new_p[1] = 1 * self.lane_cw new_p[2] = 3.1415 elif i == 1: # 直行 if intention_info == 1: new_p[0] = p - 4 * self.lane_cw new_p[1] = 3 * self.lane_cw new_p[2] = 3.1415 # 右转 elif intention_info == 2: if p > self.lane_info[2][1]: new_p[0] = 1 * (p - self.lane_info[2][1] + 4 * self.lane_cw) new_p[1] = 3 * self.lane_cw new_p[2] = 3.1415 elif p > 0: beta_temp = p / self.lane_cw delta_y = math.sin(beta_temp) * self.lane_cw delta_x = math.cos(beta_temp) * self.lane_cw new_p[0] = 1 * (4 * self.lane_cw - delta_x) new_p[1] = 1 * (4 * self.lane_cw - delta_y) new_p[2] = beta_temp + 3.1415 / 2 else: new_p[0] = 3 * self.lane_cw new_p[1] = -1 * p + 4 * self.lane_cw new_p[2] = 3.1415 / 2 elif i == 2: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = -1 * self.lane_cw new_p[1] = 1 * (p - self.lane_info[0][1] + 4 * self.lane_cw) new_p[2] = 1.5 * 3.1415 elif p > 0: beta_temp = p / (5 * self.lane_cw) # rad delta_x = math.sin(beta_temp) * 5 * self.lane_cw delta_y = math.cos(beta_temp) * 5 * self.lane_cw new_p[0] = -1 * (delta_x - 4 * self.lane_cw) new_p[1] = 1 * (4 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp + 1.5 * 3.1415 else: new_p[0] = 1 * (-1 * p + 4 * self.lane_cw) new_p[1] = -1 * self.lane_cw new_p[2] = 0 # 直行 elif intention_info == 1: new_p[0] = -1 * self.lane_cw new_p[1] = p - 4 * self.lane_cw new_p[2] = 1.5 * 3.1415 elif i == 3: # 直行 if intention_info == 1: new_p[0] = -3 * self.lane_cw new_p[1] = p - 4 * self.lane_cw new_p[2] = 1.5 * 3.1415 # 右转 elif intention_info == 2: if p > self.lane_info[2][1]: new_p[0] = -3 * self.lane_cw new_p[1] = 1 * (p - self.lane_info[2][1] + 4 * self.lane_cw) new_p[2] = 1.5 * 3.1415 elif p > 0: beta_temp = p / self.lane_cw delta_x = math.sin(beta_temp) * self.lane_cw delta_y = math.cos(beta_temp) * self.lane_cw new_p[0] = -1 * (4 * self.lane_cw - delta_x) new_p[1] = 1 * (4 * self.lane_cw - delta_y) new_p[2] = beta_temp + 3.1415 else: new_p[0] = -1 * (-1 * p + 4 * self.lane_cw) new_p[1] = 3 * self.lane_cw new_p[2] = 3.1415 elif i == 4: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = -1 * (p - self.lane_info[0][1] + 4 * self.lane_cw) new_p[1] = -1 * self.lane_cw new_p[2] = 0 elif p > 0: beta_temp = p / (5 * self.lane_cw) # rad delta_y = math.sin(beta_temp) * 5 * self.lane_cw delta_x = math.cos(beta_temp) * 5 * self.lane_cw new_p[0] = 1 * (delta_x - 4 * self.lane_cw) new_p[1] = 1 * (4 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp else: new_p[0] = self.lane_cw new_p[1] = -1 * p + 4 * self.lane_cw new_p[2] = 3.1415 / 2 # 直行 elif intention_info == 1: new_p[0] = -1 * p + 4 * self.lane_cw new_p[1] = -1 * self.lane_cw new_p[2] = 0 elif i == 5: # 直行 if intention_info == 1: new_p[0] = -1 * p + 4 * self.lane_cw new_p[1] = -3 * self.lane_cw new_p[2] = 0 # 右转 elif intention_info == 2: if p > self.lane_info[2][1]: new_p[0] = -1 * (p - self.lane_info[2][1] + 4 * self.lane_cw) new_p[1] = -3 * self.lane_cw new_p[2] = 0 elif p > 0: beta_temp = p / self.lane_cw delta_y = math.sin(beta_temp) * self.lane_cw delta_x = math.cos(beta_temp) * self.lane_cw new_p[0] = -1 * (4 * self.lane_cw - delta_x) new_p[1] = -1 * (4 * self.lane_cw - delta_y) new_p[2] = beta_temp + 1.5 * 3.1415 else: new_p[0] = -3 * self.lane_cw new_p[1] = -1 * (-1 * p + 4 * self.lane_cw) new_p[2] = 1.5 * 3.1415 elif i == 6: # 左转 if intention_info == 0: # 没到交叉口中 if p > self.lane_info[0][1]: new_p[0] = 1 * self.lane_cw new_p[1] = -1 * (p - self.lane_info[0][1] + 4 * self.lane_cw) new_p[2] = 3.1415 / 2 elif p > 0: beta_temp = p / (5 * self.lane_cw) # rad delta_x = math.sin(beta_temp) * 5 * self.lane_cw delta_y = math.cos(beta_temp) * 5 * self.lane_cw new_p[0] = 1 * (delta_x - 4 * self.lane_cw) new_p[1] = -1 * (4 * self.lane_cw - delta_y) new_p[2] = 3.1415 / 2 - beta_temp + 3.1415 / 2 else: new_p[0] = -1 * (-1 * p + 4 * self.lane_cw) new_p[1] = 1 * self.lane_cw new_p[2] = 3.1415 # 直行 elif intention_info == 1: new_p[0] = 1 * self.lane_cw new_p[1] = -1 * p + 4 * self.lane_cw new_p[2] = 3.1415 / 2 elif i == 7: # 直行 if intention_info == 1: new_p[0] = 3 * self.lane_cw new_p[1] = -1 * p + 4 * self.lane_cw new_p[2] = 3.1415 / 2 # 右转 elif intention_info == 2: if p > self.lane_info[2][1]: new_p[0] = 3 * self.lane_cw new_p[1] = -1 * (p - self.lane_info[2][1] + 4 * self.lane_cw) new_p[2] = 3.1415 / 2 elif p > 0: beta_temp = p / self.lane_cw delta_x = math.sin(beta_temp) * self.lane_cw delta_y = math.cos(beta_temp) * self.lane_cw new_p[0] = 1 * (4 * self.lane_cw - delta_x) new_p[1] = -1 * (4 * self.lane_cw - delta_y) new_p[2] = beta_temp else: new_p[0] = -1 * p + 4 * self.lane_cw new_p[1] = -3 * self.lane_cw new_p[2] = 0 elif self.lane_num == 12: rotation_angle = 3.141593 / 2 * int(i / 3) p_temp = [0, 0, 0, 0] if i % 3 == 0: if p > self.lane_info[0][1]: yaw = (3.1415 + i * (3.1415 / 6)) % (2 * 3.1415) p_temp = [p - self.lane_info[0][1] + 6 * self.lane_cw, self.lane_cw, yaw] elif p > 0: yaw = (3.1415 + i * (3.1415 / 6)) % (2 * 3.1415) r_a = (self.lane_info[0][1] - p) / self.lane_info[0][1] * 3.141593 / 2 p0 = [6 * self.lane_cw, self.lane_cw] p_r = [6 * self.lane_cw, -6 * self.lane_cw] p_temp[0] = p_r[0] + (p0[0] - p_r[0]) * np.cos(r_a) - (p0[1] - p_r[1]) * np.sin(r_a) p_temp[1] = p_r[1] + (p0[1] - p_r[1]) * np.cos(r_a) + (p0[0] - p_r[0]) * np.sin(r_a) p_temp[2] = yaw + r_a else: yaw = (1.5 * 3.1415 + i * (3.1415 / 6)) % (2 * 3.1415) p_temp = [-self.lane_cw, -6 * self.lane_cw + p, yaw] elif i % 3 == 1: yaw = (3.1415 + (i - 1) * (3.1415 / 6)) % (2 * 3.1415) p_temp = [p - 6 * self.lane_cw, 3 * self.lane_cw, yaw] else: if p > self.lane_info[2][1]: yaw = (3.1415 + (i - 2) * (3.1415 / 6)) % (2 * 3.1415) p_temp = [p - self.lane_info[2][1] + 6 * self.lane_cw, 5 * self.lane_cw, yaw] elif p > 0: yaw = (0.5 * 3.1415 + (i - 2) * (3.1415 / 6)) % (2 * 3.1415) r_a = (self.lane_info[2][1] - p) / self.lane_info[2][1] * 3.141593 / 2 p0 = [6 * self.lane_cw, 5 * self.lane_cw] p_r = [6 * self.lane_cw, 6 * self.lane_cw] # 绕点p_r逆时顺时针旋转r_a角度 p_temp[0] = p_r[0] + (p0[0] - p_r[0]) * np.cos(r_a) + (p0[1] - p_r[1]) * np.sin(r_a) p_temp[1] = p_r[1] + (p0[1] - p_r[1]) * np.cos(r_a) - (p0[0] - p_r[0]) *
np.sin(r_a)
numpy.sin
import numpy as nm from sfepy.base.base import Struct from sfepy.terms.terms import Term from sfepy.terms.extmods import terms class ContactInfo(Struct): """ Various contact-related data of contact terms. """ pass class ContactTerm(Term): r""" Contact term with a penalty function. The penalty function is defined as :math:`\varepsilon_N \langle g_N(\ul{u}) \rangle`, where :math:`\varepsilon_N` is the normal penalty parameter and :math:`\langle g_N(\ul{u}) \rangle` are the Macaulay's brackets of the gap function :math:`g_N(\ul{u})`. This term has a dynamic connectivity of DOFs in its region. :Definition: .. math:: \int_{\Gamma_{c}} \varepsilon_N \langle g_N(\ul{u}) \rangle \ul{n} \ul{v} :Arguments: - material : :math:`\varepsilon_N` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_contact' arg_types = ('material', 'virtual', 'state') arg_shapes = {'material' : '.: 1', 'virtual' : ('D', 'state'), 'state' : 'D'} integration = 'surface' def __init__(self, *args, **kwargs): Term.__init__(self, *args, **kwargs) self.detect = 2 self.ci = None def call_function(self, fargs): try: out, status = self.function(*fargs) except (RuntimeError, ValueError): terms.errclear() raise if status: terms.errclear() raise ValueError('term evaluation failed! (%s)' % self.name) return out, status def eval_real(self, shape, fargs, mode='eval', term_mode=None, diff_var=None, **kwargs): out, status = self.call_function(fargs) if mode != 'weak': raise ValueError('unsupported evaluation mode! (%s)' % mode) return out, status @staticmethod def function(out_cc): return out_cc, 0 def get_fargs(self, epss, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): geo, _ = self.get_mapping(virtual) region = self.region if self.ci is None: self.ci = ContactInfo() # Uses field connectivity (higher order nodes). sd = state.field.surface_data[region.name] ISN = state.field.efaces.T.copy() nsd = region.dim ngp = geo.n_qp neq = state.n_dof nsn = ISN.shape[0] fis = region.get_facet_indices() elementID = fis[:, 0].copy() segmentID = fis[:, 1].copy() n = len(elementID) IEN = state.field.econn # Need surface bf, bfg corresponding to field approximation here, not # geo... H = nm.asfortranarray(geo.bf[0, :, 0, :]) ps = state.field.gel.surface_facet.poly_space gps, gw = self.integral.get_qp(state.field.gel.surface_facet.name) bfg = ps.eval_base(gps, diff=True) dH = nm.asfortranarray(bfg.ravel().reshape(((nsd - 1) * ngp, nsn))) X = nm.asfortranarray(state.field.coors) Um = nm.asfortranarray(state().reshape((-1, nsd))) xx = nm.asfortranarray(X + Um) import sfepy.mechanics.extmods.ccontres as cc GPs = nm.empty((n*ngp, 2*nsd+6), dtype=nm.float64, order='F') longestEdge, GPs = cc.get_longest_edge_and_gps(GPs, neq, elementID, segmentID, ISN, IEN, H, xx) AABBmin, AABBmax = cc.get_AABB(xx, longestEdge, IEN, ISN, elementID, segmentID, neq); AABBmin = AABBmin - (0.5*longestEdge); AABBmax = AABBmax + (0.5*longestEdge); N = nm.ceil((AABBmax - AABBmin) / (0.5*longestEdge)).astype(nm.int32) N = nm.ones(nsd, dtype=nm.int32) # BUG workaround. head, next = cc.init_global_search(N, AABBmin, AABBmax, GPs[:,:nsd]) npd = region.tdim - 1 GPs = cc.evaluate_contact_constraints(GPs, ISN, IEN, N, AABBmin, AABBmax, head, next, xx, elementID, segmentID, npd, neq, longestEdge) Gc =
nm.zeros(neq, dtype=nm.float64)
numpy.zeros
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from collections import OrderedDict import numpy as np from pyiron_atomistics.atomistics.structure.atoms import Atoms import warnings __author__ = "<NAME>" __copyright__ = ( "Copyright 2021, Max-Planck-Institut für Eisenforschung GmbH - " "Computational Materials Design (CM) Department" ) __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "production" __date__ = "Sep 1, 2017" def read_atoms( filename="CONTCAR", return_velocities=False, species_list=None, species_from_potcar=False, ): """ Routine to read structural static from a POSCAR type file Args: filename (str): Input filename return_velocities (bool): True if the predictor corrector velocities are read (only from MD output) species_list (list/numpy.ndarray): A list of the species (if not present in the POSCAR file or a POTCAR in the same directory) species_from_potcar (bool): True if the species list should be read from the POTCAR file in the same directory Returns: pyiron.atomistics.structure.atoms.Atoms: The generated structure object """ directory = "/".join(filename.split("/")[0:-1]) potcar_file = "/".join([directory, "POTCAR"]) if (species_list is None) and species_from_potcar: species_list = get_species_list_from_potcar(potcar_file) if len(species_list) == 0: warnings.warn("Warning! Unable to read species information from POTCAR") file_string = list() with open(filename) as f: for line in f: line = line.strip() file_string.append(line) return atoms_from_string( file_string, read_velocities=return_velocities, species_list=species_list ) def get_species_list_from_potcar(filename="POTCAR"): """ Generates the species list from a POTCAR type file Args: filename (str): Input filename Returns: list: A list of species symbols """ trigger = "VRHFIN =" species_list = list() with open(filename) as potcar_file: lines = potcar_file.readlines() for line in lines: line = line.strip() if trigger in line: str_1 = line.split(trigger) str_2 = str_1[-1].split(":") species_list.append(str_2[0].replace(" ", "")) return species_list def write_poscar(structure, filename="POSCAR", write_species=True, cartesian=True): """ Writes a POSCAR type file from a structure object Args: structure (pyiron.atomistics.structure.atoms.Atoms): The structure instance to be written to the POSCAR format filename (str): Output filename write_species (bool): True if the species should be written to the file cartesian (bool): True if the positions are written in Cartesian coordinates """ endline = "\n" with open(filename, "w") as f: selec_dyn = False f.write("Poscar file generated with pyiron" + endline) f.write("1.0" + endline) for a_i in structure.get_cell(): x, y, z = a_i f.write("{0:.15f} {1:.15f} {2:.15f}".format(x, y, z) + endline) atom_numbers = structure.get_number_species_atoms() if write_species: f.write(" ".join(atom_numbers.keys()) + endline) num_str = [str(val) for val in atom_numbers.values()] f.write(" ".join(num_str)) f.write(endline) if "selective_dynamics" in structure.get_tags(): selec_dyn = True f.write("Selective dynamics" + endline) sorted_coords = list() selec_dyn_lst = list() for species in atom_numbers.keys(): indices = structure.select_index(species) for i in indices: if cartesian: sorted_coords.append(structure.positions[i]) else: sorted_coords.append(structure.get_scaled_positions()[i]) if selec_dyn: selec_dyn_lst.append(structure.selective_dynamics[i]) if cartesian: f.write("Cartesian" + endline) else: f.write("Direct" + endline) if selec_dyn: for i, vec in enumerate(sorted_coords): x, y, z = vec sd_string = " ".join(["T" if sd else "F" for sd in selec_dyn_lst[i]]) f.write( "{0:.15f} {1:.15f} {2:.15f}".format(x, y, z) + " " + sd_string + endline ) else: for i, vec in enumerate(sorted_coords): x, y, z = vec f.write("{0:.15f} {1:.15f} {2:.15f}".format(x, y, z) + endline) def atoms_from_string(string, read_velocities=False, species_list=None): """ Routine to convert a string list read from a input/output structure file and convert into Atoms instance Args: string (list): A list of strings (lines) read from the POSCAR/CONTCAR/CHGCAR/LOCPOT file read_velocities (bool): True if the velocities from a CONTCAR file should be read (predictor corrector) species_list (list/numpy.ndarray): A list of species of the atoms Returns: pyiron.atomistics.structure.atoms.Atoms: The required structure object """ string = [s.strip() for s in string] string_lower = [s.lower() for s in string] atoms_dict = dict() atoms_dict["first_line"] = string[0] # del string[0] atoms_dict["selective_dynamics"] = False atoms_dict["relative"] = False if "direct" in string_lower or "d" in string_lower: atoms_dict["relative"] = True atoms_dict["scaling_factor"] = float(string[1]) unscaled_cell = list() for i in [2, 3, 4]: vec = list() for j in range(3): vec.append(float(string[i].split()[j])) unscaled_cell.append(vec) if atoms_dict["scaling_factor"] > 0.0: atoms_dict["cell"] = np.array(unscaled_cell) * atoms_dict["scaling_factor"] else: atoms_dict["cell"] = np.array(unscaled_cell) * ( (-atoms_dict["scaling_factor"]) ** (1.0 / 3.0) ) if "selective dynamics" in string_lower: atoms_dict["selective_dynamics"] = True no_of_species = len(string[5].split()) species_dict = OrderedDict() position_index = 7 if atoms_dict["selective_dynamics"]: position_index += 1 for i in range(no_of_species): species_dict["species_" + str(i)] = dict() try: species_dict["species_" + str(i)]["count"] = int(string[5].split()[i]) except ValueError: species_dict["species_" + str(i)]["species"] = string[5].split()[i] species_dict["species_" + str(i)]["count"] = int(string[6].split()[i]) atoms_dict["species_dict"] = species_dict if "species" in atoms_dict["species_dict"]["species_0"].keys(): position_index += 1 positions = list() selective_dynamics = list() n_atoms = sum( [ atoms_dict["species_dict"][key]["count"] for key in atoms_dict["species_dict"].keys() ] ) try: for i in range(position_index, position_index + n_atoms): string_list = np.array(string[i].split()) positions.append([float(val) for val in string_list[0:3]]) if atoms_dict["selective_dynamics"]: selective_dynamics.append(["T" in val for val in string_list[3:6]]) except (ValueError, IndexError): raise AssertionError( "The number of positions given does not match the number of atoms" ) atoms_dict["positions"] = np.array(positions) if not atoms_dict["relative"]: if atoms_dict["scaling_factor"] > 0.0: atoms_dict["positions"] *= atoms_dict["scaling_factor"] else: atoms_dict["positions"] *= (-atoms_dict["scaling_factor"]) ** (1.0 / 3.0) velocities = list() try: atoms = _dict_to_atoms(atoms_dict, species_list=species_list) except ValueError: atoms = _dict_to_atoms(atoms_dict, read_from_first_line=True) if atoms_dict["selective_dynamics"]: selective_dynamics = np.array(selective_dynamics) unique_sel_dyn, inverse, counts = np.unique( selective_dynamics, axis=0, return_counts=True, return_inverse=True ) count_index = np.argmax(counts) atoms.add_tag(selective_dynamics=unique_sel_dyn.tolist()[count_index]) is_not_majority = np.arange(len(unique_sel_dyn), dtype=int) != count_index for i, val in enumerate(unique_sel_dyn): if is_not_majority[i]: for key in np.argwhere(inverse == i).flatten(): atoms.selective_dynamics[int(key)] = val.tolist() if read_velocities: velocity_index = position_index + n_atoms + 1 for i in range(velocity_index, velocity_index + n_atoms): try: velocities.append([float(val) for val in string[i].split()[0:3]]) except IndexError: break if not (len(velocities) == n_atoms): warnings.warn( "The velocities are either not available or they are incomplete/corrupted. Returning empty " "list instead", UserWarning, ) return atoms, list() return atoms, velocities else: return atoms def _dict_to_atoms(atoms_dict, species_list=None, read_from_first_line=False): """ Function to convert a generated dict into an structure object Args: atoms_dict (dict): Dictionary with the details (from string_to_atom) species_list (list/numpy.ndarray): List of species read_from_first_line (bool): True if we are to read the species information from the first line in the file Returns: pyiron.atomistics.structure.atoms.Atoms: The required structure object """ is_absolute = not (atoms_dict["relative"]) positions = atoms_dict["positions"] cell = atoms_dict["cell"] symbol = str() elements = list() el_list = list() for i, sp_key in enumerate(atoms_dict["species_dict"].keys()): if species_list is not None: try: el_list = np.array([species_list[i]]) el_list = np.tile(el_list, atoms_dict["species_dict"][sp_key]["count"]) if isinstance(species_list[i], str): symbol += species_list[i] + str( atoms_dict["species_dict"][sp_key]["count"] ) else: symbol += species_list[i].Abbreviation + str( atoms_dict["species_dict"][sp_key]["count"] ) except IndexError: raise ValueError( "Number of species in the specified species list does not match that in the file" ) elif "species" in atoms_dict["species_dict"][sp_key].keys(): el_list = np.array([atoms_dict["species_dict"][sp_key]["species"]]) el_list = np.tile(el_list, atoms_dict["species_dict"][sp_key]["count"]) symbol += atoms_dict["species_dict"][sp_key]["species"] symbol += str(atoms_dict["species_dict"][sp_key]["count"]) elif read_from_first_line: if not ( len(atoms_dict["first_line"].split()) == len(atoms_dict["species_dict"].keys()) ): raise AssertionError() el_list = np.array(atoms_dict["first_line"].split()[i]) el_list = np.tile(el_list, atoms_dict["species_dict"][sp_key]["count"]) symbol += atoms_dict["first_line"].split()[i] symbol += str(atoms_dict["species_dict"][sp_key]["count"]) elif species_list is None: raise ValueError( "Species list should be provided since pyiron can't detect species information" ) elements.append(el_list) elements_new = list() for ele in elements: for e in ele: elements_new.append(e) elements = elements_new if is_absolute: atoms = Atoms(elements, positions=positions, cell=cell, pbc=True) else: atoms = Atoms(elements, scaled_positions=positions, cell=cell, pbc=True) return atoms def vasp_sorter(structure): """ Routine to sort the indices of a structure as it would be when written to a POSCAR file Args: structure (pyiron.atomistics.structure.atoms.Atoms): The structure whose indices need to be sorted Returns: list: A list of indices which is sorted by the corresponding species for writing to POSCAR """ atom_numbers = structure.get_number_species_atoms() sorted_indices = list() for species in atom_numbers.keys(): indices = structure.select_index(species) for i in indices: sorted_indices.append(i) return np.array(sorted_indices) def manip_contcar(filename, new_filename, add_pos): """ Manipulate a CONTCAR/POSCAR file by adding something to the positions Args: filename (str): Filename/path of the input file new_filename (str): Filename/path of the output file add_pos (list/numpy.ndarray): Array of values to be added to the positions of the input """ actual_struct = read_atoms(filename) n = 0 direct = True with open(filename, "r") as f: lines = f.readlines() for line in lines: if "Direct" in line or "Cartesian" in line: direct = "Direct" in line break n += 1 pos_list = list() sd_list = list() if len(lines[n + 1].split()) == 6: for line in lines[n + 1 : n + 1 + len(actual_struct)]: pos_list.append([float(val) for val in line.split()[0:3]]) sd_list.append(["T" in val for val in line.split()[3:]]) else: for line in lines[n + 1 : n + 1 + len(actual_struct)]: pos_list.append([float(val) for val in line.split()[0:3]]) old_pos = np.array(pos_list) if direct: add_pos_rel = np.dot(add_pos,
np.linalg.inv(actual_struct.cell)
numpy.linalg.inv
""" Functions that aid testing in various ways. A typical use would be:: lowcore = create_named_configuration('LOWBD2-CORE') times = numpy.linspace(-3, +3, 13) * (numpy.pi / 12.0) frequency = numpy.array([1e8]) channel_bandwidth = numpy.array([1e7]) # Define the component and give it some polarisation and spectral behaviour f = numpy.array([100.0]) flux = numpy.array([f]) phasecentre = SkyCoord(ra=+15.0 * u.deg, dec=-35.0 * u.deg, frame='icrs', equinox='J2000') compabsdirection = SkyCoord(ra=17.0 * u.deg, dec=-36.5 * u.deg, frame='icrs', equinox='J2000') comp = create_skycomponent(flux=flux, frequency=frequency, direction=compabsdirection, polarisation_frame=PolarisationFrame('stokesI')) image = create_test_image(frequency=frequency, phasecentre=phasecentre, cellsize=0.001, polarisation_frame=PolarisationFrame('stokesI') vis = create_visibility(lowcore, times=times, frequency=frequency, channel_bandwidth=channel_bandwidth, phasecentre=phasecentre, weight=1, polarisation_frame=PolarisationFrame('stokesI'), integration_time=1.0) """ import csv import logging from typing import List import astropy.units as u import numpy from astropy.coordinates import SkyCoord from astropy.io import fits from astropy.wcs import WCS from astropy.wcs.utils import pixel_to_skycoord from scipy import interpolate from data_models.memory_data_models import Configuration, Image, GainTable, Skycomponent, SkyModel, PointingTable from data_models.parameters import arl_path from data_models.polarisation import PolarisationFrame from processing_components.calibration.calibration_control import create_calibration_controls from processing_components.calibration.operations import create_gaintable_from_blockvisibility, apply_gaintable from processing_components.image.operations import import_image_from_fits from processing_components.imaging.base import predict_2d, predict_skycomponent_visibility, \ create_image_from_visibility, advise_wide_field from processing_components.imaging.primary_beams import create_pb from processing_components.skycomponent.operations import create_skycomponent, insert_skycomponent, \ apply_beam_to_skycomponent, filter_skycomponents_by_flux from processing_components.visibility.base import create_blockvisibility, create_visibility from processing_components.visibility.coalesce import convert_blockvisibility_to_visibility, \ convert_visibility_to_blockvisibility from processing_library.image.operations import create_image_from_array log = logging.getLogger(__name__) def create_test_image(canonical=True, cellsize=None, frequency=None, channel_bandwidth=None, phasecentre=None, polarisation_frame=PolarisationFrame("stokesI")) -> Image: """Create a useful test image This is the test image M31 widely used in ALMA and other simulations. It is actually part of an Halpha region in M31. :param canonical: Make the image into a 4 dimensional image :param cellsize: :param frequency: Frequency (array) in Hz :param channel_bandwidth: Channel bandwidth (array) in Hz :param phasecentre: Phase centre of image (SkyCoord) :param polarisation_frame: Polarisation frame :return: Image """ if frequency is None: frequency = [1e8] im = import_image_from_fits(arl_path("data/models/M31.MOD")) if canonical: if polarisation_frame is None: im.polarisation_frame = PolarisationFrame("stokesI") elif isinstance(polarisation_frame, PolarisationFrame): im.polarisation_frame = polarisation_frame else: raise ValueError("polarisation_frame is not valid") im = replicate_image(im, frequency=frequency, polarisation_frame=im.polarisation_frame) if cellsize is not None: im.wcs.wcs.cdelt[0] = -180.0 * cellsize / numpy.pi im.wcs.wcs.cdelt[1] = +180.0 * cellsize / numpy.pi if frequency is not None: im.wcs.wcs.crval[3] = frequency[0] if channel_bandwidth is not None: im.wcs.wcs.cdelt[3] = channel_bandwidth[0] else: if len(frequency) > 1: im.wcs.wcs.cdelt[3] = frequency[1] - frequency[0] else: im.wcs.wcs.cdelt[3] = 0.001 * frequency[0] im.wcs.wcs.radesys = 'ICRS' im.wcs.wcs.equinox = 2000.00 if phasecentre is not None: im.wcs.wcs.crval[0] = phasecentre.ra.deg im.wcs.wcs.crval[1] = phasecentre.dec.deg # WCS is 1 relative im.wcs.wcs.crpix[0] = im.data.shape[3] // 2 + 1 im.wcs.wcs.crpix[1] = im.data.shape[2] // 2 + 1 return im def create_test_image_from_s3(npixel=16384, polarisation_frame=PolarisationFrame("stokesI"), cellsize=0.000015, frequency=numpy.array([1e8]), channel_bandwidth=numpy.array([1e6]), phasecentre=None, fov=20, flux_limit=1e-3) -> Image: """Create MID test image from S3 The input catalog was generated at http://s-cubed.physics.ox.ac.uk/s3_sex using the following query:: Database: s3_sex SQL: select * from Galaxies where (pow(10,itot_151)*1000 > 1.0) and (right_ascension between -5 and 5) and (declination between -5 and 5);; Number of rows returned: 29966 For frequencies < 610MHz, there are three tables to use:: data/models/S3_151MHz_10deg.csv, use fov=10 data/models/S3_151MHz_20deg.csv, use fov=20 data/models/S3_151MHz_40deg.csv, use fov=40 For frequencies > 610MHz, there are three tables: data/models/S3_1400MHz_1mJy_10deg.csv, use flux_limit>= 1e-3 data/models/S3_1400MHz_100uJy_10deg.csv, use flux_limit < 1e-3 data/models/S3_1400MHz_1mJy_18deg.csv, use flux_limit>= 1e-3 data/models/S3_1400MHz_100uJy_18deg.csv, use flux_limit < 1e-3 The component spectral index is calculated from the 610MHz and 151MHz or 1400MHz and 610MHz, and then calculated for the specified frequencies. If polarisation_frame is not stokesI then the image will a polarised axis but the values will be zero. :param npixel: Number of pixels :param polarisation_frame: Polarisation frame (default PolarisationFrame("stokesI")) :param cellsize: cellsize in radians :param frequency: :param channel_bandwidth: Channel width (Hz) :param phasecentre: phasecentre (SkyCoord) :param fov: fov 10 | 20 | 40 :param flux_limit: Minimum flux (Jy) :return: Image """ ras = [] decs = [] fluxes = [] if phasecentre is None: phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000') if polarisation_frame is None: polarisation_frame = PolarisationFrame("stokesI") npol = polarisation_frame.npol nchan = len(frequency) shape = [nchan, npol, npixel, npixel] w = WCS(naxis=4) # The negation in the longitude is needed by definition of RA, DEC w.wcs.cdelt = [-cellsize * 180.0 / numpy.pi, cellsize * 180.0 / numpy.pi, 1.0, channel_bandwidth[0]] w.wcs.crpix = [npixel // 2 + 1, npixel // 2 + 1, 1.0, 1.0] w.wcs.ctype = ["RA---SIN", "DEC--SIN", 'STOKES', 'FREQ'] w.wcs.crval = [phasecentre.ra.deg, phasecentre.dec.deg, 1.0, frequency[0]] w.naxis = 4 w.wcs.radesys = 'ICRS' w.wcs.equinox = 2000.0 model = create_image_from_array(
numpy.zeros(shape)
numpy.zeros
#***************************************************# # This file is part of PFNET. # # # # Copyright (c) 2015, <NAME>. # # # # PFNET is released under the BSD 2-clause license. # #***************************************************# import unittest import numpy as np import pfnet as pf from . import test_cases from numpy.linalg import norm from scipy.sparse import coo_matrix,triu,bmat NUM_TRIALS = 25 EPS = 3.5 # % TOL = 1e-4 class TestProblem(unittest.TestCase): def setUp(self): # Random np.random.seed(0) def test_problem_ACOPF_with_function_constraint(self): for case in test_cases.CASES: net = pf.Parser(case).parse(case) self.assertEqual(net.num_periods,1) p = pf.Problem(net) for branch in net.branches: if branch.ratingA == 0.: branch.ratingA = 100. # Variables net.set_flags('bus', ['variable'], 'any', 'voltage magnitude') net.set_flags('bus', 'variable', 'not slack', 'voltage angle') net.set_flags('generator', ['variable','bounded'], 'adjustable active power', 'active power') net.set_flags('generator', ['variable','bounded'], 'regulator', 'reactive power') net.set_flags('branch', ['variable','bounded'], 'tap changer', 'tap ratio') net.set_flags('branch', ['variable','bounded'], 'phase shifter', 'phase shift') self.assertEqual(net.num_vars, (2*net.num_buses - net.get_num_slack_buses() + net.get_num_P_adjust_gens() + net.get_num_reg_gens() + net.get_num_tap_changers() + net.get_num_phase_shifters())) self.assertEqual(net.num_bounded,(net.get_num_P_adjust_gens() + net.get_num_reg_gens() + net.get_num_tap_changers() + net.get_num_phase_shifters())) p.add_constraint(pf.Constraint('AC power balance',net)) p.add_constraint(pf.Constraint('variable bounds',net)) p.add_function(pf.Function('generation cost',1.,net)) func = pf.Function('generation cost',1.,net) constr = pf.Constraint('constrained function',net) constr.set_parameter('func',func) constr.set_parameter('op','>=') constr.set_parameter('rhs',0.) p.add_constraint(constr) net.set_flags('bus', 'bounded', 'any', 'voltage magnitude') self.assertEqual(net.num_bounded,(net.get_num_P_adjust_gens() + net.get_num_reg_gens() + net.get_num_tap_changers() + net.get_num_phase_shifters() + net.num_buses)) p.analyze() # Extra vars self.assertEqual(p.num_extra_vars,1) # Init point x0 = p.get_init_point() self.assertTrue(type(x0) is np.ndarray) self.assertTupleEqual(x0.shape,(net.num_vars+1,)) p.eval(x0) phi = p.phi gphi = p.gphi.copy() Hphi = p.Hphi.copy() f = p.f.copy() b = p.b.copy() A = p.A.copy() J = p.J.copy() G = p.G.copy() l = p.l.copy() u = p.u.copy() # Numbers self.assertEqual(x0.size,p.num_primal_variables) self.assertEqual(A.shape[0],p.num_linear_equality_constraints) self.assertEqual(f.size,p.num_nonlinear_equality_constraints) # phi self.assertTrue(type(phi) is float) self.assertGreaterEqual(phi,0.) # gphi self.assertTrue(type(gphi) is np.ndarray) self.assertTupleEqual(gphi.shape,(net.num_vars+1,)) # Hphi self.assertTrue(type(Hphi) is coo_matrix) self.assertTupleEqual(Hphi.shape,(net.num_vars+1,net.num_vars+1)) self.assertGreater(Hphi.nnz,0) # f self.assertTrue(type(f) is np.ndarray) f_size = sum(c.f.shape[0] for c in p.constraints) self.assertTupleEqual(f.shape,(f_size,)) # b self.assertTrue(type(b) is np.ndarray) b_size = sum(c.b.shape[0] for c in p.constraints) self.assertTupleEqual(b.shape,(b_size,)) # J self.assertTrue(type(J) is coo_matrix) J_size = sum([c.J.shape[0] for c in p.constraints]) J_nnz = sum([c.J.nnz for c in p.constraints]) self.assertTupleEqual(J.shape,(J_size,net.num_vars+1)) self.assertEqual(J.nnz,J_nnz) # G, l, u self.assertTrue(type(G) is coo_matrix) G_size = sum([c.G.shape[0] for c in p.constraints]) G_nnz = sum([c.G.nnz for c in p.constraints]) self.assertTupleEqual(G.shape,(G_size,net.num_vars+1)) self.assertEqual(G.nnz,G_nnz) self.assertEqual(l.size,G_size) self.assertEqual(u.size,G_size) self.assertFalse(np.any(np.isnan(l))) self.assertFalse(np.any(np.isnan(u))) self.assertFalse(np.any(np.isnan(G.data))) # A self.assertTrue(type(A) is coo_matrix) A_size = sum(c.A.shape[0] for c in p.constraints) A_nnz = sum(c.A.nnz for c in p.constraints) self.assertTupleEqual(A.shape,(A_size,net.num_vars+1)) self.assertEqual(A.nnz,A_nnz) def test_problem_with_heur_error(self): for case in test_cases.CASES: net = pf.Parser(case).parse(case) self.assertEqual(net.num_periods,1) p = pf.Problem(net) p.add_heuristic(pf.Heuristic('PVPQ switching', net)) p.analyze() self.assertRaises(pf.ProblemError, p.apply_heuristics, net.get_var_values()) def test_problem_LSNR(self): # Constants h = 1e-9 for case in test_cases.CASES: net = pf.Parser(case).parse(case) self.assertEqual(net.num_periods,1) p = pf.Problem(net) # Variables net.set_flags('bus', 'variable', 'not slack', ['voltage magnitude','voltage angle']) net.set_flags('generator', 'variable', 'slack', 'active power') net.set_flags('generator', 'variable', 'regulator', 'reactive power') net.set_flags('branch', 'variable', 'tap changer - v', 'tap ratio') net.set_flags('branch', 'variable', 'phase shifter', 'phase shift') net.set_flags('shunt', 'variable', 'switching - v', 'susceptance') self.assertEqual(net.num_vars, 2*(net.num_buses-net.get_num_slack_buses()) + net.get_num_slack_gens() + net.get_num_reg_gens() + net.get_num_tap_changers_v() + net.get_num_phase_shifters() + net.get_num_switched_v_shunts()) # Fixed net.set_flags('branch', 'fixed', 'tap changer - v', 'tap ratio') net.set_flags('branch', 'fixed', 'phase shifter', 'phase shift') net.set_flags('shunt', 'fixed', 'switching - v', 'susceptance') self.assertEqual(net.num_fixed, net.get_num_tap_changers_v() + net.get_num_phase_shifters() + net.get_num_switched_v_shunts()) # Constraints p.add_constraint(pf.Constraint('AC power balance', net)) p.add_constraint(pf.Constraint('generator active power participation', net)) p.add_constraint(pf.Constraint('PVPQ switching', net)) p.add_constraint(pf.Constraint('variable fixing', net)) self.assertEqual(len(p.constraints), 4) # Heuristics p.add_heuristic(pf.Heuristic('PVPQ switching', net)) self.assertEqual(len(p.heuristics), 1) # Check adding redundant constraints p.add_constraint(pf.Constraint('generator active power participation',net)) self.assertEqual(len(p.constraints),4) # Functions self.assertEqual(len(p.functions),0) # Init point x0 = p.get_init_point() self.assertTrue(type(x0) is np.ndarray) self.assertTupleEqual(x0.shape,(net.num_vars,)) self.assertTrue(np.all(x0 == p.x)) # Before phi = p.phi gphi = p.gphi Hphi = p.Hphi f = p.f b = p.b A = p.A J = p.J self.assertTrue(type(phi) is float) self.assertEqual(phi,0.) self.assertTrue(type(gphi) is np.ndarray) self.assertTupleEqual(gphi.shape,(0,)) self.assertTrue(type(f) is np.ndarray) self.assertTupleEqual(f.shape,(0,)) self.assertTrue(type(b) is np.ndarray) self.assertTupleEqual(b.shape,(0,)) self.assertTrue(type(J) is coo_matrix) self.assertTupleEqual(J.shape,(0,0)) self.assertEqual(J.nnz,0) self.assertTrue(type(A) is coo_matrix) self.assertTupleEqual(A.shape,(0,0)) self.assertEqual(A.nnz,0) self.assertTrue(type(Hphi) is coo_matrix) self.assertTupleEqual(Hphi.shape,(0,0)) self.assertEqual(Hphi.nnz,0) self.assertTrue(np.all(Hphi.row >= Hphi.col)) p.analyze() p.eval(x0) # After phi = p.phi gphi = p.gphi.copy() Hphi = p.Hphi.copy() f = p.f.copy() b = p.b.copy() A = p.A.copy() J = p.J.copy() # Numbers self.assertEqual(x0.size,p.num_primal_variables) self.assertEqual(A.shape[0],p.num_linear_equality_constraints) self.assertEqual(f.size,p.num_nonlinear_equality_constraints) self.assertEqual(p.num_primal_variables,p.get_num_primal_variables()) self.assertEqual(p.num_linear_equality_constraints,p.get_num_linear_equality_constraints()) self.assertEqual(p.num_nonlinear_equality_constraints,p.get_num_nonlinear_equality_constraints()) # phi self.assertTrue(type(phi) is float) self.assertEqual(phi,0.) # gphi self.assertTrue(type(gphi) is np.ndarray) self.assertTupleEqual(gphi.shape,(net.num_vars,)) self.assertLess(norm(gphi),1e-10) # Hphi self.assertTrue(type(Hphi) is coo_matrix) self.assertTupleEqual(Hphi.shape,(net.num_vars,net.num_vars)) self.assertEqual(Hphi.nnz,0) # f self.assertTrue(type(f) is np.ndarray) f_size = sum(c.f.shape[0] for c in p.constraints) self.assertTupleEqual(f.shape,(f_size,)) # b self.assertTrue(type(b) is np.ndarray) b_size = sum(c.b.shape[0] for c in p.constraints) self.assertTupleEqual(b.shape,(b_size,)) # J self.assertTrue(type(J) is coo_matrix) J_size = sum(c.J.shape[0] for c in p.constraints) self.assertTupleEqual(J.shape,(J_size,net.num_vars)) self.assertGreater(J.nnz,0) # A self.assertTrue(type(A) is coo_matrix) A_size = sum(c.A.shape[0] for c in p.constraints) self.assertTupleEqual(A.shape,(A_size,net.num_vars)) self.assertGreater(A.nnz,0) # Check J f0 = f.copy() J0 = J.copy() for i in range(NUM_TRIALS): d = np.random.randn(net.num_vars) x = x0 + h*d p.eval(x) f1 = p.f Jd_exact = J0*d Jd_approx = (f1-f0)/h error = 100.*norm(Jd_exact-Jd_approx)/np.maximum(norm(Jd_exact),TOL) self.assertLessEqual(error,EPS) # Check Hcombined coeff = np.random.randn(f.shape[0]) p.eval(x0) self.assertRaises(pf.ProblemError,p.combine_H,np.zeros(f.shape[0]+1),False) p.combine_H(coeff,False) J0 = p.J.copy() g0 = J0.T*coeff H0 = p.H_combined.copy() self.assertTrue(type(H0) is coo_matrix) self.assertTupleEqual(H0.shape,(net.num_vars,net.num_vars)) self.assertTrue(np.all(H0.row >= H0.col)) # lower triangular H0 = (H0 + H0.T) - triu(H0) for i in range(NUM_TRIALS): d = np.random.randn(net.num_vars) x = x0 + h*d p.eval(x) g1 = p.J.T*coeff Hd_exact = H0*d Hd_approx = (g1-g0)/h error = 100.*norm(Hd_exact-Hd_approx)/np.maximum(norm(Hd_exact),TOL) self.assertLessEqual(error,EPS) # Sensitivities net.clear_sensitivities() for i in range(net.num_buses): bus = net.get_bus(i) self.assertEqual(bus.sens_P_balance,0.) self.assertEqual(bus.sens_Q_balance,0.) sens = np.random.randn(p.f.size) offset = 0 for c in p.constraints: if c.name == 'AC power balance': break else: offset += c.f.size p.store_sensitivities(np.zeros(p.A.shape[0]),sens,None,None) for i in range(net.num_buses): bus = net.get_bus(i) self.assertEqual(bus.sens_P_balance,sens[bus.index_P+offset]) self.assertEqual(bus.sens_Q_balance,sens[bus.index_Q+offset]) self.assertRaises(pf.ProblemError, p.store_sensitivities, np.zeros(p.A.shape[0]), np.zeros(p.f.size+5), None, None) # Heuristics self.assertEqual(len(p.heuristics), 1) self.assertEqual(p.heuristics[0].name, "PVPQ switching") p.apply_heuristics(x0) def test_problem_vPF(self): # Constants h = 1e-9 for case in test_cases.CASES: net = pf.Parser(case).parse(case) self.assertEqual(net.num_periods,1) p = pf.Problem(net) # Variables net.set_flags('bus', 'variable', 'not slack', ['voltage magnitude','voltage angle']) net.set_flags('generator', 'variable', 'slack', 'active power') net.set_flags('generator', 'variable', 'regulator', 'reactive power') net.set_flags('branch', 'variable', 'tap changer - v', ['tap ratio']) net.set_flags('shunt', 'variable', 'switching - v', ['susceptance']) reg_by_tran_or_shunt = 0 for i in range(net.num_buses): bus = net.get_bus(i) if bus.is_regulated_by_tran() or bus.is_regulated_by_shunt(): reg_by_tran_or_shunt += 1 self.assertEqual(net.num_vars, 2*(net.num_buses-net.get_num_slack_buses()) + net.get_num_slack_gens() + net.get_num_reg_gens() + net.get_num_tap_changers_v()+ net.get_num_switched_v_shunts()) # Constraints p.add_constraint(pf.Constraint('AC power balance',net)) p.add_constraint(pf.Constraint('voltage set point regulation',net)) p.add_constraint(pf.Constraint('voltage regulation by transformers',net)) p.add_constraint(pf.Constraint('voltage regulation by shunts',net)) self.assertEqual(len(p.constraints),4) # Check adding redundant constraints p.add_constraint(pf.Constraint('AC power balance',net)) self.assertEqual(len(p.constraints),4) # Functions p.add_function(pf.Function('voltage magnitude regularization',1.,net)) p.add_function(pf.Function('voltage angle regularization',5.,net)) p.add_function(pf.Function('generator powers regularization',8.,net)) p.add_function(pf.Function('tap ratio regularization',3.,net)) p.add_function(pf.Function('susceptance regularization',1.,net)) self.assertEqual(len(p.functions),5) # Before phi = p.phi gphi = p.gphi Hphi = p.Hphi f = p.f b = p.b A = p.A J = p.J self.assertTrue(type(phi) is float) self.assertEqual(phi,0.) self.assertTrue(type(gphi) is np.ndarray) self.assertTupleEqual(gphi.shape,(0,)) self.assertTrue(type(f) is np.ndarray) self.assertTupleEqual(f.shape,(0,)) self.assertTrue(type(b) is np.ndarray) self.assertTupleEqual(b.shape,(0,)) self.assertTrue(type(J) is coo_matrix) self.assertTupleEqual(J.shape,(0,0)) self.assertEqual(J.nnz,0) self.assertTrue(type(A) is coo_matrix) self.assertTupleEqual(A.shape,(0,0)) self.assertEqual(A.nnz,0) self.assertTrue(type(Hphi) is coo_matrix) self.assertTupleEqual(Hphi.shape,(0,0)) self.assertEqual(Hphi.nnz,0) self.assertTrue(np.all(Hphi.row >= Hphi.col)) p.analyze() # Init point r = np.random.randn(p.get_num_primal_variables()) x0 = p.get_init_point()+r self.assertTrue(type(x0) is np.ndarray) self.assertTupleEqual(x0.shape,(net.num_vars+p.num_extra_vars,)) self.assertTrue(np.all(x0 == p.x+r)) p.eval(x0) # After phi = p.phi gphi = p.gphi.copy() Hphi = p.Hphi.copy() f = p.f.copy() b = p.b.copy() A = p.A.copy() J = p.J.copy() # Numbers self.assertEqual(x0.size,p.num_primal_variables) self.assertEqual(A.shape[0],p.num_linear_equality_constraints) self.assertEqual(f.size,p.num_nonlinear_equality_constraints) # phi self.assertTrue(type(phi) is float) self.assertGreater(phi,0.) man_phi = sum(f.weight*f.phi for f in p.functions) self.assertLess(np.abs(man_phi-phi),1e-10) # gphi self.assertTrue(type(gphi) is np.ndarray) self.assertTupleEqual(gphi.shape,(net.num_vars+p.num_extra_vars,)) man_gphi = sum(f.weight*f.gphi for f in p.functions) self.assertLess(norm(np.hstack((man_gphi,np.zeros(p.num_extra_vars)))-gphi),1e-10) # Hphi self.assertTrue(type(Hphi) is coo_matrix) self.assertTupleEqual(Hphi.shape,(net.num_vars+p.num_extra_vars, net.num_vars+p.num_extra_vars)) self.assertGreater(Hphi.nnz,0) # f self.assertTrue(type(f) is np.ndarray) f_size = sum(c.f.shape[0] for c in p.constraints) self.assertTupleEqual(f.shape,(f_size,)) # b self.assertTrue(type(b) is np.ndarray) b_size = sum(c.b.shape[0] for c in p.constraints) self.assertTupleEqual(b.shape,(b_size,)) # J self.assertTrue(type(J) is coo_matrix) J_size = sum(c.J.shape[0] for c in p.constraints) self.assertTupleEqual(J.shape,(J_size,net.num_vars+p.num_extra_vars)) self.assertGreater(J.nnz,0) # A self.assertTrue(type(A) is coo_matrix) A_size = sum(c.A.shape[0] for c in p.constraints) self.assertTupleEqual(A.shape,(A_size,net.num_vars+p.num_extra_vars)) self.assertGreater(A.nnz,0) # Check gphi phi0 = phi gphi0 = gphi.copy() for i in range(NUM_TRIALS): d =
np.random.randn(net.num_vars+p.num_extra_vars)
numpy.random.randn
""" This code is based on https://github.com/ekwebb/fNRI which in turn is based on https://github.com/ethanfetaya/NRI (MIT licence) """ import numpy as np import torch from torch.utils.data.dataset import TensorDataset from torch.utils.data import DataLoader import torch.nn.functional as F from torch.autograd import Variable from itertools import permutations, chain from math import factorial from os import path def my_softmax(input, axis=1): trans_input = input.transpose(axis, 0).contiguous() soft_max_1d = F.softmax(trans_input, dim=0) # added dim=0 as implicit choice is deprecated, dim 0 is edgetype due to transpose return soft_max_1d.transpose(axis, 0) def binary_concrete(logits, tau=1, hard=False, eps=1e-10): y_soft = binary_concrete_sample(logits, tau=tau, eps=eps) if hard: y_hard = (y_soft > 0.5).float() y = Variable(y_hard.data - y_soft.data) + y_soft else: y = y_soft return y def binary_concrete_sample(logits, tau=1, eps=1e-10): logistic_noise = sample_logistic(logits.size(), eps=eps) if logits.is_cuda: logistic_noise = logistic_noise.cuda() y = logits + Variable(logistic_noise) return F.sigmoid(y / tau) def sample_logistic(shape, eps=1e-10): uniform = torch.rand(shape).float() return torch.log(uniform + eps) - torch.log(1 - uniform + eps) def sample_gumbel(shape, eps=1e-10): """ NOTE: Stolen from https://github.com/pytorch/pytorch/pull/3341/commits/327fcfed4c44c62b208f750058d14d4dc1b9a9d3 Sample from Gumbel(0, 1) based on https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb , (MIT license) """ U = torch.rand(shape).float() return - torch.log(eps - torch.log(U + eps)) def gumbel_softmax_sample(logits, tau=1, eps=1e-10): """ NOTE: Stolen from https://github.com/pytorch/pytorch/pull/3341/commits/3<PASSWORD> Draw a sample from the Gumbel-Softmax distribution based on https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb (MIT license) """ gumbel_noise = sample_gumbel(logits.size(), eps=eps) if logits.is_cuda: gumbel_noise = gumbel_noise.cuda() y = logits + Variable(gumbel_noise) return my_softmax(y / tau, axis=-1) def gumbel_softmax(logits, tau=1, hard=False, eps=1e-10): """ NOTE: Stolen from https://github.com/pytorch/pytorch/pull/3341/commits/327fcf<PASSWORD>9<PASSWORD>3 Sample from the Gumbel-Softmax distribution and optionally discretize. Args: logits: [batch_size, n_class] unnormalized log-probs tau: non-negative scalar temperature hard: if True, take argmax, but differentiate w.r.t. soft sample y Returns: [batch_size, n_class] sample from the Gumbel-Softmax distribution. If hard=True, then the returned sample will be one-hot, otherwise it will be a probability distribution that sums to 1 across classes Constraints: - this implementation only works on batch_size x num_features tensor for now based on https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb , (MIT license) """ y_soft = gumbel_softmax_sample(logits, tau=tau, eps=eps) if hard: shape = logits.size() _, k = y_soft.data.max(-1) # this bit is based on # https://discuss.pytorch.org/t/stop-gradients-for-st-gumbel-softmax/530/5 y_hard = torch.zeros(*shape) if y_soft.is_cuda: y_hard = y_hard.cuda() y_hard = y_hard.zero_().scatter_(-1, k.view(shape[:-1] + (1,)), 1.0) # this cool bit of code achieves two things: # - makes the output value exactly one-hot (since we add then # subtract y_soft value) # - makes the gradient equal to y_soft gradient (since we strip # all other gradients) y = Variable(y_hard - y_soft.data) + y_soft else: y = y_soft return y def my_sigmoid(logits, hard=True, sharpness=1.0): edges_soft = 1/(1+torch.exp(-sharpness*logits)) if hard: edges_hard = torch.round(edges_soft) # this bit is based on # https://discuss.pytorch.org/t/stop-gradients-for-st-gumbel-softmax/530/5 if edges_soft.is_cuda: edges_hard = edges_hard.cuda() # this cool bit of code achieves two things: # - makes the output value exactly one-hot (since we add then # subtract y_soft value) # - makes the gradient equal to y_soft gradient (since we strip # all other gradients) edges = Variable(edges_hard - edges_soft.data) + edges_soft else: edges = edges_soft return edges def binary_accuracy(output, labels): preds = output > 0.5 correct = preds.type_as(labels).eq(labels).double() correct = correct.sum() return correct / len(labels) def edge_type_encode(edges): # this is used to gives each 'interaction strength' a unique integer = 0, 1, 2 .. unique = np.unique(edges) encode = np.zeros(edges.shape) for i in range(unique.shape[0]): encode += np.where( edges == unique[i], i, 0) return encode def loader_edges_encode(edges, num_atoms): edges = np.reshape(edges, [edges.shape[0], edges.shape[1], num_atoms ** 2]) edges = np.array(edge_type_encode(edges), dtype=np.int64) off_diag_idx = np.ravel_multi_index( np.where(np.ones((num_atoms, num_atoms)) - np.eye(num_atoms)), [num_atoms, num_atoms]) edges = edges[:,:, off_diag_idx] return edges def loader_combine_edges(edges): edge_types_list = [ int(np.max(edges[:,i,:]))+1 for i in range(edges.shape[1]) ] assert( edge_types_list == sorted(edge_types_list)[::-1] ) encoded_target = np.zeros( edges[:,0,:].shape ) base = 1 for i in reversed(range(edges.shape[1])): encoded_target += base*edges[:,i,:] base *= edge_types_list[i] return encoded_target.astype('int') def load_data_NRI(batch_size=1, sim_folder='', shuffle=True, data_folder='data'): # the edges numpy arrays below are [ num_sims, N, N ] loc_train = np.load(path.join(data_folder,sim_folder,'loc_train.npy')) vel_train = np.load(path.join(data_folder,sim_folder,'vel_train.npy')) edges_train = np.load(path.join(data_folder,sim_folder,'edges_train.npy')) loc_valid = np.load(path.join(data_folder,sim_folder,'loc_valid.npy')) vel_valid = np.load(path.join(data_folder,sim_folder,'vel_valid.npy')) edges_valid = np.load(path.join(data_folder,sim_folder,'edges_valid.npy')) loc_test = np.load(path.join(data_folder,sim_folder,'loc_test.npy')) vel_test = np.load(path.join(data_folder,sim_folder,'vel_test.npy')) edges_test = np.load(path.join(data_folder,sim_folder,'edges_test.npy')) # [num_samples, num_timesteps, num_dims, num_atoms] num_atoms = loc_train.shape[3] loc_max = loc_train.max() loc_min = loc_train.min() vel_max = vel_train.max() vel_min = vel_train.min() # Normalize to [-1, 1] loc_train = (loc_train - loc_min) * 2 / (loc_max - loc_min) - 1 vel_train = (vel_train - vel_min) * 2 / (vel_max - vel_min) - 1 loc_valid = (loc_valid - loc_min) * 2 / (loc_max - loc_min) - 1 vel_valid = (vel_valid - vel_min) * 2 / (vel_max - vel_min) - 1 loc_test = (loc_test - loc_min) * 2 / (loc_max - loc_min) - 1 vel_test = (vel_test - vel_min) * 2 / (vel_max - vel_min) - 1 # Reshape to: [num_sims, num_atoms, num_timesteps, num_dims] loc_train = np.transpose(loc_train, [0, 3, 1, 2]) vel_train = np.transpose(vel_train, [0, 3, 1, 2]) feat_train = np.concatenate([loc_train, vel_train], axis=3) loc_valid = np.transpose(loc_valid, [0, 3, 1, 2]) vel_valid = np.transpose(vel_valid, [0, 3, 1, 2]) feat_valid = np.concatenate([loc_valid, vel_valid], axis=3) loc_test = np.transpose(loc_test, [0, 3, 1, 2]) vel_test = np.transpose(vel_test, [0, 3, 1, 2]) feat_test = np.concatenate([loc_test, vel_test], axis=3) edges_train = loader_edges_encode(edges_train, num_atoms) edges_valid = loader_edges_encode(edges_valid, num_atoms) edges_test = loader_edges_encode(edges_test, num_atoms) edges_train = loader_combine_edges(edges_train) edges_valid = loader_combine_edges(edges_valid) edges_test = loader_combine_edges(edges_test) feat_train = torch.FloatTensor(feat_train) edges_train = torch.LongTensor(edges_train) feat_valid = torch.FloatTensor(feat_valid) edges_valid = torch.LongTensor(edges_valid) feat_test = torch.FloatTensor(feat_test) edges_test = torch.LongTensor(edges_test) train_data = TensorDataset(feat_train, edges_train) valid_data = TensorDataset(feat_valid, edges_valid) test_data = TensorDataset(feat_test, edges_test) train_data_loader = DataLoader(train_data, batch_size=batch_size, shuffle=shuffle) valid_data_loader = DataLoader(valid_data, batch_size=batch_size) test_data_loader = DataLoader(test_data, batch_size=batch_size) return train_data_loader, valid_data_loader, test_data_loader, loc_max, loc_min, vel_max, vel_min def load_data_fNRI(batch_size=1, sim_folder='', shuffle=True, data_folder='data'): # the edges numpy arrays below are [ num_sims, N, N ] loc_train = np.load(path.join(data_folder,sim_folder,'loc_train.npy')) vel_train = np.load(path.join(data_folder,sim_folder,'vel_train.npy')) edges_train = np.load(path.join(data_folder,sim_folder,'edges_train.npy')) loc_valid = np.load(path.join(data_folder,sim_folder,'loc_valid.npy')) vel_valid = np.load(path.join(data_folder,sim_folder,'vel_valid.npy')) edges_valid = np.load(path.join(data_folder,sim_folder,'edges_valid.npy')) loc_test = np.load(path.join(data_folder,sim_folder,'loc_test.npy')) vel_test = np.load(path.join(data_folder,sim_folder,'vel_test.npy')) edges_test = np.load(path.join(data_folder,sim_folder,'edges_test.npy')) # [num_samples, num_timesteps, num_dims, num_atoms] num_atoms = loc_train.shape[3] loc_max = loc_train.max() loc_min = loc_train.min() vel_max = vel_train.max() vel_min = vel_train.min() # Normalize to [-1, 1] loc_train = (loc_train - loc_min) * 2 / (loc_max - loc_min) - 1 vel_train = (vel_train - vel_min) * 2 / (vel_max - vel_min) - 1 loc_valid = (loc_valid - loc_min) * 2 / (loc_max - loc_min) - 1 vel_valid = (vel_valid - vel_min) * 2 / (vel_max - vel_min) - 1 loc_test = (loc_test - loc_min) * 2 / (loc_max - loc_min) - 1 vel_test = (vel_test - vel_min) * 2 / (vel_max - vel_min) - 1 # Reshape to: [num_sims, num_atoms, num_timesteps, num_dims] loc_train = np.transpose(loc_train, [0, 3, 1, 2]) vel_train = np.transpose(vel_train, [0, 3, 1, 2]) feat_train = np.concatenate([loc_train, vel_train], axis=3) loc_valid = np.transpose(loc_valid, [0, 3, 1, 2]) vel_valid = np.transpose(vel_valid, [0, 3, 1, 2]) feat_valid = np.concatenate([loc_valid, vel_valid], axis=3) loc_test = np.transpose(loc_test, [0, 3, 1, 2]) vel_test = np.transpose(vel_test, [0, 3, 1, 2]) feat_test = np.concatenate([loc_test, vel_test], axis=3) edges_train = loader_edges_encode( edges_train, num_atoms ) edges_valid = loader_edges_encode( edges_valid, num_atoms ) edges_test = loader_edges_encode( edges_test, num_atoms ) edges_train = torch.LongTensor(edges_train) edges_valid = torch.LongTensor(edges_valid) edges_test = torch.LongTensor(edges_test) feat_train = torch.FloatTensor(feat_train) feat_valid = torch.FloatTensor(feat_valid) feat_test = torch.FloatTensor(feat_test) train_data = TensorDataset(feat_train, edges_train) valid_data = TensorDataset(feat_valid, edges_valid) test_data = TensorDataset(feat_test, edges_test) train_data_loader = DataLoader(train_data, batch_size=batch_size, shuffle=shuffle) valid_data_loader = DataLoader(valid_data, batch_size=batch_size) test_data_loader = DataLoader(test_data, batch_size=batch_size) return train_data_loader, valid_data_loader, test_data_loader, loc_max, loc_min, vel_max, vel_min def to_2d_idx(idx, num_cols): idx = np.array(idx, dtype=np.int64) y_idx = np.array(np.floor(idx / float(num_cols)), dtype=np.int64) x_idx = idx % num_cols return x_idx, y_idx def encode_onehot(labels): classes = set(labels) classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)} labels_onehot = np.array(list(map(classes_dict.get, labels)), dtype=np.int32) return labels_onehot def get_triu_indices(num_nodes): """Linear triu (upper triangular) indices.""" ones = torch.ones(num_nodes, num_nodes) eye = torch.eye(num_nodes, num_nodes) triu_indices = (ones.triu() - eye).nonzero().t() triu_indices = triu_indices[0] * num_nodes + triu_indices[1] return triu_indices def get_tril_indices(num_nodes): """Linear tril (lower triangular) indices.""" ones = torch.ones(num_nodes, num_nodes) eye = torch.eye(num_nodes, num_nodes) tril_indices = (ones.tril() - eye).nonzero().t() tril_indices = tril_indices[0] * num_nodes + tril_indices[1] return tril_indices def get_offdiag_indices(num_nodes): """Linear off-diagonal indices.""" ones = torch.ones(num_nodes, num_nodes) eye = torch.eye(num_nodes, num_nodes) offdiag_indices = (ones - eye).nonzero().t() offdiag_indices = offdiag_indices[0] * num_nodes + offdiag_indices[1] return offdiag_indices def get_triu_offdiag_indices(num_nodes): """Linear triu (upper) indices w.r.t. vector of off-diagonal elements.""" triu_idx = torch.zeros(num_nodes * num_nodes) triu_idx[get_triu_indices(num_nodes)] = 1. triu_idx = triu_idx[get_offdiag_indices(num_nodes)] return triu_idx.nonzero() def get_tril_offdiag_indices(num_nodes): """Linear tril (lower) indices w.r.t. vector of off-diagonal elements.""" tril_idx = torch.zeros(num_nodes * num_nodes) tril_idx[get_tril_indices(num_nodes)] = 1. tril_idx = tril_idx[get_offdiag_indices(num_nodes)] return tril_idx.nonzero() def get_minimum_distance(data): data = data[:, :, :, :2].transpose(1, 2) data_norm = (data ** 2).sum(-1, keepdim=True) dist = data_norm + \ data_norm.transpose(2, 3) - \ 2 * torch.matmul(data, data.transpose(2, 3)) min_dist, _ = dist.min(1) return min_dist.view(min_dist.size(0), -1) def get_buckets(dist, num_buckets): dist = dist.cpu().data.numpy() min_dist = np.min(dist) max_dist = np.max(dist) bucket_size = (max_dist - min_dist) / num_buckets thresholds = bucket_size * np.arange(num_buckets) bucket_idx = [] for i in range(num_buckets): if i < num_buckets - 1: idx = np.where(np.all(np.vstack((dist > thresholds[i], dist <= thresholds[i + 1])), 0))[0] else: idx = np.where(dist > thresholds[i])[0] bucket_idx.append(idx) return bucket_idx, thresholds def get_correct_per_bucket(bucket_idx, pred, target): pred = pred.cpu().numpy()[:, 0] target = target.cpu().data.numpy() correct_per_bucket = [] for i in range(len(bucket_idx)): preds_bucket = pred[bucket_idx[i]] target_bucket = target[bucket_idx[i]] correct_bucket = np.sum(preds_bucket == target_bucket) correct_per_bucket.append(correct_bucket) return correct_per_bucket def get_correct_per_bucket_(bucket_idx, pred, target): pred = pred.cpu().numpy() target = target.cpu().data.numpy() correct_per_bucket = [] for i in range(len(bucket_idx)): preds_bucket = pred[bucket_idx[i]] target_bucket = target[bucket_idx[i]] correct_bucket = np.sum(preds_bucket == target_bucket) correct_per_bucket.append(correct_bucket) return correct_per_bucket def kl_categorical(preds, log_prior, num_atoms, eps=1e-16): kl_div = preds * (torch.log(preds + eps) - log_prior) return kl_div.sum() / (num_atoms * preds.size(0)) # normalisation here is (batch * num atoms) def kl_categorical_uniform(preds, num_atoms, num_edge_types, add_const=False, eps=1e-16): kl_div = preds * torch.log(preds + eps) if add_const: const = np.log(num_edge_types) kl_div += const return kl_div.sum() / (num_atoms * preds.size(0)) def kl_categorical_uniform_var(preds, num_atoms, num_edge_types, add_const=False, eps=1e-16): kl_div = preds * torch.log(preds + eps) if add_const: const = np.log(num_edge_types) kl_div += const return (kl_div.sum(dim=1) / num_atoms).var() def nll_gaussian(preds, target, variance, add_const=False): neg_log_p = ((preds - target) ** 2 / (2 * variance)) if add_const: const = 0.5 * np.log(2 * np.pi * variance) neg_log_p += const return neg_log_p.sum() / (target.size(0) * target.size(1)) # normalisation here is (batch * num atoms) def nll_gaussian_var(preds, target, variance, add_const=False): # returns the variance over the batch of the reconstruction loss neg_log_p = ((preds - target) ** 2 / (2 * variance)) if add_const: const = 0.5 * np.log(2 * np.pi * variance) neg_log_p += const return (neg_log_p.sum(dim=1)/target.size(1)).var() # Loss function for the case of variable sigma, input sigma must have same shape as preds i.e. [batchsize, no. of atoms, no. of time steps, no. of phase space coords (x,y,vx,vy)] def nll_gaussian_variablesigma(preds, target, logsigma, add_const=True): # cutoff to ensure it does not become infinite if (torch.min(logsigma) < -pow(10, 7)): accuracy = np.full( (logsigma.size(0), logsigma.size(1), logsigma.size(2), logsigma.size(3)), -pow(10, 7), dtype=np.float32) accuracy = torch.from_numpy(accuracy) if preds.is_cuda: accuracy = accuracy.cuda() logsigma = torch.max(logsigma, accuracy) neg_log_p = (((preds - target) ** 2 )*torch.exp(-logsigma)) / 2 # neg_log_p = ((preds - target) ** 2 - 0.0000001 / (2 * variance)) # neg_log_p = ((preds - target) ** 2 / (2 * variance))- 0.0000001/ sigma loss_1 = neg_log_p loss_2 = 0.0 if add_const: const = (0.5 * logsigma) neg_log_p = neg_log_p + const loss_2 += const return neg_log_p.sum() / (target.size(0) * target.size(1)), loss_1.sum() / (target.size(0) * target.size(1)) , loss_2.sum() / (target.size(0) * target.size(1)) # normalisation here is (batch * num atoms) def nll_gaussian_var__variablesigma(preds, target, logsigma, add_const=True): # returns the variance over the batch of the reconstruction loss # cutoff to ensure it does not become infinite if (torch.min(logsigma) < -pow(10, 7)): accuracy = np.full( (logsigma.size(0), logsigma.size(1), logsigma.size(2), logsigma.size(3)), -pow(10, 7), dtype=np.float32) accuracy = torch.from_numpy(accuracy) if preds.is_cuda: accuracy = accuracy.cuda() logsigma = torch.max(logsigma, accuracy) neg_log_p = (((preds - target) ** 2) * torch.exp(-logsigma)) / 2 # neg_log_p = ((preds - target) ** 2 - 0.0000001 / (2 * variance)) # neg_log_p = ((preds - target) ** 2 / (2 * variance))- 0.0000001/ sigma if add_const: const = (0.5 * logsigma) neg_log_p = neg_log_p + const return (neg_log_p.sum(dim=1)/target.size(1)).var() # Loss function for the case of variable sigma Laplace distribution, input sigma must have same shape as preds i.e. [batchsize, no. of atoms, no. of time steps, no. of phase space coords (x,y,vx,vy)] def nll_laplace_variablesigma(preds, target, sigma, add_const=True): variance = sigma ** 2 neg_log_p = torch.abs((preds - target)) / sigma loss_1 = neg_log_p loss_2 = 0.0 if add_const: const = (torch.log(2* sigma)) neg_log_p = neg_log_p + const loss_2 += const return neg_log_p.sum() / (target.size(0) * target.size(1)), loss_1.sum() / (target.size(0) * target.size(1)) , loss_2 / (target.size(0) * target.size(1)) # normalisation here is (batch * num atoms) def nll_laplace_var__variablesigma(preds, target, sigma, add_const=True): # returns the variance over the batch of the reconstruction loss variance = sigma ** 2 neg_log_p = torch.abs((preds - target)) / sigma loss_1 = neg_log_p loss_2 = 0.0 if add_const: const = (torch.log(2 * sigma)) neg_log_p = neg_log_p + const loss_2 += const return (neg_log_p.sum(dim=1)/target.size(1)).var() # Loss function for the case of variable sigma Student's distribution, input sigma must have same shape as preds i.e. [batchsize, no. of atoms, no. of time steps, no. of phase space coords (x,y,vx,vy)] def nll_students_variablesigma(preds, target, sigma, add_const=True): sigmasquared = sigma ** 2 neg_log_p = torch.log((preds - target) ** 2 + sigmasquared) loss_1 = neg_log_p loss_2 = 0.0 if add_const: const = -(torch.log(sigma)) neg_log_p = neg_log_p + const loss_2 += const return neg_log_p.sum() / (target.size(0) * target.size(1)), loss_1.sum() / (target.size(0) * target.size(1)) , loss_2 / (target.size(0) * target.size(1)) # normalisation here is (batch * num atoms) def nll_students_var__variablesigma(preds, target, sigma, add_const=True): # returns the variance over the batch of the reconstruction loss sigmasquared = sigma ** 2 neg_log_p = torch.log((preds - target) ** 2 + sigmasquared) loss_1 = neg_log_p loss_2 = 0.0 if add_const: const = -(torch.log(sigma)) neg_log_p = neg_log_p + const loss_2 += const return (neg_log_p.sum(dim=1)/target.size(1)).var() # Loss function for the case of variable sigma multivariate case, input sigma must have same shape as preds i.e. [batchsize, no. of atoms, no. of time steps, no. of phase space coords (x,y,vx,vy)] def nll_gaussian_multivariatesigma(preds, target, sigma, accel, add_const=True): # get normalised vectors for acceleration and velocities v|| and a|| indices = torch.LongTensor([2,3]) if preds.is_cuda: indices = indices.cuda() velocities = torch.index_select(preds, 3, indices) velnorm = velocities.norm(p=2, dim = 3, keepdim = True) normalisedvel = velocities.div(velnorm.expand_as(velocities)) accelnorm = accel.norm(p=2, dim = 3, keepdim = True) normalisedaccel = accel.div(accelnorm.expand_as(accel)) # get perpendicular components to the accelerations and velocities accelperp, velperp # note in 2D perpendicular vector is just rotation by pi/2 about origin (x,y) -> (-y,x) rotationmatrix = np.zeros((velocities.size(0), velocities.size(1), velocities.size(2),2,2), dtype=np.float32) for i in range(len(rotationmatrix)): for j in range(len(rotationmatrix[i])): for l in range(len(rotationmatrix[i][j])): rotationmatrix[i][j][l][0][1] = np.float32(-1) rotationmatrix[i][j][l][1][0] = np.float32(1) rotationmatrix = torch.from_numpy(rotationmatrix) if preds.is_cuda: rotationmatrix = rotationmatrix.cuda() velperp = torch.matmul(rotationmatrix, normalisedvel.unsqueeze(4)) velperp = velperp.squeeze() accelperp = torch.matmul(rotationmatrix, normalisedaccel.unsqueeze(4)) accelperp = accelperp.squeeze() # need Sigma=Sigma^2, Sigma^-1 and det(Sigma) variance = sigma ** 2 determinant = torch.prod(variance, 3).unsqueeze(3) inversevariance = variance ** -1 # in order for us to use simple methods need 1*4, 4*4, 4*4, 4*4, 4*1 tensors for each batch etc. differences = preds-target differencestranspose = differences.unsqueeze(3) # (x-mu)^T differences = differences.unsqueeze(4) # (x-mu) sigmadiag = torch.diag_embed(inversevariance,offset=0) # 4*4 diagonal variance matrix unitarytransform = np.zeros((normalisedvel.size(0), normalisedvel.size(1), normalisedvel.size(2),4,4), dtype = np.float32) # assumes the first term has isotropic uncertainty- no uncertainty introduced yet and Sigma0_t~v_(t-1) hence the l+1 # below for i in range(len(unitarytransform)): for j in range(len(unitarytransform[i])): unitarytransform[i][j][0][0][0] = 1 unitarytransform[i][j][0][1][0] = 0 unitarytransform[i][j][0][0][1] = 0 unitarytransform[i][j][0][1][1] = 1 unitarytransform[i][j][0][2][2] = 1 unitarytransform[i][j][0][3][2] = 0 unitarytransform[i][j][0][2][3] = 0 unitarytransform[i][j][0][3][3] = 1 # gets unitary transformation with offset of 1 in time domain as explained above. for i in range(len(unitarytransform)): for j in range(len(unitarytransform[i])): for l in range(len(unitarytransform[i][j])-1): unitarytransform[i][j][l+1][0][0] = normalisedvel.detach().cpu().numpy()[i][j][l][0] unitarytransform[i][j][l+1][1][0] = normalisedvel.detach().cpu().numpy()[i][j][l][1] unitarytransform[i][j][l+1][0][1] = velperp.detach().cpu().numpy()[i][j][l][0] unitarytransform[i][j][l+1][1][1] = velperp.detach().cpu().numpy()[i][j][l][1] unitarytransform[i][j][l+1][2][2] = normalisedaccel.detach().cpu().numpy()[i][j][l][0] unitarytransform[i][j][l+1][3][2] = normalisedaccel.detach().cpu().numpy()[i][j][l][1] unitarytransform[i][j][l+1][2][3] = accelperp.detach().cpu().numpy()[i][j][l][0] unitarytransform[i][j][l+1][3][3] = accelperp.detach().cpu().numpy()[i][j][l][1] # U unitarytransform = torch.from_numpy(unitarytransform) if preds.is_cuda: unitarytransform = unitarytransform.cuda() # U^-1 unitarytransforminverse = torch.inverse(unitarytransform) # L= 1/2(ln(detSigma)+(x-mu)^TUSigma^(-1)U^(-1)(x-mu)) + const where const is unimportant neg_log_p_1 = torch.matmul(unitarytransforminverse, differences) neg_log_p_2 = torch.matmul(sigmadiag, neg_log_p_1) neg_log_p_3 = torch.matmul(unitarytransform, neg_log_p_2) neg_log_p_4 = torch.matmul(differencestranspose, neg_log_p_3).squeeze() neg_log_p_4 = (neg_log_p_4 * 0.5) loss_1 = neg_log_p_4 loss_2 = 0.0 if add_const: const = (0.5 * torch.log(2*np.pi* determinant)) neg_log_p_4 = neg_log_p_4 + const loss_2 += const return neg_log_p_4.sum() / (target.size(0) * target.size(1)), loss_1.sum() / (target.size(0) * target.size(1)) , loss_2 / (target.size(0) * target.size(1)) # normalisation here is (batch * num atoms) def nll_gaussian_var_multivariatesigma(preds, target, sigma, accel, add_const=True): # returns the variance over the batch of the reconstruction loss # get normalised vectors for acceleration and velocities v|| and a|| indices = torch.LongTensor([2, 3]) if preds.is_cuda: indices = indices.cuda() velocities = torch.index_select(preds, 3, indices) velnorm = velocities.norm(p=2, dim=3, keepdim=True) normalisedvel = velocities.div(velnorm.expand_as(velocities)) accelnorm = accel.norm(p=2, dim=3, keepdim=True) normalisedaccel = accel.div(accelnorm.expand_as(accel)) # get perpendicular components to the accelerations and velocities accelperp, velperp # note in 2D perpendicular vector is just rotation by pi/2 about origin (x,y) -> (-y,x) rotationmatrix = np.zeros((velocities.size(0), velocities.size(1), velocities.size(2), 2, 2), dtype=np.float32) for i in range(len(rotationmatrix)): for j in range(len(rotationmatrix[i])): for l in range(len(rotationmatrix[i][j])): rotationmatrix[i][j][l][0][1] = np.float32(-1) rotationmatrix[i][j][l][1][0] = np.float32(1) rotationmatrix = torch.from_numpy(rotationmatrix) if preds.is_cuda: rotationmatrix = rotationmatrix.cuda() velperp = torch.matmul(rotationmatrix, normalisedvel.unsqueeze(4)) velperp = velperp.squeeze() accelperp = torch.matmul(rotationmatrix, normalisedaccel.unsqueeze(4)) accelperp = accelperp.squeeze() # need Sigma=Sigma^2, Sigma^-1 and det(Sigma) variance = sigma ** 2 determinant = torch.prod(variance, 3).unsqueeze(3) inversevariance = variance ** -1 # in order for us to use simple methods need 1*4, 4*4, 4*4, 4*4, 4*1 tensors for each batch etc. differences = preds - target differencestranspose = differences.unsqueeze(3) # (x-mu)^T differences = differences.unsqueeze(4) # (x-mu) sigmadiag = torch.diag_embed(inversevariance, offset=0) # 4*4 diagonal variance matrix unitarytransform = np.zeros((normalisedvel.size(0), normalisedvel.size(1), normalisedvel.size(2), 4, 4), dtype=np.float32) # assumes the first term has isotropic uncertainty- no uncertainty introduced yet and Sigma0_t~v_(t-1) hence the l+1 # below for i in range(len(unitarytransform)): for j in range(len(unitarytransform[i])): unitarytransform[i][j][0][0][0] = 1 unitarytransform[i][j][0][1][0] = 0 unitarytransform[i][j][0][0][1] = 0 unitarytransform[i][j][0][1][1] = 1 unitarytransform[i][j][0][2][2] = 1 unitarytransform[i][j][0][3][2] = 0 unitarytransform[i][j][0][2][3] = 0 unitarytransform[i][j][0][3][3] = 1 # gets unitary transformation with offset of 1 in time domain as explained above. for i in range(len(unitarytransform)): for j in range(len(unitarytransform[i])): for l in range(len(unitarytransform[i][j]) - 1): unitarytransform[i][j][l + 1][0][0] = normalisedvel.detach().cpu().numpy()[i][j][l][0] unitarytransform[i][j][l + 1][1][0] = normalisedvel.detach().cpu().numpy()[i][j][l][1] unitarytransform[i][j][l + 1][0][1] = velperp.detach().cpu().numpy()[i][j][l][0] unitarytransform[i][j][l + 1][1][1] = velperp.detach().cpu().numpy()[i][j][l][1] unitarytransform[i][j][l + 1][2][2] = normalisedaccel.detach().cpu().numpy()[i][j][l][0] unitarytransform[i][j][l + 1][3][2] = normalisedaccel.detach().cpu().numpy()[i][j][l][1] unitarytransform[i][j][l + 1][2][3] = accelperp.detach().cpu().numpy()[i][j][l][0] unitarytransform[i][j][l + 1][3][3] = accelperp.detach().cpu().numpy()[i][j][l][1] # U unitarytransform = torch.from_numpy(unitarytransform) if preds.is_cuda: unitarytransform = unitarytransform.cuda() # U^-1 unitarytransforminverse = torch.inverse(unitarytransform) # L= 1/2(ln(detSigma)+(x-mu)^TUSigma^(-1)U^(-1)(x-mu)) + const where const is unimportant neg_log_p_1 = torch.matmul(unitarytransforminverse, differences) neg_log_p_2 = torch.matmul(sigmadiag, neg_log_p_1) neg_log_p_3 = torch.matmul(unitarytransform, neg_log_p_2) neg_log_p_4 = torch.matmul(differencestranspose, neg_log_p_3).squeeze() neg_log_p_4 = (neg_log_p_4 * 0.5) loss_1 = neg_log_p_4 loss_2 = 0.0 if add_const: const = (0.5 * torch.log(2 * np.pi * determinant)).sum().detach().cpu().numpy().item(0) neg_log_p_4 += const loss_2 += const return (neg_log_p_4.sum(dim=1)/target.size(1)).var() def nll_gaussian_multivariatesigma_efficient(preds, target, sigma, accel, add_const=True): # get normalised vectors for acceleration and velocities v|| and a|| indices = torch.LongTensor([2,3]) if preds.is_cuda: indices = indices.cuda() velocities = torch.index_select(preds, 3, indices) velnorm = velocities.norm(p=2, dim = 3, keepdim = True) normalisedvel = velocities.div(velnorm.expand_as(velocities)) accelnorm = accel.norm(p=2, dim = 3, keepdim = True) normalisedaccel = accel.div(accelnorm.expand_as(accel)) # get perpendicular components to the accelerations and velocities accelperp, velperp # note in 2D perpendicular vector is just rotation by pi/2 about origin (x,y) -> (-y,x) rotationmatrix = np.zeros((velocities.size(0), velocities.size(1), velocities.size(2),2,2), dtype=np.float32) for i in range(len(rotationmatrix)): for j in range(len(rotationmatrix[i])): for l in range(len(rotationmatrix[i][j])): rotationmatrix[i][j][l][0][1] = np.float32(-1) rotationmatrix[i][j][l][1][0] = np.float32(1) rotationmatrix = torch.from_numpy(rotationmatrix) if preds.is_cuda: rotationmatrix = rotationmatrix.cuda() velperp = torch.matmul(rotationmatrix, normalisedvel.unsqueeze(4)) velperp = velperp.squeeze() accelperp = torch.matmul(rotationmatrix, normalisedaccel.unsqueeze(4)) accelperp = accelperp.squeeze() # need Sigma=Sigma^2, Sigma^-1 and det(Sigma) variance = sigma ** 2 determinant = torch.prod(variance, 3).unsqueeze(3) inversevariance = variance ** -1 # in order for us to use simple methods need 1*2, 2*2, 2*2, 2*2, 2*1 tensors for each batch etc. differences = preds-target indices_pos = torch.LongTensor([0,1]) indices_vel = torch.LongTensor([2,3]) if preds.is_cuda: indices_pos, indices_vel = indices_pos.cuda(), indices_vel.cuda() position_differences = torch.index_select(differences, 3, indices_pos) velocity_differences = torch.index_select(differences, 3, indices_vel) position_differencestranspose = position_differences.unsqueeze(3) velocity_differencestranspose = velocity_differences.unsqueeze(3)# (x-mu)^T position_differences = position_differences.unsqueeze(4) velocity_differences = velocity_differences.unsqueeze(4)# (x-mu) sigmadiag_position = torch.diag_embed(torch.index_select(inversevariance, 3, indices_pos), offset=0) sigmadiag_velocity = torch.diag_embed(torch.index_select(inversevariance, 3, indices_vel), offset=0) # 2*2 diagonal variance matrix unitarytransform_position = np.zeros((normalisedvel.size(0), normalisedvel.size(1), normalisedvel.size(2),2,2), dtype = np.float32) unitarytransform_velocity = np.zeros((normalisedvel.size(0), normalisedvel.size(1), normalisedvel.size(2),2,2), dtype = np.float32) # assumes the first term has isotropic uncertainty- no uncertainty introduced yet and Sigma0_t~v_(t-1) hence the l+1 # below for i in range(len(unitarytransform_position)): for j in range(len(unitarytransform_position[i])): unitarytransform_position[i][j][0][0][0] = 1 unitarytransform_position[i][j][0][1][0] = 0 unitarytransform_position[i][j][0][0][1] = 0 unitarytransform_position[i][j][0][1][1] = 1 unitarytransform_velocity[i][j][0][0][0] = 1 unitarytransform_velocity[i][j][0][1][0] = 0 unitarytransform_velocity[i][j][0][0][1] = 0 unitarytransform_velocity[i][j][0][1][1] = 1 # gets unitary transformation with offset of 1 in time domain as explained above. for i in range(len(unitarytransform_position)): for j in range(len(unitarytransform_position[i])): for l in range(len(unitarytransform_position[i][j])-1): unitarytransform_position[i][j][l+1][0][0] = normalisedvel.detach().cpu().numpy()[i][j][l][0] unitarytransform_position[i][j][l+1][1][0] = normalisedvel.detach().cpu().numpy()[i][j][l][1] unitarytransform_position[i][j][l+1][0][1] = velperp.detach().cpu().numpy()[i][j][l][0] unitarytransform_position[i][j][l+1][1][1] = velperp.detach().cpu().numpy()[i][j][l][1] unitarytransform_velocity[i][j][l+1][0][0] = normalisedaccel.detach().cpu().numpy()[i][j][l][0] unitarytransform_velocity[i][j][l+1][1][0] = normalisedaccel.detach().cpu().numpy()[i][j][l][1] unitarytransform_velocity[i][j][l+1][0][1] = accelperp.detach().cpu().numpy()[i][j][l][0] unitarytransform_velocity[i][j][l+1][1][1] = accelperp.detach().cpu().numpy()[i][j][l][1] # U unitarytransform_position = torch.from_numpy(unitarytransform_position) unitarytransform_velocity = torch.from_numpy(unitarytransform_velocity) if preds.is_cuda: unitarytransform_position, unitarytransform_velocity = unitarytransform_position.cuda(), unitarytransform_velocity.cuda() # U^-1 unitarytransforminverse_position = torch.inverse(unitarytransform_position) unitarytransforminverse_velocity = torch.inverse(unitarytransform_velocity) # L= 1/2(ln(detSigma)+(x-mu)^TUSigma^(-1)U^(-1)(x-mu)) + const where const is unimportant - sum of 2*2 matrix multiplications neg_log_p_1 = torch.matmul(unitarytransforminverse_position, position_differences) neg_log_p_2 = torch.matmul(sigmadiag_position, neg_log_p_1) neg_log_p_3 = torch.matmul(unitarytransform_position, neg_log_p_2) neg_log_p_4 = torch.matmul(position_differencestranspose, neg_log_p_3).squeeze() neg_log_p_4 = (neg_log_p_4 * 0.5) neg_log_v_1 = torch.matmul(unitarytransforminverse_velocity, velocity_differences) neg_log_v_2 = torch.matmul(sigmadiag_velocity, neg_log_v_1) neg_log_v_3 = torch.matmul(unitarytransform_velocity, neg_log_v_2) neg_log_v_4 = torch.matmul(velocity_differencestranspose, neg_log_v_3).squeeze() neg_log_v_4 = (neg_log_v_4 * 0.5) loss_1 = neg_log_p_4 + neg_log_v_4 loss_2 = 0.0 if add_const: const = (0.5 * torch.log(2*np.pi* determinant)) neg_log_p_4 = neg_log_p_4 + const loss_2 += const return (neg_log_p_4+neg_log_v_4).sum() / (target.size(0) * target.size(1)), loss_1.sum() / (target.size(0) * target.size(1)) , loss_2 / (target.size(0) * target.size(1)) # normalisation here is (batch * num atoms) def nll_gaussian_var_multivariatesigma_efficient(preds, target, sigma, accel, add_const=True): # returns the variance over the batch of the reconstruction loss # get normalised vectors for acceleration and velocities v|| and a|| indices = torch.LongTensor([2, 3]) if preds.is_cuda: indices = indices.cuda() velocities = torch.index_select(preds, 3, indices) velnorm = velocities.norm(p=2, dim=3, keepdim=True) normalisedvel = velocities.div(velnorm.expand_as(velocities)) accelnorm = accel.norm(p=2, dim=3, keepdim=True) normalisedaccel = accel.div(accelnorm.expand_as(accel)) # get perpendicular components to the accelerations and velocities accelperp, velperp # note in 2D perpendicular vector is just rotation by pi/2 about origin (x,y) -> (-y,x) rotationmatrix = np.zeros((velocities.size(0), velocities.size(1), velocities.size(2), 2, 2), dtype=np.float32) for i in range(len(rotationmatrix)): for j in range(len(rotationmatrix[i])): for l in range(len(rotationmatrix[i][j])): rotationmatrix[i][j][l][0][1] = np.float32(-1) rotationmatrix[i][j][l][1][0] = np.float32(1) rotationmatrix = torch.from_numpy(rotationmatrix) if preds.is_cuda: rotationmatrix = rotationmatrix.cuda() velperp = torch.matmul(rotationmatrix, normalisedvel.unsqueeze(4)) velperp = velperp.squeeze() accelperp = torch.matmul(rotationmatrix, normalisedaccel.unsqueeze(4)) accelperp = accelperp.squeeze() # need Sigma=Sigma^2, Sigma^-1 and det(Sigma) variance = sigma ** 2 determinant = torch.prod(variance, 3).unsqueeze(3) inversevariance = variance ** -1 # in order for us to use simple methods need 1*2, 2*2, 2*2, 2*2, 2*1 tensors for each batch etc. differences = preds - target indices_pos = torch.LongTensor([0, 1]) indices_vel = torch.LongTensor([2, 3]) if preds.is_cuda: indices_pos, indices_vel = indices_pos.cuda(), indices_vel.cuda() position_differences = torch.index_select(differences, 3, indices_pos) velocity_differences = torch.index_select(differences, 3, indices_vel) position_differencestranspose = position_differences.unsqueeze(3) velocity_differencestranspose = velocity_differences.unsqueeze(3) # (x-mu)^T position_differences = position_differences.unsqueeze(4) velocity_differences = velocity_differences.unsqueeze(4) # (x-mu) sigmadiag_position = torch.diag_embed(torch.index_select(inversevariance, 3, indices_pos), offset=0) sigmadiag_velocity = torch.diag_embed(torch.index_select(inversevariance, 3, indices_vel), offset=0) # 2*2 diagonal variance matrix unitarytransform_position = np.zeros((normalisedvel.size(0), normalisedvel.size(1), normalisedvel.size(2), 2, 2), dtype=np.float32) unitarytransform_velocity = np.zeros((normalisedvel.size(0), normalisedvel.size(1), normalisedvel.size(2), 2, 2), dtype=np.float32) # assumes the first term has isotropic uncertainty- no uncertainty introduced yet and Sigma0_t~v_(t-1) hence the l+1 # below for i in range(len(unitarytransform_position)): for j in range(len(unitarytransform_position[i])): unitarytransform_position[i][j][0][0][0] = 1 unitarytransform_position[i][j][0][1][0] = 0 unitarytransform_position[i][j][0][0][1] = 0 unitarytransform_position[i][j][0][1][1] = 1 unitarytransform_velocity[i][j][0][0][0] = 1 unitarytransform_velocity[i][j][0][1][0] = 0 unitarytransform_velocity[i][j][0][0][1] = 0 unitarytransform_velocity[i][j][0][1][1] = 1 # gets unitary transformation with offset of 1 in time domain as explained above. for i in range(len(unitarytransform_position)): for j in range(len(unitarytransform_position[i])): for l in range(len(unitarytransform_position[i][j]) - 1): unitarytransform_position[i][j][l + 1][0][0] = normalisedvel.detach().cpu().numpy()[i][j][l][0] unitarytransform_position[i][j][l + 1][1][0] = normalisedvel.detach().cpu().numpy()[i][j][l][1] unitarytransform_position[i][j][l + 1][0][1] = velperp.detach().cpu().numpy()[i][j][l][0] unitarytransform_position[i][j][l + 1][1][1] = velperp.detach().cpu().numpy()[i][j][l][1] unitarytransform_velocity[i][j][l + 1][0][0] = normalisedaccel.detach().cpu().numpy()[i][j][l][0] unitarytransform_velocity[i][j][l + 1][1][0] = normalisedaccel.detach().cpu().numpy()[i][j][l][1] unitarytransform_velocity[i][j][l + 1][0][1] = accelperp.detach().cpu().numpy()[i][j][l][0] unitarytransform_velocity[i][j][l + 1][1][1] = accelperp.detach().cpu().numpy()[i][j][l][1] # U unitarytransform_position = torch.from_numpy(unitarytransform_position) unitarytransform_velocity = torch.from_numpy(unitarytransform_velocity) if preds.is_cuda: unitarytransform_position, unitarytransform_velocity = unitarytransform_position.cuda(), unitarytransform_velocity.cuda() # U^-1 unitarytransforminverse_position = torch.inverse(unitarytransform_position) unitarytransforminverse_velocity = torch.inverse(unitarytransform_velocity) # L= 1/2(ln(detSigma)+(x-mu)^TUSigma^(-1)U^(-1)(x-mu)) + const where const is unimportant - sum of 2*2 matrix multiplications neg_log_p_1 = torch.matmul(unitarytransforminverse_position, position_differences) neg_log_p_2 = torch.matmul(sigmadiag_position, neg_log_p_1) neg_log_p_3 = torch.matmul(unitarytransform_position, neg_log_p_2) neg_log_p_4 = torch.matmul(position_differencestranspose, neg_log_p_3).squeeze() neg_log_p_4 = (neg_log_p_4 * 0.5) neg_log_v_1 = torch.matmul(unitarytransforminverse_velocity, velocity_differences) neg_log_v_2 = torch.matmul(sigmadiag_velocity, neg_log_v_1) neg_log_v_3 = torch.matmul(unitarytransform_velocity, neg_log_v_2) neg_log_v_4 = torch.matmul(velocity_differencestranspose, neg_log_v_3).squeeze() neg_log_v_4 = (neg_log_v_4 * 0.5) loss_1 = neg_log_p_4 + neg_log_v_4 loss_2 = 0.0 if add_const: const = (0.5 * torch.log(2 * np.pi * determinant)) neg_log_p_4 = neg_log_p_4 + const loss_2 += const return ((neg_log_p_4+neg_log_v_4).sum(dim=1)/target.size(1)).var() def true_flip(x, dim): indices = [slice(None)] * x.dim() indices[dim] = torch.arange(x.size(dim) - 1, -1, -1, dtype=torch.long, device=x.device) return x[tuple(indices)] def KL_between_blocks(prob_list, num_atoms, eps=1e-16): # Return a list of the mutual information between every block pair KL_list = [] for i in range(len(prob_list)): for j in range(len(prob_list)): if i != j: KL = prob_list[i] *( torch.log(prob_list[i] + eps) - torch.log(prob_list[j] + eps) ) KL_list.append( KL.sum() / (num_atoms * prob_list[i].size(0)) ) KL = prob_list[i] *( torch.log(prob_list[i] + eps) - torch.log( true_flip(prob_list[j],-1) + eps) ) KL_list.append( KL.sum() / (num_atoms * prob_list[i].size(0)) ) return KL_list def decode_target( target, num_edge_types_list ): target_list = [] base = np.prod(num_edge_types_list) for i in range(len(num_edge_types_list)): base /= num_edge_types_list[i] target_list.append( target//base ) target = target % base return target_list def encode_target_list( target_list, edge_types_list ): encoded_target = np.zeros( target_list[0].shape ) base = 1 for i in reversed(range(len(target_list))): encoded_target += base*np.array(target_list[i]) base *= edge_types_list[i] return encoded_target.astype('int') def edge_accuracy_perm_NRI_batch(preds, target, num_edge_types_list): # permutation edge accuracy calculator for the standard NRI model # return the maximum accuracy of the batch over the permutations of the edge labels # also returns a one-hot encoding of the number which represents this permutation # also returns the accuracies for the individual factor graphs _, preds = preds.max(-1) # returns index of max in each z_ij to reduce dim by 1 num_edge_types = np.prod(num_edge_types_list) preds = np.eye(num_edge_types)[np.array(preds.cpu())] # this is nice way to turn integers into one-hot vectors target = np.array(target.cpu()) perms = [p for p in permutations(range(num_edge_types))] # list of edge type permutations # in the below, for each permutation of edge-types, permute preds, then take argmax to go from one-hot to integers # then compare to target, compute accuracy acc = np.array([np.mean(np.equal(target, np.argmax(preds[:,:,p], axis=-1),dtype=object)) for p in perms]) max_acc, idx = np.amax(acc), np.argmax(acc) preds_deperm = np.argmax(preds[:,:,perms[idx]], axis=-1) target_list = decode_target( target, num_edge_types_list ) preds_deperm_list = decode_target( preds_deperm, num_edge_types_list ) blocks_acc = [ np.mean(np.equal(target_list[i], preds_deperm_list[i], dtype=object),axis=-1) for i in range(len(target_list)) ] acc = np.mean(np.equal(target, preds_deperm ,dtype=object), axis=-1) blocks_acc = np.swapaxes(np.array(blocks_acc),0,1) idx_onehot = np.eye(len(perms))[np.array(idx)] return acc, idx_onehot, blocks_acc def edge_accuracy_perm_NRI(preds, targets, num_edge_types_list): acc_batch, perm_code_onehot, acc_blocks_batch = edge_accuracy_perm_NRI_batch(preds, targets, num_edge_types_list) acc = np.mean(acc_batch) acc_var = np.var(acc_batch) acc_blocks = np.mean(acc_blocks_batch, axis=0) acc_var_blocks = np.var(acc_blocks_batch, axis=0) return acc, perm_code_onehot, acc_blocks, acc_var, acc_var_blocks def edge_accuracy_perm_fNRI_batch(preds_list, targets, num_edge_types_list): # permutation edge accuracy calculator for the fNRI model # return the maximum accuracy of the batch over the permutations of the edge labels # also returns a one-hot encoding of the number which represents this permutation # also returns the accuracies for the individual factor graphs target_list = [ targets[:,i,:].cpu() for i in range(targets.shape[1])] preds_list = [ pred.max(-1)[1].cpu() for pred in preds_list] preds = encode_target_list(preds_list, num_edge_types_list) target = encode_target_list(target_list, num_edge_types_list) target_list = [ np.array(t.cpu()).astype('int') for t in target_list ] num_edge_types = np.prod(num_edge_types_list) preds = np.eye(num_edge_types)[preds] # this is nice way to turn integers into one-hot vectors perms = [p for p in permutations(range(num_edge_types))] # list of edge type permutations # in the below, for each permutation of edge-types, permute preds, then take argmax to go from one-hot to integers # then compare to target to compute accuracy acc = np.array([np.mean(np.equal(target, np.argmax(preds[:,:,p], axis=-1),dtype=object)) for p in perms]) max_acc, idx =
np.amax(acc)
numpy.amax
from __future__ import print_function import math import overlap def CalcTriangleAng(pts, angleCache, pt1, pt2, pt3): angId = (pt1, pt2, pt3) if angId in angleCache: return angleCache[angId] #Angle is computed on pt3. pt1 and pt2 define the side opposite the angle pt1v = pts[pt1] pt2v = pts[pt2] pt3v = pts[pt3] v31 = (pt1v[0] - pt3v[0], pt1v[1] - pt3v[1]) v32 = (pt2v[0] - pt3v[0], pt2v[1] - pt3v[1]) mv31 = (v31[0]**2. + v31[1]**2.) ** 0.5 mv32 = (v32[0]**2. + v32[1]**2.) ** 0.5 if mv31 == 0. or mv32 == 0.: raise RuntimeError("Angle not defined for zero area triangles") v31n = [c / mv31 for c in v31] v32n = [c / mv32 for c in v32] crossProd = - v31n[0] * v32n[1] + v31n[1] * v32n[0] dotProd = v31n[0] * v32n[0] + v31n[1] * v32n[1] #Limit to valid range if dotProd > 1.: dotProd = 1. if dotProd < -1.: dotProd = -1. #print(crossProd < 0., crossProd) #print(math.asin(crossProd), math.acos(dotProd), cosAng) if crossProd < 0.: #Reflex angle detected trigAng = 2. * math.pi - math.acos(dotProd) else: #Acute or obtuse angle trigAng = math.acos(dotProd) angleCache[angId] = trigAng return trigAng def MergeHoleIntoOuter(workingPoly, pts, outerInd, hole, holeInd): #Outer polygon before cut filterWorkingPoly = list(workingPoly[:outerInd+1]) filteredPts = pts[:] #Reorder hole reorderedHole = hole[holeInd:] reorderedHole.extend(hole[:holeInd]) #Insert hole holdStartInd = len(filteredPts) filteredPts.extend(reorderedHole) filterWorkingPoly.extend(range(holdStartInd, holdStartInd+len(reorderedHole))) #Close hole filterWorkingPoly.append(holdStartInd) #Outer polygon after cut filterWorkingPoly.extend(workingPoly[outerInd:]) return filterWorkingPoly, filteredPts def PointVisibility(pts, poly, holeInd, holeNum, holes, getSingleResult = 0): visiblePoints = [] #print("holeShape", holeShape) ptCoord = holes[holeNum][holeInd] #Order points by distance ptsByDist = [] for ptIndex, ptNum in enumerate(poly): dist = ((ptCoord[0] - pts[poly[ptIndex]][0])**2.+(ptCoord[1] - pts[poly[ptIndex]][1])**2.)**0.5 ptsByDist.append((dist, ptIndex)) ptsByDist.sort() #Check each point for dist, ptIndex in ptsByDist: ptNum = poly[ptIndex] #See if any line segments block blocked = False for edgeStart, edgeStartPt in enumerate(poly): edgeEnd = (edgeStart + 1) % len(poly) if edgeStart == ptIndex: continue if edgeEnd == ptIndex: continue ret = overlap.LineSegmentIntersection((ptCoord, pts[ptNum]), (pts[poly[edgeStart]], pts[poly[edgeEnd]])) #print(ptIndex, edgeStart, edgeEnd, ret) #print((ptCoord, pts[ptNum]), (pts[poly[edgeStart]], pts[poly[edgeEnd]])) if ret is not False: blocked=True break #Check if the hole self blocks holeShape = holes[holeNum] for holePtNum, holeChkCoord in enumerate(holeShape): if blocked: break nextPtNum = (holePtNum + 1) % len(holeShape) if holePtNum == holeInd: continue if nextPtNum == holeInd: continue ret = overlap.LineSegmentIntersection((ptCoord, pts[ptNum]), (holeShape[holePtNum], holeShape[nextPtNum])) #print(ptIndex, holeInd, holePtNum, nextPtNum, ret) if ret is not False: #print((ptCoord, pts[ptNum]), (holeShape[holePtNum], holeShape[nextPtNum])) blocked=True #Check if it would be blocked by a future hole for holeNumChk, holeShape in enumerate(holes): if blocked: break if holeNumChk == holeNum: continue #Already done self collisions for holePtNum, holeChkCoord in enumerate(holeShape): if blocked: break nextPtNum = (holePtNum + 1) % len(holeShape) if holePtNum == holeInd: continue if nextPtNum == holeInd: continue ret = overlap.LineSegmentIntersection((ptCoord, pts[ptNum]), (holeShape[holePtNum], holeShape[nextPtNum])) #print(ptIndex, holeInd, holePtNum, nextPtNum, ret) if ret is not False: #print((ptCoord, pts[ptNum]), (holeShape[holePtNum], holeShape[nextPtNum])) blocked=True #print(ptNum, blocked) if not blocked: dist = ((ptCoord[0] - pts[poly[ptIndex]][0])**2.+(ptCoord[1] - pts[poly[ptIndex]][1])**2.)**0.5 visiblePoints.append((dist, ptIndex)) if getSingleResult and len(visiblePoints) > 0: break visiblePoints.sort() return visiblePoints def CheckNodeWindingDirection(pts, poly): #http://stackoverflow.com/a/1165943 #Calculate area of polygon, sign indicates winding direction total = 0. for i, ptNum in enumerate(poly): currentPt = pts[ptNum] nextPt = pts[poly[(i+1)%len(poly)]] a = (nextPt[0]-currentPt[0])*(nextPt[1]+currentPt[1]) total += a return total * 0.5 def MergeHolesIntoOuterPoly(poly, holes): #Check outer polygon node order if CheckNodeWindingDirection(poly, range(len(poly))) > 0.: workingPoly = range(len(poly))[::-1] pts = poly[:] else: workingPoly = range(len(poly)) pts = poly[:] #Check holes node order holes = holes[:] for holeNum, hole in enumerate(holes): if CheckNodeWindingDirection(hole, range(len(hole))) < 0.: holes[holeNum] = hole[::-1] else: holes[holeNum] = hole[:] for holeNum, hole in enumerate(holes): #Find place to make cut foundCut = None for holdPtNum, holeCoord in enumerate(hole): visible = PointVisibility(pts, workingPoly, holdPtNum, holeNum, holes, True) #print("vis", holeCoord, visible) if len(visible) > 0: if foundCut is None: foundCut = (visible[0][1], holdPtNum, visible[0][0]) elif visible[0][0] < foundCut[2]: #Use nearer point foundCut = (visible[0][1], holdPtNum, visible[0][0]) #print("better cut found", holeNum, holdPtNum, visible) if foundCut is None: raise RuntimeError("Failed to join hole to other polygon") workingPoly, pts = MergeHoleIntoOuter(workingPoly, pts, foundCut[0], hole, foundCut[1]) #print("wp", workingPoly) #print("pts", pts) return workingPoly, pts def EarClippingNoHoles(workingPoly, pts, nodeOrder = 1, debug = 0): if debug: import matplotlib.pyplot as plt import numpy as np ptsArr =
np.array(pts)
numpy.array
#!/usr/bin/env python3 import numpy as np import pandas as pd import math import argparse import itertools import csv from scipy.stats import linregress from scipy.optimize import minimize read_num_seq_lineage_global = None read_num_min_seq_lineage_global = None read_depth_seq_global = None t_seq_global = None kappa_global = None x_mean_global = None def fun_estimate_parameters(x, read_num_seq, t_seq, kappa=2.5, fitness_type='m'): # ------------------------------------------------------------------------------------------------------------------ # A SUB-FUNCTION CALLED BY MAIN FUNCTION main() TO CALCULATE THE LOG LIKELIHOOD VALUE OF EACH GENOTYPE GIVEN ITS # FITNESS, THE ESTIMATED READ NUMBER PER GENOTYPE PER SEQUENCING TIME-POINT, AND THE ESTIMATED MEAN FITNESS PER # SEQUENCING TIME-POINT # # INPUTS # --x: fitness of each genotype, [x1, x2, ...] # --read_num_seq: read number per genotype at each sequencing time-point # --t_seq: sequenced time-points in number of generations, [0, t1, t2, ...] # --kappa: a noise parameter that characterizes the total noise introduced by growth, cell transfer, DNA extraction, # PCR, and sequencing (To measure kappa empirically, see the reference: [<NAME>, et al. Quantitative # Evolutionary Dynamics Using High-resolution Lineage Tracking. Nature, 519: 181–186 (2015)].) # . (default: 2.5) # --fitness_type: type of fitness: Wrightian fitness (w), or Malthusian fitness (m)' (default: m) # # OUTPUTS # --estimate_parameters_output: log likelihood value of each genotype, # estimated reads number per genotype per sequencing time-point, # estimated mean fitness per sequencing time-point, [x_mean(t0),x_mean(t1),...] # ------------------------------------------------------------------------------------------------------------------ read_num_seq = read_num_seq.astype(float) read_num_seq[read_num_seq == 0] = 1e-1 read_depth_seq = np.sum(read_num_seq, axis=0) lineages_num, seq_num = read_num_seq.shape read_num_min_seq = np.zeros((lineages_num, seq_num)) read_num_min_seq[:, 0] = read_num_seq[:, 0] for i in range(1, seq_num): read_num_min_seq[:, i] = read_num_min_seq[:, i - 1] / 2 ** (t_seq[i] - t_seq[i - 1]) x[x <= -1] = -1 + 1e-7 x_mean = np.zeros(seq_num) read_num_seq_est = np.zeros((lineages_num, seq_num)) read_num_seq_est[:, 0] = read_num_seq[:, 0] likelihood_log_seq = np.zeros((lineages_num, seq_num)) if fitness_type == 'w': for i in range(1, seq_num): x_mean[i] = np.max(np.dot(x, read_num_seq[:, i]) / read_depth_seq[i], 0) read_num_est_tempt = np.exp((t_seq[i] - t_seq[i - 1]) * (np.log(1 + x) + 1) - (t_seq[i] - t_seq[i - 1]) / (x_mean[i] - x_mean[i - 1]) * ((x_mean[i] + 1) * np.log(x_mean[i] + 1) - (x_mean[i - 1] + 1) * np.log(x_mean[i - 1] + 1))) read_num_est_tempt = read_num_est_tempt * read_num_seq[:, i - 1] / read_depth_seq[i - 1] * read_depth_seq[i] read_num_seq_est[:, i] = np.max([read_num_est_tempt, read_num_min_seq[:, i]], axis=0) x_mean[i] = np.dot(x, read_num_seq_est[:, i]) / np.sum(read_num_seq_est[:, i]) elif fitness_type == 'm': for i in range(1, seq_num): x_mean[i] = np.max(np.dot(x, read_num_seq[:, i]) / read_depth_seq[i], 0) read_num_est_tempt = np.exp((t_seq[i] - t_seq[i - 1]) * x - (t_seq[i] - t_seq[i - 1]) * (x_mean[i] + x_mean[i - 1]) / 2) read_num_est_tempt = read_num_est_tempt * read_num_seq[:, i - 1] / read_depth_seq[i - 1] * read_depth_seq[i] read_num_seq_est[:, i] = np.max([read_num_est_tempt, read_num_min_seq[:, i]], axis=0) x_mean[i] = np.dot(x, read_num_seq_est[:, i]) / np.sum(read_num_seq_est[:, i]) pos1_r, pos1_c = np.where(read_num_seq[:, :-1] >= 20) likelihood_log_seq[pos1_r, pos1_c + 1] = (0.25 * np.log(read_num_seq_est[pos1_r, pos1_c + 1]) - 0.5 * np.log(4 * np.pi * kappa) - 0.75 * np.log(read_num_seq_est[pos1_r, pos1_c + 1]) - (np.sqrt(read_num_seq[pos1_r, pos1_c + 1]) - np.sqrt(read_num_seq_est[pos1_r, pos1_c + 1])) ** 2 / kappa) pos_r, pos_c = np.where(read_num_seq[:, :-1] < 20) pos_p1 = np.where(read_num_seq[pos_r, pos_c + 1] >= 10)[0] pos_p2 = np.where(read_num_seq[pos_r, pos_c + 1] < 10)[0] pos2_r = pos_r[pos_p1] pos2_c = pos_c[pos_p1] pos3_r = pos_r[pos_p2] pos3_c = pos_c[pos_p2] likelihood_log_seq[pos2_r, pos2_c + 1] = (np.multiply(read_num_seq[pos2_r, pos2_c + 1], np.log(read_num_seq_est[pos2_r, pos2_c + 1])) - read_num_seq_est[pos2_r, pos2_c + 1] - np.multiply(read_num_seq[pos2_r, pos2_c + 1], np.log(read_num_seq[pos2_r, pos2_c + 1])) + read_num_seq[pos2_r, pos2_c + 1] - 0.5 * np.log(2 * np.pi * read_num_seq[pos2_r, pos2_c + 1])) factorial_tempt = [float(math.factorial(i)) for i in read_num_seq[pos3_r, pos3_c + 1].astype(int)] likelihood_log_seq[pos3_r, pos3_c + 1] = (np.multiply(read_num_seq[pos3_r, pos3_c + 1], np.log(read_num_seq_est[pos3_r, pos3_c + 1])) - read_num_seq_est[pos3_r, pos3_c + 1] - np.log(factorial_tempt)) likelihood_log = np.sum(likelihood_log_seq, axis=1) estimate_parameters_output = {'Likelihood_Log': likelihood_log, 'Estimated_Read_Number': read_num_seq_est, 'Estimated_Mean_Fitness': x_mean} return estimate_parameters_output def fun_likelihood_lineage_w(x): # ------------------------------------------------------------------------------------------------------------------ # A SUB-FUNCTION CALLED BY MAIN FUNCTION main() TO CALCULATE THE SUM OF THE NEGATIVE LOG LIKELIHOOD VALUE OF ALL # GENOTYPES GIVEN THE WRIGHTIAN FITNESS OF EACH GENOTYPE # # INPUTS # --x: fitness of a genotype # # OUTPUTS # --likelihood_log_lineage: the negative log likelihood value of the genotype # ------------------------------------------------------------------------------------------------------------------ global read_num_seq_lineage_global global read_num_min_seq_lineage_global global read_depth_seq_global global t_seq_global global kappa_global global x_mean_global if x <= -1: x = -1 + 1e-7 seq_num = read_num_seq_lineage_global.shape[0] read_num_seq_lineage_est = np.zeros(seq_num) read_num_seq_lineage_est[0] = read_num_seq_lineage_global[0] likelihood_log_seq_lineage = np.zeros(seq_num) for i in range(1, seq_num): read_num_lineage_est_tempt = np.exp((t_seq_global[i] - t_seq_global[i - 1]) * (np.log(1 + x) + 1) - (t_seq_global[i] - t_seq_global[i - 1]) / ( x_mean_global[i] - x_mean_global[i - 1]) * ((x_mean_global[i] + 1) * np.log(x_mean_global[i] + 1) - (x_mean_global[i - 1] + 1) * np.log(x_mean_global[i - 1] + 1))) read_num_lineage_est_tempt = (read_num_lineage_est_tempt * read_num_seq_lineage_global[i - 1] / read_depth_seq_global[i - 1] * read_depth_seq_global[i]) read_num_seq_lineage_est[i] = np.max([read_num_lineage_est_tempt.item(), read_num_min_seq_lineage_global[i]]) pos1 = np.where(read_num_seq_lineage_global[:-1] >= 20)[0] likelihood_log_seq_lineage[pos1 + 1] = (0.25 * np.log(read_num_seq_lineage_est[pos1 + 1]) - 0.5 * np.log(4 * np.pi * kappa_global) - 0.75 * np.log(read_num_seq_lineage_est[pos1 + 1]) - (np.sqrt(read_num_seq_lineage_global[pos1 + 1]) - np.sqrt(read_num_seq_lineage_est[pos1 + 1])) ** 2 / kappa_global) pos = np.where(read_num_seq_lineage_global[:-1] < 20)[0] pos_p1 = np.where(read_num_seq_lineage_global[pos + 1] >= 10)[0] pos_p2 = np.where(read_num_seq_lineage_global[pos + 1] < 10)[0] pos2 = pos[pos_p1] pos3 = pos[pos_p2] likelihood_log_seq_lineage[pos2 + 1] = (np.multiply(read_num_seq_lineage_global[pos2 + 1], np.log(read_num_seq_lineage_est[pos2 + 1])) - read_num_seq_lineage_est[pos2 + 1] - np.multiply(read_num_seq_lineage_global[pos2 + 1], np.log(read_num_seq_lineage_global[pos2 + 1])) + read_num_seq_lineage_global[pos2 + 1] - 0.5 * np.log(2 * np.pi * read_num_seq_lineage_global[pos2 + 1])) factorial_tempt = [float(math.factorial(i)) for i in read_num_seq_lineage_global[pos3 + 1].astype(int)] likelihood_log_seq_lineage[pos3 + 1] = (np.multiply(read_num_seq_lineage_global[pos3 + 1], np.log(read_num_seq_lineage_est[pos3 + 1])) - read_num_seq_lineage_est[pos3 + 1] - np.log(factorial_tempt)) likelihood_log_lineage = np.sum(likelihood_log_seq_lineage) return -likelihood_log_lineage def fun_likelihood_lineage_m(x): # ------------------------------------------------------------------------------------------------------------------ # A SUB-FUNCTION CALLED BY MAIN FUNCTION main() TO CALCULATE THE SUM OF THE NEGATIVE LOG LIKELIHOOD VALUE OF ALL # GENOTYPES GIVEN THE MALTHUSIAN FITNESS OF EACH GENOTYPE # # INPUTS # --x: fitness of a genotype # # OUTPUTS # --likelihood_log_lineage: the negative log likelihood value of the genotype # ------------------------------------------------------------------------------------------------------------------ global read_num_seq_lineage_global global read_num_min_seq_lineage_global global read_depth_seq_global global t_seq_global global kappa_global global x_mean_global if x <= -1: x = -1 + 1e-7 seq_num = read_num_seq_lineage_global.shape[0] read_num_seq_lineage_est = np.zeros(seq_num) read_num_seq_lineage_est[0] = read_num_seq_lineage_global[0] likelihood_log_seq_lineage = np.zeros(seq_num) for i in range(1, seq_num): read_num_lineage_est_tempt = np.exp((t_seq_global[i] - t_seq_global[i - 1]) * x - (t_seq_global[i] - t_seq_global[i - 1]) * (x_mean_global[i] + x_mean_global[i - 1]) / 2) read_num_lineage_est_tempt = (read_num_lineage_est_tempt * read_num_seq_lineage_global[i - 1] / read_depth_seq_global[i - 1] * read_depth_seq_global[i]) read_num_seq_lineage_est[i] = np.max([read_num_lineage_est_tempt.item(), read_num_min_seq_lineage_global[i]]) pos1 = np.where(read_num_seq_lineage_global[:-1] >= 20)[0] likelihood_log_seq_lineage[pos1 + 1] = (0.25 * np.log(read_num_seq_lineage_est[pos1 + 1]) - 0.5 * np.log(4 * np.pi * kappa_global) - 0.75 * np.log(read_num_seq_lineage_est[pos1 + 1]) - (np.sqrt(read_num_seq_lineage_global[pos1 + 1]) - np.sqrt(read_num_seq_lineage_est[pos1 + 1])) ** 2 / kappa_global) pos = np.where(read_num_seq_lineage_global[:-1] < 20)[0] pos_p1 = np.where(read_num_seq_lineage_global[pos + 1] >= 10)[0] pos_p2 = np.where(read_num_seq_lineage_global[pos + 1] < 10)[0] pos2 = pos[pos_p1] pos3 = pos[pos_p2] likelihood_log_seq_lineage[pos2 + 1] = (np.multiply(read_num_seq_lineage_global[pos2 + 1], np.log(read_num_seq_lineage_est[pos2 + 1])) - read_num_seq_lineage_est[pos2 + 1] - np.multiply(read_num_seq_lineage_global[pos2 + 1], np.log(read_num_seq_lineage_global[pos2 + 1])) + read_num_seq_lineage_global[pos2 + 1] - 0.5 * np.log(2 * np.pi * read_num_seq_lineage_global[pos2 + 1])) factorial_tempt = [float(math.factorial(i)) for i in read_num_seq_lineage_global[pos3 + 1].astype(int)] likelihood_log_seq_lineage[pos3 + 1] = (np.multiply(read_num_seq_lineage_global[pos3 + 1], np.log(read_num_seq_lineage_est[pos3 + 1])) - read_num_seq_lineage_est[pos3 + 1] - np.log(factorial_tempt)) likelihood_log_lineage = np.sum(likelihood_log_seq_lineage) return -likelihood_log_lineage def main(): # ------------------------------------------------------------------------------------------------------------------ # ESTIMATE FITNESS OF EACH GENOTYPE IN A COMPETITIVE POOLED GROWTH EXPERIMENT # # OPTIONS # --input: a .csv file, with each column being the read number per genotype at each sequenced time-point # --t_seq: sequenced time-points in number of generations (format: 0 t1 t2 ...) # --max_iter_num: maximum number of iterations in the optimization (Small numbers can reduce running time # and decrease accuracy.) (default: 10) # --kappa: a noise parameter that characterizes the total noise introduced by growth, cell transfer, # DNA extraction, PCR, and sequencing (To measure kappa empirically, see the reference: # [<NAME>, et al. Quantitative Evolutionary Dynamics Using High-resolution Lineage Tracking. # Nature, 519: 181–186 (2015)].) (default: 2.5) # --regression_num: number of points used in the initial linear-regression-based fitness estimate (default: 2) # --fitness_type: type of fitness: Wrightian fitness (w), or Malthusian fitness (m)' (default: m) # --output_filename: prefix of output .csv files (default: output) # # OUTPUTS # output_filename_FitSeq_Result.csv: 1st column: estimated fitness of each genotype, [x1, x2, ...], # 2nd column: log likelihood value of each genotype, [f1, f2, ...], # 3rd column: estimated mean fitness per sequenced time-point # [x_mean(0), x_mean(t1), ...], # 4th column+: estimated reads number per genotype per sequencingtime-point, # with each time-point being a column # ------------------------------------------------------------------------------------------------------------------ global read_num_seq_lineage_global global read_num_min_seq_lineage_global global read_depth_seq_global global t_seq_global global kappa_global global x_mean_global parser = argparse.ArgumentParser(description='Estimate fitness of each genotype in a competitive pooled growth ' 'experiment', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-i', '--input', type=str, help='a .csv file: with each column being the read number per ' 'genotype at each sequenced time-point') parser.add_argument('-t', '--t_seq', nargs='*', type=float, help='sequenced time-points in number of generations') parser.add_argument('-m', '--max_iter_num', type=int, default=10, help='maximum number of iterations in the optimization') parser.add_argument('-k', '--kappa', type=float, default=2.5, help='a noise parameter that characterizes the total noise introduced by growth, ' 'cell transfer, DNA extraction, PCR, and sequencing (To measure kappa empirically, ' 'see the reference: [<NAME>, et al. Quantitative Evolutionary Dynamics Using ' 'High-resolution Lineage Tracking. Nature, 519: 181–186 (2015)].)') parser.add_argument('-g', '--regression_num', type=int, default=2, help='number of points used in the initial linear-regression-based fitness estimate') parser.add_argument('-f', '--fitness_type', type=str, default='m', help='type of fitness: Wrightian fitness (w), or Malthusian fitness (m)') parser.add_argument('-o', '--output_filename', type=str, default='output', help='prefix of output .csv files') args = parser.parse_args() read_num_seq = np.array(pd.read_csv(args.input, header=None), dtype=float) t_seq = np.array(args.t_seq, dtype=float) max_iter_num = args.max_iter_num kappa = args.kappa regression_num = args.regression_num fitness_type = args.fitness_type output_filename = args.output_filename for i in range(regression_num): pos_zero = np.where(read_num_seq[:, i] < 1) read_num_seq[pos_zero, i] = 1 # pos_zero = np.where(read_num_seq[:, 0] < 1) # read_num_seq[pos_zero, 0] = 1 read_num_seq[read_num_seq == 0] = 1e-1 read_depth_seq =
np.sum(read_num_seq, axis=0)
numpy.sum
from functools import cached_property from typing import Callable, TypeVar, Tuple import numpy as np from .GeoObject import GeoObject from .Point import Point from ..data.Function import Function from ..common.logger import logger from spdm.geometry.GeoObject import GeoObject, _TCoord class Curve(GeoObject): # @staticmethod # def __new__(cls, *args, type=None, **kwargs): # if len(args) == 0: # raise RuntimeError(f"Illegal input! {len(args)}") # shape = [(len(a) if isinstance(a, np.ndarray) else 1) for a in args] # if all([s == 1 for s in shape]): # return object.__new__(Point) # elif cls is not Curve: # return object.__new__(cls) # else: # # FIXME: find module # return object.__new__(Curve) def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) def points(self, *args, **kwargs): return super().points(*args, **kwargs) @cached_property def dl(self) -> np.ndarray: x, y = np.moveaxis(self.points(), -1, 0) a, b = self.derivative() # a = a[:-1] # b = b[:-1] dx = x[1:]-x[:-1] dy = y[1:]-y[:-1] m1 = (-a[:-1]*dy+b[:-1]*dx)/(a[:-1]*dx+b[:-1]*dy) # a = np.roll(a, 1, axis=0) # b = np.roll(b, 1, axis=0) m2 = (-a[1:]*dy+b[1:]*dx)/(a[1:]*dx+b[1:]*dy) return np.sqrt(dx**2+dy**2)*(1 + (2.0*m1**2+2.0*m2**2-m1*m2)/30) @cached_property def length(self): return np.sum(self.dl) def integral(self, func: Callable[[_TCoord, _TCoord], _TCoord]) -> float: x, y = self.xyz val = func(x, y) # c_pts = self.points((self._mesh[0][1:] + self._mesh[0][:-1])*0.5) return np.sum(0.5*(val[:-1]+val[1:]) * self.dl) # def average(self, func: Callable[[_TCoord, _TCoord], _TCoord]) -> float: # return self.integral(func)/self.length def encloses_point(self, *x: float, **kwargs) -> bool: return super().enclosed(**x, **kwargs) def trim(self): return NotImplemented def remesh(self, mesh_type=None): return NotImplemented class Line(Curve): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, is_closed=False, **kwargs) def intersect2d(a0: Point, a1: Point, b0: Point, b1: Point) -> Tuple[float, float]: da = a1-a0 db = b1-b0 dp = a0-b0 dap = [-da[1], da[0]] dbp = [-db[1], db[0]] return (np.dot(dbp, dp) /
np.dot(dbp, da)
numpy.dot
import csv import json import numpy as np import pandas as pd from sklearn.svm import SVC from sklearn import datasets import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.tree import DecisionTreeClassifier from mlxtend.plotting import plot_decision_regions from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.preprocessing import MinMaxScaler, StandardScaler, PolynomialFeatures # ZADANIE 1 DO 1 Wykorzystaj problem dotyczący ładowania baterii # wyświetl statystki danych - czy wyjaśniają dane i pozwalają dobrać właściwy model? # jakiego modelu użyłeś na poprzednich zajęciach? # wytrenuj modele bazujące na regresji liniowej, nieliniowej i drzewie decyzyjnym, porównaj wyniki. # wykorzystaj bardziej złożony estymator typu las losowy. def zad1(): data = [] with open('./_data/trainingdata.txt', 'r') as csv_f: csv_reader = csv.reader(csv_f, delimiter=',', quoting=csv.QUOTE_NONNUMERIC) for row in csv_reader: data.append(row) data = np.array(data) x = data[:, 0].reshape(-1, 1) y = data[:, 1].reshape(-1, 1) reg = LinearRegression() reg.fit(x, y) pred = reg.predict(x) model = Pipeline([('poly', PolynomialFeatures(degree=10)), ('linear', LinearRegression(fit_intercept=False))]) model.fit(x, y) poly_pred = model.predict(x) plt.plot(x, y, 'ro') plt.plot(x, pred, 'bo') plt.plot(x, poly_pred, 'go') plt.show() X, y = datasets.load_iris(return_X_y=True, as_frame=True) # ZADANIE 2 # Załaduj zbiór danych i wyświetl informacje o nim. Załaduj jako pandas dataframe # (argument as_frame=True) i wykorzystaj metodę describe. # Czy możemy uzyskać jakieś wartościowe informacje? def zad2(): print(f'Describe: \n {X.describe()}') print(f'Head: \n {X.head()}') # ZADANIE 3 i 4 Podziel wczytane dane na zbiór treningowy i testowy, w proporcjach 80%/20%. # sprawdź, jakie jest procentowe rozłożenie poszczególnych klas w zbiorze treningowym i testowym. # Dobrze by dystrybucje klas próbek w tych zbiorach były identyczne # zmodyfikuj poprzedni kod tak, żeby dane po podziale spełniały ten warunek def zad3_4(): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y) X_train = X_train[['sepal length (cm)', 'sepal width (cm)']] X_test = X_test[['sepal length (cm)', 'sepal width (cm)']] print(y_train.value_counts() / len(y_train) * 100) # ZADANIE 5 Wykorzystaj przedstawioną funkcjonalność do normalizacji danych. # Wygeneruj wykres, którym sprawdzisz, jak wyglądają wartości danych po przeskalowaniu # (ogranicz się do dwóch cech datasetu Iris). # Jakie według Ciebie powinny być przedziały poszczególnych cech? # Jakie są one w rzeczywistości (czy pokrywają się z Twoim wyobrażeniem)? # Czy poszczególne cechy znajdują się na tej samej skali? def zad5_6(): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y) X_train = X_train[['sepal length (cm)', 'sepal width (cm)']] X_test = X_test[['sepal length (cm)', 'sepal width (cm)']] # Wizualizujemy tylko dwie pierwsze cechy – aby móc je przedstawić bez problemu w 2D. plt.scatter(np.array(X)[:, 0], np.array(X)[:, 1]) plt.axvline(x=0) plt.axhline(y=0) plt.title('Iris sepal features') plt.xlabel('sepal length (cm)') plt.ylabel('sepal width (cm)') plt.show() skaler = MinMaxScaler() # skaler = StandardScaler() skaler.fit(X_train) X_train = skaler.transform(X_train) plt.scatter(np.array(X_train)[:, 0], np.array(X_train)[:, 1]) plt.axvline(x=0) plt.axhline(y=0) plt.show() # ZADANIE 7 Zastosuj pipeline do aplikacji zrealizowane funkcji normalizacji. # ZADANIE 8 Wytrenuj klasyfikator dla bazy danych Iris. # ZADANIE 9 wizualizacja przestrzeni decyzyjnej def zad789(): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y) X_train = X_train[['sepal length (cm)', 'sepal width (cm)']] X_test = X_test[['sepal length (cm)', 'sepal width (cm)']] clf = Pipeline([ ('skaler', MinMaxScaler()), ('svc', SVC()) ]) clf.fit(X_train, y_train) src = clf.score(X_test, y_test) print(f'score : {src}') plot_decision_regions(np.array(X_test), np.array(y_test), clf=clf, legend=1) print(clf.predict(X_test)[:5]) plt.scatter(np.array(X_train)[:, 0], np.array(X_train)[:, 1]) plt.axvline(x=0) plt.axhline(y=0) plt.title('Iris sepal features') plt.xlabel('sepal length (cm)') plt.ylabel('sepal width (cm)') plt.show() # ZADANIE 10 Napisz kod, który przeprowadzi trening na klasyfikatorach # (LogisticRegression, SVC, DecisionTreeClassifier, RandomForestClassifier), # przeprowadzi predykcję/sprawdzi dokładność na zbiorze testowym. # Wyniki poszczególnych algorytmów zapisz w słowniku. def zad10_11(): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y) X_train = X_train[['sepal length (cm)', 'sepal width (cm)']] X_test = X_test[['sepal length (cm)', 'sepal width (cm)']] klasyfikatory = ["LogisticRegression", "SVC", "DecisionTreeClassifier", "RandomForestClassifier"] wyniki = dict() for classifier in klasyfikatory: clf = Pipeline([ ('skaler', MinMaxScaler()), (classifier, globals()[classifier]()) ]) clf.fit(X_train, y_train) print(clf.score(X_test, y_test)) print(globals()["SVC"]) a = globals()["SVC"]() a.fit(X_train, y_train) print(a.score(X_test, y_test)) # pętla przechodząca po klasyfikatorach i sprawdzająca, który sprawdza się najlepiej do danego problemu for classifier in klasyfikatory: a = globals()[classifier]() a.fit(X_train, y_train) print(f'Wynik dla {classifier} = {a.score(X_test, y_test)}') wyniki[classifier] = a.score(X_test, y_test) plot_decision_regions(np.array(X_test), np.array(y_test), clf=clf, legend=1) plt.scatter(np.array(X_train)[:, 0],
np.array(X_train)
numpy.array
import sys import os import time import math import torch import numpy as np from PIL import Image, ImageDraw, ImageFont from torch.autograd import Variable import torch.nn.functional as F import cv2 from scipy import spatial import struct import imghdr import cython from scipy.special import softmax #TensorRT stuff from numpy import array import pycuda.driver as cuda import pycuda.autoinit import tensorrt as trt import sys, os sys.path.insert(1, os.path.join(sys.path[0], "..")) import common from numba import jit from numba import vectorize, float64 import numba as nb # You can set the logger severity higher to suppress messages (or lower to display more messages). TRT_LOGGER = trt.Logger(trt.Logger.WARNING) def get_all_files(directory): files = [] for f in os.listdir(directory): if os.path.isfile(os.path.join(directory, f)): files.append(os.path.join(directory, f)) else: files.extend(get_all_files(os.path.join(directory, f))) return files def calcAngularDistance(gt_rot, pr_rot): rotDiff = np.dot(gt_rot, np.transpose(pr_rot)) trace = np.trace(rotDiff) return np.rad2deg(np.arccos((trace-1.0)/2.0)) def get_camera_intrinsic(): K = np.zeros((3, 3), dtype='float64') # life came # K[0, 0], K[0, 2] = 1.13908155e+03, 6.57642892e+02 # K[1, 1], K[1, 2] = 1.13705701e+03, 3.28071843e+02 # K[2, 2] = 1. # Logitech C920 K[0, 0], K[0, 2] = 935.67, 624.06 K[1, 1], K[1, 2] = 934.86, 354.35 K[2, 2] = 1. return K def get_camera_distortion_mat(): dist = [[-0.00580032, -0.17520014, 0.00051201, 0.00432754, 0.24850474]] return np.array(dist) def compute_projection(points_3D, transformation, internal_calibration): projections_2d = np.zeros((2, points_3D.shape[1]), dtype='float32') camera_projection = (internal_calibration.dot(transformation)).dot(points_3D) projections_2d[0, :] = camera_projection[0, :]/camera_projection[2, :] projections_2d[1, :] = camera_projection[1, :]/camera_projection[2, :] return projections_2d def compute_transformation(points_3D, transformation): return transformation.dot(points_3D) def calc_pts_diameter(pts): diameter = -1 for pt_id in range(pts.shape[0]): pt_dup = np.tile(np.array([pts[pt_id, :]]), [pts.shape[0] - pt_id, 1]) pts_diff = pt_dup - pts[pt_id:, :] max_dist = math.sqrt((pts_diff * pts_diff).sum(axis=1).max()) if max_dist > diameter: diameter = max_dist return diameter def adi(pts_est, pts_gt): nn_index = spatial.cKDTree(pts_est) nn_dists, _ = nn_index.query(pts_gt, k=1) e = nn_dists.mean() return e def get_3D_corners(vertices): min_x = np.min(vertices[0,:]) max_x = np.max(vertices[0,:]) min_y = np.min(vertices[1,:]) max_y = np.max(vertices[1,:]) min_z = np.min(vertices[2,:]) max_z = np.max(vertices[2,:]) # use stub since we know the cargo ball's bounding box #min_x = -0.33/2 #max_x = 0.33/2 #min_y = -0.33/2 #max_y = 0.33/2 #min_z = -0.33/2 #max_z = 0.33/2 corners = np.array([[min_x, min_y, min_z], [min_x, min_y, max_z], [min_x, max_y, min_z], [min_x, max_y, max_z], [max_x, min_y, min_z], [max_x, min_y, max_z], [max_x, max_y, min_z], [max_x, max_y, max_z]]) corners = np.concatenate((np.transpose(corners), np.ones((1,8)) ), axis=0) return corners def pnp(points_3D, points_2D, cameraMatrix): try: distCoeffs = pnp.distCoeffs except: distCoeffs = np.zeros((8, 1), dtype='float32') assert points_2D.shape[0] == points_2D.shape[0], 'points 3D and points 2D must have same number of vertices' _, rvecs, tvecs = cv2.solvePnP(points_3D, # points_2D, np.ascontiguousarray(points_2D[:,:2]).reshape((-1,1,2)), cameraMatrix, distCoeffs) # , None, None, False, cv2.SOLVEPNP_UPNP) # R_exp, t, _ = cv2.solvePnPRansac(points_3D, # points_2D, # cameraMatrix, # distCoeffs, # reprojectionError=12.0) # R, _ = cv2.Rodrigues(rvecs) # Rt = np.c_[R, t] return rvecs, R, tvecs def get_2d_bb(box, size): x = box[0] y = box[1] min_x = np.min(np.reshape(box, [9,2])[:,0]) max_x = np.max(np.reshape(box, [9,2])[:,0]) min_y = np.min(np.reshape(box, [9,2])[:,1]) max_y = np.max(np.reshape(box, [9,2])[:,1]) w = max_x - min_x h = max_y - min_y new_box = [x*size, y*size, w*size, h*size] return new_box def compute_2d_bb(pts): min_x = np.min(pts[0,:]) max_x = np.max(pts[0,:]) min_y = np.min(pts[1,:]) max_y = np.max(pts[1,:]) w = max_x - min_x h = max_y - min_y cx = (max_x + min_x) / 2.0 cy = (max_y + min_y) / 2.0 new_box = [cx, cy, w, h] return new_box def compute_2d_bb_from_orig_pix(pts, size): min_x = np.min(pts[0,:]) / 1280.0 max_x = np.max(pts[0,:]) / 1280.0 min_y = np.min(pts[1,:]) / 720.0 max_y = np.max(pts[1,:]) / 720.0 w = max_x - min_x h = max_y - min_y cx = (max_x + min_x) / 2.0 cy = (max_y + min_y) / 2.0 new_box = [cx*size, cy*size, w*size, h*size] return new_box def bbox_iou(box1, box2, x1y1x2y2=False): if x1y1x2y2: mx = min(box1[0], box2[0]) Mx = max(box1[2], box2[2]) my = min(box1[1], box2[1]) My = max(box1[3], box2[3]) w1 = box1[2] - box1[0] h1 = box1[3] - box1[1] w2 = box2[2] - box2[0] h2 = box2[3] - box2[1] else: mx = min(box1[0]-box1[2]/2.0, box2[0]-box2[2]/2.0) Mx = max(box1[0]+box1[2]/2.0, box2[0]+box2[2]/2.0) my = min(box1[1]-box1[3]/2.0, box2[1]-box2[3]/2.0) My = max(box1[1]+box1[3]/2.0, box2[1]+box2[3]/2.0) w1 = box1[2] h1 = box1[3] w2 = box2[2] h2 = box2[3] uw = Mx - mx uh = My - my cw = w1 + w2 - uw ch = h1 + h2 - uh carea = 0 if cw <= 0 or ch <= 0: return 0.0 area1 = w1 * h1 area2 = w2 * h2 carea = cw * ch uarea = area1 + area2 - carea return carea/uarea def bbox_iou_cube(box1, box2, x1y1x2y2=True): if x1y1x2y2: # point 1, 3, 5, 7 are points that form the front face of the cube # point 3 and 5 are the upper left and lower right points of the rectangle, to be used for nms area overlap calculation # nms algorithm x1 is point 3's X coordinate which has index 6 in the "boxes" array of length 21 # nms algorithm y1 is point 3's Y coordinate which has index 7 in the "boxes" array of length 21 # nms algorithm x2 is point 5's X coordinate which has index 10 in the "boxes" array of length 21 # nms algorithm y2 is point 5's y coordinate which has index 11 in the "boxes" array of length 21 # With above chocie, we pick index 6, 7, 10 and 11 from the "boxes" array of length 21, for nms mx = min(box1[6], box2[6]) Mx = max(box1[10], box2[10]) my = min(box1[7], box2[7]) My = max(box1[11], box2[11]) w1 = box1[10] - box1[6] h1 = box1[11] - box1[7] w2 = box2[10] - box2[6] h2 = box2[11] - box2[7] else: mx = min(box1[0]-box1[2]/2.0, box2[0]-box2[2]/2.0) Mx = max(box1[0]+box1[2]/2.0, box2[0]+box2[2]/2.0) my = min(box1[1]-box1[3]/2.0, box2[1]-box2[3]/2.0) My = max(box1[1]+box1[3]/2.0, box2[1]+box2[3]/2.0) w1 = box1[2] h1 = box1[3] w2 = box2[2] h2 = box2[3] uw = Mx - mx uh = My - my cw = w1 + w2 - uw ch = h1 + h2 - uh carea = 0 if cw <= 0 or ch <= 0: return 0.0 area1 = w1 * h1 area2 = w2 * h2 carea = cw * ch uarea = area1 + area2 - carea return carea/uarea def convert_bbox_format_for_sorting(bboxes): all_boxes = [] for i in range(len(bboxes)): w = 1280 h = 720 x1 = bboxes[i][6]*w y1 = bboxes[i][7]*h x2 = bboxes[i][10]*w y2 = bboxes[i][11]*h confidence = bboxes[i][18] confidence = bboxes[i][18] class_label = bboxes[i][20] all_boxes.append([x1, y1, x2, y2, confidence, confidence, class_label]) return all_boxes def corner_confidences(gt_corners, pr_corners, th=30, sharpness=2, im_width=1280, im_height=720): ''' gt_corners: Ground-truth 2D projections of the 3D bounding box corners, shape: (16 x nA), type: torch.FloatTensor pr_corners: Prediction for the 2D projections of the 3D bounding box corners, shape: (16 x nA), type: torch.FloatTensor th : distance threshold, type: int sharpness : sharpness of the exponential that assigns a confidence value to the distance ----------- return : a torch.FloatTensor of shape (nA,) with 8 confidence values ''' shape = gt_corners.size() nA = shape[1] dist = gt_corners - pr_corners dist = dist.t().contiguous().view(nA, 8, 2) dist[:, :, 0] = dist[:, :, 0] * im_width dist[:, :, 1] = dist[:, :, 1] * im_height eps = 1e-5 distthresh = torch.FloatTensor([th]).repeat(nA, 8) dist = torch.sqrt(torch.sum((dist)**2, dim=2)).squeeze() # nA x 8 mask = (dist < distthresh).type(torch.FloatTensor) conf = torch.exp(sharpness*(1 - dist/distthresh))-1 # mask * (torch.exp(math.log(2) * (1.0 - dist/rrt)) - 1) conf0 = torch.exp(sharpness*(1 - torch.zeros(conf.size(0),1))) - 1 conf = conf / conf0.repeat(1, 8) # conf = 1 - dist/distthresh conf = mask * conf # nA x 8 mean_conf = torch.mean(conf, dim=1) return mean_conf def corner_confidence(gt_corners, pr_corners, th=30, sharpness=2, im_width=1280, im_height=720): ''' gt_corners: Ground-truth 2D projections of the 3D bounding box corners, shape: (16,) type: list pr_corners: Prediction for the 2D projections of the 3D bounding box corners, shape: (16,), type: list th : distance threshold, type: int sharpness : sharpness of the exponential that assigns a confidence value to the distance ----------- return : a list of shape (8,) with 8 confidence values ''' dist = torch.FloatTensor(gt_corners) - pr_corners dist = dist.view(8, 2) dist[:, 0] = dist[:, 0] * im_width dist[:, 1] = dist[:, 1] * im_height eps = 1e-5 dist = torch.sqrt(torch.sum((dist)**2, dim=1)) mask = (dist < th).type(torch.FloatTensor) conf = torch.exp(sharpness * (1.0 - dist/th)) - 1 conf0 = torch.exp(torch.FloatTensor([sharpness])) - 1 + eps conf = conf / conf0.repeat(8, 1) # conf = 1.0 - dist/th conf = mask * conf return torch.mean(conf) def corner_confidences9(gt_corners, pr_corners, th=80, sharpness=2, im_width=1280, im_height=720): ''' gt_corners: Ground-truth 2D projections of the 3D bounding box corners, shape: (16 x nA), type: torch.FloatTensor pr_corners: Prediction for the 2D projections of the 3D bounding box corners, shape: (16 x nA), type: torch.FloatTensor th : distance threshold, type: int sharpness : sharpness of the exponential that assigns a confidence value to the distance ----------- return : a torch.FloatTensor of shape (nA,) with 9 confidence values ''' shape = gt_corners.size() nA = shape[1] dist = gt_corners - pr_corners dist = dist.t().contiguous().view(nA, 9, 2) dist[:, :, 0] = dist[:, :, 0] * im_width dist[:, :, 1] = dist[:, :, 1] * im_height eps = 1e-5 distthresh = torch.FloatTensor([th]).repeat(nA, 9) dist = torch.sqrt(torch.sum((dist)**2, dim=2)).squeeze() # nA x 9 mask = (dist < distthresh).type(torch.FloatTensor) conf = torch.exp(sharpness*(1 - dist/distthresh))-1 # mask * (torch.exp(math.log(2) * (1.0 - dist/rrt)) - 1) conf0 = torch.exp(sharpness*(1 - torch.zeros(conf.size(0),1))) - 1 conf = conf / conf0.repeat(1, 9) # conf = 1 - dist/distthresh conf = mask * conf # nA x 9 mean_conf = torch.mean(conf, dim=1) return mean_conf def corner_confidence9(gt_corners, pr_corners, th=80, sharpness=2, im_width=1280, im_height=720): ''' gt_corners: Ground-truth 2D projections of the 3D bounding box corners, shape: (18,) type: list pr_corners: Prediction for the 2D projections of the 3D bounding box corners, shape: (18,), type: list th : distance threshold, type: int sharpness : sharpness of the exponential that assigns a confidence value to the distance ----------- return : a list of shape (9,) with 9 confidence values ''' dist = torch.FloatTensor(gt_corners) - pr_corners dist = dist.view(9, 2) dist[:, 0] = dist[:, 0] * im_width dist[:, 1] = dist[:, 1] * im_height eps = 1e-5 dist = torch.sqrt(torch.sum((dist)**2, dim=1)) mask = (dist < th).type(torch.FloatTensor) conf = torch.exp(sharpness * (1.0 - dist/th)) - 1 conf0 = torch.exp(torch.FloatTensor([sharpness])) - 1 + eps conf = conf / conf0.repeat(9, 1) # conf = 1.0 - dist/th conf = mask * conf return torch.mean(conf) @vectorize([float64(float64)]) def sigmoid(x): return 1.0/(math.exp(-x)+1.) def softmax_torch(x): x = torch.exp(x - torch.max(x)) x = x/x.sum() return x def nms(boxes, nms_thresh): if len(boxes) == 0: return boxes det_confs = torch.zeros(len(boxes)) # print("unsorted") # print_class_and_conf(boxes) for i in range(len(boxes)): det_confs[i] = 1-boxes[i][4] _,sortIds = torch.sort(det_confs) out_boxes = [] for i in range(len(boxes)): box_i = boxes[sortIds[i]] if box_i[4] > 0: out_boxes.append(box_i) for j in range(i+1, len(boxes)): box_j = boxes[sortIds[j]] if bbox_iou(box_i, box_j, x1y1x2y2=False) > nms_thresh: #print(box_i, box_j, bbox_iou(box_i, box_j, x1y1x2y2=False)) box_j[4] = 0 # print("sorted") # print_class_and_conf(out_boxes) return out_boxes def nms_v2(boxes, nms_thresh): if len(boxes) == 0: return boxes det_confs = torch.zeros(len(boxes)) print("unsorted") print_class_and_conf(boxes) for i in range(len(boxes)): det_confs[i] = 1-boxes[i][4] _,sortIds = torch.sort(det_confs) out_boxes = [] for i in range(len(boxes)): box_i = boxes[sortIds[i]] if box_i[4] > 0: out_boxes.append(box_i) for j in range(i+1, len(boxes)): box_j = boxes[sortIds[j]] if bbox_iou(box_i, box_j, x1y1x2y2=False) > nms_thresh: #print(box_i, box_j, bbox_iou(box_i, box_j, x1y1x2y2=False)) box_j[4] = 0 print("sorted") print_class_and_conf(out_boxes) return out_boxes def print_class_and_conf(boxes): for box in boxes: print('class ', int(box[20]), 'conf ', '{:0.3f}'.format(float(box[18]))) def nms_multi(boxes, nms_thresh): if len(boxes) == 0: return boxes det_confs = torch.zeros(len(boxes)) for i in range(len(boxes)): det_confs[i] = 1-boxes[i][0][4] _,sortIds = torch.sort(det_confs) out_boxes = [] for i in range(len(boxes)): box_i = boxes[sortIds[i]] if box_i[0][4] > 0: out_boxes.append(box_i[0]) for j in range(i+1, len(boxes)): box_j = boxes[sortIds[j]] if bbox_iou(box_i, box_j, x1y1x2y2=False) > nms_thresh: #print(box_i, box_j, bbox_iou(box_i, box_j, x1y1x2y2=False)) box_j[0][4] = 0 return out_boxes def nms_multi_v2(boxes, nms_thresh): if len(boxes) == 0: return boxes det_confs = torch.zeros(len(boxes)) # index 18 is the det_conf i.e. confidence of the detected object for i in range(len(boxes)): det_confs[i] = 1-boxes[i][18] _,sortIds = torch.sort(det_confs) out_boxes = [] for i in range(len(boxes)): box_i = boxes[sortIds[i]] if box_i[18] > 0: out_boxes.append(box_i) for j in range(i+1, len(boxes)): box_j = boxes[sortIds[j]] if bbox_iou_cube(box_i, box_j, x1y1x2y2=True) > nms_thresh: #print(box_i, box_j, bbox_iou(box_i, box_j, x1y1x2y2=False)) box_j[18] = 0 return out_boxes # import the necessary packages import numpy as np # Malisiewicz et al. def non_max_suppression_fast(boxes, overlapThresh): boxes = np.asarray(boxes) # if there are no boxes, return an empty list if len(boxes) == 0: return [] # if the bounding boxes integers, convert them to floats -- # this is important since we'll be doing a bunch of divisions # if boxes.dtype.kind == "i": # boxes = boxes.astype("float") # initialize the list of picked indexes pick = [] # grab the coordinates of the bounding boxes # x1 = boxes[:,0] # y1 = boxes[:,1] # x2 = boxes[:,2] # y2 = boxes[:,3] # grab the front faces of the cube as bounding boxes # point 1, 3, 5, 7 are points that form the front face of the cube # point 3 and 5 are the upper left and lower right points of the rectangle, to be used for nms area overlap calculation # nms algorithm x1 is point 3's X coordinate which has index 6 in the "boxes" array of length 21 # nms algorithm y1 is point 3's Y coordinate which has index 7 in the "boxes" array of length 21 # nms algorithm x2 is point 5's X coordinate which has index 10 in the "boxes" array of length 21 # nms algorithm y2 is point 5's y coordinate which has index 11 in the "boxes" array of length 21 # With above chocie, we pick index 6, 7, 10 and 11 from the "boxes" array of length 21, for nms x1 = boxes[:,6] y1 = boxes[:,7] x2 = boxes[:,10] y2 = boxes[:,11] # print('x1', x1) # print('y1', y1) # print('x2', x2) # print('y2', y2) # compute the area of the bounding boxes and sort the bounding # boxes by the bottom-right y-coordinate of the bounding box area = (x2 - x1 + 1) * (y2 - y1 + 1) idxs = np.argsort(y2) # keep looping while some indexes still remain in the indexes # list while len(idxs) > 0: # grab the last index in the indexes list and add the # index value to the list of picked indexes last = len(idxs) - 1 i = idxs[last] pick.append(i) # find the largest (x, y) coordinates for the start of # the bounding box and the smallest (x, y) coordinates # for the end of the bounding box xx1 = np.maximum(x1[i], x1[idxs[:last]]) yy1 = np.maximum(y1[i], y1[idxs[:last]]) xx2 = np.minimum(x2[i], x2[idxs[:last]]) yy2 = np.minimum(y2[i], y2[idxs[:last]]) # compute the width and height of the bounding box w = np.maximum(0, xx2 - xx1 + 1) h = np.maximum(0, yy2 - yy1 + 1) print('w', w) print('h', h) # compute the ratio of overlap overlap = (w * h) / area[idxs[:last]] print('overlap', overlap) # delete all indexes from the index list that have idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0]))) # return only the bounding boxes that were picked using the # integer data type # print('boxes[pick]', boxes[pick]) return boxes[pick].tolist() def fix_corner_order(corners2D_gt): corners2D_gt_corrected = np.zeros((9, 2), dtype='float32') corners2D_gt_corrected[0, :] = corners2D_gt[0, :] corners2D_gt_corrected[1, :] = corners2D_gt[1, :] corners2D_gt_corrected[2, :] = corners2D_gt[3, :] corners2D_gt_corrected[3, :] = corners2D_gt[5, :] corners2D_gt_corrected[4, :] = corners2D_gt[7, :] corners2D_gt_corrected[5, :] = corners2D_gt[2, :] corners2D_gt_corrected[6, :] = corners2D_gt[4, :] corners2D_gt_corrected[7, :] = corners2D_gt[6, :] corners2D_gt_corrected[8, :] = corners2D_gt[8, :] return corners2D_gt_corrected def convert2cpu(gpu_matrix): return torch.FloatTensor(gpu_matrix.size()).copy_(gpu_matrix) def convert2cpu_long(gpu_matrix): return torch.LongTensor(gpu_matrix.size()).copy_(gpu_matrix) # custom function @cython.boundscheck(False) def get_region_boxes(output, conf_thresh, num_classes, only_objectness=1, validation=False): t0minus = time.time() # Parameters anchor_dim = 1 #if output.dim() == 3: #output = output.cpu().numpy() print('output numpy shape ',output.shape) if output.shape == 3: output = output.unsqueeze(0) #TODO batch = output.shape[0] assert(output.shape[1] == (19+num_classes)*anchor_dim) h = output.shape[2] w = output.shape[3] # Activation t0 = time.time() all_boxes = [] max_conf = -100000 output = output.reshape(batch*anchor_dim, 19+num_classes, h*w)#.transpose(0,1).ascontiguousarray(output) #print('reshaped output numpy has shape ',output.shape) output = np.transpose(output, (1,0,2)) #print('reshaped output numpy has shape ',output.shape) output = np.ascontiguousarray(output) #print('reshaped output numpy has shape ',output.shape) output = output.reshape(19+num_classes, batch*anchor_dim*h*w) #grid_x = torch.linspace(0, w-1, w).repeat(h,1).repeat(batch*anchor_dim, 1, 1).view(batch*anchor_dim*h*w).cuda() temp_x = np.linspace(0, w-1, w) temp_x = np.tile(temp_x, (h,1)) temp_x = np.tile(temp_x, (batch*anchor_dim, 1, 1)) grid_x = temp_x.reshape(batch*anchor_dim*h*w) temp_y = np.linspace(0, h-1, h) temp_y = np.tile(temp_y,(w,1)) temp_y = np.transpose(temp_y, (1,0)) grid_y = np.tile(temp_y, (batch*anchor_dim, 1, 1)).reshape(batch*anchor_dim*h*w) # define vectorized sigmoid sigmoid_v = np.vectorize(sigmoid) xs0 = sigmoid_v(output[0]) + grid_x ys0 = sigmoid_v(output[1]) + grid_y xs1 = output[2] + grid_x ys1 = output[3] + grid_y xs2 = output[4] + grid_x ys2 = output[5] + grid_y xs3 = output[6] + grid_x ys3 = output[7] + grid_y xs4 = output[8] + grid_x ys4 = output[9] + grid_y xs5 = output[10] + grid_x ys5 = output[11] + grid_y xs6 = output[12] + grid_x ys6 = output[13] + grid_y xs7 = output[14] + grid_x ys7 = output[15] + grid_y xs8 = output[16] + grid_x ys8 = output[17] + grid_y det_confs = sigmoid_v(output[18]) output_transpose = np.transpose(output[19:19+num_classes], (1,0)) cls_confs = softmax(output_transpose) cls_max_ids = np.argmax(cls_confs, 1) cls_max_confs = np.amax(cls_confs, 1) cls_max_confs = cls_max_confs.reshape(-1) cls_max_ids = cls_max_ids.reshape(-1) t1 = time.time() # GPU to CPU sz_hw = h*w sz_hwa = sz_hw*anchor_dim # det_confs = convert2cpu(det_confs) # cls_max_confs = convert2cpu(cls_max_confs) # cls_max_ids = convert2cpu_long(cls_max_ids) # xs0 = convert2cpu(xs0) # ys0 = convert2cpu(ys0) # xs1 = convert2cpu(xs1) # ys1 = convert2cpu(ys1) # xs2 = convert2cpu(xs2) # ys2 = convert2cpu(ys2) # xs3 = convert2cpu(xs3) # ys3 = convert2cpu(ys3) # xs4 = convert2cpu(xs4) # ys4 = convert2cpu(ys4) # xs5 = convert2cpu(xs5) # ys5 = convert2cpu(ys5) # xs6 = convert2cpu(xs6) # ys6 = convert2cpu(ys6) # xs7 = convert2cpu(xs7) # ys7 = convert2cpu(ys7) # xs8 = convert2cpu(xs8) # ys8 = convert2cpu(ys8) #if validation: #cls_confs = convert2cpu(cls_confs.view(-1, num_classes)) t2 = time.time() # Boxes filter for b in range(batch): boxes = [] max_conf = -1 for cy in range(h): for cx in range(w): for i in range(anchor_dim): ind = b*sz_hwa + i*sz_hw + cy*w + cx det_conf = det_confs[ind] if only_objectness: conf = det_confs[ind] else: conf = det_confs[ind] * cls_max_confs[ind] if conf > max_conf: max_conf = conf max_ind = ind if conf > conf_thresh: bcx0 = xs0[ind] bcy0 = ys0[ind] bcx1 = xs1[ind] bcy1 = ys1[ind] bcx2 = xs2[ind] bcy2 = ys2[ind] bcx3 = xs3[ind] bcy3 = ys3[ind] bcx4 = xs4[ind] bcy4 = ys4[ind] bcx5 = xs5[ind] bcy5 = ys5[ind] bcx6 = xs6[ind] bcy6 = ys6[ind] bcx7 = xs7[ind] bcy7 = ys7[ind] bcx8 = xs8[ind] bcy8 = ys8[ind] cls_max_conf = cls_max_confs[ind] cls_max_id = cls_max_ids[ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] if (not only_objectness) and validation: for c in range(num_classes): tmp_conf = cls_confs[ind][c] if c != cls_max_id and det_confs[ind]*tmp_conf > conf_thresh: box.append(tmp_conf) box.append(c) boxes.append(box) if len(boxes) == 0: bcx0 = xs0[max_ind] bcy0 = ys0[max_ind] bcx1 = xs1[max_ind] bcy1 = ys1[max_ind] bcx2 = xs2[max_ind] bcy2 = ys2[max_ind] bcx3 = xs3[max_ind] bcy3 = ys3[max_ind] bcx4 = xs4[max_ind] bcy4 = ys4[max_ind] bcx5 = xs5[max_ind] bcy5 = ys5[max_ind] bcx6 = xs6[max_ind] bcy6 = ys6[max_ind] bcx7 = xs7[max_ind] bcy7 = ys7[max_ind] bcx8 = xs8[max_ind] bcy8 = ys8[max_ind] cls_max_conf = cls_max_confs[max_ind] cls_max_id = cls_max_ids[max_ind] det_conf = det_confs[max_ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] boxes.append(box) all_boxes.append(boxes) else: all_boxes.append(boxes) all_boxes.append(boxes) t3 = time.time() if True: print('---------------------------------') print('gpu to cpu for numpy : %f' % (t0-t0minus)) print('matrix computation : %f' % (t1-t0)) print(' gpu to cpu : %f' % (t2-t1)) print(' boxes filter : %f' % (t3-t2)) print('---------------------------------') return all_boxes def get_region_boxes_multi(output, conf_thresh, num_classes, anchors, num_anchors, only_objectness=1, validation=False): # Parameters anchor_step = len(anchors)//num_anchors if output.dim() == 3: output = output.unsqueeze(0) batch = output.size(0) assert(output.size(1) == (19+num_classes)*num_anchors) h = output.size(2) w = output.size(3) # Activation t0 = time.time() all_boxes = [] max_conf = -100000 #output = output.view(batch*anchor_dim, 19+num_classes, h*w).transpose(0,1).contiguous().view(19+num_classes, batch*anchor_dim*h*w) output = output.view(batch*num_anchors, 19+num_classes, h*w).transpose(0,1).contiguous().view(19+num_classes, batch*num_anchors*h*w) grid_x = torch.linspace(0, w-1, w).repeat(h,1).repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda() grid_y = torch.linspace(0, h-1, h).repeat(w,1).t().repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda() xs0 = torch.sigmoid(output[0]) + grid_x ys0 = torch.sigmoid(output[1]) + grid_y xs1 = output[2] + grid_x ys1 = output[3] + grid_y xs2 = output[4] + grid_x ys2 = output[5] + grid_y xs3 = output[6] + grid_x ys3 = output[7] + grid_y xs4 = output[8] + grid_x ys4 = output[9] + grid_y xs5 = output[10] + grid_x ys5 = output[11] + grid_y xs6 = output[12] + grid_x ys6 = output[13] + grid_y xs7 = output[14] + grid_x ys7 = output[15] + grid_y xs8 = output[16] + grid_x ys8 = output[17] + grid_y det_confs = torch.sigmoid(output[18]) cls_confs = torch.nn.Softmax()(Variable(output[19:19+num_classes].transpose(0,1))).data cls_max_confs, cls_max_ids = torch.max(cls_confs, 1) cls_max_confs = cls_max_confs.view(-1) cls_max_ids = cls_max_ids.view(-1) t1 = time.time() # GPU to CPU sz_hw = h*w sz_hwa = sz_hw*num_anchors det_confs = convert2cpu(det_confs) cls_max_confs = convert2cpu(cls_max_confs) cls_max_ids = convert2cpu_long(cls_max_ids) xs0 = convert2cpu(xs0) ys0 = convert2cpu(ys0) xs1 = convert2cpu(xs1) ys1 = convert2cpu(ys1) xs2 = convert2cpu(xs2) ys2 = convert2cpu(ys2) xs3 = convert2cpu(xs3) ys3 = convert2cpu(ys3) xs4 = convert2cpu(xs4) ys4 = convert2cpu(ys4) xs5 = convert2cpu(xs5) ys5 = convert2cpu(ys5) xs6 = convert2cpu(xs6) ys6 = convert2cpu(ys6) xs7 = convert2cpu(xs7) ys7 = convert2cpu(ys7) xs8 = convert2cpu(xs8) ys8 = convert2cpu(ys8) if validation: cls_confs = convert2cpu(cls_confs.view(-1, num_classes)) t2 = time.time() # Boxes filter for b in range(batch): boxes = [] max_conf = -1 for cy in range(h): for cx in range(w): for i in range(num_anchors): ind = b*sz_hwa + i*sz_hw + cy*w + cx det_conf = det_confs[ind] if only_objectness: conf = det_confs[ind] else: conf = det_confs[ind] * cls_max_confs[ind] if conf > max_conf: max_conf = conf max_ind = ind if conf > conf_thresh: bcx0 = xs0[ind] bcy0 = ys0[ind] bcx1 = xs1[ind] bcy1 = ys1[ind] bcx2 = xs2[ind] bcy2 = ys2[ind] bcx3 = xs3[ind] bcy3 = ys3[ind] bcx4 = xs4[ind] bcy4 = ys4[ind] bcx5 = xs5[ind] bcy5 = ys5[ind] bcx6 = xs6[ind] bcy6 = ys6[ind] bcx7 = xs7[ind] bcy7 = ys7[ind] bcx8 = xs8[ind] bcy8 = ys8[ind] cls_max_conf = cls_max_confs[ind] cls_max_id = cls_max_ids[ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] if (not only_objectness) and validation: for c in range(num_classes): tmp_conf = cls_confs[ind][c] if c != cls_max_id and det_confs[ind]*tmp_conf > conf_thresh: box.append(tmp_conf) box.append(c) boxes.append(box) if len(boxes) == 0: bcx0 = xs0[max_ind] bcy0 = ys0[max_ind] bcx1 = xs1[max_ind] bcy1 = ys1[max_ind] bcx2 = xs2[max_ind] bcy2 = ys2[max_ind] bcx3 = xs3[max_ind] bcy3 = ys3[max_ind] bcx4 = xs4[max_ind] bcy4 = ys4[max_ind] bcx5 = xs5[max_ind] bcy5 = ys5[max_ind] bcx6 = xs6[max_ind] bcy6 = ys6[max_ind] bcx7 = xs7[max_ind] bcy7 = ys7[max_ind] bcx8 = xs8[max_ind] bcy8 = ys8[max_ind] cls_max_conf = cls_max_confs[max_ind] cls_max_id = cls_max_ids[max_ind] det_conf = det_confs[max_ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] boxes.append(box) all_boxes.append(boxes) else: all_boxes.append(boxes) all_boxes.append(boxes) t3 = time.time() if False: print('---------------------------------') print('matrix computation : %f' % (t1-t0)) print(' gpu to cpu : %f' % (t2-t1)) print(' boxes filter : %f' % (t3-t2)) print('---------------------------------') return all_boxes def get_corresponding_region_boxes(output, conf_thresh, num_classes, anchors, num_anchors, correspondingclass, only_objectness=1, validation=False): debug = False # Parameters anchor_step = len(anchors)//num_anchors if output.dim() == 3: output = output.unsqueeze(0) batch = output.size(0) if debug: print('output.size(1) ', output.size(1) ) print('(19+num_classes)*num_anchors)', (19+num_classes)*num_anchors) assert(output.size(1) == (19+num_classes)*num_anchors) h = output.size(2) w = output.size(3) # Activation t0 = time.time() all_boxes = [] max_conf = -100000 max_cls_conf = -100000 output = output.view(batch*num_anchors, 19+num_classes, h*w).transpose(0,1).contiguous().view(19+num_classes, batch*num_anchors*h*w) grid_x = torch.linspace(0, w-1, w).repeat(h,1).repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda() grid_y = torch.linspace(0, h-1, h).repeat(w,1).t().repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda() xs0 = torch.sigmoid(output[0]) + grid_x ys0 = torch.sigmoid(output[1]) + grid_y xs1 = output[2] + grid_x ys1 = output[3] + grid_y xs2 = output[4] + grid_x ys2 = output[5] + grid_y xs3 = output[6] + grid_x ys3 = output[7] + grid_y xs4 = output[8] + grid_x ys4 = output[9] + grid_y xs5 = output[10] + grid_x ys5 = output[11] + grid_y xs6 = output[12] + grid_x ys6 = output[13] + grid_y xs7 = output[14] + grid_x ys7 = output[15] + grid_y xs8 = output[16] + grid_x ys8 = output[17] + grid_y det_confs = torch.sigmoid(output[18]) cls_confs = torch.nn.Softmax()(Variable(output[19:19+num_classes].transpose(0,1))).data cls_max_confs, cls_max_ids = torch.max(cls_confs, 1) cls_max_confs = cls_max_confs.view(-1) cls_max_ids = cls_max_ids.view(-1) t1 = time.time() # GPU to CPU sz_hw = h*w sz_hwa = sz_hw*num_anchors det_confs = convert2cpu(det_confs) cls_max_confs = convert2cpu(cls_max_confs) cls_max_ids = convert2cpu_long(cls_max_ids) xs0 = convert2cpu(xs0) ys0 = convert2cpu(ys0) xs1 = convert2cpu(xs1) ys1 = convert2cpu(ys1) xs2 = convert2cpu(xs2) ys2 = convert2cpu(ys2) xs3 = convert2cpu(xs3) ys3 = convert2cpu(ys3) xs4 = convert2cpu(xs4) ys4 = convert2cpu(ys4) xs5 = convert2cpu(xs5) ys5 = convert2cpu(ys5) xs6 = convert2cpu(xs6) ys6 = convert2cpu(ys6) xs7 = convert2cpu(xs7) ys7 = convert2cpu(ys7) xs8 = convert2cpu(xs8) ys8 = convert2cpu(ys8) if validation: cls_confs = convert2cpu(cls_confs.view(-1, num_classes)) t2 = time.time() # Boxes filter for b in range(batch): boxes = [] max_conf = -1 for cy in range(h): for cx in range(w): for i in range(num_anchors): ind = b*sz_hwa + i*sz_hw + cy*w + cx det_conf = det_confs[ind] if only_objectness: conf = det_confs[ind] else: conf = det_confs[ind] * cls_max_confs[ind] if (det_confs[ind] > max_conf) and (cls_confs[ind, correspondingclass] > max_cls_conf): max_conf = det_confs[ind] max_cls_conf = cls_confs[ind, correspondingclass] max_ind = ind if conf > conf_thresh: bcx0 = xs0[ind] bcy0 = ys0[ind] bcx1 = xs1[ind] bcy1 = ys1[ind] bcx2 = xs2[ind] bcy2 = ys2[ind] bcx3 = xs3[ind] bcy3 = ys3[ind] bcx4 = xs4[ind] bcy4 = ys4[ind] bcx5 = xs5[ind] bcy5 = ys5[ind] bcx6 = xs6[ind] bcy6 = ys6[ind] bcx7 = xs7[ind] bcy7 = ys7[ind] bcx8 = xs8[ind] bcy8 = ys8[ind] cls_max_conf = cls_max_confs[ind] cls_max_id = cls_max_ids[ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] if (not only_objectness) and validation: for c in range(num_classes): tmp_conf = cls_confs[ind][c] if c != cls_max_id and det_confs[ind]*tmp_conf > conf_thresh: box.append(tmp_conf) box.append(c) boxes.append(box) boxesnp = np.array(boxes) if (len(boxes) == 0) or (not (correspondingclass in boxesnp[:,20])): bcx0 = xs0[max_ind] bcy0 = ys0[max_ind] bcx1 = xs1[max_ind] bcy1 = ys1[max_ind] bcx2 = xs2[max_ind] bcy2 = ys2[max_ind] bcx3 = xs3[max_ind] bcy3 = ys3[max_ind] bcx4 = xs4[max_ind] bcy4 = ys4[max_ind] bcx5 = xs5[max_ind] bcy5 = ys5[max_ind] bcx6 = xs6[max_ind] bcy6 = ys6[max_ind] bcx7 = xs7[max_ind] bcy7 = ys7[max_ind] bcx8 = xs8[max_ind] bcy8 = ys8[max_ind] cls_max_conf = max_cls_conf # cls_max_confs[max_ind] cls_max_id = correspondingclass # cls_max_ids[max_ind] det_conf = max_conf # det_confs[max_ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] # experiment: chris commented out boxes.append(box) # print(boxes) # experiment: chris commented out all_boxes.append(boxes) else: all_boxes.append(boxes) t3 = time.time() if False: print('---------------------------------') print('matrix computation : %f' % (t1-t0)) print(' gpu to cpu : %f' % (t2-t1)) print(' boxes filter : %f' % (t3-t2)) print('---------------------------------') return all_boxes @jit("float32(float32[:,:])", cache=False, nopython=True, nogil=True, parallel=True) def esum(z): return np.sum(
np.exp(z)
numpy.exp
import matplotlib.pyplot as plt import numpy as np import tempfile import os import random def display_visualization(ycoords, labels=None, marker_size=10): n = ycoords.shape[0] if labels is None: labels =
np.ones(n)
numpy.ones
import cvxpy import numpy as np class Control: def __init__(self, model): # Bind model self.model = model # Desired x_pos self.xd = 0.0 # Control parameters self.N = 100 # Control limits self.umax = np.reshape(np.repeat(10, self.N), (self.N, 1)) self.xmax = np.reshape(np.repeat(1, 4 * self.N), (4 * self.N, 1)) # Control parameters if self.model.name == 'Pendulum': self.Q = np.mat([[100, 0, 0, 0], [0, 10, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) self.R = np.mat(np.identity(1)) self.P = np.mat([[1000, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]) else: self.Q = np.mat([[1.0, 0.0], [0.0, 1.0]]) self.R = np.mat(np.identity(1)) self.P = np.mat([[1.0, 0.0], [0.0, 1.0]]) # Get dynamics A = np.mat(self.model.A_disc) B = np.mat(self.model.B_disc) # Alternative to calculating Abar, Bbar, Cbar, and Ahat Abar = np.vstack((np.zeros((len(A), self.N*len(A))), np.hstack((np.kron(np.eye(self.N-1), A), np.zeros((len(A)*(self.N-1), len(A))))))) Bbar = np.kron(np.eye(self.N), B) self.Ahat = (np.identity(np.shape(Abar)[0]) - Abar).I * np.kron(np.identity(self.N), A)[:, 0:len(A)] self.Cbar = (np.identity(np.shape(Abar)[0]) - Abar).I * Bbar # Calculate penalty matrices tm1 = np.eye(self.N) tm1[self.N - 1, self.N - 1] = 0 tm2 = np.zeros((self.N, self.N)) tm2[self.N - 1, self.N - 1] = 1 self.Qbar = np.kron(tm1, self.Q) + np.kron(tm2, self.P) self.Rbar = np.kron(
np.eye(self.N)
numpy.eye
import numpy as np import scipy.stats as stats import scipy.linalg as la import scipy.optimize as optimize import scipy.integrate as integrate import sklearn.linear_model import kernels import ep_fast #import EP_cython np.set_printoptions(precision=4, linewidth=200) class GradientFields(): def __init__(self, K_nodiag, s0, t_i, prev): normPDF = stats.norm(0,1) try: t_i[0] except: t_i = np.zeros(K_nodiag.shape[0]) + t_i #general computations (always the same if the fixed effects are 0!!!!!) self.Ki = normPDF.sf(t_i) self.Ps = s0 + (1-s0)*self.Ki self.Pi = self.Ki / self.Ps self.stdY = np.sqrt(self.Pi * (1-self.Pi)) #compute Atag0 and B0 self.phi_ti = normPDF.pdf(t_i) self.phitphit = np.outer(self.phi_ti, self.phi_ti) self.stdY_mat = np.outer(self.stdY, self.stdY) mat1_temp = self.phi_ti / self.stdY self.mat1 = np.outer(mat1_temp, mat1_temp) sumProbs_temp = np.tile(self.Pi, (K_nodiag.shape[0], 1)) sumProbs = sumProbs_temp + sumProbs_temp.T Atag0_B0_inner_vec = self.Pi*(1-s0) self.mat2 = np.outer(Atag0_B0_inner_vec, Atag0_B0_inner_vec) + 1-sumProbs*(1-s0) self.Atag0 = self.mat1*self.mat2 self.B0 = np.outer(self.Ps, self.Ps) #Compute the elements of the function value (the squared distance between the observed and expected pairwise phenotypic covariance) self.K_nodiag_AB0 = K_nodiag * self.Atag0/self.B0 self.K_nodiag_sqr_AB0 = K_nodiag * self.K_nodiag_AB0 class PrevTest(): def __init__(self, n, m, prev, useFixed, h2Scale=1.0, prng=None, num_generate=None): self.prng = prng if (prng is None): self.prng = np.random.RandomState(args.seed) self.n = n self.useFixed = useFixed self.h2Scale = h2Scale if num_generate is None: if prev == 0.5: numGeno = n else: numGeno = np.maximum(int(float(self.n)/float(2*prev)), 25000) else: numGeno = num_generate #generate SNPs mafs = self.prng.rand(m) * 0.45 + 0.05 self.X = prng.binomial(2, mafs, size=(numGeno, m)).astype(np.float) mafs_estimated = mafs.copy() self.X_estimated = self.X.copy() self.X -= 2*mafs self.X_estimated -= 2*mafs_estimated self.X /= np.sqrt(2*mafs*(1-mafs)) self.X_estimated /= np.sqrt(2*mafs_estimated*(1-mafs_estimated)) self.m = m self.n = n X_mean_diag = np.mean(np.einsum('ij,ij->i', self.X, self.X)) / self.X.shape[1] X_estimated_mean_diag = np.mean(np.einsum('ij,ij->i', self.X_estimated, self.X_estimated)) / self.X.shape[1] self.diag_ratio = X_estimated_mean_diag / X_mean_diag self.prev = prev #approx coeffs lam_i and c_i for logistic likelihood self.logistic_c = np.array([1.146480988574439e+02, -1.508871030070582e+03, 2.676085036831241e+03, -1.356294962039222e+03, 7.543285642111850e+01]) self.logistic_lam = np.sqrt(2)*np.array([0.44 ,0.41, 0.40, 0.39, 0.36]) self.logistic_lam2 = self.logistic_lam**2 self.logistic_clam = self.logistic_c * self.logistic_lam def genData(self, h2, eDist, numFixed, ascertain=True, scaleG=False, extraSNPs=0, fixedVar=0, frac_cases=0.5, kernel='linear', rbf_scale=1.0): args.seed += 1 self.true_h2 = h2 self.ascertain = ascertain self.eDist = eDist if (numFixed==0): fixedVar=0 if (numFixed > 0): assert fixedVar>0 self.fixedVar = fixedVar self.covars = self.prng.randn(self.X.shape[0], numFixed) if (eDist == 'normal' and not scaleG): sig2g = h2/(1-h2) elif (eDist == 'normal' and scaleG): sig2g = h2 elif (eDist == 'logistic' and not scaleG): sig2g = (np.pi**2)/3.0 * h2 / (1 - h2) elif (eDist == 'logistic' and scaleG): sig2g = h2 else: raise ValueError('unknown e_dist. Valid value are normal, logistic') if kernel == 'linear': self.beta = self.prng.randn(self.m) *
np.sqrt(sig2g/self.m)
numpy.sqrt
from . import GeneExpressionDataset from .anndataset import AnnDatasetFromAnnData, DownloadableAnnDataset import torch import pickle import os import numpy as np import pandas as pd import anndata class AnnDatasetKeywords(GeneExpressionDataset): def __init__(self, data, select_genes_keywords=[]): super().__init__() if isinstance(data, str): anndataset = anndata.read(data) else: anndataset = data idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in enumerate(list(anndataset.var.index)) ] for keyword in select_genes_keywords: idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in idx_and_gene_names if keyword.lower() in gene_name.lower() ] gene_indices = np.array([idx for idx, _ in idx_and_gene_names]) gene_names = np.array([gene_name for _, gene_name in idx_and_gene_names]) expression_mat = np.array(anndataset.X[:, gene_indices].todense()) select_cells = expression_mat.sum(axis=1) > 0 expression_mat = expression_mat[select_cells, :] select_genes = (expression_mat > 0).mean(axis=0) > 0.21 gene_names = gene_names[select_genes] expression_mat = expression_mat[:, select_genes] print("Final dataset shape :", expression_mat.shape) self.populate_from_data(X=expression_mat, gene_names=gene_names) class ZhengDataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) zheng = anndata.read(os.path.join(current_dir, "zheng_gemcode_control.h5ad")) super(ZhengDataset, self).__init__(zheng, select_genes_keywords=["ercc"]) class MacosDataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) macos = anndata.read(os.path.join(current_dir, "macosko_dropseq_control.h5ad")) super(MacosDataset, self).__init__(macos, select_genes_keywords=["ercc"]) class KleinDataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) klein = anndata.read( os.path.join(current_dir, "klein_indrops_control_GSM1599501.h5ad") ) super(KleinDataset, self).__init__(klein, select_genes_keywords=["ercc"]) class Sven1Dataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven1 = svens[svens.obs.query('sample == "20311"').index] super(Sven1Dataset, self).__init__(sven1, select_genes_keywords=["ercc"]) class Sven2Dataset(AnnDatasetKeywords): def __init__(self): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven2 = svens[svens.obs.query('sample == "20312"').index] super(Sven2Dataset, self).__init__(sven2, select_genes_keywords=["ercc"]) class AnnDatasetRNA(GeneExpressionDataset): def __init__(self, data, n_genes=100): super().__init__() if isinstance(data, str): anndataset = anndata.read(data) else: anndataset = data # Select RNA genes idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in enumerate(list(anndataset.var.index)) if "ercc" not in gene_name.lower() ] gene_indices = np.array([idx for idx, _ in idx_and_gene_names]) gene_names = np.array([gene_name for _, gene_name in idx_and_gene_names]) expression_mat = np.array(anndataset.X[:, gene_indices].todense()) # Find n_genes most expressed genes (wrt average gene expression) argsort_genes_exp = np.argsort(np.mean(expression_mat, axis=0)) expression_mat = expression_mat[:, argsort_genes_exp[-n_genes:]] gene_names = gene_names[argsort_genes_exp[-n_genes:]] # Remove zero cells, then zero genes select_cells = expression_mat.sum(axis=1) > 0 expression_mat = expression_mat[select_cells, :] select_genes = (expression_mat > 0).mean(axis=0) >= 0.21 gene_names = gene_names[select_genes] expression_mat = expression_mat[:, select_genes] print("Final dataset shape :", expression_mat.shape) self.populate_from_data(X=expression_mat, gene_names=gene_names) class KleinDatasetRNA(AnnDatasetRNA): def __init__(self, n_genes=100): current_dir = os.path.dirname(os.path.realpath(__file__)) klein = anndata.read( os.path.join(current_dir, "klein_indrops_control_GSM1599501.h5ad") ) super(KleinDatasetRNA, self).__init__(klein, n_genes=n_genes) class Sven1DatasetRNA(AnnDatasetRNA): def __init__(self, n_genes=100): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven1 = svens[svens.obs.query('sample == "20311"').index] super(Sven1DatasetRNA, self).__init__(sven1, n_genes=n_genes) class Sven2DatasetRNA(AnnDatasetRNA): def __init__(self, n_genes=100): current_dir = os.path.dirname(os.path.realpath(__file__)) svens = anndata.read( os.path.join(current_dir, "svensson_chromium_control.h5ad") ) sven2 = svens[svens.obs.query('sample == "20312"').index] super(Sven2DatasetRNA, self).__init__(sven2, n_genes=n_genes) class AnnDatasetMixed(GeneExpressionDataset): def __init__(self, data, matching_func="l2", n_matches=3, threshold=0.01): super().__init__() assert matching_func in [ "l2", "l2_sort", "means", "cosine", "cosine_sort", "random", ] self.matching_func = matching_func self.n_matches = n_matches if isinstance(data, str): anndataset = anndata.read(data) else: anndataset = data expression_mat = np.array(anndataset.X.todense()) # Select ERCC genes ercc_idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in enumerate(list(anndataset.var.index)) if "ercc" in gene_name.lower() ] # Eliminate zero cells and zero genes select_cells = expression_mat.sum(axis=1) > 0 expression_mat = expression_mat[select_cells, :] select_genes = expression_mat.sum(axis=0) > 0 expression_mat = expression_mat[:, select_genes] # Select ERCC genes gene_names = np.array( [ gene_name for idx, gene_name in enumerate(list(anndataset.var.index)) if select_genes[idx] ] ) ercc_gene_indices = np.array( [ idx for idx, gene_name in enumerate(gene_names) if "ercc" in gene_name.lower() ] ) # Match ERCC genes with RNA genes, select matched genes selected_matched_genes = self._match_genes(expression_mat, ercc_gene_indices) expression_mat = expression_mat[:, selected_matched_genes] gene_names = gene_names[selected_matched_genes] # Remove induced zero cells and keep only genes present in at least 21% of cells select_cells = expression_mat.sum(axis=1) > 0 expression_mat = expression_mat[select_cells, :] select_genes = (expression_mat > 0).mean(axis=0) >= threshold gene_names = gene_names[select_genes] expression_mat = expression_mat[:, select_genes] print("Final dataset shape :", expression_mat.shape) print( "ERCC genes :", len([gene_name for gene_name in gene_names if "ercc" in gene_name.lower()]), ) self.is_ercc = np.array( ["ercc" in gene_name.lower() for gene_name in gene_names] ) self.populate_from_data(X=expression_mat, gene_names=gene_names) def _matching_func(self, ref_col, mat): if self.matching_func == "l2": return np.linalg.norm(mat - ref_col, axis=0) elif self.matching_func == "l2_sort": return np.linalg.norm( np.sort(mat, axis=0) - np.sort(ref_col, axis=0), axis=0 ) elif self.matching_func == "means": return np.abs(np.mean(mat, axis=0) - np.mean(ref_col)) elif self.matching_func == "cosine": return 1.0 - np.sum(mat * ref_col, axis=0) / ( np.linalg.norm(mat, axis=0) * np.linalg.norm(ref_col) ) elif self.matching_func == "cosine_sort": return 1.0 - np.sum( np.sort(mat, axis=0) * np.sort(ref_col, axis=0), axis=0 ) / (np.linalg.norm(mat, axis=0) * np.linalg.norm(ref_col)) elif self.matching_func == "random": np.random.seed(0) return np.random.uniform(0.0, 100.0, size=(mat.shape[1],)) else: raise Exception("Matching function not recognized") def _match_given_gene(self, expression_mat, ref_gene_index, selected_genes): scores = self._matching_func( expression_mat[:, ref_gene_index][:, np.newaxis], expression_mat ) scores[selected_genes] = np.inf new_matches = np.arange(expression_mat.shape[1])[ np.argsort(scores)[: self.n_matches] ] selected_genes[new_matches] = True return selected_genes def _match_genes(self, expression_mat, ref_gene_indices): selected_genes =
np.zeros(shape=(expression_mat.shape[1],), dtype=bool)
numpy.zeros
# Test that all of the examples in the galpy paper run from __future__ import print_function, division import os import numpy import pytest def test_overview(): from galpy.potential import NFWPotential np= NFWPotential(normalize=1.) from galpy.orbit import Orbit o= Orbit(vxvv=[1.,0.1,1.1,0.1,0.02,0.]) from galpy.actionAngle import actionAngleSpherical aA= actionAngleSpherical(pot=np) js= aA(o) assert numpy.fabs((js[0]-0.00980542)/js[0]) < 10.**-3., 'Action calculation in the overview section has changed' assert numpy.fabs((js[1]-1.1)/js[0]) < 10.**-3., 'Action calculation in the overview section has changed' assert numpy.fabs((js[2]-0.00553155)/js[0]) < 10.**-3., 'Action calculation in the overview section has changed' from galpy.df import quasiisothermaldf qdf= quasiisothermaldf(1./3.,0.2,0.1,1.,1., pot=np,aA=aA) assert numpy.fabs((qdf(o)-61.57476085)/61.57476085) < 10.**-3., 'qdf calculation in the overview section has changed' return None def test_import(): import galpy import galpy.potential import galpy.orbit import galpy.actionAngle import galpy.df import galpy.util return None def test_units(): import galpy.util.bovy_conversion as conversion print(conversion.force_in_pcMyr2(220.,8.))#pc/Myr^2 assert numpy.fabs(conversion.force_in_pcMyr2(220.,8.)-6.32793804994) < 10.**-4., 'unit conversion has changed' print(conversion.dens_in_msolpc3(220.,8.))#Msolar/pc^3 # Loosen tolerances including mass bc of 0.025% change in Msun in astropyv2 assert numpy.fabs((conversion.dens_in_msolpc3(220.,8.)-0.175790330079)/0.175790330079) < 0.0003, 'unit conversion has changed' print(conversion.surfdens_in_msolpc2(220.,8.))#Msolar/pc^2 assert numpy.fabs((conversion.surfdens_in_msolpc2(220.,8.)-1406.32264063)/1406.32264063) < 0.0003, 'unit conversion has changed' print(conversion.mass_in_1010msol(220.,8.))#10^10 Msolar assert numpy.fabs((conversion.mass_in_1010msol(220.,8.)-9.00046490005)/9.00046490005) < 0.0003, 'unit conversion has changed' print(conversion.freq_in_Gyr(220.,8.))#1/Gyr assert numpy.fabs(conversion.freq_in_Gyr(220.,8.)-28.1245845523) < 10.**-4., 'unit conversion has changed' print(conversion.time_in_Gyr(220.,8.))#Gyr assert numpy.fabs(conversion.time_in_Gyr(220.,8.)-0.0355560807712) < 10.**-4., 'unit conversion has changed' return None def test_potmethods(): from galpy.potential import DoubleExponentialDiskPotential dp= DoubleExponentialDiskPotential(normalize=1., hr=3./8.,hz=0.3/8.) dp(1.,0.1) # The potential itself at R=1., z=0.1 assert numpy.fabs(dp(1.,0.1)+1.1037196286636572) < 10.**-4., 'potmethods has changed' dp.Rforce(1.,0.1) # The radial force assert numpy.fabs(dp.Rforce(1.,0.1)+0.9147659436328015) < 10.**-4., 'potmethods has changed' dp.zforce(1.,0.1) # The vertical force assert numpy.fabs(dp.zforce(1.,0.1)+0.50056789703079607) < 10.**-4., 'potmethods has changed' dp.R2deriv(1.,0.1) # The second radial derivative assert numpy.fabs(dp.R2deriv(1.,0.1)+1.0189440730205248) < 10.**-4., 'potmethods has changed' dp.z2deriv(1.,0.1) # The second vertical derivative assert numpy.fabs(dp.z2deriv(1.,0.1)-1.0648350937842703) < 10.**-4., 'potmethods has changed' dp.Rzderiv(1.,0.1) # The mixed radial,vertical derivative assert numpy.fabs(dp.Rzderiv(1.,0.1)+1.1872449759212851) < 10.**-4., 'potmethods has changed' dp.dens(1.,0.1) # The density assert numpy.fabs(dp.dens(1.,0.1)-0.076502355610946121) < 10.**-4., 'potmethods has changed' dp.dens(1.,0.1,forcepoisson=True) # Using Poisson's eqn. assert numpy.fabs(dp.dens(1.,0.1,forcepoisson=True)-0.076446652249682681) < 10.**-4., 'potmethods has changed' dp.mass(1.,0.1) # The mass assert numpy.fabs(dp.mass(1.,0.1)-0.7281629803939751) < 10.**-4., 'potmethods has changed' dp.vcirc(1.) # The circular velocity at R=1. assert numpy.fabs(dp.vcirc(1.)-1.0) < 10.**-4., 'potmethods has changed' # By definition, because of normalize=1. dp.omegac(1.) # The rotational frequency assert numpy.fabs(dp.omegac(1.)-1.0) < 10.**-4., 'potmethods has changed' # Also because of normalize=1. dp.epifreq(1.) # The epicycle frequency assert numpy.fabs(dp.epifreq(1.)-1.3301123099210266) < 10.**-4., 'potmethods has changed' dp.verticalfreq(1.) # The vertical frequency assert numpy.fabs(dp.verticalfreq(1.)-3.7510872575640293) < 10.**-4., 'potmethods has changed' dp.flattening(1.,0.1) #The flattening (see caption) assert numpy.fabs(dp.flattening(1.,0.1)-0.42748757564198159) < 10.**-4., 'potmethods has changed' dp.lindbladR(1.75,m='corotation') # co-rotation resonance assert numpy.fabs(dp.lindbladR(1.75,m='corotation')-0.540985051273488) < 10.**-4., 'potmethods has changed' return None from galpy.potential import Potential def smoothInterp(t,dt,tform): """Smooth interpolation in time, following Dehnen (2000)""" if t < tform: smooth= 0. elif t > (tform+dt): smooth= 1. else: xi= 2.*(t-tform)/dt-1. smooth= (3./16.*xi**5.-5./8*xi**3.+15./16.*xi+.5) return smooth class TimeInterpPotential(Potential): """Potential that smoothly interpolates in time between two static potentials""" def __init__(self,pot1,pot2,dt=100.,tform=50.): """pot1= potential for t < tform, pot2= potential for t > tform+dt, dt: time over which to turn on pot2, tform: time at which the interpolation is switched on""" Potential.__init__(self,amp=1.) self._pot1= pot1 self._pot2= pot2 self._tform= tform self._dt= dt return None def _Rforce(self,R,z,phi=0.,t=0.): smooth= smoothInterp(t,self._dt,self._tform) return (1.-smooth)*self._pot1.Rforce(R,z)+smooth*self._pot2.Rforce(R,z) def _zforce(self,R,z,phi=0.,t=0.): smooth= smoothInterp(t,self._dt,self._tform) return (1.-smooth)*self._pot1.zforce(R,z)+smooth*self._pot2.zforce(R,z) def test_TimeInterpPotential(): #Just to check that the code above has run properly from galpy.potential import LogarithmicHaloPotential, \ MiyamotoNagaiPotential lp= LogarithmicHaloPotential(normalize=1.) mp= MiyamotoNagaiPotential(normalize=1.) tip= TimeInterpPotential(lp,mp) assert numpy.fabs(tip.Rforce(1.,0.1,t=10.)-lp.Rforce(1.,0.1)) < 10.**-8., 'TimeInterPotential does not work as expected' assert numpy.fabs(tip.Rforce(1.,0.1,t=200.)-mp.Rforce(1.,0.1)) < 10.**-8., 'TimeInterPotential does not work as expected' return None @pytest.mark.skip(reason="Test does not work correctly") def test_potentialAPIChange_warning(): # Test that a warning is displayed about the API change for evaluatePotentials etc. functions from what is given in the galpy paper #Turn warnings into errors to test for them import warnings from galpy.util import galpyWarning with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always",galpyWarning) import galpy.potential raisedWarning= False for wa in w: raisedWarning= (str(wa.message) == "A major change in versions > 1.1 is that all galpy.potential functions and methods take the potential as the first argument; previously methods such as evaluatePotentials, evaluateDensities, etc. would be called with (R,z,Pot), now they are called as (Pot,R,z) for greater consistency across the codebase") if raisedWarning: break assert raisedWarning, "Importing galpy.potential does not raise warning about evaluatePotentials API change" return None def test_orbitint(): import numpy from galpy.potential import MWPotential2014 from galpy.potential import evaluatePotentials as evalPot from galpy.orbit import Orbit E, Lz= -1.25, 0.6 o1= Orbit([0.8,0.,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(MWPotential2014,0.8,0.)-(Lz/0.8)**2./2.)),0.]) ts= numpy.linspace(0.,100.,2001) o1.integrate(ts,MWPotential2014) o1.plot(xrange=[0.3,1.],yrange=[-0.2,0.2],color='k') o2= Orbit([0.8,0.3,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(MWPotential2014,0.8,0.)-(Lz/0.8)**2./2.-0.3**2./2.)),0.]) o2.integrate(ts,MWPotential2014) o2.plot(xrange=[0.3,1.],yrange=[-0.2,0.2],color='k') return None def test_orbmethods(): from galpy.orbit import Orbit from galpy.potential import MWPotential2014 o= Orbit([0.8,0.3,0.75,0.,0.2,0.]) # setup R,vR,vT,z,vz,phi times= numpy.linspace(0.,10.,1001) # Output times o.integrate(times,MWPotential2014) # Integrate o.E() # Energy assert numpy.fabs(o.E()+1.2547650648697966) < 10.**-5., 'Orbit method does not work as expected' o.L() # Angular momentum assert numpy.all(numpy.fabs(o.L()-numpy.array([[ 0. , -0.16, 0.6 ]])) < 10.**-5.), 'Orbit method does not work as expected' o.Jacobi(OmegaP=0.65) #Jacobi integral E-OmegaP Lz assert numpy.fabs(o.Jacobi(OmegaP=0.65)-numpy.array([-1.64476506])) < 10.**-5., 'Orbit method does not work as expected' o.ER(times[-1]), o.Ez(times[-1]) # Rad. and vert. E at end assert numpy.fabs(o.ER(times[-1])+1.27601734263047) < 10.**-5., 'Orbit method does not work as expected' assert numpy.fabs(o.Ez(times[-1])-0.021252201847851909) < 10.**-5., 'Orbit method does not work as expected' o.rperi(), o.rap(), o.zmax() # Peri-/apocenter r, max. |z| assert numpy.fabs(o.rperi()-0.44231993168097) < 10.**-5., 'Orbit method does not work as expected' assert numpy.fabs(o.rap()-0.87769030382105) < 10.**-5., 'Orbit method does not work as expected' assert numpy.fabs(o.zmax()-0.077452357289016) < 10.**-5., 'Orbit method does not work as expected' o.e() # eccentricity (rap-rperi)/(rap+rperi) assert numpy.fabs(o.e()-0.32982348199330563) < 10.**-5., 'Orbit method does not work as expected' o.R(2.,ro=8.) # Cylindrical radius at time 2. in kpc assert numpy.fabs(o.R(2.,ro=8.)-3.5470772876920007) < 10.**-3., 'Orbit method does not work as expected' o.vR(5.,vo=220.) # Cyl. rad. velocity at time 5. in km/s assert numpy.fabs(o.vR(5.,vo=220.)-45.202530965094553) < 10.**-3., 'Orbit method does not work as expected' o.ra(1.), o.dec(1.) # RA and Dec at t=1. (default settings) # 5/12/2016: test weakened, because improved galcen<->heliocen # transformation has changed these, but still close assert numpy.fabs(o.ra(1.)-numpy.array([ 288.19277])) < 10.**-1., 'Orbit method does not work as expected' assert numpy.fabs(o.dec(1.)-numpy.array([ 18.98069155])) < 10.**-1., 'Orbit method does not work as expected' o.jr(type='adiabatic'), o.jz() # R/z actions (ad. approx.) assert numpy.fabs(o.jr(type='adiabatic')-0.05285302231137586) < 10.**-3., 'Orbit method does not work as expected' assert numpy.fabs(o.jz()-0.006637988850751242) < 10.**-3., 'Orbit method does not work as expected' # Rad. period w/ Staeckel approximation w/ focal length 0.5, o.Tr(type='staeckel',delta=0.5,ro=8.,vo=220.) # in Gyr assert numpy.fabs(o.Tr(type='staeckel',delta=0.5,ro=8.,vo=220.)-0.1039467864018446) < 10.**-3., 'Orbit method does not work as expected' o.plot(d1='R',d2='z') # Plot the orbit in (R,z) o.plot3d() # Plot the orbit in 3D, w/ default [x,y,z] return None def test_orbsetup(): from galpy.orbit import Orbit o= Orbit([25.,10.,2.,5.,-2.,50.],radec=True,ro=8., vo=220.,solarmotion=[-11.1,25.,7.25]) return None def test_surfacesection(): #Preliminary code import numpy from galpy.potential import MWPotential2014 from galpy.potential import evaluatePotentials as evalPot from galpy.orbit import Orbit E, Lz= -1.25, 0.6 o1= Orbit([0.8,0.,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(MWPotential2014,0.8,0.)-(Lz/0.8)**2./2.)),0.]) ts= numpy.linspace(0.,100.,2001) o1.integrate(ts,MWPotential2014) o2= Orbit([0.8,0.3,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(MWPotential2014,0.8,0.)-(Lz/0.8)**2./2.-0.3**2./2.)),0.]) o2.integrate(ts,MWPotential2014) def surface_section(Rs,zs,vRs): # Find points where the orbit crosses z from - to + shiftzs= numpy.roll(zs,-1) indx= (zs[:-1] < 0.)*(shiftzs[:-1] > 0.) return (Rs[:-1][indx],vRs[:-1][indx]) # Calculate and plot the surface of section ts= numpy.linspace(0.,1000.,20001) # long integration o1.integrate(ts,MWPotential2014) o2.integrate(ts,MWPotential2014) sect1Rs,sect1vRs=surface_section(o1.R(ts),o1.z(ts),o1.vR(ts)) sect2Rs,sect2vRs=surface_section(o2.R(ts),o2.z(ts),o2.vR(ts)) from matplotlib.pyplot import plot, xlim, ylim plot(sect1Rs,sect1vRs,'bo',mec='none') xlim(0.3,1.); ylim(-0.69,0.69) plot(sect2Rs,sect2vRs,'yo',mec='none') return None def test_adinvariance(): from galpy.potential import IsochronePotential from galpy.orbit import Orbit from galpy.actionAngle import actionAngleIsochrone # Initialize two different IsochronePotentials ip1= IsochronePotential(normalize=1.,b=1.) ip2= IsochronePotential(normalize=0.5,b=1.) # Use TimeInterpPotential to interpolate smoothly tip= TimeInterpPotential(ip1,ip2,dt=100.,tform=50.) # Integrate: 1) Orbit in the first isochrone potential o1= Orbit([1.,0.1,1.1,0.0,0.1,0.]) ts= numpy.linspace(0.,50.,1001) o1.integrate(ts,tip) o1.plot(d1='x',d2='y',xrange=[-1.6,1.6],yrange=[-1.6,1.6], color='b') # 2) Orbit in the transition o2= o1(ts[-1]) # Last time step => initial time step ts2= numpy.linspace(50.,150.,1001) o2.integrate(ts2,tip) o2.plot(d1='x',d2='y',overplot=True,color='g') # 3) Orbit in the second isochrone potential o3= o2(ts2[-1]) ts3= numpy.linspace(150.,200.,1001) o3.integrate(ts3,tip) o3.plot(d1='x',d2='y',overplot=True,color='r') # Now we calculate energy, maximum height, and mean radius print(o1.E(pot=ip1), (o1.rperi()+o1.rap())/2, o1.zmax()) assert numpy.fabs(o1.E(pot=ip1)+2.79921356237) < 10.**-4., 'Energy in the adiabatic invariance test is different' assert numpy.fabs((o1.rperi()+o1.rap())/2-1.07854158141) < 10.**-4., 'mean radius in the adiabatic invariance test is different' assert numpy.fabs(o1.zmax()-0.106331362938) < 10.**-4., 'zmax in the adiabatic invariance test is different' print(o3.E(pot=ip2), (o3.rperi()+o3.rap())/2, o3.zmax()) assert numpy.fabs(o3.E(pot=ip2)+1.19677002624) < 10.**-4., 'Energy in the adiabatic invariance test is different' assert numpy.fabs((o3.rperi()+o3.rap())/2-1.39962036137) < 10.**-4., 'mean radius in the adiabatic invariance test is different' assert numpy.fabs(o3.zmax()-0.138364269321) < 10.**-4., 'zmax in the adiabatic invariance test is different' # The orbit has clearly moved to larger radii, # the actions are however conserved from beginning to end aAI1= actionAngleIsochrone(ip=ip1); print(aAI1(o1)) js= aAI1(o1) assert numpy.fabs(js[0]-numpy.array([ 0.00773779])) < 10.**-4., 'action in the adiabatic invariance test is different' assert numpy.fabs(js[1]-numpy.array([ 1.1])) < 10.**-4., 'action in the adiabatic invariance test is different' assert numpy.fabs(js[2]-numpy.array([ 0.0045361])) < 10.**-4., 'action in the adiabatic invariance test is different' aAI2= actionAngleIsochrone(ip=ip2); print(aAI2(o3)) js= aAI2(o3) assert numpy.fabs(js[0]-numpy.array([ 0.00773812])) < 10.**-4., 'action in the adiabatic invariance test is different' assert numpy.fabs(js[1]-numpy.array([ 1.1])) < 10.**-4., 'action in the adiabatic invariance test is different' assert numpy.fabs(js[2]-numpy.array([ 0.0045361])) < 10.**-4., 'action in the adiabatic invariance test is different' return None def test_diskdf(): from galpy.df import dehnendf # Init. dehnendf w/ flat rot., hr=1/3, hs=1, and sr(1)=0.2 df= dehnendf(beta=0.,profileParams=(1./3.,1.0,0.2)) # Same, w/ correction factors to scale profiles dfc= dehnendf(beta=0.,profileParams=(1./3.,1.0,0.2), correct=True,niter=20) if True: # Log. diff. between scale and DF surf. dens. numpy.log(df.surfacemass(0.5)/df.targetSurfacemass(0.5)) assert numpy.fabs(numpy.log(df.surfacemass(0.5)/df.targetSurfacemass(0.5))+0.056954077791649592) < 10.**-4., 'diskdf does not behave as expected' # Same for corrected DF numpy.log(dfc.surfacemass(0.5)/dfc.targetSurfacemass(0.5)) assert numpy.fabs(numpy.log(dfc.surfacemass(0.5)/dfc.targetSurfacemass(0.5))+4.1440377205802041e-06) < 10.**-4., 'diskdf does not behave as expected' # Log. diff between scale and DF sr numpy.log(df.sigmaR2(0.5)/df.targetSigma2(0.5)) assert numpy.fabs(numpy.log(df.sigmaR2(0.5)/df.targetSigma2(0.5))+0.12786083001363127) < 10.**-4., 'diskdf does not behave as expected' # Same for corrected DF numpy.log(dfc.sigmaR2(0.5)/dfc.targetSigma2(0.5)) assert numpy.fabs(numpy.log(dfc.sigmaR2(0.5)/dfc.targetSigma2(0.5))+6.8065001252214986e-06) < 10.**-4., 'diskdf does not behave as expected' # Evaluate DF w/ R,vR,vT df(numpy.array([0.9,0.1,0.8])) assert numpy.fabs(df(numpy.array([0.9,0.1,0.8]))-numpy.array(0.1740247246180417)) < 10.**-4., 'diskdf does not behave as expected' # Evaluate corrected DF w/ Orbit instance from galpy.orbit import Orbit dfc(Orbit([0.9,0.1,0.8])) assert numpy.fabs(dfc(Orbit([0.9,0.1,0.8]))-numpy.array(0.16834863725552207)) < 10.**-4., 'diskdf does not behave as expected' # Calculate the mean velocities df.meanvR(0.9), df.meanvT(0.9) assert numpy.fabs(df.meanvR(0.9)) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(df.meanvT(0.9)-0.91144428051168291) < 10.**-4., 'diskdf does not behave as expected' # Calculate the velocity dispersions numpy.sqrt(dfc.sigmaR2(0.9)), numpy.sqrt(dfc.sigmaT2(0.9)) assert numpy.fabs(numpy.sqrt(dfc.sigmaR2(0.9))-0.22103383792719539) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(numpy.sqrt(dfc.sigmaT2(0.9))-0.17613725303902811) < 10.**-4., 'diskdf does not behave as expected' # Calculate the skew of the velocity distribution df.skewvR(0.9), df.skewvT(0.9) assert numpy.fabs(df.skewvR(0.9)) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(df.skewvT(0.9)+0.47331638366025863) < 10.**-4., 'diskdf does not behave as expected' # Calculate the kurtosis of the velocity distribution df.kurtosisvR(0.9), df.kurtosisvT(0.9) assert numpy.fabs(df.kurtosisvR(0.9)+0.13561300880237059) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(df.kurtosisvT(0.9)-0.12612702099300721) < 10.**-4., 'diskdf does not behave as expected' # Calculate a higher-order moment of the velocity DF df.vmomentsurfacemass(1.,6.,2.)/df.surfacemass(1.) assert numpy.fabs(df.vmomentsurfacemass(1.,6.,2.)/df.surfacemass(1.)-0.00048953492205559054) < 10.**-4., 'diskdf does not behave as expected' # Calculate the Oort functions dfc.oortA(1.), dfc.oortB(1.), dfc.oortC(1.), dfc.oortK(1.) assert numpy.fabs(dfc.oortA(1.)-0.40958989067012197) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(dfc.oortB(1.)+0.49396172114486514) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(dfc.oortC(1.)) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(dfc.oortK(1.)) < 10.**-4., 'diskdf does not behave as expected' # Sample Orbits from the DF, returns list of Orbits numpy.random.seed(1) os= dfc.sample(n=100,returnOrbit=True,nphi=1) # check that these have the right mean radius = 2hr=2/3 rs= numpy.array([o.R() for o in os]) assert numpy.fabs(
numpy.mean(rs)
numpy.mean
''' This file describes our re-implementation of the best model proposed by Bisk et. al in their work "Natural Language Communication with Robots." All our advice models are built on top of this model. The code flows top down and the parameters are at the top. ''' from absl import flags import os,random,sys sys.path.append(".") ## Model Imports import tensorflow as tf tf.set_random_seed(20160905) random.seed(20160427) import numpy as np np.set_printoptions(threshold=np.nan) import pandas as pandas import math import time import argparse from TFLibraries.Layer import Layers Layer = Layers() # these are the main parameters you should edit flags.DEFINE_integer("target", default=1, help="FLAGS.target is 1 if source coordinate prediction, else 2 if target prediction") flags.DEFINE_string("model_save_path", default='savedModels/default_model/model.ckpt', help="Where to save the trained model.") flags.DEFINE_string("train_file", default='data/STxyz_Blank/Train.mat', help='Where the training data mat file is located.') flags.DEFINE_string("dev_file", default='data/STxyz_Blank/Dev.mat', help='Where the dev data mat file is located.') flags.DEFINE_string("test_file", default='data/STxyz_Blank/Test.mat', help='Where the test data mat file is located.') # these parameters can be left as default to train the model and achieve the performance we report flags.DEFINE_integer("hidden_layer_size", default=256, help="hidden layer size for the LSTM and FC Layers.") flags.DEFINE_integer("word_embedding_size", default=256, help="Size of the word embedding layer.") flags.DEFINE_integer("epochs", default=60, help="How many FLAGS.epochs to run.") flags.DEFINE_float("learning_rate", default=0.001, help="Learning rate. No decay implemented.") flags.DEFINE_float("gradient_clip_threshold", default=5.0, help="When to do gradient clipping.") flags.DEFINE_integer("maxlength", default=105, help="Maximum sentence length") flags.DEFINE_integer("world_length", default=20, help="Length of the world (grid) array") flags.DEFINE_integer("world_size", default=3, help="Width of the world (grid) array") flags.DEFINE_integer("batch_size", default=9, help="How many examples per batch. Set to 9 because there are 9 different sentences per world configuration.") flags.DEFINE_integer("ndirs", default=9, help="Dimension for the number of directions prediction FC layer.") flags.DEFINE_integer("nblocks", default=20, help="Dimensions for the number of blocks prediction FC layer.") flags.DEFINE_integer("ndims", default=3, help="How many output dimensions. Should be 3 due to 3 coordinates.") flags.DEFINE_bool("performing_analysis", default=False, help="Whether we are performing analysis or not. If true, don't save the model and don't run training.") FLAGS = flags.FLAGS FLAGS(sys.argv) def load_data(train_file, dev_file, test_file): '''Load the data given the input files''' # dictionaries to store all the data training = {} training_labels = {} training_lens = {} development = {} development_labels = {} development_lens = {} testing = {} testing_labels = {} testing_lens = {} # if FLAGS.target = 1, range = 1 to 3 range_start = 0 range_end = 3 if FLAGS.target == 2: range_start = 3 range_end = 6 xvocab = 0 # Load the Data print("Reading the data files...") # A minibatch consists of a FLAGS.target location, a world, and 9 sentences that share the same FLAGS.target/world. fileList = [FLAGS.train_file, FLAGS.dev_file, FLAGS.test_file] # this list will hold train, dev, test files and all of their individual minibatches all_data = [] for k in range(0, 3): df = pandas.DataFrame([line.strip().split() for line in open(fileList[k], 'r')]) df.fillna("", inplace=True) data = np.array(df) # A minibatch consists of a FLAGS.target location, a world, # and 9 sentences that share the same FLAGS.target/world. minibatches = [] # go from 1 to d in steps of 9 # 11870 for i1 in range(0, data.shape[0] - 1, 9): # go through each individual one FLAGS.target = np.reshape(np.asarray(data[i1, range_start:range_end], dtype=np.float), (3, 1)) world = np.reshape(np.asarray(data[i1,6:66], dtype=np.float), (3,20), order='F') sentences = [] for i in range(i1, i1+9): # get in batches of 60 #@assert FLAGS.target == np.reshape(np.asarray(data[i1, range_start:range_end], dtype=np.float32), (3, 1)) # @assert world == np.reshape(np.asarray(data[i1,6:66]), (3,20)) sent = [] # maybe this is 67 for j in range (66, len(data[2])): # if "", break, else add to the sentence if data[i, j] == "": break sent.append(data[i,j]) if int(data[i, j]) > xvocab: if fileList[k] == FLAGS.train_file: xvocab = int(data[i, j]) sentences.append(sent) minibatches.append((FLAGS.target, world, sentences)) all_data.append(minibatches) return all_data, xvocab print("Initializing the model...") # load the data all_data, xvocab = load_data(FLAGS.train_file, FLAGS.dev_file, FLAGS.test_file) lastloss = bestloss = sys.maxint # train is all_data[0], dev is all_data[1], test is all_data[2] # FLAGS.maxlength = 83 since we can possible have an 83 word sentence and must pass in one by one input_data = tf.placeholder(tf.int32, [FLAGS.batch_size, FLAGS.maxlength]) # store how many sequences to go until we have to update the gradients lengths = tf.placeholder(tf.int32, [FLAGS.batch_size]) # correct outputs is a matrix of the correct x,y,z coordinates for each element in the batch labels = tf.placeholder(tf.float32, [3, FLAGS.batch_size]) with tf.name_scope("dropout_placeholer"): dropout_prob_placeholder = tf.placeholder_with_default(1.0, shape=()) embeddings = tf.Variable(tf.random_uniform([xvocab, FLAGS.word_embedding_size], -1, 1, seed=20160503)) # RNN architecture multicells = 1 # the lstm cell lstm = tf.contrib.rnn.LSTMCell(FLAGS.hidden_layer_size, state_is_tuple=True, initializer=tf.contrib.layers.xavier_initializer(seed=20160501)) # dropout cell lstm = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=dropout_prob_placeholder) # create a cell of the LSTM cell lstm = tf.contrib.rnn.MultiRNNCell(cells=[lstm] * multicells, state_is_tuple=True) # we have two softmax, one of size FLAGS.nblocks, another of size FLAGS.ndirs output_layer = {} with tf.name_scope("output-20-weight"): output_layer[0] = Layer.W(1 * FLAGS.hidden_layer_size, FLAGS.nblocks, 'OutputLayer') with tf.name_scope("output-10-weight"): output_layer[1] = Layer.W(1 * FLAGS.hidden_layer_size, FLAGS.ndirs, 'OutputLayer2') # # add bias to them, not sure if needed output_bias = {} with tf.name_scope("output-20-bias"): output_bias[0] = Layer.b(FLAGS.nblocks, 'OutputBias') with tf.name_scope("output-10-bias"): output_bias[1] = Layer.b(FLAGS.ndirs, 'OutputBias2') # inputs rnn_inputs = tf.nn.embedding_lookup(embeddings, input_data) # make the RNN graph with tf.variable_scope("lstm0"): # create the rnn graph at run time # sequence length allows us to input variable lengths # tensorflow returns zero vectors for states and outputs only after the sequence length. outputs, fstate = tf.nn.dynamic_rnn(cell=lstm, inputs=rnn_inputs, sequence_length=lengths, dtype=tf.float32, time_major=False) logits = {} with tf.name_scope("output1-20-compute"): logits[0] = tf.matmul((fstate[0].h), output_layer[0]) + output_bias[0] with tf.name_scope("output2-9-compute"): logits[1] = tf.matmul((fstate[0].h), output_layer[1]) + output_bias[1] # FLAGS.nblocks output with tf.name_scope("softmax-20"): refblock = tf.nn.softmax(logits[0]) # FLAGS.ndirs output with tf.name_scope("softmax-9"): direction = tf.nn.softmax(logits[1]) world_placeholder = tf.placeholder(tf.float32, [FLAGS.world_size, FLAGS.world_length]) # multiply the world by the softmax output of size FLAGS.nblocks (20) refxyz = tf.matmul(world_placeholder, tf.transpose(refblock)) with tf.name_scope("Weights_9_to_3_Dims"): output_dimensions = Layer.W(FLAGS.ndirs, FLAGS.ndims, name='OffsetWeights') offset = tf.matmul(direction, output_dimensions) # add these results together to get a matrix of size (3, 9) with tf.name_scope("resulting_coordinate"): result = refxyz + tf.transpose(offset) # Learning with tf.name_scope("regular_optimizer"): loss = tf.reduce_mean(tf.squared_difference(result, labels)) optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) gradients, variables = zip(*optimizer.compute_gradients(loss)) gradients, _ = tf.clip_by_global_norm(gradients, FLAGS.gradient_clip_threshold) optimize = optimizer.apply_gradients(zip(gradients, variables)) with tf.name_scope("correct_prediction"): # distance from the coordinates normalized by the block length correct_prediction = tf.reduce_sum([(tf.sqrt(tf.reduce_sum([(result[:, j][i] - labels[:, j][i])**2 for i in range(3) ]))/0.1524) for j in range(FLAGS.batch_size)])/FLAGS.batch_size output_1 = ((tf.sqrt(tf.reduce_sum([(result[:, 0][i] - labels[:, 0][i])**2 for i in range(3) ]))/0.1524)) output_2 = ((tf.sqrt(tf.reduce_sum([(result[:, 1][i] - labels[:, 1][i])**2 for i in range(3) ]))/0.1524)) output_3 = ((tf.sqrt(tf.reduce_sum([(result[:, 2][i] - labels[:, 2][i])**2 for i in range(3) ]))/0.1524)) output_4 = ((tf.sqrt(tf.reduce_sum([(result[:, 3][i] - labels[:, 3][i])**2 for i in range(3) ]))/0.1524)) output_5 = ((tf.sqrt(tf.reduce_sum([(result[:, 4][i] - labels[:, 4][i])**2 for i in range(3) ]))/0.1524)) output_6 = ((tf.sqrt(tf.reduce_sum([(result[:, 5][i] - labels[:, 5][i])**2 for i in range(3) ]))/0.1524)) output_7 = ((tf.sqrt(tf.reduce_sum([(result[:, 6][i] - labels[:, 6][i])**2 for i in range(3) ]))/0.1524)) output_8 = ((tf.sqrt(tf.reduce_sum([(result[:, 7][i] - labels[:, 7][i])**2 for i in range(3) ]))/0.1524)) output_9 = ((tf.sqrt(tf.reduce_sum([(result[:, 8][i] - labels[:, 8][i])**2 for i in range(3) ]))/0.1524)) with tf.name_scope("actual_prediction"): actual_prediction = result[:, 1] ## Training saver = tf.train.Saver() session = tf.Session() session.run(tf.global_variables_initializer()) #saver.restore(session, FLAGS.model_save_path) # train one set of minibatches def train_test_model(sess, minibatches, batchsize, training=True): ''' Train the model if training=True, test otherwise. Parameters: sess: Current tensorflow session. minibatches: Minibatches of data gotten from load_data. Pass in the one for the training, validation, or test data. batchsize: Batch size. training: True if training the model, false if just evaluating the predictions. ''' sumloss = numloss = 0 y = np.zeros((3, batchsize), np.float) mask = np.zeros(batchsize, np.uint8) input_vector = np.zeros((batchsize, FLAGS.maxlength), np.int32) total_loss = 0.0 predictions = [] # passing the data through the network for (FLAGS.target, world, sents) in minibatches: if len(sents) != batchsize: print("Bad length, error") # array to store the length of each sentence in the batch sequenceSizeLength = [] for k in range(len(sents)): sequenceSizeLength.append(len(sents[k])) input_vector[:] = 0 for j in range(len(sents)): s = sents[j] for i in range(len(s)): input_vector[j, i] = s[i] y[:] = 0 y += FLAGS.target # create the feed dict with the input data feed_dict = {input_data: input_vector, lengths: sequenceSizeLength, world_placeholder: world, labels: y, dropout_prob_placeholder: 0.5} # no dropout if not training if training == False: feed_dict = {input_data: input_vector, lengths: sequenceSizeLength, world_placeholder: world, labels: y} if training == True: _, current_loss = sess.run([optimize, loss], feed_dict=feed_dict) total_loss += current_loss else: # do the evaluation # getting all the coordinate outputs individually is good for evaluation and also allows us to easily compute the mean/median of the entire train/test set resOutput1, resOutput2, resOutput3, resOutput4, resOutput5, resOutput6, resOutput7, resOutput8, resOutput9, made_prediction, resulting_values = sess.run([output_1, output_2, output_3, output_4, output_5, output_6, output_7, output_8, output_9, correct_prediction, result], feed_dict=feed_dict) resOutputTotal = [resOutput1, resOutput2, resOutput3, resOutput4, resOutput5, resOutput6, resOutput7, resOutput8, resOutput9] predictions.extend(resOutputTotal) if training == True: return total_loss else: return predictions best_train_average = sys.maxint best_test_average = sys.maxint best_validation_average = sys.maxint # do the training and evaluation for epoch in range (FLAGS.epochs): start_time = time.time() # train if we are not in an analysis stage if FLAGS.performing_analysis == False: trainLoss = train_test_model(session, all_data[0], FLAGS.batch_size) print('Epoch %d: %f' % (epoch, trainLoss)) # train dataset predictions predictions = train_test_model(session, all_data[0], FLAGS.batch_size, training=False) average0 =
np.mean(predictions)
numpy.mean
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module contains functions/values used repeatedly in different modules of the ``builtin_frames`` package. """ from __future__ import (absolute_import, unicode_literals, division, print_function) import warnings import numpy as np from ... import units as u from ...time import Time from ...utils import iers from ...utils.exceptions import AstropyWarning from ..representation import CartesianRepresentation # The UTC time scale is not properly defined prior to 1960, so Time('B1950', # scale='utc') will emit a warning. Instead, we use Time('B1950', scale='tai') # which is equivalent, but does not emit a warning. EQUINOX_J2000 = Time('J2000', scale='utc') EQUINOX_B1950 = Time('B1950', scale='tai') # This is a time object that is the default "obstime" when such an attribute is # necessary. Currently, we use J2000. DEFAULT_OBSTIME = Time('J2000', scale='utc') PIOVER2 = np.pi / 2. #comes from the mean of the 1962-2014 IERS B data _DEFAULT_PM = (0.035, 0.29)*u.arcsec _IERS_HINT = """ If you need enough precision such that this matters (~<10 arcsec), you can use the latest IERS predictions by running: >>> from astropy.utils import iers >>> iers.IERS.iers_table = iers.IERS_A.open(iers.IERS_A_URL) """ def cartrepr_from_matmul(pmat, coo, transpose=False): """ Note that pmat should be an ndarray, *not* a matrix. """ if pmat.shape[-2:] != (3, 3): raise ValueError("tried to do matrix multiplication with an array that " "doesn't end in 3x3") if coo.isscalar: # a simpler path for scalar coordinates if transpose: pmat = pmat.T newxyz = np.sum(pmat * coo.cartesian.xyz, axis=-1) else: xyz = coo.cartesian.xyz.T # these expression are the same as iterating over the first dimension of # pmat and xyz and doing matrix multiplication on each in turn. resulting # dimension is <coo shape> x 3 pmat = pmat.reshape(pmat.size//9, 3, 3) if transpose: pmat = pmat.transpose(0, 2, 1) newxyz = np.sum(pmat * xyz.reshape(xyz.size//3, 1, 3), axis=-1).T return CartesianRepresentation(newxyz) def get_polar_motion(time): """ gets the two polar motion components in radians for use with apio13 """ #get the polar motion from the IERS table xp, yp, status = iers.IERS.open().pm_xy(time, return_status=True) wmsg = None if np.any(status == iers.TIME_BEFORE_IERS_RANGE): wmsg = ('Tried to get polar motions for times before IERS data is ' 'valid. Defaulting to polar motion from the 50-yr mean for those.') xp.ravel()[status.ravel()==iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[0] yp.ravel()[status.ravel()==iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[1] warnings.warn(wmsg, AstropyWarning) if np.any(status == iers.TIME_BEYOND_IERS_RANGE): wmsg = ('Tried to get polar motions for times after IERS data is ' 'valid. Defaulting to polar motion from the 50-yr mean for those.' + _IERS_HINT) xp.ravel()[status.ravel()==iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[0] yp.ravel()[status.ravel()==iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[1] warnings.warn(wmsg, AstropyWarning) return xp.to(u.radian).value, yp.to(u.radian).value def _warn_iers(ierserr): """ Generate a warning for an IERSRangeerror Parameters ---------- ierserr : An `~astropy.utils.iers.IERSRangeError` """ msg = '{0} Assuming UT1-UTC=0 for coordinate transformations.{1}' warnings.warn(msg.format(ierserr.args[0], _IERS_HINT), AstropyWarning) def get_dut1utc(time): """ This function is used to get UT1-UTC in coordinates because normally it gives an error outside the IERS range, but in coordinates we want to allow it to go through but with a warning. """ try: return time.delta_ut1_utc except iers.IERSRangeError as e: _warn_iers(e) return
np.zeros(time.shape)
numpy.zeros
import nnabla as nn import numpy as np from .identity import IdentityConverter from .helpers import GraphInfo class BatchNormalizationLinearConverter(IdentityConverter): """ The parameters of the batch normalization replaced simple scale and bias. Args: black_list (list): Black list of the function list. params (:obj:`OrderedDict`): Result of nn.get_parameters(). name (:obj:`str`): Prefix of the parameter scope. """ def __init__(self, black_list=[], params=None, name="bn-linear"): super(BatchNormalizationLinearConverter, self).__init__(black_list, params, name) def convert(self, vroot, entry_variables): """ All functions are replaced with the same `new` function. Args: vroot (:obj:`Variable`): NNabla Variable entry_variables (:obj:`Variable`): Entry variable from which the conversion starts. """ self.graph_info = GraphInfo(vroot) self.entry_variables = entry_variables cnt = 0 with nn.parameter_scope(self.name): # Function loop in the forward order for t, func in enumerate(self.graph_info.funcs): if func.name == "BatchNormalization": bn_func = func # TODO: should deal with both? if bn_func.info.args["batch_stat"] == False: o = self._bn_linear_conversion(bn_func, cnt) cnt += 1 continue # Identity conversion o = self._identity_conversion(func) self.end_variable = o return self.end_variable def _bn_linear_conversion(self, bn_func, cnt): # Conversion eps_data = bn_func.info.args["eps"] beta_data =
np.squeeze(bn_func.inputs[1].d)
numpy.squeeze
# -*- coding: utf-8 -*- """ @author: <NAME>, GEUS (Geological Survey of Denmark and Greenland) """ import rasterio from rasterio.warp import calculate_default_transform, reproject, Resampling import numpy as np from osgeo import gdal, ogr, gdalconst import geopandas as gpd import matplotlib.pyplot as plt # %% # load ESA land classes input_file = 'C:/Users/Pascal/Desktop/UZH_2020/ArcticHackathon/analyses/'\ + 'ESA_land_classes/Svalbard.tif' esalc_reader = rasterio.open(input_file) esalc = esalc_reader.read(1) # save metadata to create a file for glaciers meta = esalc_reader.meta #%% # create mask for "permanent snow and ice" glaciers = esalc == 220 # load ESA land classes output_file = 'C:/Users/Pascal/Desktop/UZH_2020/ArcticHackathon/analyses/'\ + 'ESA_land_classes/Svalbard_glaciers.tif' with rasterio.open(output_file, 'w+', **meta) as dst: dst.write(glaciers.astype('uint8'), 1) # %% # reproject Svalbard glaciers to WGS84 output_file_reproj = 'C:/Users/Pascal/Desktop/UZH_2020/ArcticHackathon/analyses/'\ + 'ESA_land_classes/Svalbard_glaciers_wgs84.tif' dst_crs = {'init': 'EPSG:4326'} with rasterio.open(output_file) as src: transform, width, height = calculate_default_transform(src.crs, dst_crs, src.width, src.height, *src.bounds) kwargs = src.meta.copy() kwargs.update({'crs': dst_crs,'transform': transform, 'width': width,'height': height}) with rasterio.open(output_file_reproj, 'w', **kwargs) as dst: reproject(source=rasterio.band(src, 1),destination=rasterio.band(dst, 1), src_transform=src.transform, src_crs=src.crs, dst_transform=transform, dst_crs=dst_crs, resampling=Resampling.nearest) # %% # reproject Svalbard glaciers to WGS84 output_file_shp = 'C:/Users/Pascal/Desktop/UZH_2020/ArcticHackathon/analyses/'\ + 'ESA_land_classes/Svalbard_glaciers_wgs84' # create shapefile out of raster def raster_polygonize(mask_temp_mp, shp_temp_mp): src_ds = gdal.Open(mask_temp_mp) srcband = src_ds.GetRasterBand(1) dst_layername = shp_temp_mp drv = ogr.GetDriverByName("ESRI Shapefile") dst_ds = drv.CreateDataSource( dst_layername + ".shp" ) dst_layer = dst_ds.CreateLayer(dst_layername, srs = None ) fd = ogr.FieldDefn("DN", ogr.OFTInteger) dst_layer.CreateField(fd) dst_field = dst_layer.GetLayerDefn().GetFieldIndex("DN") gdal.Polygonize(srcband, None, dst_layer, 0, [], callback=None) del src_ds, dst_ds, dst_layer, dst_field return dst_layername raster_polygonize(output_file_reproj, output_file_shp) # %% output_file_shp_postproc = 'C:/Users/Pascal/Desktop/UZH_2020/ArcticHackathon/analyses/'\ + 'ESA_land_classes/Svalbard_glaciers_wgs84_postproc.shp' # post-processing on glacier polygons shapefile = gpd.read_file(output_file_shp + ".shp") shapefile['area'] = shapefile.area # get rid of contour polygons [shapefile.drop(shapefile['area'].idxmax(), inplace=True) for i in range(4)] # shapefile_sorted_m = shapefile.to_crs("EPSG:32633") shapefile_sorted = shapefile.sort_values(by='area') # shapefile_sorted_processed = shapefile_sorted[shapefile_sorted.area > 0.5] centroids = shapefile.centroid.reset_index(drop=True) cx = [centroids[i].xy[0][0] for i in range(0, len(centroids))] cy = [centroids[i].xy[1][0] for i in range(0, len(centroids))] glaciers_wgs84_reader = rasterio.open(output_file_reproj) glaciers_wgs84 = glaciers_wgs84_reader.read(1) to_keep = [] ax = plt.subplot(111) for i in range(0, len(cx)): row, col = glaciers_wgs84_reader.index(cx[i], cy[i]) plt.scatter(cx[i], cy[i]) cell = glaciers_wgs84[row, col] if cell == 0: to_keep.append(True) else: to_keep.append(False) shapefile_sorted['ice'] = to_keep shapefile_sorted.boundary.plot(color='black', ax=ax) shapefile_sorted[shapefile_sorted.ice == 1].boundary.plot(color='red', ax=ax) # shapefile_sorted_degrees = shapefile_sorted.to_crs('EPSG:4326') # ax = plt.subplot(111) # shapefile_sorted.boundary.plot(color='black', ax=ax) # shapefile_sorted_processed.boundary.plot(color='red', ax=ax) # %% shapefile_sorted_processed.to_file(output_file_shp_postproc) # %% from rasterio.mask import mask from shapely.geometry import mapping # extract the geometry in GeoJSON format geoms = shapefile.geometry.values # list of shapely geometries for i in range(0, len(geoms)): geoms2 = [mapping(geoms[i])] # extract the raster values values within the polygon with rasterio.open(output_file_reproj) as src: out_image, out_transform = mask(src, geoms2, crop=True) print(np.shape(out_image)) vals = out_image.flatten() if
np.sum(vals == 0)
numpy.sum
""" This module contains all the functions needed for extracting satellite-derived shorelines (SDS) Author: <NAME>, Water Research Laboratory, University of New South Wales """ # load modules import os import numpy as np import matplotlib.pyplot as plt import pdb # image processing modules import skimage.filters as filters import skimage.measure as measure import skimage.morphology as morphology # machine learning modules import sklearn if sklearn.__version__[:4] == '0.20': from sklearn.externals import joblib else: import joblib from shapely.geometry import LineString # other modules import matplotlib.patches as mpatches import matplotlib.lines as mlines import matplotlib.cm as cm from matplotlib import gridspec import pickle from datetime import datetime from pylab import ginput # CoastSat modules from coastsat import SDS_tools, SDS_preprocess np.seterr(all='ignore') # raise/ignore divisions by 0 and nans # Main function for batch shoreline detection def extract_shorelines(metadata, settings): """ Main function to extract shorelines from satellite images KV WRL 2018 Arguments: ----------- metadata: dict contains all the information about the satellite images that were downloaded settings: dict with the following keys 'inputs': dict input parameters (sitename, filepath, polygon, dates, sat_list) 'cloud_thresh': float value between 0 and 1 indicating the maximum cloud fraction in the cropped image that is accepted 'cloud_mask_issue': boolean True if there is an issue with the cloud mask and sand pixels are erroneously being masked on the images 'buffer_size': int size of the buffer (m) around the sandy pixels over which the pixels are considered in the thresholding algorithm 'min_beach_area': int minimum allowable object area (in metres^2) for the class 'sand', the area is converted to number of connected pixels 'min_length_sl': int minimum length (in metres) of shoreline contour to be valid 'sand_color': str default', 'dark' (for grey/black sand beaches) or 'bright' (for white sand beaches) 'output_epsg': int output spatial reference system as EPSG code 'check_detection': bool if True, lets user manually accept/reject the mapped shorelines 'save_figure': bool if True, saves a -jpg file for each mapped shoreline 'adjust_detection': bool if True, allows user to manually adjust the detected shoreline Returns: ----------- output: dict contains the extracted shorelines and corresponding dates + metadata """ sitename = settings['inputs']['sitename'] filepath_data = settings['inputs']['filepath'] filepath_models = os.path.join(os.getcwd(), 'classification', 'models') # initialise output structure output = dict([]) # create a subfolder to store the .jpg images showing the detection filepath_jpg = os.path.join(filepath_data, sitename, 'jpg_files', 'detection') if not os.path.exists(filepath_jpg): os.makedirs(filepath_jpg) # close all open figures plt.close('all') print('Mapping shorelines:') # loop through satellite list for satname in metadata.keys(): # get images filepath = SDS_tools.get_filepath(settings['inputs'],satname) filenames = metadata[satname]['filenames'] # initialise the output variables output_timestamp = [] # datetime at which the image was acquired (UTC time) output_shoreline = [] # vector of shoreline points output_filename = [] # filename of the images from which the shorelines where derived output_cloudcover = [] # cloud cover of the images output_geoaccuracy = []# georeferencing accuracy of the images output_idxkeep = [] # index that were kept during the analysis (cloudy images are skipped) output_t_mndwi = [] # MNDWI threshold used to map the shoreline # load classifiers (if sklearn version above 0.20, learn the new files) str_new = '' if not sklearn.__version__[:4] == '0.20': str_new = '_new' if satname in ['L5','L7','L8']: pixel_size = 15 if settings['sand_color'] == 'dark': clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_dark%s.pkl'%str_new)) elif settings['sand_color'] == 'bright': clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_bright%s.pkl'%str_new)) else: clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat%s.pkl'%str_new)) elif satname == 'S2': pixel_size = 10 clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_S2%s.pkl'%str_new)) # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size) min_beach_area_pixels = np.ceil(settings['min_beach_area']/pixel_size**2) # loop through the images for i in range(len(filenames)): print('\r%s: %d%%' % (satname,int(((i+1)/len(filenames))*100)), end='') # get image filename fn = SDS_tools.get_filenames(filenames[i],filepath, satname) # preprocess image (cloud mask + pansharpening/downsampling) im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue']) # get image spatial reference system (epsg code) from metadata dict image_epsg = metadata[satname]['epsg'][i] # compute cloud_cover percentage (with no data pixels) cloud_cover_combined = np.divide(sum(sum(cloud_mask.astype(int))), (cloud_mask.shape[0]*cloud_mask.shape[1])) if cloud_cover_combined > 0.99: # if 99% of cloudy pixels in image skip continue # remove no data pixels from the cloud mask # (for example L7 bands of no data should not be accounted for) cloud_mask_adv = np.logical_xor(cloud_mask, im_nodata) # compute updated cloud cover percentage (without no data pixels) cloud_cover = np.divide(sum(sum(cloud_mask_adv.astype(int))), (sum(sum((~im_nodata).astype(int))))) # skip image if cloud cover is above user-defined threshold if cloud_cover > settings['cloud_thresh']: continue # calculate a buffer around the reference shoreline (if any has been digitised) im_ref_buffer = create_shoreline_buffer(cloud_mask.shape, georef, image_epsg, pixel_size, settings) # classify image in 4 classes (sand, whitewater, water, other) with NN classifier im_classif, im_labels = classify_image_NN(im_ms, im_extra, cloud_mask, min_beach_area_pixels, clf) # if adjust_detection is True, let the user adjust the detected shoreline if settings['adjust_detection']: date = filenames[i][:19] skip_image, shoreline, t_mndwi = adjust_detection(im_ms, cloud_mask, im_labels, im_ref_buffer, image_epsg, georef, settings, date, satname, buffer_size_pixels) # if the user decides to skip the image, continue and do not save the mapped shoreline if skip_image: continue # otherwise map the contours automatically with one of the two following functions: # if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced) # otherwise use find_wl_contours2 (traditional) else: try: # use try/except structure for long runs if sum(sum(im_labels[:,:,0])) < 10 : # minimum number of sand pixels # compute MNDWI image (SWIR-G) im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) # find water contours on MNDWI grayscale image contours_mwi, t_mndwi = find_wl_contours1(im_mndwi, cloud_mask, im_ref_buffer) else: # use classification to refine threshold and extract the sand/water interface contours_mwi, t_mndwi = find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size_pixels, im_ref_buffer) except: print('Could not map shoreline for this image: ' + filenames[i]) continue # process the water contours into a shoreline shoreline = process_shoreline(contours_mwi, cloud_mask, georef, image_epsg, settings) # visualise the mapped shorelines, there are two options: # if settings['check_detection'] = True, shows the detection to the user for accept/reject # if settings['save_figure'] = True, saves a figure for each mapped shoreline if settings['check_detection'] or settings['save_figure']: date = filenames[i][:19] if not settings['check_detection']: plt.ioff() # turning interactive plotting off skip_image = show_detection(im_ms, cloud_mask, im_labels, shoreline, image_epsg, georef, settings, date, satname) # if the user decides to skip the image, continue and do not save the mapped shoreline if skip_image: continue # append to output variables output_timestamp.append(metadata[satname]['dates'][i]) output_shoreline.append(shoreline) output_filename.append(filenames[i]) output_cloudcover.append(cloud_cover) output_geoaccuracy.append(metadata[satname]['acc_georef'][i]) output_idxkeep.append(i) output_t_mndwi.append(t_mndwi) # create dictionnary of output output[satname] = { 'dates': output_timestamp, 'shorelines': output_shoreline, 'filename': output_filename, 'cloud_cover': output_cloudcover, 'geoaccuracy': output_geoaccuracy, 'idx': output_idxkeep, 'MNDWI_threshold': output_t_mndwi, } print('') # close figure window if still open if plt.get_fignums(): plt.close() # change the format to have one list sorted by date with all the shorelines (easier to use) output = SDS_tools.merge_output(output) # save outputput structure as output.pkl filepath = os.path.join(filepath_data, sitename) with open(os.path.join(filepath, sitename + '_output.pkl'), 'wb') as f: pickle.dump(output, f) return output ################################################################################################### # IMAGE CLASSIFICATION FUNCTIONS ################################################################################################### def calculate_features(im_ms, cloud_mask, im_bool): """ Calculates features on the image that are used for the supervised classification. The features include spectral normalized-difference indices and standard deviation of the image for all the bands and indices. KV WRL 2018 Arguments: ----------- im_ms: np.array RGB + downsampled NIR and SWIR cloud_mask: np.array 2D cloud mask with True where cloud pixels are im_bool: np.array 2D array of boolean indicating where on the image to calculate the features Returns: ----------- features: np.array matrix containing each feature (columns) calculated for all the pixels (rows) indicated in im_bool """ # add all the multispectral bands features = np.expand_dims(im_ms[im_bool,0],axis=1) for k in range(1,im_ms.shape[2]): feature = np.expand_dims(im_ms[im_bool,k],axis=1) features = np.append(features, feature, axis=-1) # NIR-G im_NIRG = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,1], cloud_mask) features = np.append(features, np.expand_dims(im_NIRG[im_bool],axis=1), axis=-1) # SWIR-G im_SWIRG = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) features = np.append(features, np.expand_dims(im_SWIRG[im_bool],axis=1), axis=-1) # NIR-R im_NIRR = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,2], cloud_mask) features = np.append(features, np.expand_dims(im_NIRR[im_bool],axis=1), axis=-1) # SWIR-NIR im_SWIRNIR = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,3], cloud_mask) features = np.append(features, np.expand_dims(im_SWIRNIR[im_bool],axis=1), axis=-1) # B-R im_BR = SDS_tools.nd_index(im_ms[:,:,0], im_ms[:,:,2], cloud_mask) features = np.append(features, np.expand_dims(im_BR[im_bool],axis=1), axis=-1) # calculate standard deviation of individual bands for k in range(im_ms.shape[2]): im_std = SDS_tools.image_std(im_ms[:,:,k], 1) features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1) # calculate standard deviation of the spectral indices im_std = SDS_tools.image_std(im_NIRG, 1) features = np.append(features,
np.expand_dims(im_std[im_bool],axis=1)
numpy.expand_dims
import numpy import numpy as np import scipy import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import lal import lalsimulation from lal.lal import PC_SI as LAL_PC_SI import h5py import warnings import random # Calculating the projection of complex vector v on complex vector u def proj(u, v): # notice: this algrithm assume denominator isn't zero return u * numpy.vdot(v,u) / numpy.vdot(u,u) # Calculating the normalized residual (= a new basis) of a vector vec from known bases def gram_schmidt(bases, vec): for i in numpy.arange(0,len(bases)): vec = vec - proj(bases[i], vec) return vec/numpy.sqrt(numpy.vdot(vec,vec)) # normalized new basis # Calculating overlap of two waveforms def overlap_of_two_waveforms(wf1, wf2): wf1norm = wf1/numpy.sqrt(numpy.vdot(wf1,wf1)) # normalize the first waveform wf2norm = wf2/numpy.sqrt(numpy.vdot(wf2,wf2)) # normalize the second waveform diff = wf1norm - wf2norm #overlap = 1 - 0.5*(numpy.vdot(diff,diff)) overlap = numpy.real(numpy.vdot(wf1norm, wf2norm)) return overlap def spherical_to_cartesian(sph): x = sph[0]*numpy.sin(sph[1])*numpy.cos(sph[2]) y = sph[0]*numpy.sin(sph[1])*numpy.sin(sph[2]) z = sph[0]*numpy.cos(sph[1]) car = [x,y,z] return car def get_m1m2_from_mcq(mc, q): m2 = mc * q ** (-0.6) * (1+q)**0.2 m1 = m2 * q return numpy.array([m1,m2]) def generate_a_waveform(m1, m2, spin1, spin2, ecc, lambda1, lambda2, iota, phiRef, distance, deltaF, f_min, f_max, waveFlags, approximant): test_mass1 = m1 * lal.lal.MSUN_SI test_mass2 = m2 * lal.lal.MSUN_SI lalsimulation.SimInspiralWaveformParamsInsertTidalLambda1(waveFlags, lambda1) lalsimulation.SimInspiralWaveformParamsInsertTidalLambda2(waveFlags, lambda2) [plus_test, cross_test]=lalsimulation.SimInspiralChooseFDWaveform(test_mass1, test_mass2, spin1[0], spin1[1], spin1[2], spin2[0], spin2[1], spin2[2], distance, iota, phiRef, 0, ecc, 0, deltaF, f_min, f_max, 0, waveFlags, approximant) hp = plus_test.data.data hp_test = hp[numpy.int(f_min/deltaF):numpy.int(f_max/deltaF)] return hp_test def generate_a_waveform_from_mcq(mc, q, spin1, spin2, ecc, lambda1, lambda2, iota, phiRef, distance, deltaF, f_min, f_max, waveFlags, approximant): m1,m2 = get_m1m2_from_mcq(mc,q) test_mass1 = m1 * lal.lal.MSUN_SI test_mass2 = m2 * lal.lal.MSUN_SI lalsimulation.SimInspiralWaveformParamsInsertTidalLambda1(waveFlags, lambda1) lalsimulation.SimInspiralWaveformParamsInsertTidalLambda2(waveFlags, lambda2) [plus_test, cross_test]=lalsimulation.SimInspiralChooseFDWaveform(test_mass1, test_mass2, spin1[0], spin1[1], spin1[2], spin2[0], spin2[1], spin2[2], distance, iota, phiRef, 0, ecc, 0, deltaF, f_min, f_max, 0, waveFlags, approximant) hp = plus_test.data.data hp_test = hp[numpy.int(f_min/deltaF):numpy.int(f_max/deltaF)] return hp_test def generate_params_points(npts, nparams, params_low, params_high): paramspoints = numpy.random.uniform(params_low, params_high, size=(npts,nparams)) paramspoints = paramspoints.round(decimals=6) return paramspoints # now generating N=npts waveforms at points that are # randomly uniformly distributed in parameter space # and calculate their inner products with the 1st waveform # so as to find the best waveform as the new basis def least_match_waveform_unnormalized(paramspoints, known_bases, npts, distance, deltaF, f_min, f_max, waveFlags, approximant): overlaps = numpy.zeros(npts) modula = numpy.zeros(npts) for i in numpy.arange(0,len(paramspoints)): paramspoint = paramspoints[i] m1, m2 = get_m1m2_from_mcq(paramspoint[0],paramspoint[1]) s1x, s1y, s1z = spherical_to_cartesian(paramspoint[2:5]) s2x, s2y, s2z = spherical_to_cartesian(paramspoint[5:8]) iota = paramspoint[8] phiRef = paramspoint[9] ecc = 0 if len(paramspoint)==11: ecc = paramspoint[10] if len(paramspoint)==12: lambda1 = paramspoint[10] lambda2 = paramspoint[11] lalsimulation.SimInspiralWaveformParamsInsertTidalLambda1(waveFlags, lambda1) lalsimulation.SimInspiralWaveformParamsInsertTidalLambda2(waveFlags, lambda2) f_ref = 0 RA=0 DEC=0 psi=0 phi=0 m1 *= lal.lal.MSUN_SI m2 *= lal.lal.MSUN_SI [plus,cross]=lalsimulation.SimInspiralChooseFDWaveform(m1, m2, s1x, s1y, s1z, s2x, s2y, s2z, distance, iota, phiRef, 0, ecc, 0, deltaF, f_min, f_max, f_ref, waveFlags, approximant) hp_tmp = plus.data.data[numpy.int(f_min/deltaF):numpy.int(f_max/deltaF)] # data_tmp is hplus and is a complex vector residual = hp_tmp for k in numpy.arange(0,len(known_bases)): residual -= proj(known_bases[k],hp_tmp) modula[i] = numpy.sqrt(numpy.vdot(residual, residual)) arg_newbasis = numpy.argmax(modula) mass1, mass2 = get_m1m2_from_mcq(paramspoints[arg_newbasis][0],paramspoints[arg_newbasis][1]) mass1 *= lal.lal.MSUN_SI mass2 *= lal.lal.MSUN_SI sp1x, sp1y, sp1z = spherical_to_cartesian(paramspoints[arg_newbasis,2:5]) sp2x, sp2y, sp2z = spherical_to_cartesian(paramspoints[arg_newbasis,5:8]) inclination = paramspoints[arg_newbasis][8] phi_ref = paramspoints[arg_newbasis][9] ecc = 0 if len(paramspoint)==11: ecc = paramspoints[arg_newbasis][10] if len(paramspoint)==12: lambda1 = paramspoints[arg_newbasis][10] lambda2 = paramspoints[arg_newbasis][11] lalsimulation.SimInspiralWaveformParamsInsertTidalLambda1(waveFlags, lambda1) lalsimulation.SimInspiralWaveformParamsInsertTidalLambda2(waveFlags, lambda2) [plus_new, cross_new]=lalsimulation.SimInspiralChooseFDWaveform(mass1, mass2, sp1x, sp1y, sp1z, sp2x, sp2y, sp2z, distance, inclination, phi_ref, 0, ecc, 0, deltaF, f_min, f_max, 0, waveFlags, approximant) hp_new = plus_new.data.data hp_new = hp_new[numpy.int(f_min/deltaF):numpy.int(f_max/deltaF)] basis_new = gram_schmidt(known_bases, hp_new) return numpy.array([basis_new, paramspoints[arg_newbasis], modula[arg_newbasis]]) # elements, masses&spins, residual mod def least_match_quadratic_waveform_unnormalized(paramspoints, known_quad_bases, npts, distance, deltaF, f_min, f_max, waveFlags, approximant): overlaps = numpy.zeros(npts) modula = numpy.zeros(npts) for i in numpy.arange(0,len(paramspoints)): paramspoint = paramspoints[i] m1, m2 = get_m1m2_from_mcq(paramspoint[0],paramspoint[1]) s1x, s1y, s1z = spherical_to_cartesian(paramspoint[2:5]) s2x, s2y, s2z = spherical_to_cartesian(paramspoint[5:8]) iota=paramspoint[8] phiRef=paramspoint[9] ecc = 0 if len(paramspoint)==11: ecc = paramspoint[10] if len(paramspoint)==12: lambda1 = paramspoint[10] lambda2 = paramspoint[11] lalsimulation.SimInspiralWaveformParamsInsertTidalLambda1(waveFlags, lambda1) lalsimulation.SimInspiralWaveformParamsInsertTidalLambda2(waveFlags, lambda2) f_ref = 0 RA=0 DEC=0 psi=0 phi=0 m1 *= lal.lal.MSUN_SI m2 *= lal.lal.MSUN_SI [plus,cross]=lalsimulation.SimInspiralChooseFDWaveform(m1, m2, s1x, s1y, s1z, s2x, s2y, s2z, distance, iota, phiRef, 0, ecc, 0, deltaF, f_min, f_max, f_ref, waveFlags, approximant) hp_tmp = plus.data.data[numpy.int(f_min/deltaF):numpy.int(f_max/deltaF)] # data_tmp is hplus and is a complex vector hp_quad_tmp = (numpy.absolute(hp_tmp))**2 residual = hp_quad_tmp for k in numpy.arange(0,len(known_quad_bases)): residual -= proj(known_quad_bases[k],hp_quad_tmp) modula[i] = numpy.sqrt(numpy.vdot(residual, residual)) arg_newbasis = numpy.argmax(modula) mass1, mass2 = get_m1m2_from_mcq(paramspoints[arg_newbasis][0],paramspoints[arg_newbasis][1]) mass1 *= lal.lal.MSUN_SI mass2 *= lal.lal.MSUN_SI sp1x, sp1y, sp1z = spherical_to_cartesian(paramspoints[arg_newbasis,2:5]) sp2x, sp2y, sp2z = spherical_to_cartesian(paramspoints[arg_newbasis,5:8]) inclination = paramspoints[arg_newbasis][8] phi_ref = paramspoints[arg_newbasis][9] ecc = 0 if len(paramspoint)==11: ecc = paramspoints[arg_newbasis][10] if len(paramspoint)==12: lambda1 = paramspoints[arg_newbasis][10] lambda2 = paramspoints[arg_newbasis][11] lalsimulation.SimInspiralWaveformParamsInsertTidalLambda1(waveFlags, lambda1) lalsimulation.SimInspiralWaveformParamsInsertTidalLambda2(waveFlags, lambda2) [plus_new, cross_new]=lalsimulation.SimInspiralChooseFDWaveform(mass1, mass2, sp1x, sp1y, sp1z, sp2x, sp2y, sp2z, distance, inclination, phi_ref, 0, ecc, 0, deltaF, f_min, f_max, 0, waveFlags, approximant) hp_new = plus_new.data.data hp_new = hp_new[numpy.int(f_min/deltaF):numpy.int(f_max/deltaF)] hp_quad_new = (numpy.absolute(hp_new))**2 basis_quad_new = gram_schmidt(known_quad_bases, hp_quad_new) return numpy.array([basis_quad_new, paramspoints[arg_newbasis], modula[arg_newbasis]]) # elements, masses&spins, residual mod def bases_searching_results_unnormalized(npts, nparams, nbases, known_bases, basis_waveforms, params, residual_modula, params_low, params_high, distance, deltaF, f_min, f_max, waveFlags, approximant): if nparams == 10: print("The parameters are Mc, q, s1(mag, theta, phi), s2(mag, theta, phi), iota, and phiRef\n") if nparams == 11: print("The parameters are Mc, q, s1(mag, theta, phi), s2(mag, theta, phi), iota, phiRef, and eccentricity\n") if nparams == 12: print("The parameters are Mc, q, s1(mag, theta, phi), s2(mag, theta, phi), iota, phiRef, lambda1, and lambda2\n") for k in numpy.arange(0,nbases-1): params_points = generate_params_points(npts, nparams, params_low, params_high) basis_new, params_new, rm_new= least_match_waveform_unnormalized(params_points, known_bases, npts, distance, deltaF, f_min, f_max, waveFlags, approximant) print("Linear Iter: ", k, params_new) known_bases= numpy.append(known_bases, numpy.array([basis_new]), axis=0) params = numpy.append(params, numpy.array([params_new]), axis = 0) residual_modula = numpy.append(residual_modula, rm_new) return known_bases, params, residual_modula def bases_searching_quadratic_results_unnormalized(npts, nparams, nbases_quad, known_quad_bases, basis_waveforms, params_quad, residual_modula, params_low, params_high, distance, deltaF, f_min, f_max, waveFlags, approximant): for k in numpy.arange(0,nbases_quad-1): print("Quadratic Iter: ", k) params_points = generate_params_points(npts, nparams, params_low, params_high) basis_new, params_new, rm_new= least_match_quadratic_waveform_unnormalized(params_points, known_quad_bases, npts, distance, deltaF, f_min, f_max, waveFlags, approximant) known_quad_bases= numpy.append(known_quad_bases, numpy.array([basis_new]), axis=0) params_quad = numpy.append(params_quad, numpy.array([params_new]), axis = 0) residual_modula = numpy.append(residual_modula, rm_new) return known_quad_bases, params_quad, residual_modula def massrange(mc_low, mc_high, q_low, q_high): mmin = get_m1m2_from_mcq(mc_low,q_high)[1] mmax = get_m1m2_from_mcq(mc_high,q_high)[0] return [mmin, mmax] def initial_basis(mc_low, mc_high, q_low, q_high, s1sphere_low, s1sphere_high, s2sphere_low, s2sphere_high, ecc_low, ecc_high, lambda1_low, lambda1_high, lambda2_low, lambda2_high, iota_low, iota_high, phiref_low, phiref_high, distance, deltaF, f_min, f_max, waveFlags, approximant): try: if approximant==lalsimulation.IMRPhenomPv2: nparams = 10 params_low = [mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], iota_low, phiref_low] params_high = [mc_high, q_high, s1sphere_high[0], s1sphere_high[1], s1sphere_high[2], s2sphere_high[0], s2sphere_high[1], s2sphere_high[2], iota_high, phiref_high] params_start = numpy.array([[mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], 0.33333*np.pi, 1.5*np.pi]]) hp1 = generate_a_waveform_from_mcq(mc_low, q_low, spherical_to_cartesian(s1sphere_low), spherical_to_cartesian(s2sphere_low), 0, 0, 0, iota_low, phiref_low, distance, deltaF, f_min, f_max, waveFlags, approximant) except AttributeError: pass try: if approximant==lalsimulation.IMRPhenomPv3: nparams = 10 params_low = [mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], iota_low, phiref_low] params_high = [mc_high, q_high, s1sphere_high[0], s1sphere_high[1], s1sphere_high[2], s2sphere_high[0], s2sphere_high[1], s2sphere_high[2], iota_high, phiref_high] params_start = numpy.array([[mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], 0.33333*np.pi, 1.5*np.pi]]) hp1 = generate_a_waveform_from_mcq(mc_low, q_low, spherical_to_cartesian(s1sphere_low), spherical_to_cartesian(s2sphere_low), 0, 0, 0, iota_low, phiref_low, distance, deltaF, f_min, f_max, waveFlags, approximant) except AttributeError: pass try: if approximant==lalsimulation.IMRPhenomPv3HM: nparams = 10 params_low = [mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], iota_low, phiref_low] params_high = [mc_high, q_high, s1sphere_high[0], s1sphere_high[1], s1sphere_high[2], s2sphere_high[0], s2sphere_high[1], s2sphere_high[2], iota_high, phiref_high] params_start = numpy.array([[mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], 0.33333*np.pi, 1.5*np.pi]]) hp1 = generate_a_waveform_from_mcq(mc_low, q_low, spherical_to_cartesian(s1sphere_low), spherical_to_cartesian(s2sphere_low), 0, 0, 0, iota_low, phiref_low, distance, deltaF, f_min, f_max, waveFlags, approximant) except AttributeError: pass try: if approximant==lalsimulation.IMRPhenomXHM: nparams = 10 params_low = [mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], iota_low, phiref_low] params_high = [mc_high, q_high, s1sphere_high[0], s1sphere_high[1], s1sphere_high[2], s2sphere_high[0], s2sphere_high[1], s2sphere_high[2], iota_high, phiref_high] params_start = numpy.array([[mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], 0.33333*np.pi, 1.5*np.pi]]) hp1 = generate_a_waveform_from_mcq(mc_low, q_low, spherical_to_cartesian(s1sphere_low), spherical_to_cartesian(s2sphere_low), 0, 0, 0, iota_low, phiref_low, distance, deltaF, f_min, f_max, waveFlags, approximant) except AttributeError: pass try: if approximant==lalsimulation.TaylorF2Ecc: nparams = 11 params_low = [mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], iota_low, phiref_low, ecc_low] params_high = [mc_high, q_high, s1sphere_high[0], s1sphere_high[1], s1sphere_high[2], s2sphere_high[0], s2sphere_high[1], s2sphere_high[2], iota_high, phiref_high, ecc_high] params_start = numpy.array([[mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], 0.33333*np.pi, 1.5*np.pi, ecc_low]]) hp1 = generate_a_waveform_from_mcq(mc_low, q_low, spherical_to_cartesian(s1sphere_low), spherical_to_cartesian(s2sphere_low), ecc_low, 0, 0, iota_low, phiref_low, distance, deltaF, f_min, f_max, waveFlags, approximant) except AttributeError: pass try: if approximant==lalsimulation.IMRPhenomPv2_NRTidal: nparams = 12 params_low = [mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], lambda1_low, lambda2_low, iota_low, phiref_low] params_high = [mc_high, q_high, s1sphere_high[0], s1sphere_high[1], s1sphere_high[2], s2sphere_high[0], s2sphere_high[1], s2sphere_high[2], lambda1_high, lambda2_high, iota_high, phiref_high] params_start = numpy.array([[mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], lambda1_low, lambda2_low, 0.33333*np.pi, 1.5*np.pi]]) hp1 = generate_a_waveform_from_mcq(mc_low, q_low, spherical_to_cartesian(s1sphere_low), spherical_to_cartesian(s2sphere_low), 0, lambda1_low, lambda2_low, iota_low, phiref_low, distance, deltaF, f_min, f_max, waveFlags, approximant) except AttributeError: pass try: if approximant==lalsimulation.IMRPhenomNSBH: nparams = 12 params_low = [mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], lambda1_low, lambda2_low, iota_low, phiref_low] params_high = [mc_high, q_high, s1sphere_high[0], s1sphere_high[1], s1sphere_high[2], s2sphere_high[0], s2sphere_high[1], s2sphere_high[2], lambda1_high, lambda2_high, iota_high, phiref_high] params_start = numpy.array([[mc_low, q_low, s1sphere_low[0], s1sphere_low[1], s1sphere_low[2], s2sphere_low[0], s2sphere_low[1], s2sphere_low[2], lambda1_low, lambda2_low, 0.33333*np.pi, 1.5*np.pi]]) hp1 = generate_a_waveform_from_mcq(mc_low, q_low, spherical_to_cartesian(s1sphere_low), spherical_to_cartesian(s2sphere_low), 0, lambda1_low, lambda2_low, iota_low, phiref_low, distance, deltaF, f_min, f_max, waveFlags, approximant) except AttributeError: pass return numpy.array([nparams, params_low, params_high, params_start, hp1]) def empnodes(ndim, known_bases): # Here known_bases is the full copy known_bases_copy. Its length is equal to or longer than ndim. emp_nodes = numpy.arange(0,ndim)*100000000 emp_nodes[0] = numpy.argmax(numpy.absolute(known_bases[0])) c1 = known_bases[1,emp_nodes[0]]/known_bases[0,1] interp1 = numpy.multiply(c1,known_bases[0]) diff1 = interp1 - known_bases[1] r1 = numpy.absolute(diff1) emp_nodes[1] = numpy.argmax(r1) for k in numpy.arange(2,ndim): emp_tmp = emp_nodes[0:k] Vtmp = numpy.transpose(known_bases[0:k,emp_tmp]) inverse_Vtmp = numpy.linalg.pinv(Vtmp) e_to_interp = known_bases[k] Ci = numpy.dot(inverse_Vtmp, e_to_interp[emp_tmp]) interpolantA = numpy.zeros(len(known_bases[k]))+numpy.zeros(len(known_bases[k]))*1j for j in numpy.arange(0, k): tmp = numpy.multiply(Ci[j], known_bases[j]) interpolantA += tmp diff = interpolantA - known_bases[k] r = numpy.absolute(diff) emp_nodes[k] = numpy.argmax(r) emp_nodes = sorted(emp_nodes) u, c = numpy.unique(emp_nodes, return_counts=True) dup = u[c > 1] #print(len(emp_nodes), "\nDuplicates indices:", dup) emp_nodes = numpy.unique(emp_nodes) ndim = len(emp_nodes) #print(len(emp_nodes), "\n", emp_nodes) V = numpy.transpose(known_bases[0:ndim, emp_nodes]) inverse_V = numpy.linalg.pinv(V) return numpy.array([ndim, inverse_V, emp_nodes]) def surroerror(ndim, inverse_V, emp_nodes, known_bases, test_mc, test_q, test_s1, test_s2, test_ecc, test_lambda1, test_lambda2, test_iota, test_phiref, distance, deltaF, f_min, f_max, waveFlags, approximant): hp_test = generate_a_waveform_from_mcq(test_mc, test_q, test_s1, test_s2, test_ecc, test_lambda1, test_lambda2, test_iota, test_phiref, distance, deltaF, f_min, f_max, waveFlags, approximant) Ci =
numpy.dot(inverse_V, hp_test[emp_nodes])
numpy.dot
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 10 17:19:24 2021 @author: tungdang """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 10 14:16:33 2021 @author: tungbioinfo """ import warnings from abc import ABCMeta, abstractmethod from time import time import math from scipy.misc import factorial import numpy as np import numpy.ma as ma import pandas as pd from scipy.special import betaln, digamma, gammaln, logsumexp, polygamma from scipy import linalg from sklearn.utils import check_array, check_random_state from sklearn.utils.validation import _deprecate_positional_args, check_is_fitted from sklearn import cluster from sklearn.utils.extmath import row_norms #------------------------------------------------------------------------------ # Check gamma + delta update #------------------------------------------------------------------------------ gamma_vi = np.ones((n_components, n_features)) delta_vi = np.ones((n_components, n_features)) n_components = 5 n_samples, n_features = X.shape nk = np.dot(resp.T, select) + 10 * np.finfo(resp.dtype).eps gamma = np.ones((n_components, n_features)) delta =
np.ones((n_components, n_features))
numpy.ones
import os import re import numpy as np def get_subject_files(dataset, files, sid): """Get a list of files storing each subject data.""" # Pattern of the subject files from different datasets if "mass" in dataset: reg_exp = f".*-00{str(sid+1).zfill(2)} PSG.npz" # reg_exp = "SS3_00{}\.npz$".format(str(sid+1).zfill(2)) elif "sleepedf" in dataset: reg_exp = f"S[C|T][4|7]{str(sid).zfill(2)}[a-zA-Z0-9]+\.npz$" # reg_exp = "[a-zA-Z0-9]*{}[1-9]E0\.npz$".format(str(sid).zfill(2)) elif "isruc" in dataset: reg_exp = f"subject{sid}.npz" elif "ucddb" in dataset: reg_exp = f"ucddb{str(sid).zfill(3)}.npz" else: raise Exception("Invalid datasets.") # Get the subject files based on ID subject_files = [] for i, f in enumerate(files): pattern = re.compile(reg_exp) if pattern.search(f): subject_files.append(f) #print(len(subject_files)) return subject_files def load_data(subject_files): """Load data from subject files.""" signals = [] labels = [] for sf in subject_files: with np.load(sf) as f: x = f['x'] y = f['y'] # Reshape the data to match the input of the model - conv2d x =
np.squeeze(x)
numpy.squeeze
# -*- coding: utf-8 -*- """ Created on Wed Jan 10 13:45:27 2018 @author: sreimond """ import numpy as np from datetime import datetime def is_leap( years, cal='auto' ): """ The `is_leap` function enables array input. Documentation see the `_is_leap` function. """ years = np.array(years,ndmin=1) years_count = np.size(years) ret = np.zeros(years_count,dtype=np.bool_) for ix in range(years_count): try: ret[ix] = _is_leap( years[ix], cal=cal ) except: ret[ix] = np.nan return ret def is_julian( y, m, d ): """ The `is_julian` function enables array input. Documentation see the `_is_julian` function. """ years = np.array(y,ndmin=1) months = np.array(m,ndmin=1) days = np.array(d,ndmin=1) years_count = np.size(years) dim_check = ((years_count == np.size(months)) and (years_count == np.size(days))) if not dim_check: raise ValueError('dimension mismatch') ret = np.zeros(years_count,dtype=np.bool_) for ix in range(years_count): try: ret[ix] = _is_julian( years[ix], months[ix], days[ix] ) except: ret[ix] = np.nan return ret def is_gregorian( y, m, d ): """ The `is_gregorian` function enables array input. Documentation see the `_is_julian` function. """ years = np.array(y,ndmin=1) months = np.array(m,ndmin=1) days = np.array(d,ndmin=1) years_count = np.size(years) dim_check = ((years_count == np.size(months)) and (years_count == np.size(days))) if not dim_check: raise ValueError('dimension mismatch') ret = np.zeros(years_count,dtype=np.bool_) for ix in range(years_count): try: ret[ix] = _is_gregorian( years[ix], months[ix], days[ix] ) except: ret[ix] = np.nan return ret def ymd2jd( y, m, d, cal='auto' ): """ The `ymd2jd` function enables array input. Documentation see the `_ymd2jd` function. """ years = np.array(y,ndmin=1) months = np.array(m,ndmin=1) days = np.array(d,ndmin=1) years_count = np.size(years) dim_check = ((years_count == np.size(months)) and (years_count == np.size(days))) if not dim_check: raise ValueError('dimension mismatch') ret = np.zeros(years_count,dtype=np.float_) for ix in range(years_count): try: ret[ix] = _ymd2jd( years[ix], months[ix], days[ix], cal=cal ) except: ret[ix] = np.nan return ret def jd2ymd( jd, cal='auto' ): """ The `jd2ymd` function enables array input. Documentation see the `_jd2ymd` function. """ jd = np.array(jd,ndmin=1) jd_count = np.size(jd) years = np.zeros(jd_count,dtype=np.int_) months = np.zeros(jd_count,dtype=np.int_) days = np.zeros(jd_count,dtype=np.float_) for ix in range(jd_count): try: years[ix], months[ix], days[ix] = _jd2ymd( jd[ix], cal=cal ) except: years[ix], months[ix], days[ix] = np.nan, np.nan, np.nan return years, months, days def ymd2mjd( y, m, d, cal='auto' ): """ The `ymd2mjd` function enables array input. Documentation see the `_ymd2mjd` function. """ years = np.array(y,ndmin=1) months = np.array(m,ndmin=1) days = np.array(d,ndmin=1) years_count = np.size(years) dim_check = ((years_count == np.size(months)) and (years_count == np.size(days))) if not dim_check: raise ValueError('dimension mismatch') ret = np.zeros(years_count,dtype=np.float_) for ix in range(years_count): try: ret[ix] = _ymd2mjd( years[ix], months[ix], days[ix], cal=cal ) except: ret[ix] = np.nan return ret def mjd2ymd( mjd, cal='auto' ): """ The `mjd2ymd` function enables array input. Documentation see the `_mjd2ymd` function. """ mjd = np.array(mjd,ndmin=1) mjd_count = np.size(mjd) years = np.zeros(mjd_count,dtype=np.int_) months = np.zeros(mjd_count,dtype=np.int_) days = np.zeros(mjd_count,dtype=np.float_) for ix in range(mjd_count): try: years[ix], months[ix], days[ix] = _mjd2ymd( mjd[ix], cal=cal ) except: years[ix], months[ix], days[ix] = np.nan, np.nan, np.nan return years, months, days def jd2dow( jd ): """ The `jd2dow` function enables array input. Documentation see the `_jd2dow` function. """ jd = np.array(jd,ndmin=1) jd_count = np.size(jd) days_number = np.zeros(jd_count,dtype=np.int_) days_name = np.zeros(jd_count,dtype='|S3') for ix in range(jd_count): try: days_number[ix], days_name[ix] = _jd2dow( jd[ix] ) except: days_number[ix], days_name[ix] = np.nan, 'nan' return days_number, days_name def mjd2dow( mjd ): """ The `mjd2dow` function enables array input. Documentation see the `_mjd2dow` function. """ mjd = np.array(mjd,ndmin=1) mjd_count = np.size(mjd) days_number = np.zeros(mjd_count,dtype=np.int_) days_name = np.zeros(mjd_count,dtype='|S3') for ix in range(mjd_count): try: days_number[ix], days_name[ix] = _mjd2dow( mjd[ix] ) except: days_number[ix], days_name[ix] = np.nan, 'nan' return days_number, days_name def dhms2day( d, h, m, s ): """ The `dhms2day` function enables array input. Documentation see the `_dhms2day` function. """ days = np.array(d,ndmin=1) hours = np.array(h,ndmin=1) minutes = np.array(m,ndmin=1) seconds = np.array(s,ndmin=1) days_count = np.size(days) dim_check = ((days_count == np.size(hours)) and (days_count == np.size(minutes)) and (days_count == np.size(seconds))) if not dim_check: raise ValueError('dimension mismatch') ret = np.zeros(days_count,dtype=np.float_) for ix in range(days_count): try: ret[ix] = _dhms2day( days[ix], hours[ix], minutes[ix], seconds[ix] ) except: ret[ix] = np.nan return ret def day2dhms( day ): """ The `day2dhms` function enables array input. Documentation see the `_day2dhms` function. """ day = np.array(day,ndmin=1) day_count = np.size(day) days = np.zeros(day_count,dtype=np.int_) hours = np.zeros(day_count,dtype=np.int_) minutes = np.zeros(day_count,dtype=np.int_) seconds = np.zeros(day_count,dtype=np.float_) for ix in range(day_count): try: days[ix], hours[ix], minutes[ix], seconds[ix] = _day2dhms( day[ix] ) except: days[ix], hours[ix], minutes[ix], seconds[ix] = np.nan, np.nan, np.nan, np.nan return days, hours, minutes, seconds def ymd2doy( y, m, d ): """ The `ymd2doy` function enables array input. Documentation see the `_ymd2doy` function. """ years = np.array(y,ndmin=1) months = np.array(m,ndmin=1) days = np.array(d,ndmin=1) years_count = np.size(years) dim_check = ((years_count == np.size(months)) and (years_count == np.size(days))) if not dim_check: raise ValueError('dimension mismatch') ret = np.zeros(years_count,dtype=np.int_) for ix in range(years_count): try: ret[ix] = _ymd2doy( years[ix], months[ix], days[ix] ) except: ret[ix] = np.nan return ret def jd2doy( jd ): """ The `jd2doy` function enables array input. Documentation see the `_jd2doy` function. """ jd = np.array(jd,ndmin=1) jd_count = np.size(jd) doys = np.zeros(jd_count,dtype=np.int_) for ix in range(jd_count): try: doys[ix] = _jd2doy( jd[ix] ) except: doys[ix] = np.nan return doys def mjd2doy( mjd ): """ The `mjd2doy` function enables array input. Documentation see the `_mjd2doy` function. """ mjd = np.array(mjd,ndmin=1) mjd_count = np.size(mjd) doys = np.zeros(mjd_count,dtype=np.int_) for ix in range(mjd_count): try: doys[ix] = _mjd2doy( mjd[ix] ) except: doys[ix] = np.nan return doys def doy2ymd( y, doy ): """ The `doy2ymd` function enables array input. Documentation see the `_doy2ymd` function. """ ys = np.array(y,ndmin=1) doys = np.array(doy,ndmin=1) ys_count = np.size(ys) dim_check = (ys_count == np.size(doys)) if not dim_check: raise ValueError('dimension mismatch') years = np.zeros(ys_count,dtype=np.int_) months = np.zeros(ys_count,dtype=np.int_) days = np.zeros(ys_count,dtype=np.float_) for ix in range(ys_count): try: years[ix], months[ix], days[ix] = _doy2ymd( ys[ix], doys[ix] ) except: years[ix], months[ix], days[ix] = np.nan, np.nan, np.nan return years, months, days def doy2jd( y, doy ): """ The `doy2jd` function enables array input. Documentation see the `_doy2jd` function. """ ys = np.array(y,ndmin=1) doys = np.array(doy,ndmin=1) ys_count = np.size(ys) ret = np.zeros(ys_count,dtype=np.float_) for ix in range(ys_count): try: ret[ix] = _doy2jd( ys[ix], doys[ix] ) except: ret[ix] = np.nan return ret def doy2mjd( y, doy ): """ The `doy2mjd` function enables array input. Documentation see the `_doy2mjd` function. """ ys = np.array(y,ndmin=1) doys = np.array(doy,ndmin=1) ys_count = np.size(ys) ret = np.zeros(ys_count,dtype=np.float_) for ix in range(ys_count): try: ret[ix] = _doy2mjd( ys[ix], doys[ix] ) except: ret[ix] = np.nan return ret def mjd2jd( mjd ): """ The `mjd2jd` function enables array input. Documentation see the `_mjd2jd` function. """ mjd =
np.array(mjd,ndmin=1)
numpy.array
import numpy as np, pandas as pd import collections, pickle, os from glob import glob from collections import OrderedDict from astropy.io import fits from astrobase.lcmath import time_bin_magseries_with_errs from cdips.lcproc.mask_orbit_edges import mask_orbit_start_and_end from cdips.plotting.vetting_pdf import _given_mag_get_flux from timmy.paths import DATADIR, RESULTSDIR from numpy import array as nparr from scipy.stats import gaussian_kde def detrend_tessphot(x_obs, y_obs, y_err): from wotan import flatten flat_flux, trend_flux = flatten(x_obs, y_obs, method='hspline', window_length=0.3, break_tolerance=0.4, return_trend=True) # flat_flux, trend_flux = flatten(time, flux, method='pspline', # break_tolerance=0.4, return_trend=True) # flat_flux, trend_flux = flatten(time, flux, method='biweight', # window_length=0.3, edge_cutoff=0.5, # break_tolerance=0.4, return_trend=True, # cval=2.0) return flat_flux, trend_flux def get_tessphot(provenance, yval): """ provenance: 'spoc' or 'cdips' yval: spoc: 'SAP_FLUX', 'PDCSAP_FLUX' cdips: 'PCA1', 'IRM1', etc. """ if provenance == 'spoc': lcpaths = glob(os.path.join( DATADIR, 'MAST_2020-05-04T1852/TESS/*/*-s_lc.fits')) assert len(lcpaths) == 2 elif provenance == 'cdips': lcpaths = glob(os.path.join( DATADIR, 'MAST_2020-05-04T1852/HLSP/*/*cdips*llc.fits')) assert len(lcpaths) == 2 else: raise NotImplementedError time, flux, flux_err, qual = [], [], [], [] for l in lcpaths: hdul = fits.open(l) d = hdul[1].data if provenance == 'spoc': time.append(d['TIME']) _f, _f_err = d[yval], d[yval+'_ERR'] flux.append(_f/np.nanmedian(_f)) flux_err.append(_f_err/np.nanmedian(_f)) qual.append(d['QUALITY']) elif provenance == 'cdips': time.append(d['TMID_BJD'] - 2457000) _f, _f_err = _given_mag_get_flux(d[yval], err_mag=d['IRE'+yval[-1]]) flux.append(_f) flux_err.append(_f_err) hdul.close() time = np.concatenate(time).ravel() flux = np.concatenate(flux).ravel() flux_err = np.concatenate(flux_err).ravel() if len(qual)>0: qual = np.concatenate(qual).ravel() return time, flux, flux_err, qual def get_clean_tessphot(provenance, yval, binsize=None, maskflares=0): """ Get data. Mask quality cut. Optionally bin, to speed fitting (linear in time, but at the end of the day, you want 2 minute). """ time, flux, flux_err, qual = get_tessphot(provenance, yval) N_i = len(time) # initial if provenance == 'spoc': # [ 0, 1, 8, 16, 32, 128, 160, 168, 176, 180, 181, # 512, 2048, 2080, 2176, 2216, 2560] binary_repr_vec = np.vectorize(np.binary_repr) qual_binary = binary_repr_vec(qual, width=12) # See Table 28 of EXP-TESS-ARC-ICD-TM-0014 # don't want: # bit 3 coarse point # bit 4 Earth point # bit 6 reaction wheel desaturation # bit 8 maunal exclude # bit 11 cosmic ray detected on collateral pixel row or column # bit 12 straylight from earth or moon in camera fov # badbits = [3,4,6,8,11] badbits = [3,4,6,8,11,12] sel = np.isfinite(qual) for bb in badbits: # note zero vs one-based count here to convert bitwise flags to # python flags sel &= ~(np.array([q[bb-1] for q in qual_binary]).astype(bool)) time, flux, flux_err = time[sel], flux[sel], flux_err[sel] inds = np.argsort(time) time, flux, flux_err = time[inds], flux[inds], flux_err[inds] N_ii = len(time) # after quality cut # finite times, fluxes, flux errors. sel = np.isfinite(time) & np.isfinite(flux) & np.isfinite(flux_err) time, flux, flux_err = time[sel], flux[sel], flux_err[sel] N_iii = len(time) # time, flux, sel = mask_orbit_start_and_end(time, flux, orbitgap=0.5, # expected_norbits=2, # orbitpadding=6/(24), # raise_expectation_error=True, # return_inds=True) # flux_err = flux_err[sel] # N_iii = len(time) # after orbit edge masking if maskflares: t_offset = np.nanmin(time) FLARETIMES = [ (4.60+t_offset, 4.63+t_offset), (37.533+t_offset, 37.62+t_offset) ] flaresel = np.zeros_like(time).astype(bool) for ft in FLARETIMES: flaresel |= ( (time > min(ft)) & (time < max(ft)) ) time, flux, flux_err = ( time[~flaresel], flux[~flaresel], flux_err[~flaresel] ) N_iv = len(time) x_obs = time y_obs = (flux / np.nanmedian(flux)) y_err = flux_err / np.nanmedian(flux) print(42*'-') print('N initial: {}'. format(N_i)) print('N after quality cut: {}'. format(N_ii)) print('N after quality cut + finite masking: {}'. format(N_iii)) if maskflares: print('N after quality cut + finite masking + flare masking: {}'. format(N_iv)) print(42*'-') if isinstance(binsize, int): bd = time_bin_magseries_with_errs( x_obs, y_obs, y_err, binsize=binsize, minbinelems=5 ) x_obs = bd['binnedtimes'] y_obs = bd['binnedmags'] # assume errors scale as sqrt(N) original_cadence = 120 y_err = bd['binnederrs'] / (binsize/original_cadence)**(1/2) assert len(x_obs) == len(y_obs) == len(y_err) return ( x_obs.astype(np.float64), y_obs.astype(np.float64), y_err.astype(np.float64) ) def get_elsauce_phot(datestr=None): """ get ground-based photometry from Phil Evans. 2020-04-01: R_c 2020-04-26: R_c 2020-05-21: I_c 2020-06-14: B_j """ if datestr is None: lcglob = os.path.join(RESULTSDIR, 'groundphot', 'externalreduc', 'bestkaren', 'to_fit', '*.dat') lcpaths = glob(lcglob) assert len(lcpaths) == 4 else: lcglob = os.path.join(RESULTSDIR, 'groundphot', 'externalreduc', 'bestkaren', 'to_fit', f'TIC*{datestr}*.dat') lcpaths = glob(lcglob) assert len(lcpaths) == 1 time, flux, flux_err = [], [], [] for l in lcpaths: df = pd.read_csv(l, delim_whitespace=True) time.append(nparr(df['BJD_TDB'])) if 'rel_flux_T1_dfn' in df: flux_k = 'rel_flux_T1_dfn' flux_err_k = 'rel_flux_err_T1_dfn' else: flux_k = 'rel_flux_T1_n' flux_err_k = 'rel_flux_err_T1_n' flux.append(nparr(df[flux_k])) flux_err.append(nparr(df[flux_err_k])) time = np.concatenate(time).ravel() flux = np.concatenate(flux).ravel() flux_err = np.concatenate(flux_err).ravel() return time, flux, flux_err def get_astep_phot(datestr=None): """ get ground-based photometry from ASTEP400 datestrs = ['20200529', '20200614', '20200623'] """ if datestr is None: raise NotImplementedError else: lcglob = os.path.join(RESULTSDIR, 'groundphot', 'externalreduc', 'ASTEP_to_fit', f'TIC*{datestr}*.csv') lcpaths = glob(lcglob) assert len(lcpaths) == 1 time, flux, flux_err = [], [], [] for l in lcpaths: df = pd.read_csv(l) time_k = 'BJD' flux_k = 'FLUX' flux_err_k = 'ERRFLUX' time.append(nparr(df[time_k])) flux.append(nparr(df[flux_k])) flux_err.append(nparr(df[flux_err_k])) time = np.concatenate(time).ravel() flux = np.concatenate(flux).ravel() flux_err = np.concatenate(flux_err).ravel() return time, flux, flux_err def get_clean_rv_data(datestr='20200525'): # get zero-subtracted RV CSV in m/s units, time-sorted. rvpath = os.path.join(DATADIR, 'spectra', 'RVs_{}.csv'.format(datestr)) df = pd.read_csv(rvpath) time = nparr(df['time']) mnvel = nparr(df['mnvel']) errvel = nparr(df['errvel']) telvec = nparr(df['tel']) source = nparr(df['Source']) # first, zero-subtract each instrument median. then, set units to be # m/s, not km/s. umedians = {} for uinstr in np.unique(telvec): umedians[uinstr] = np.nanmedian(mnvel[telvec == uinstr]) mnvel[telvec == uinstr] -= umedians[uinstr] mnvel *= 1e3 errvel *= 1e3 # time-sort inds = np.argsort(time) time =
np.ascontiguousarray(time[inds], dtype=float)
numpy.ascontiguousarray
""" Test script for data.py classes. """ import os import cwinpy import lal import numpy as np import pytest from cwinpy import HeterodynedData, MultiHeterodynedData from cwinpy.data import PSDwrapper from lalpulsar.PulsarParametersWrapper import PulsarParametersPy from matplotlib.figure import Figure class TestHeterodynedData(object): """ Tests for the HeterodynedData and MultiHeterodynedData objects. """ def test_no_data(self): """ Test exception occurs if passing no data and no time stamps. """ # test exception if no data or times are passed with pytest.raises(ValueError): HeterodynedData() def test_broken_data(self): """ Test reading of data fails during to a "broken" input file """ # create a "broken" input file (not the spurious "H") brokendata = """\ # times real imaginary 1000000000.0 -2.3e-25 4.3e-26 1000000060.0 H.2e-26 1.2e-25 1000000120.0 -1.7e-25 -2.8e-25 1000000180.0 -7.6e-26 -8.9e-26 """ brokenfile = "brokendata.txt" with open(brokenfile, "w") as fp: fp.write(brokendata) with pytest.raises(IOError): HeterodynedData(brokenfile) # run through MultiHeterodynedData with pytest.raises(ValueError): MultiHeterodynedData(brokenfile) with pytest.raises(IOError): MultiHeterodynedData({"H1": brokenfile}) os.remove(brokenfile) # clean up file def test_multi_data(self): """ Test various ways of generating data for multiple detectors. """ # create four datasets times1 = np.linspace(1000000000.0, 1000086340.0, 1440) data1 = np.random.normal(0.0, 1e-25, size=(1440, 2)) detector1 = "H1" times2 = np.linspace(1000000000.0, 1000086340.0, 1440) data2 = np.random.normal(0.0, 1e-25, size=(1440, 2)) detector2 = "L1" times3 = np.linspace(1000000000.0, 1000086340.0, 1440) data3 = np.random.normal(0.0, 1e-25, size=(1440, 2)) detector3 = "G1" times4 = np.linspace(1000000000.0, 1000086340.0, 1440) data4 = np.random.normal(0.0, 1e-25, size=(1440, 2)) detector4 = "K1" # add first dataset as precreated HeterodynedData object het1 = HeterodynedData(data1, times=times1, detector=detector1) mhet = MultiHeterodynedData(het1) # add second dataset as a dictionary ddic = {detector2: data2} tdic = {"XX": times2} # set to fail # add second dataset with pytest.raises(KeyError): mhet.add_data(ddic, tdic, detector2) # fix tdic tdic = {detector2: times2} mhet.add_data(ddic, tdic, detector2) # add third data set as a dictionary of HeterodynedData het3 = HeterodynedData(data3, times=times3, detector=detector3) ddic = {detector3: het3} mhet.add_data(ddic) # add fourth data set by just passing the data tdic = {detector4: times4} # fail with dictionary of times with pytest.raises(TypeError): mhet.add_data(data4, tdic, detector4) # just add with times mhet.add_data(data4, times4, detector4) assert len(mhet) == 4 assert len(mhet.detectors) == 4 assert len(mhet.to_list) == 4 # test looping over MultiHeterodynedData dets = [detector1, detector2, detector3, detector4] for data, det in zip(mhet, dets): assert det == data.detector def test_too_many_columns(self): """ Test for failure if there are too many columns in the data file. """ # create a "broken" input file (not the spurious "H") brokendata = """\ # times real imaginary std extra 1000000000.0 -2.3e-25 4.3e-26 1e-26 1 1000000060.0 3.2e-26 1.2e-25 1e-26 2 1000000120.0 -1.7e-25 -2.8e-25 1e-26 3 1000000180.0 -7.6e-26 -8.9e-26 1e-26 4 """ brokenfile = "brokendata.txt" with open(brokenfile, "w") as fp: fp.write(brokendata) with pytest.raises(IOError): HeterodynedData(brokenfile) os.remove(brokenfile) # clean up file def test_too_few_columns(self): """ Test for failure if there are too few columns in the data file. """ # create a "broken" input file (not the spurious "H") brokendata = """\ # times real 1000000000.0 -2.3e-25 1000000060.0 3.2e-26 1000000120.0 -1.7e-25 1000000180.0 -7.6e-26 """ brokenfile = "brokendata.txt" with open(brokenfile, "w") as fp: fp.write(brokendata) with pytest.raises(IOError): HeterodynedData(brokenfile) os.remove(brokenfile) # clean up file def test_nonuniform_data(self): """ Test that non-uniform data times stamps are correctly retained. """ # create four datasets times = np.linspace(1000000000.0, 1000086340.0, 1440) # remove some times to create non-uniform sampling times = np.delete(times, [20, 897, 1200]) data = np.random.normal(0.0, 1e-25, size=(len(times), 2)) detector = "H1" het = HeterodynedData(data=data, times=times, detector=detector) assert np.all(times == het.times.value) assert het.dt.value == np.min(np.diff(times)) def test_read_text_data(self): """ Test that a valid input file is read in correctly. """ # create a data file to output hetdata = """\ # times real imaginary 1000000000.0 -2.3e-25 4.3e-26 1000000060.0 3.2e-26 1.2e-25 1000000120.0 -1.7e-25 -2.8e-25 1000000180.0 -7.6e-26 -8.9e-26 """ datafile = "testdata.txt" with open("testdata.txt", "w") as fp: fp.write(hetdata) het = HeterodynedData(datafile) assert len(het) == 4 assert (het.data.real[0] == -2.3e-25) and (het.data.real[-1] == -7.6e-26) assert (het.data.imag[0] == 4.3e-26) and (het.data.imag[-1] == -8.9e-26) assert (het.times[0].value == 1000000000.0) and ( het.times[-1].value == 1000000180.0 ) assert het.dt.value == 60.0 assert het.sample_rate.value == 1.0 / 60.0 os.remove(datafile) # clean up file def test_read_text_data_std(self): """ Test that a valid file with standard deviations is read in correctly. """ # create a data file to output hetdata = """\ # times real imaginary std 1000000000.0 -2.3e-25 4.3e-26 1.1e-26 1000000060.0 3.2e-26 1.2e-25 2.1e-26 1000000120.0 -1.7e-25 -2.8e-25 1.5e-26 1000000180.0 -7.6e-26 -8.9e-26 1.3e-26 """ datafile = "testdata.txt" with open("testdata.txt", "w") as fp: fp.write(hetdata) het = HeterodynedData(datafile) assert len(het) == 4 assert (het.data.real[0] == -2.3e-25) and (het.data.real[-1] == -7.6e-26) assert (het.data.imag[0] == 4.3e-26) and (het.data.imag[-1] == -8.9e-26) assert (het.stds[0] == 1.1e-26) and (het.stds[-1] == 1.3e-26) assert (het.vars[0] == (1.1e-26) ** 2) and (het.vars[-1] == (1.3e-26) ** 2) assert (het.times[0].value == 1000000000.0) and ( het.times[-1].value == 1000000180.0 ) assert het.dt.value == 60.0 assert het.sample_rate.value == 1.0 / 60.0 os.remove(datafile) # clean up file def test_write_text_data(self): """ Test that data can be correctly written (and re-read) from a text file. """ times = np.linspace(1000000000.0, 1000086340.0, 1440) data = np.random.normal(0.0, 1e-25, size=(1440, 2)) het = HeterodynedData(data, times=times) for suffix in ["txt", "txt.gz"]: datafile = "testdata.{}".format(suffix) het.write(datafile) # read in data hetnew = HeterodynedData.read(datafile) assert np.array_equal(het.data, hetnew.data) assert np.array_equal(het.times, hetnew.times) # check things that the read-in data should not contain assert hetnew.detector is None assert hetnew.par is None os.remove(datafile) # clean up file def test_write_text_data_std(self): """ Test that data can be correctly written (and re-read) from a text file with the standard deviations also output. """ times = np.linspace(1000000000.0, 1000086340.0, 1440) data = np.random.normal(0.0, 1e-25, size=(1440, 2)) stds = 1e-25 * np.ones_like(times) data = np.column_stack((data, stds)) het = HeterodynedData(data, times=times) for suffix in ["txt", "txt.gz"]: datafile = "testdata.{}".format(suffix) het.write(datafile) # read in data hetnew = HeterodynedData.read(datafile) assert np.array_equal(het.data, hetnew.data) assert np.array_equal(het.times, hetnew.times) assert np.array_equal(het.stds, hetnew.stds) # check things that the read-in data should not contain assert hetnew.detector is None assert hetnew.par is None os.remove(datafile) # clean up file def test_write_hdf_data(self): """ Test that data can be correctly written (and re-read) from a HDF5 file. """ times = np.linspace(1000000000.0, 1000086340.0, 1440) data = np.random.normal(0.0, 1e-25, size=(1440, 2)) det = "H1" parcontent = """\ PSRJ J0123+3456 RAJ 01:23:45.6789 DECJ 34:56:54.321 F0 567.89 F1 -1.2e-12 PEPOCH 56789 H0 9.87e-26 COSIOTA 0.3 PSI 1.1 PHI0 2.4 """ parfile = "J0123+3456.par" # add content to the par file with open(parfile, "w") as fp: fp.write(parcontent) het = HeterodynedData(data, times=times, detector=det, par=parfile) for suffix in ["hdf5", "hdf", "h5"]: datafile = "testdata.{}".format(suffix) het.write(datafile, overwrite=True) # read in data hetnew = HeterodynedData.read(datafile) assert np.array_equal(het.data, hetnew.data) assert np.array_equal(het.times, hetnew.times) # check that detector and par file are read in correctly assert hetnew.detector == det for key in het.par.as_dict(): if isinstance(hetnew.par[key], str): assert hetnew.par[key] == het.par[key] else: assert np.allclose(hetnew.par[key], het.par[key]) # check version information is stored assert het.cwinpy_version == hetnew.cwinpy_version assert het.cwinpy_version == cwinpy.__version__ os.remove(datafile) # clean up file os.remove(parfile) def test_write_hdf_data_std(self): """ Test that data can be correctly written (and re-read) from a HDF5 file with the standard deviations also output. Also, add an injection! """ times = np.linspace(1000000000.0, 1000086340.0, 1440) data = np.random.normal(0.0, 1e-25, size=(1440, 2)) stds = 1e-25 * np.ones_like(times) data = np.column_stack((data, stds)) det = "H1" parcontent = """\ PSRJ J0123+3456 RAJ 01:23:45.6789 DECJ 34:56:54.321 F0 567.89 F1 -1.2e-12 PEPOCH 56789 H0 9.87e-26 COSIOTA 0.3 PSI 1.1 PHI0 2.4 """ parfile = "J0123+3456.par" # add content to the par file with open(parfile, "w") as fp: fp.write(parcontent) het = HeterodynedData(data, times=times, detector=det, par=parfile, inject=True) for suffix in ["hdf5", "hdf", "h5"]: datafile = "testdata.{}".format(suffix) het.write(datafile, overwrite=True) # read in data hetnew = HeterodynedData.read(datafile) assert np.array_equal(het.data, hetnew.data) assert np.array_equal(het.times, hetnew.times) assert np.array_equal(het.stds, hetnew.stds) assert hetnew.injection is True assert np.array_equal(het.injection_data, hetnew.injection_data) # check that detector and par file are read in correctly assert hetnew.detector == det for key in het.par.as_dict(): if key in hetnew.par.as_dict(): if isinstance(hetnew.par[key], str): assert hetnew.par[key] == het.par[key] assert hetnew.injpar[key] == het.injpar[key] else: assert np.allclose(hetnew.par[key], het.par[key]) assert np.allclose(hetnew.injpar[key], het.injpar[key]) os.remove(datafile) # clean up file os.remove(parfile) def test_zero_data(self): """ Test that data containing zeros is produced if only time stamps are provided. """ # create "zero" data by only passing a set of times times = np.linspace(1000000000.0, 1000086340.0, 1440) het = HeterodynedData(times=times) assert len(het) == len(times) assert np.all(het.data == 0.0) def test_array_data(self): """ Test passing the data as arrays containing times and data. """ times = np.linspace(1000000000.0, 1000086340.0, 1440) data = np.random.normal(0.0, 1e-25, size=(1440, 2)) het = HeterodynedData(data, times=times) assert np.all(het.times.value == times) assert np.all(het.data.real == data[:, 0]) assert
np.all(het.data.imag == data[:, 1])
numpy.all
import numpy as np from gym.envs.toy_text import discrete import matplotlib.pyplot as plt import matplotlib.cm as cm class GridWorldEnv(discrete.DiscreteEnv): metadata = {"render.modes": ["human", "ansi"]} def __init__(self, grid, move_prob=0.8, default_reward=0.0): # grid is 2d-array, and each value treated as attribute. # attribute is # 0: ordinary cell # -1: damage cell (game end) # 1: reward cell (game end) self.grid = grid if isinstance(grid, (list, tuple)): self.grid = np.array(grid) self._actions = { "LEFT": 0, "DOWN": 1, "RIGHT": 2, "UP": 3, } self.default_reward = default_reward self.move_prob = move_prob num_states = self.nrow * self.ncol num_actions = len(self._actions) # start from left down initial_state_prob = np.zeros(num_states) initial_state_prob[self.coordinate_to_state(self.nrow - 1, 0)] = 1.0 # Make transitions P = {} for s in range(num_states): if s not in P: P[s] = {} reward = self.reward_func(s) done = self.has_done(s) if done: # Terminal state for a in range(num_actions): P[s][a] = [] P[s][a].append([1.0, s, reward, done]) else: for a in range(num_actions): P[s][a] = [] transition_probs = self.transit_func(s, a) for n_s in transition_probs: reward = self.reward_func(n_s) done = self.has_done(s) P[s][a].append([transition_probs[n_s], n_s, reward, done]) self.P = P super().__init__(num_states, num_actions, P, initial_state_prob) @property def nrow(self): return self.grid.shape[0] @property def ncol(self): return self.grid.shape[1] @property def shape(self): return self.grid.shape @property def actions(self): return list(range(self.action_space.n)) @property def states(self): return list(range(self.observation_space.n)) def state_to_coordinate(self, s): row, col = divmod(s, self.nrow) return row, col def coordinate_to_state(self, row, col): index = row * self.nrow + col return index def state_to_feature(self, s): feature = np.zeros(self.observation_space.n) feature[s] = 1.0 return feature def transit_func(self, state, action): transition_probs = {} opposite_direction = (action + 2) % 4 candidates = [a for a in range(len(self._actions)) if a != opposite_direction] for a in candidates: prob = 0 if a == action: prob = self.move_prob else: prob = (1 - self.move_prob) / 2 next_state = self._move(state, a) if next_state not in transition_probs: transition_probs[next_state] = prob else: transition_probs[next_state] += prob return transition_probs def reward_func(self, state): row, col = self.state_to_coordinate(state) reward = self.grid[row][col] return reward def has_done(self, state): row, col = self.state_to_coordinate(state) reward = self.grid[row][col] if np.abs(reward) == 1: return True else: return False def _move(self, state, action): next_state = state row, col = self.state_to_coordinate(state) next_row, next_col = row, col # Move state by action if action == self._actions["LEFT"]: next_col -= 1 elif action == self._actions["DOWN"]: next_row += 1 elif action == self._actions["RIGHT"]: next_col += 1 elif action == self._actions["UP"]: next_row -= 1 # Check the out of grid if not (0 <= next_row < self.nrow): next_row, next_col = row, col if not (0 <= next_col < self.ncol): next_row, next_col = row, col next_state = self.coordinate_to_state(next_row, next_col) return next_state def plot_on_grid(self, values): if len(values.shape) < 2: values = values.reshape(self.shape) fig, ax = plt.subplots() ax.imshow(values, cmap=cm.RdYlGn) ax.set_xticks(
np.arange(self.ncol)
numpy.arange
""" Attribute: data structure for 1-dimensional cross-sectional data """ import numpy as np from bisect import bisect_right from random import uniform from pandas import Series, DataFrame from dateutil.parser import parse from datetime import datetime, timedelta import ds4ml from ds4ml import utils class Attribute(Series): _epoch = datetime(1970, 1, 1) # for datetime handling def __init__(self, data, name=None, dtype=None, index=None, copy=False, fastpath=False, categorical=False): """ A Series with extra information, e.g. categorical. Parameters ---------- categorical : bool set categorical label for attribute. If categorical, this attribute takes on a limited and fixed number of possible values. Examples: blood type, gender. """ Series.__init__(self, data, name=name, dtype=dtype, index=index, copy=copy, fastpath=fastpath) # bins can be int (size of histogram bins), str (as algorithm name), self._bins = ds4ml.params['attribute.bins'] self._min = None self._max = None self._step = None # probability distribution (pr) self.bins = None self.prs = None from pandas.api.types import infer_dtype # atype: date type for handle different kinds of attributes in data # synthesis, support: integer, float, string, datetime. self.atype = infer_dtype(self, skipna=True) if self.atype == 'integer': pass elif self.atype == 'floating' or self.atype == 'mixed-integer-float': self.atype = 'float' elif self.atype in ['string', 'mixed-integer', 'mixed']: self.atype = 'string' if all(map(utils.is_datetime, self._values)): self.atype = 'datetime' # fill the missing values with the most frequent value self.fillna(self.mode()[0], inplace=True) # special handling for datetime attribute if self.atype == 'datetime': self.update(self.map(self._to_seconds).map(self._date_formatter)) if self.atype == 'float': self._decimals = self.decimals() # how to define the attribute is categorical. self.categorical = categorical or ( self.atype == 'string' and not self.is_unique) self._set_domain() self._set_distribution() # handling functions for datetime attribute def _to_seconds(self, timestr): return int((parse(timestr) - self._epoch).total_seconds()) def _date_formatter(self, seconds): date = self._epoch + timedelta(seconds=seconds) return '%d/%d/%d' % (date.month, date.day, date.year) # Take pandas.Series as manipulation result. @property def _constructor(self): return Series @property def _constructor_expanddim(self): from ds4ml.dataset import DataSet return DataSet @property def is_numerical(self): return self.atype == 'integer' or self.atype == 'float' @property def domain(self): """ Return attribute's domain, which can be a list of values for categorical attribute, and an interval with min/max value for non-categorical attribute. """ if self.categorical: return self.bins else: return [self._min, self._max] @domain.setter def domain(self, domain: list): """ Set attribute's domain, includes min, max, frequency, or distribution. Generally, the domain of one attribute can be calculated automatically. This method can be manually called for specific purposes, e.g. compare two same attributes based on same domain. Parameters ---------- domain : list domain of one attribute. For numerical or datetime attributes, it should be a list of two elements [min, max]; For categorical attributes, it should a list of potential values of this attribute. """ # if a attribute is numerical and categorical and domain's length is # bigger than 2, take it as categorical. e.g. zip code. if self.atype == 'datetime': domain = list(map(self._to_seconds, domain)) if (self.is_numerical and self.categorical and len(domain) > 2) or ( self.categorical): self._min = min(domain) self._max = max(domain) self.bins = np.array(domain) elif self.is_numerical: self._min, self._max = domain self._step = (self._max - self._min) / self._bins self.bins = np.array([self._min, self._max]) elif self.atype == 'string': lengths = [len(str(i)) for i in domain] self._min = min(lengths) self._max = max(lengths) self.bins = np.array(domain) self._set_distribution() def _set_domain(self): """ Compute domain (min, max, distribution bins) from input data """ if self.atype == 'string': self._items = self.astype(str).map(len) self._min = int(self._items.min()) self._max = int(self._items.max()) if self.categorical: self.bins = self.unique() else: self.bins = np.array([self._min, self._max]) elif self.atype == 'datetime': self.update(self.map(self._to_seconds)) if self.categorical: self.bins = self.unique() else: self._min = float(self.min()) self._max = float(self.max()) self.bins = np.array([self._min, self._max]) self._step = (self._max - self._min) / self._bins else: self._min = float(self.min()) self._max = float(self.max()) if self.categorical: self.bins = self.unique() else: self.bins = np.array([self._min, self._max]) self._step = (self._max - self._min) / self._bins def _set_distribution(self): if self.categorical: counts = self.value_counts() for value in set(self.bins) - set(counts.index): counts[value] = 0 counts.sort_index(inplace=True) if self.atype == 'datetime': counts.index = list(map(self._date_formatter, counts.index)) self._counts = counts.values self.prs = utils.normalize_distribution(counts) self.bins = np.array(counts.index) else: # Note: hist, edges = numpy.histogram(), all but the last bin # is half-open. If bins is 20, then len(hist)=20, len(edges)=21 if self.atype == 'string': hist, edges = np.histogram(self._items, bins=self._bins) else: hist, edges = np.histogram(self, bins=self._bins, range=(self._min, self._max)) self.bins = edges[:-1] # Remove the last bin edge self._counts = hist self.prs = utils.normalize_distribution(hist) if self.atype == 'integer': self._min = int(self._min) self._max = int(self._max) def counts(self, bins=None, normalize=True): """ Return an array of counts (or normalized density) of unique values. This function works with `attribute.bins`. Combination of both are like `Series.value_counts`. The parameter `bins` can be none, or a list. """ if bins is None: return self._counts if self.categorical: if self.atype == 'datetime': bins = list(map(self._to_seconds, bins)) counts = self.value_counts() for value in set(bins) - set(counts.index): counts[value] = 0 if normalize: return np.array([round(counts.get(b)/sum(counts) * 100, 2) for b in bins]) else: return np.array([counts.get(b) for b in bins]) else: if len(bins) == 1: return np.array([self.size]) hist, _ =
np.histogram(self, bins=bins)
numpy.histogram
import unittest import glob import os from os.path import join, dirname from datetime import date import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from insar import timeseries from apertools import sario class TestInvertSbas(unittest.TestCase): def setUp(self): # self.jsonfile = tempfile.NamedTemporaryFile(mode='w+') self.igram_path = join(dirname(__file__), "data", "sbas_test") self.slclist_path = join(self.igram_path, "slclist") self.ifglist_path = join(self.igram_path, "ifglist") self.actual_time_diffs = np.array([2, 6, 4]) def tearDown(self): for f in glob.glob(join(self.igram_path, "*flat*")): os.remove(f) def test_time_diff(self): slclist = sario.find_geos(self.slclist_path) time_diffs = timeseries.find_time_diffs(slclist) assert_array_equal(self.actual_time_diffs, time_diffs) def test_read_slclist(self): slclist = sario.find_geos(self.slclist_path) expected = [ date(2018, 4, 20), date(2018, 4, 22), date(2018, 4, 28), date(2018, 5, 2), ] self.assertEqual(slclist, expected) def test_read_ifglist(self): ifglist = sario.find_igrams(self.ifglist_path) expected = [ (date(2018, 4, 20), date(2018, 4, 22)), (date(2018, 4, 20), date(2018, 4, 28)), (date(2018, 4, 22), date(2018, 4, 28)), (date(2018, 4, 22), date(2018, 5, 2)), (date(2018, 4, 28), date(2018, 5, 2)), ] self.assertEqual(ifglist, expected) expected = [ "data/sbas_test/20180420_20180422.int", "data/sbas_test/20180420_20180428.int", "data/sbas_test/20180422_20180428.int", "data/sbas_test/20180422_20180502.int", "data/sbas_test/20180428_20180502.int", ] igram_files = sario.find_igrams(self.ifglist_path, parse=False) # Remove all but last part to ignore where we are running this igram_files = [os.sep.join(f.split(os.sep)[-3:]) for f in igram_files] self.assertEqual(igram_files, expected) def test_build_A_matrix(self): slclist = sario.find_geos(self.slclist_path) ifglist = sario.find_igrams(self.ifglist_path) expected_A = np.array( [ [1, 0, 0], [0, 1, 0], [-1, 1, 0], [-1, 0, 1], [0, -1, 1], ] ) A = timeseries.build_A_matrix(slclist, ifglist)
assert_array_equal(expected_A, A)
numpy.testing.assert_array_equal
import numpy as np from numpy.linalg import det from scipy.optimize import fsolve from scipy.stats import norm import itertools from .constants import * def check_condition(state, condition): # Define a success condition for each state, e.g., mutual exclusivity. if condition==EXCLUSIVITY: if sum(state)==1: return True else: return False elif condition==ANY_CO_OCCURRENCE: if sum(state)>1: return True else: return False elif condition==ALL_CO_OCCURRENCE: if sum(state)==len(state): return True else: return False else: raise NotImplementedError('{} not implemented'.format(condition)) def enumeration(k, condition): # Enumerate the states for the observed variables and identify the indices for the states that # satisfy the given condition, e.g., mutual exclusivity. states = list(itertools.product([0, 1], repeat=k)) indices = [] for i, state in enumerate(states): a = [j for j, s in enumerate(state) if s==1] if check_condition(state, condition): a += [k] indices.append(a) # Identify the indices for each term of the gradient vector and the Hessian matrix. gradient_indices = [] for i in range(k+1): b = [j for j, a in enumerate(indices) if i in a] gradient_indices.append(b) hessian_indices = [] for i in range(k+1): b = [] for j in range(k+1): c = [l for l, a in enumerate(indices) if i in a and j in a] b.append(c) hessian_indices.append(b) return states, indices, gradient_indices, hessian_indices def saddlepoint(observed_t, observed_y, probabilities, condition='exclusivity'): # Find the dimensions of the observations. k, n = np.shape(probabilities) # Enumerate the states for the observed variables and identify indices for the terms. states, indices, gradient_indices, hessian_indices = enumeration(k, condition) # Collect the observations and perform the continuity correction for t. y = np.zeros(k+1) y[0:k] = observed_y y[k] = observed_t-0.5 # Precompute the products of the success and failure probabilities. p = np.zeros((2, k, n)) p[0] = 1.0-np.array(probabilities) p[1] = np.array(probabilities) w = np.zeros((2**k, n)) for i, state in enumerate(states): w[i, :] = np.product(p[state, range(k), :], axis=0) # Define the moment generating functions and cumulant generating functions. These functions # use the above constants. def compute_terms(x): terms = np.zeros((2**k, n)) for i, s in enumerate(indices): terms[i, :] = np.exp(
np.sum(x[s])
numpy.sum
# Authors: <NAME> <<EMAIL>> # <NAME> # # License: BSD (3-clause) import logging import warnings import numpy as np from scipy import linalg from numpy.linalg import pinv from .asr_utils import (geometric_median, fit_eeg_distribution, yulewalk, yulewalk_filter, ma_filter, block_covariance) class ASR(): """Artifact Subspace Reconstruction. Artifact subspace reconstruction (ASR) is an automated, online, component-based artifact removal method for removing transient or large-amplitude artifacts in multi-channel EEG recordings [1]_. Parameters ---------- sfreq : float Sampling rate of the data, in Hz. cutoff: float Standard deviation cutoff for rejection. X portions whose variance is larger than this threshold relative to the calibration data are considered missing data and will be removed. The most aggressive value that can be used without losing too much EEG is 2.5. Recommended to use with more conservative values ranging from 20 - 30. Defaults to 20. blocksize : int Block size for calculating the robust data covariance and thresholds, in samples; allows to reduce the memory and time requirements of the robust estimators by this factor (down to Channels x Channels x Samples x 16 / Blocksize bytes) (default=100). win_len : float Window length (s) that is used to check the data for artifact content. This is ideally as long as the expected time scale of the artifacts but not shorter than half a cycle of the high-pass filter that was used (default=0.5). win_overlap : float Window overlap fraction. The fraction of two successive windows that overlaps. Higher overlap ensures that fewer artifact portions are going to be missed, but is slower (default=0.66). max_dropout_fraction : float Maximum fraction of windows that can be subject to signal dropouts (e.g., sensor unplugged), used for threshold estimation (default=0.1). min_clean_fraction : float Minimum fraction of windows that need to be clean, used for threshold estimation (default=0.25). ab : 2-tuple | None Coefficients (A, B) of an IIR filter that is used to shape the spectrum of the signal when calculating artifact statistics. The output signal does not go through this filter. This is an optional way to tune the sensitivity of the algorithm to each frequency component of the signal. The default filter is less sensitive at alpha and beta frequencies and more sensitive at delta (blinks) and gamma (muscle) frequencies. Defaults to None. max_bad_chans : float The maximum number or fraction of bad channels that a retained window may still contain (more than this and it is removed). Reasonable range is 0.05 (very clean output) to 0.3 (very lax cleaning of only coarse artifacts) (default=0.2). method : {'riemann', 'euclid'} Method to use. If riemann, use the riemannian-modified version of ASR [2]_. Currently, only euclidean ASR is supported. Defaults to "euclid". Attributes ---------- sfreq: array, shape=(n_channels, filter_order) Filter initial conditions. cutoff: float Standard deviation cutoff for rejection. blocksize : int Block size for calculating the robust data covariance and thresholds. win_len : float Window length (s) that is used to check the data for artifact content. win_overlap : float Window overlap fraction. max_dropout_fraction : float Maximum fraction of windows that can be subject to signal dropouts. min_clean_fraction : float Minimum fraction of windows. max_bad_chans : float The maximum fraction of bad channels. method : {'riemann', 'euclid'} Method to use. A, B: arrays Coefficients of an IIR filter that is used to shape the spectrum of the signal when calculating artifact statistics. The output signal does not go through this filter. This is an optional way to tune the sensitivity of the algorithm to each frequency component of the signal. The default filter is less sensitive at alpha and beta frequencies and more sensitive at delta (blinks) and gamma (muscle) frequencies. M : array, shape=(channels, channels) The mixing matrix to fit ASR data. T : array, shape=(channels, channels) The mixing matrix to fit ASR data. References ---------- .. [1] <NAME>., & <NAME>. (2016). U.S. Patent Application No. 14/895,440. https://patents.google.com/patent/US20160113587A1/en .. [2] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). A Riemannian Modification of Artifact Subspace Reconstruction for EEG Artifact Handling. Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00141 """ def __init__(self, sfreq, cutoff=20, blocksize=100, win_len=0.5, win_overlap=0.66, max_dropout_fraction=0.1, min_clean_fraction=0.25, ab=None, max_bad_chans=0.1, method="euclid"): # set attributes self.sfreq = sfreq self.cutoff = cutoff self.blocksize = blocksize self.win_len = win_len self.win_overlap = win_overlap self.max_dropout_fraction = max_dropout_fraction self.min_clean_fraction = min_clean_fraction self.max_bad_chans = max_bad_chans self.method = "euclid" # NOTE: riemann is not yet available self._fitted = False # set default yule-walker filter if ab is None: yw_f = np.array([0, 2, 3, 13, 16, 40, np.minimum(80.0, (self.sfreq / 2.0) - 1.0), self.sfreq / 2.0]) * 2.0 / self.sfreq yw_m = np.array([3, 0.75, 0.33, 0.33, 1, 1, 3, 3]) self.B, self.A = yulewalk(8, yw_f, yw_m) else: self.A, self.B = ab self._reset() def _reset(self): """Reset state variables.""" self.M = None self.T = None # TODO: The following parameters are effectively not used. Still, # they can be set manually via asr.transform(return_states=True) self.R = None self.carry = None self.Zi = None self.cov = None self._fitted = False def fit(self, raw, picks="eeg", start=0, stop=None, return_clean_window=False): """Calibration for the Artifact Subspace Reconstruction method. The input to this data is a multi-channel time series of calibration data. In typical uses the calibration data is clean resting EEG data of data if the fraction of artifact content is below the breakdown point of the robust statistics used for estimation (50% theoretical, ~30% practical). If the data has a proportion of more than 30-50% artifacts then bad time windows should be removed beforehand. This data is used to estimate the thresholds that are used by the ASR processing function to identify and remove artifact components. The calibration data must have been recorded for the same cap design from which data for cleanup will be recorded, and ideally should be from the same session and same subject, but it is possible to reuse the calibration data from a previous session and montage to the extent that the cap is placed in the same location (where loss in accuracy is more or less proportional to the mismatch in cap placement). Parameters ---------- raw : instance of mne.io.Raw Instance of mne.io.Raw to be used for fitting the ASR. The calibration data should have been high-pass filtered (for example at 0.5Hz or 1Hz using a Butterworth IIR filter), and be reasonably clean not less than 30 seconds (this method is typically used with 1 minute or more). picks : str | list | slice | None Channels used to fit the ASR. All channels should be of the same type (e.g. "eeg", "grads"). Slices and lists of integers will be interpreted as channel indices. In lists, channel name strings (e.g., ['MEG0111', 'MEG2623'] will pick the given channels. Note that channels in info['bads'] will be included if their names or indices are explicitly provided. Defaults to "eeg". start : int The first sample to use for fitting the data. Defaults to 0. stop : int | None The last sample to use for fitting the data. If `None`, all samples after `start` will be used for fitting. Defaults to None. return_clean_window : Bool If True, the method will return the variables `clean` (the cropped dataset which was used to fit the ASR) and `sample_mask` (a logical mask of which samples were included/excluded from fitting the ASR). Defaults to False. Returns ------- clean : array, shape=(n_channels, n_samples) The cropped version of the dataset which was used to calibrate the ASR. This array is a result of the `clean_windows` function and no ASR was applied to it. sample_mask : boolean array, shape=(1, n_samples) Logical mask of the samples which were used to train the ASR. """ # extract the data X = raw.get_data(picks=picks, start=start, stop=stop) # Find artifact-free windows first clean, sample_mask = clean_windows( X, sfreq=self.sfreq, win_len=self.win_len, win_overlap=self.win_overlap, max_bad_chans=self.max_bad_chans, min_clean_fraction=self.min_clean_fraction, max_dropout_fraction=self.max_dropout_fraction) # Perform calibration self.M, self.T = asr_calibrate( clean, sfreq=self.sfreq, cutoff=self.cutoff, blocksize=self.blocksize, win_len=self.win_len, win_overlap=self.win_overlap, max_dropout_fraction=self.max_dropout_fraction, min_clean_fraction=self.min_clean_fraction, ab=(self.A, self.B), method=self.method) self._fitted = True # return data if required if return_clean_window: return clean, sample_mask def transform(self, raw, picks="eeg", lookahead=0.25, stepsize=32, maxdims=0.66, return_states=False, mem_splits=3): """Apply Artifact Subspace Reconstruction. Parameters ---------- raw : instance of mne.io.Raw Instance of mne.io.Raw to be transformed by the ASR. picks : str | list | slice | None Channels to be transformed by the ASR. Should be the same set of channels as used by `ASR.fit()`. All channels should be of the same type (e.g. "eeg", "grads"). Slices and lists of integers will be interpreted as channel indices. In lists, channel name strings (e.g., ['MEG0111', 'MEG2623'] will pick the given channels. Note that channels in info['bads'] will be included if their names or indices are explicitly provided. Defaults to "eeg". lookahead : float Amount of look-ahead that the algorithm should use (in seconds). This value should be between 0 (no lookahead) and WindowLength/2 (optimal lookahead). The recommended value is WindowLength/2. Default: 0.25 Note: Other than in `asr_process`, the signal will be readjusted to eliminate any temporal jitter and automatically readjust it to the correct time points. Zero-padding will be applied to the last `lookahead` portion of the data, possibly resulting in inaccuracies for the final `lookahead` seconds of the recording. stepsize : int The steps in which the algorithm will be updated. The larger this is, the faster the algorithm will be. The value must not be larger than WindowLength * SamplingRate. The minimum value is 1 (update for every sample) while a good value would be sfreq//3. Note that an update is always performed also on the first and last sample of the data chunk. Default: 32 max_dims : float, int Maximum dimensionality of artifacts to remove. This parameter denotes the maximum number of dimensions which can be removed from each segment. If larger than 1, `int(max_dims)` will denote the maximum number of dimensions removed from the data. If smaller than 1, `max_dims` describes a fraction of total dimensions. Defaults to 0.66. return_states : bool If True, returns a dict including the updated states {"M":M, "T":T, "R":R, "Zi":Zi, "cov":cov, "carry":carry}. Defaults to False. mem_splits : int Split the array in `mem_splits` segments to save memory. Returns ------- out : array, shape=(n_channels, n_samples) Filtered data. """ # extract the data X = raw.get_data(picks=picks) # add lookahead padding at the end lookahead_samples = int(self.sfreq * lookahead) X = np.concatenate([X, np.zeros([X.shape[0], lookahead_samples])], axis=1) # apply ASR X = asr_process(X, self.sfreq, self.M, self.T, self.win_len, lookahead, stepsize, maxdims, (self.A, self.B), self.R, self.Zi, self.cov, self.carry, return_states, self.method, mem_splits) # remove lookahead portion from start X = X[:, lookahead_samples:] # Return a modifier raw instance raw = raw.copy() raw.apply_function(lambda x: X, picks=picks, channel_wise=False) return raw def asr_calibrate(X, sfreq, cutoff=5, blocksize=100, win_len=0.5, win_overlap=0.66, max_dropout_fraction=0.1, min_clean_fraction=0.25, ab=None, method='euclid'): """Calibration function for the Artifact Subspace Reconstruction method. This function can be used if you inted to apply ASR to a simple numpy array instead of a mne.io.Raw object. It is equivalent to the MATLAB implementation of asr_calibrate (except for some small differences introduced by solvers for the eigenspace functions etc). The input to this data is a multi-channel time series of calibration data. In typical uses the calibration data is clean resting EEG data of ca. 1 minute duration (can also be longer). One can also use on-task data if the fraction of artifact content is below the breakdown point of the robust statistics used for estimation (50% theoretical, ~30% practical). If the data has a proportion of more than 30-50% artifacts then bad time windows should be removed beforehand. This data is used to estimate the thresholds that are used by the ASR processing function to identify and remove artifact components. The calibration data must have been recorded for the same cap design from which data for cleanup will be recorded, and ideally should be from the same session and same subject, but it is possible to reuse the calibration data from a previous session and montage to the extent that the cap is placed in the same location (where loss in accuracy is more or less proportional to the mismatch in cap placement). The calibration data should have been high-pass filtered (for example at 0.5Hz or 1Hz using a Butterworth IIR filter). Parameters ---------- X : array, shape=(n_channels, n_samples) *zero-mean* (e.g., high-pass filtered) and reasonably clean EEG of not much less than 30 seconds (this method is typically used with 1 minute or more). sfreq : float Sampling rate of the data, in Hz. cutoff: float Standard deviation cutoff for rejection. X portions whose variance is larger than this threshold relative to the calibration data are considered missing data and will be removed. The most aggressive value that can be used without losing too much EEG is 2.5. Defaults to 5 (according to the original default in EEGLab's `clean_rawdata`). blocksize : int Block size for calculating the robust data covariance and thresholds, in samples; allows to reduce the memory and time requirements of the robust estimators by this factor (down to n_chans x n_chans x n_samples x 16 / blocksize bytes) (default=100). win_len : float Window length that is used to check the data for artifact content. This is ideally as long as the expected time scale of the artifacts but short enough to allow for several 1000 windows to compute statistics over (default=0.5). win_overlap : float Window overlap fraction. The fraction of two successive windows that overlaps. Higher overlap ensures that fewer artifact portions are going to be missed, but is slower (default=0.66). max_dropout_fraction : float Maximum fraction of windows that can be subject to signal dropouts (e.g., sensor unplugged), used for threshold estimation (default=0.1). min_clean_fraction : float Minimum fraction of windows that need to be clean, used for threshold estimation (default=0.25). ab : 2-tuple | None Coefficients (A, B) of an IIR filter that is used to shape the spectrum of the signal when calculating artifact statistics. The output signal does not go through this filter. This is an optional way to tune the sensitivity of the algorithm to each frequency component of the signal. The default filter is less sensitive at alpha and beta frequencies and more sensitive at delta (blinks) and gamma (muscle) frequencies. Defaults to None. method : {'euclid', 'riemann'} Metric to compute the covariance matrix average. For now, only euclidean ASR is supported. Returns ------- M : array Mixing matrix. T : array Threshold matrix. """ if method == "riemann": warnings.warn("Riemannian ASR is not yet supported. Switching back to" " Euclidean ASR.") method == "euclid" logging.debug('[ASR] Calibrating...') # set number of channels and number of samples [nc, ns] = X.shape # filter the data X, _zf = yulewalk_filter(X, sfreq, ab=ab) # window length for calculating thresholds N = int(np.round(win_len * sfreq)) # get block covariances U = block_covariance(X, window=blocksize) # get geometric median for each block # Note: riemann mode is not yet supported, else this could be: # Uavg = pyriemann.utils.mean_covariance(U, metric='riemann') Uavg = geometric_median(U.reshape((-1, nc * nc)) / blocksize) Uavg = Uavg.reshape((nc, nc)) # get the mixing matrix M M = linalg.sqrtm(np.real(Uavg)) # sort the get the sorted eigenvecotors/eigenvalues # riemann is not yet supported, else this could be PGA/nonlinear eigenvs D, Vtmp = linalg.eigh(M) V = Vtmp[:, np.argsort(D)] # I think numpy sorts them automatically # get the threshold matrix T x = np.abs(np.dot(V.T, X)) offsets = np.int_(np.arange(0, ns - N, np.round(N * (1 - win_overlap)))) # go through all the channels and fit the EEG distribution mu = np.zeros(nc) sig = np.zeros(nc) for ichan in reversed(range(nc)): rms = x[ichan, :] ** 2 Y = [] for o in offsets: Y.append(np.sqrt(
np.sum(rms[o:o + N])
numpy.sum
import sys sys.path.append('../../') from collections import Counter from sklearn.linear_model import LinearRegression import os import numpy as np from numpy.random import seed seed(1) from tensorflow import set_random_seed set_random_seed(2) from nfp.preprocessing import MolPreprocessor, GraphSequence import gzip import pickle import pandas as pd # Define Keras model import keras import keras.backend as K from keras.callbacks import ModelCheckpoint, CSVLogger, LearningRateScheduler from keras.layers import (Input, Embedding, Dense, BatchNormalization, Dropout, Concatenate, Multiply, Add) from keras.models import Model, load_model from nfp.layers import (MessageLayer, GRUStep, Squeeze, EdgeNetwork, ReduceAtomToMol, ReduceBondToAtom, GatherAtomToBond, ReduceAtomToPro) from nfp.models import GraphModel import argparse parser = argparse.ArgumentParser() parser.add_argument('-r', '--restart', action='store_true') args = parser.parse_args() train = pd.read_pickle('train.pkl.gz') valid = pd.read_pickle('valid.pkl.gz') y_train = train.Shift.values y_valid = valid.Shift.values def rbf_expansion(distances, mu=0, delta=0.04, kmax=256): k = np.arange(0, kmax) logits = -(np.atleast_2d(distances).T - (-mu + delta * k))**2 / delta return np.exp(logits) def atomic_number_tokenizer(atom): return atom.GetNumRadicalElectrons() def _compute_stacked_offsets(sizes, repeats): return np.repeat(np.cumsum(np.hstack([0, sizes[:-1]])), repeats) class RBFSequence(GraphSequence): def process_data(self, batch_data): batch_data['distance_rbf'] = rbf_expansion(batch_data['distance']) offset = _compute_stacked_offsets( batch_data['n_pro'], batch_data['n_atom']) offset =
np.where(batch_data['atom_index']>=0, offset, 0)
numpy.where
# python problem4.py --u 230 # http://fourier.eng.hmc.edu/e161/lectures/ColorProcessing/node3.html import numpy as np import argparse import cv2 ap = argparse.ArgumentParser() ap.add_argument("-u", "--u", type=int, required=True, help="Value of U between 0 and 255") args = vars(ap.parse_args()) def angle_between(p1, p2): ang1 =
np.arctan2(*p1[::-1])
numpy.arctan2
import os import glob import hashlib import gc import time import numpy as np import requests import contextlib from tqdm import tqdm import torch import random from logging import log from os.path import join as pjoin, exists as pexists import json import pickle import pandas as pd from .gams.utils import extract_GAM, bin_data def download(url, filename, delete_if_interrupted=True, chunk_size=4096): """ saves file from url to filename with a fancy progressbar """ try: with open(filename, "wb") as f: print("Downloading {} > {}".format(url, filename)) response = requests.get(url, stream=True) total_length = response.headers.get('content-length') if total_length is None: # no content length header f.write(response.content) else: total_length = int(total_length) with tqdm(total=total_length) as progressbar: for data in response.iter_content(chunk_size=chunk_size): if data: # filter-out keep-alive chunks f.write(data) progressbar.update(len(data)) except Exception as e: if delete_if_interrupted: print("Removing incomplete download {}.".format(filename)) os.remove(filename) raise e return filename def iterate_minibatches(*tensors, batch_size, shuffle=True, epochs=1, allow_incomplete=True, callback=lambda x:x): indices = np.arange(len(tensors[0])) upper_bound = int((np.ceil if allow_incomplete else np.floor) (len(indices) / batch_size)) * batch_size epoch = 0 while True: if shuffle: np.random.shuffle(indices) for batch_start in callback(range(0, upper_bound, batch_size)): batch_ix = indices[batch_start: batch_start + batch_size] batch = [tensor[batch_ix] if tensor is not None else None for tensor in tensors] yield batch if len(tensors) > 1 else batch[0] epoch += 1 if epoch >= epochs: break def process_in_chunks(function, *args, batch_size, out=None, **kwargs): """ Computes output by applying batch-parallel function to large data tensor in chunks :param function: a function(*[x[indices, ...] for x in args]) -> out[indices, ...] :param args: one or many tensors, each [num_instances, ...] :param batch_size: maximum chunk size processed in one go :param out: memory buffer for out, defaults to torch.zeros of appropriate size and type :returns: function(data), computed in a memory-efficient way """ total_size = args[0].shape[0] first_output = function(*[x[0: batch_size] for x in args]) output_shape = (total_size,) + tuple(first_output.shape[1:]) if out is None: out = torch.zeros(*output_shape, dtype=first_output.dtype, device=first_output.device, layout=first_output.layout, **kwargs) out[0: batch_size] = first_output for i in range(batch_size, total_size, batch_size): batch_ix = slice(i, min(i + batch_size, total_size)) out[batch_ix] = function(*[x[batch_ix] for x in args]) return out def check_numpy(x): """ Makes sure x is a numpy array """ if isinstance(x, torch.Tensor): x = x.detach().cpu().numpy() x =
np.asarray(x)
numpy.asarray
import math import os import sys import time from numpy.random import seed import numpy as np # to deal with numpy randomness # seed(1234) import tensorflow.compat.v1 as tf # added to deal with randomness tf.set_random_seed(1234) import tqdm from numpy import random from utils import * def get_cosine_similarity(embeddings1, embeddings2, node): try: vector1 = embeddings1[node] vector2 = embeddings2[node] return np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2)) except: return 2+random.random() def get_batches(pairs, neighbors, batch_size): n_batches = (len(pairs) + (batch_size - 1)) // batch_size for idx in range(n_batches): x, y, t, neigh = [], [], [], [] for i in range(batch_size): index = idx * batch_size + i if index >= len(pairs): break x.append(pairs[index][0]) y.append(pairs[index][1]) t.append(pairs[index][2]) neigh.append(neighbors[pairs[index][0]]) yield (np.array(x).astype(np.int32), np.array(y).reshape(-1, 1).astype(np.int32), np.array(t).astype(np.int32), np.array(neigh).astype(np.int32)) def train_model(network_data, log_name, store_file, all_walks): vocab, index2word = generate_vocab(all_walks) train_pairs = generate_pairs(all_walks, vocab, args.window_size) edge_types = list(network_data.keys()) print('edge types: '+str(list(network_data.keys()))) num_nodes = len(index2word) edge_type_count = len(edge_types) print('edge types '+ str(edge_types)) epochs = args.epoch batch_size = args.batch_size embedding_size = args.dimensions # Dimension of the embedding vector. embedding_u_size = args.edge_dim u_num = edge_type_count num_sampled = args.negative_samples # Number of negative examples to sample. dim_a = args.att_dim att_head = 1 neighbor_samples = args.neighbor_samples neighbors = [[[] for __ in range(edge_type_count)] for _ in range(num_nodes)] for r in range(edge_type_count): g = network_data[edge_types[r]] for (x, y) in g: ix = vocab[x].index iy = vocab[y].index neighbors[ix][r].append(iy) neighbors[iy][r].append(ix) for i in range(num_nodes): if len(neighbors[i][r]) == 0: neighbors[i][r] = [i] * neighbor_samples elif len(neighbors[i][r]) < neighbor_samples: neighbors[i][r].extend(list(np.random.choice(neighbors[i][r], size=neighbor_samples-len(neighbors[i][r])))) elif len(neighbors[i][r]) > neighbor_samples: neighbors[i][r] = list(np.random.choice(neighbors[i][r], size=neighbor_samples)) graph = tf.Graph() with graph.as_default(): global_step = tf.Variable(0, name='global_step', trainable=False) # Parameters to learn node_embeddings = tf.Variable(tf.random.uniform([num_nodes, embedding_size], -1.0, 1.0)) print(node_embeddings.get_shape().as_list()) node_type_embeddings = tf.Variable(tf.random.uniform([num_nodes, u_num, embedding_u_size], -1.0, 1.0)) print(node_type_embeddings.get_shape().as_list()) trans_weights = tf.Variable(tf.truncated_normal([edge_type_count, embedding_u_size, embedding_size // att_head], stddev=1.0 / math.sqrt(embedding_size))) trans_weights_s1 = tf.Variable(tf.truncated_normal([edge_type_count, embedding_u_size, dim_a], stddev=1.0 / math.sqrt(embedding_size))) trans_weights_s2 = tf.Variable(tf.truncated_normal([edge_type_count, dim_a, att_head], stddev=1.0 / math.sqrt(embedding_size))) nce_weights = tf.Variable(tf.truncated_normal([num_nodes, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([num_nodes])) # Input data train_inputs = tf.placeholder(tf.int32, shape=[None]) train_labels = tf.placeholder(tf.int32, shape=[None, 1]) train_types = tf.placeholder(tf.int32, shape=[None]) node_neigh = tf.placeholder(tf.int32, shape=[None, edge_type_count, neighbor_samples]) # Look up embeddings for nodes node_embed = tf.nn.embedding_lookup(node_embeddings, train_inputs) # to get neighbors embeddings for all nodes in all types of edges: embedding_lookup(params, ids) node_embed_neighbors = tf.nn.embedding_lookup(node_type_embeddings, node_neigh) if args.aggregator == 'max-pooling': node_embed_tmp = tf.concat([tf.reshape(tf.slice(node_embed_neighbors, [0, i, 0, i, 0], [-1, 1, -1, 1, -1]), [1, -1, neighbor_samples, embedding_u_size]) for i in range(edge_type_count)], axis=0) node_type_embed = tf.transpose(tf.squeeze(tf.nn.max_pool(node_embed_tmp, ksize=[1, 1, neighbor_samples, 1], strides=[1, 1, neighbor_samples, 1], padding='VALID', data_format='NHWC'), [2]), perm=[1,0,2]) trans_w = tf.nn.embedding_lookup(trans_weights, train_types) trans_w_s1 = tf.nn.embedding_lookup(trans_weights_s1, train_types) trans_w_s2 = tf.nn.embedding_lookup(trans_weights_s2, train_types) attention = tf.reshape(tf.nn.softmax(tf.reshape(tf.matmul(tf.tanh(tf.matmul(node_type_embed, trans_w_s1)), trans_w_s2), [-1, u_num])), [-1, att_head, u_num]) node_type_embed = tf.matmul(attention, node_type_embed) node_embed = node_embed + tf.reshape(tf.matmul(node_type_embed, trans_w), [-1, embedding_size]) elif args.aggregator == 'mean': node_embed_tmp = tf.concat([tf.reshape(tf.slice(node_embed_neighbors, [0, i, 0, i, 0], [-1, 1, -1, 1, -1]), [1, -1, neighbor_samples, embedding_u_size]) for i in range(edge_type_count)], axis=0) node_type_embed = tf.transpose(tf.reduce_mean(node_embed_tmp, axis=2), perm=[1,0,2]) trans_w = tf.nn.embedding_lookup(trans_weights, train_types) trans_w_s1 = tf.nn.embedding_lookup(trans_weights_s1, train_types) trans_w_s2 = tf.nn.embedding_lookup(trans_weights_s2, train_types) attention = tf.reshape(tf.nn.softmax(tf.reshape(tf.matmul(tf.tanh(tf.matmul(node_type_embed, trans_w_s1)), trans_w_s2), [-1, u_num])), [-1, att_head, u_num]) node_type_embed = tf.matmul(attention, node_type_embed) node_embed = node_embed + tf.reshape(tf.matmul(node_type_embed, trans_w), [-1, embedding_size]) elif args.aggregator == 'LSTM': node_embed_tmp = tf.concat([tf.reshape(tf.slice(node_embed_neighbors, [0, i, 0, i, 0], [-1, 1, -1, 1, -1]), [1, -1, neighbor_samples, embedding_u_size]) for i in range(edge_type_count)], axis=0) shape = [node_embed_tmp.shape[k] for k in range(4)] Y=tf.reshape(node_embed_tmp, [-1, shape[2], shape[3]]) lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(embedding_u_size) node_type_emb, _ = tf.nn.dynamic_rnn(lstm_cell, Y, dtype=tf.float32) node_type_emb = tf.transpose(node_type_emb, [1, 0, 2]) last = tf.gather(node_type_emb, int(node_type_emb.get_shape()[0]) - 1) last=tf.reshape(last, [-1, edge_type_count, embedding_u_size]) trans_w = tf.nn.embedding_lookup(trans_weights, train_types) trans_w_s1 = tf.nn.embedding_lookup(trans_weights_s1, train_types) trans_w_s2 = tf.nn.embedding_lookup(trans_weights_s2, train_types) attention = tf.reshape(tf.nn.softmax(tf.reshape(tf.matmul(tf.tanh(tf.matmul(last, trans_w_s1)), trans_w_s2), [-1, u_num])), [-1, att_head, u_num]) last = tf.matmul(attention, last) node_embed = node_embed + tf.reshape(tf.matmul(last, trans_w), [-1, embedding_size]) last_node_embed = tf.nn.l2_normalize(node_embed, axis=1) loss = tf.reduce_mean( tf.nn.nce_loss( weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=last_node_embed, num_sampled=num_sampled, num_classes=num_nodes)) plot_loss = tf.summary.scalar("loss", loss) # Optimizer. optimizer = tf.train.AdamOptimizer().minimize(loss, global_step=global_step) # Add ops to save and restore all the variables. # saver = tf.train.Saver(max_to_keep=20) merged = tf.summary.merge_all(key=tf.GraphKeys.SUMMARIES) # Initializing the variables init = tf.global_variables_initializer() # Launch the graph print("Optimizing") with tf.Session(graph=graph) as sess: writer = tf.summary.FileWriter("./runs/" + log_name, sess.graph) # tensorboard --logdir=./runs sess.run(init) print('Training') g_iter = 0 best_score = 0 patience = 0 for epoch in range(epochs): random.shuffle(train_pairs) batches = get_batches(train_pairs, neighbors, batch_size) data_iter = tqdm.tqdm(batches, desc="epoch %d" % (epoch), total=(len(train_pairs) + (batch_size - 1)) // batch_size, bar_format="{l_bar}{r_bar}") avg_loss = 0.0 for i, data in enumerate(data_iter): feed_dict = {train_inputs: data[0], train_labels: data[1], train_types: data[2], node_neigh: data[3]} _, loss_value, summary_str = sess.run([optimizer, loss, merged], feed_dict) writer.add_summary(summary_str, g_iter) g_iter += 1 avg_loss += loss_value if i % 5000 == 0: post_fix = { "epoch": epoch, "iter": i, "avg_loss": avg_loss / (i + 1), "loss": loss_value } data_iter.write(str(post_fix)) final_model = dict(zip(edge_types, [dict() for _ in range(edge_type_count)])) for i in range(edge_type_count): for j in range(num_nodes): final_model[edge_types[i]][index2word[j]] = np.array(sess.run(last_node_embed, {train_inputs: [j], train_types: [i], node_neigh: [neighbors[j]]})[0]) valid_aucs, valid_f1s, valid_prs = [], [], [] test_aucs, test_f1s, test_prs = [], [], [] for i in range(edge_type_count): if args.eval_type == 'all' or edge_types[i] in args.eval_type.split(','): tmp_auc, tmp_f1, tmp_pr = evaluate(final_model[edge_types[i]], valid_true_data_by_edge[edge_types[i]], valid_false_data_by_edge[edge_types[i]]) valid_aucs.append(tmp_auc) valid_f1s.append(tmp_f1) valid_prs.append(tmp_pr) tmp_auc, tmp_f1, tmp_pr = evaluate(final_model[edge_types[i]], testing_true_data_by_edge[edge_types[i]], testing_false_data_by_edge[edge_types[i]]) test_aucs.append(tmp_auc) test_f1s.append(tmp_f1) test_prs.append(tmp_pr) print('valid auc:', np.mean(valid_aucs)) print('valid pr:', np.mean(valid_prs)) print('valid f1:', np.mean(valid_f1s)) average_auc = np.mean(test_aucs) average_f1 = np.mean(test_f1s) average_pr = np.mean(test_prs) cur_score =
np.mean(valid_aucs)
numpy.mean
import suspect import numpy def test_null_transform(): fid = numpy.ones(128, 'complex') data = suspect.MRSData(fid, 1.0 / 128, 123) transformed_data = suspect.processing.frequency_correction.transform_fid(data, 0, 0) assert type(transformed_data) == suspect.MRSData def test_water_peak_alignment_misshape(): spectrum = numpy.zeros(128, 'complex') spectrum[0] = 1 fids = suspect.MRSData(numpy.zeros((16, 128), 'complex'), 1.0 / 128, 123) for i in range(fids.shape[0]): rolled_spectrum = numpy.roll(spectrum, i) fids[i] = numpy.fft.ifft(rolled_spectrum) current_fid = numpy.reshape(fids[i], (1, 128)) frequency_shift = suspect.processing.frequency_correction.residual_water_alignment(current_fid) numpy.testing.assert_almost_equal(frequency_shift, i) def test_water_peak_alignment(): spectrum = numpy.zeros(128, 'complex') spectrum[0] = 1 fids = suspect.MRSData(numpy.zeros((16, 128), 'complex'), 1.0 / 128, 123) for i in range(fids.shape[0]): rolled_spectrum =
numpy.roll(spectrum, i)
numpy.roll
import numpy import scipy.stats import math def one_hot(array, N): """ Convert an array of numbers to an array of one-hot vectors. :param array: classes to convert :type array: numpy.ndarray :param N: number of classes :type N: int :return: one-hot vectors :rtype: numpy.ndarray """ array = array.astype(int) assert numpy.max(array) < N assert numpy.min(array) >= 0 one_hot = numpy.zeros((array.shape[0], N)) one_hot[numpy.arange(array.shape[0]), array] = 1 return one_hot def expand_as(array, array_as): """ Expands the tensor using view to allow broadcasting. :param array: input tensor :type array: numpy.ndarray :param array_as: reference tensor :type array_as: torch.Tensor or torch.autograd.Variable :return: tensor expanded with singelton dimensions as tensor_as :rtype: torch.Tensor or torch.autograd.Variable """ shape = list(array.shape) for i in range(len(array.shape), len(array_as.shape)): shape.append(1) return array.reshape(shape) def concatenate(array1, array2, axis=0): """ Basically a wrapper for numpy.concatenate, with the exception that the array itself is returned if its None or evaluates to False. :param array1: input array or None :type array1: mixed :param array2: input array :type array2: numpy.ndarray :param axis: axis to concatenate :type axis: int :return: concatenated array :rtype: numpy.ndarray """ assert isinstance(array2, numpy.ndarray) if array1 is not None: assert isinstance(array1, numpy.ndarray) return numpy.concatenate((array1, array2), axis=axis) else: return array2 def exponential_norm(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly by norm and direction separately. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon truncated_normal = scipy.stats.truncexpon.rvs(1, loc=0, scale=0.9, size=(batch_size, 1)) random *= numpy.repeat(truncated_normal, axis=1, repeats=dim) return random def uniform_norm(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly by norm and direction separately. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon uniform = numpy.random.uniform(0, 1, (batch_size, 1)) # exponent is only difference! random *= numpy.repeat(uniform, axis=1, repeats=dim) return random def uniform_ball(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly in the n-ball. See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon uniform = numpy.random.uniform(0, 1, (batch_size, 1)) ** (1. / dim) random *= numpy.repeat(uniform, axis=1, repeats=dim) return random def uniform_sphere(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly on the n-sphere. See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon return random def truncated_normal(size, lower=-2, upper=2): """ Sample from truncated normal. See https://stackoverflow.com/questions/18441779/how-to-specify-upper-and-lower-limits-when-using-numpy-random-normal. :param size: size of vector :type size: [int] :param lower: lower bound :type lower: float :param upper: upper bound :type upper: float :return: batch_size x dim tensor :rtype: numpy.ndarray """ return scipy.stats.truncnorm.rvs(lower, upper, size=size) def project_simplex(v, s=1): """ Taken from https://gist.github.com/daien/1272551/edd95a6154106f8e28209a1c7964623ef8397246. Compute the Euclidean projection on a positive simplex Solves the optimisation problem (using the algorithm from [1]): min_w 0.5 * || w - v ||_2^2 , s.t. \sum_i w_i = s, w_i >= 0 Parameters ---------- v: (n,) numpy array, n-dimensional vector to project s: int, optional, default: 1, radius of the simplex Returns ------- w: (n,) numpy array, Euclidean projection of v on the simplex Notes ----- The complexity of this algorithm is in O(n log(n)) as it involves sorting v. Better alternatives exist for high-dimensional sparse vectors (cf. [1]) However, this implementation still easily scales to millions of dimensions. References ---------- [1] Efficient Projections onto the .1-Ball for Learning in High Dimensions <NAME>, <NAME>, <NAME>, and <NAME>. International Conference on Machine Learning (ICML 2008) http://www.cs.berkeley.edu/~jduchi/projects/DuchiSiShCh08.pdf """ assert s > 0, "Radius s must be strictly positive (%d <= 0)" % s n, = v.shape # will raise ValueError if v is not 1-D # check if we are already on the simplex if v.sum() == s and
numpy.alltrue(v >= 0)
numpy.alltrue
import torch, math, numpy as np, scipy.sparse as sp import torch.nn as nn, torch.nn.functional as F, torch.nn.init as init from torch.autograd import Variable from torch.nn.modules.module import Module from torch.nn.parameter import Parameter class HyperGraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, a, b, reapproximate=True, cuda=True): super(HyperGraphConvolution, self).__init__() self.a, self.b = a, b self.reapproximate, self.cuda = reapproximate, cuda self.W = Parameter(torch.FloatTensor(a, b)) self.bias = Parameter(torch.FloatTensor(b)) self.reset_parameters() def reset_parameters(self): std = 1. / math.sqrt(self.W.size(1)) self.W.data.uniform_(-std, std) self.bias.data.uniform_(-std, std) def forward(self, structure, H, m=True): W, b = self.W, self.bias HW = torch.mm(H, W) if self.reapproximate: n, X = H.shape[0], HW.cpu().detach().numpy() A = Laplacian(n, structure, X, m) else: A = structure if self.cuda: A = A.cuda() A = Variable(A) AHW = SparseMM.apply(A, HW) return AHW + b def __repr__(self): return self.__class__.__name__ + ' (' \ + str(self.a) + ' -> ' \ + str(self.b) + ')' class SparseMM(torch.autograd.Function): """ Sparse x dense matrix multiplication with autograd support. Implementation by <NAME>: https://discuss.pytorch.org/t/ does-pytorch-support-autograd-on-sparse-matrix/6156/7 """ @staticmethod def forward(ctx, M1, M2): ctx.save_for_backward(M1, M2) return torch.mm(M1, M2) @staticmethod def backward(ctx, g): M1, M2 = ctx.saved_tensors g1 = g2 = None if ctx.needs_input_grad[0]: g1 = torch.mm(g, M2.t()) if ctx.needs_input_grad[1]: g2 = torch.mm(M1.t(), g) return g1, g2 def Laplacian(V, E, X, m): """ approximates the E defined by the E Laplacian with/without mediators arguments: V: number of vertices E: dictionary of hyperedges (key: hyperedge, value: list/set of hypernodes) X: features on the vertices m: True gives Laplacian with mediators, while False gives without A: adjacency matrix of the graph approximation returns: updated data with 'graph' as a key and its value the approximated hypergraph """ edges, weights = [], {} rv =
np.random.rand(X.shape[1])
numpy.random.rand
''' HMMUtil.py Provides standard message-passing algorithms for inference in HMMs, such as the forward-backward algorithm Intentionally separated from rest of HMM code, so that we can swap in any fast routine for this calculation with ease. ''' import numpy as np from bnpy.util import EPS from bnpy.util import digamma, gammaln from bnpy.util.NumericUtil import Config as PlatformConfig from bnpy.util.NumericUtil import sumRtimesS from bnpy.util.NumericUtil import inplaceLog from bnpy.util import as2D from bnpy.allocmodel.hmm.lib.LibFwdBwd import cppReady, FwdAlg_cpp, BwdAlg_cpp, SummaryAlg_cpp def calcLocalParams(Data, LP, transTheta=None, startTheta=None, limitMemoryLP=1, hmm_feature_method_LP='forward+backward', mPairIDs=None, cslice=(0, None), **kwargs): ''' Compute local parameters for provided dataset. Returns ------- LP : dict of local params, with fields * resp : 2D array, nAtom x K if limitMemoryLP=0: * respPair : 3D array, nAtom x K x K if limitMemoryLP=1: * TransCount : 3D array, nSeq x K x K ''' # Unpack soft evidence 2D array logLik = LP['E_log_soft_ev'] nAtom, K = logLik.shape # Calculate trans prob 2D array digammaSumTransTheta = digamma(np.sum(transTheta[:K, :K + 1], axis=1)) transPi = digamma(transTheta[:K, :K]) - digammaSumTransTheta[:, np.newaxis] np.exp(transPi, out=transPi) # Calculate LOG of start state prob vector logstartPi = digamma(startTheta[:K]) - digamma(np.sum(startTheta[:K + 1])) # Set starting probs to uniform, # because Line A below updates first state's logLik to include logstartPi startPi = np.ones(K) logMargPr = np.empty(Data.nDoc) resp = np.empty((nAtom, K)) # Unpack pairs to track for merging. if mPairIDs is None: mPairIDs = np.zeros((0, 2)) M = 0 else: if len(mPairIDs) == 0: mPairIDs = np.zeros((0, 2)) M = 0 else: mPairIDs = as2D(mPairIDs) M = mPairIDs.shape[0] assert mPairIDs.shape[1] == 2 if hmm_feature_method_LP == 'forward': fmsg = np.zeros_like(LP['E_log_soft_ev']) # Run forward backward algorithm on each sequence n for n in range(Data.nDoc): start = Data.doc_range[n] stop = Data.doc_range[n + 1] logLik_n = logLik[start:stop] # Adding in start state probs, in log space for stability. logLik_n[0] += logstartPi PiInit, PiMat, K = _parseInput_TransParams(startPi, transPi) logSoftEv = _parseInput_SoftEv(logLik_n, K) T = logSoftEv.shape[0] SoftEv, lognormC = expLogLik(logSoftEv) fmsg_n, margPrObs = FwdAlg(PiInit, PiMat, SoftEv) if not np.all(np.isfinite(margPrObs)): raise ValueError('NaN values found. Numerical badness!') fmsg[start:stop] = fmsg_n LP['fmsg'] = fmsg elif limitMemoryLP: # Track sufficient statistics directly at each sequence. TransCount = np.empty((Data.nDoc, K, K)) Htable = np.empty((Data.nDoc, K, K)) mHtable = np.zeros((2 * M, K)) # Run forward backward algorithm on each sequence n for n in range(Data.nDoc): start = Data.doc_range[n] stop = Data.doc_range[n + 1] logLik_n = logLik[start:stop] # Adding in start state probs, in log space for stability. logLik_n[0] += logstartPi # Line A # Run fwd-fwd alg and record result. resp_n, lp_n, TransCount_n, Htable_n, mHtable_n = \ FwdBwdAlg_LimitMemory(startPi, transPi, logLik_n, mPairIDs) resp[start:stop] = resp_n logMargPr[n] = lp_n TransCount[n] = TransCount_n Htable[n] = Htable_n mHtable += mHtable_n LP['resp'] = resp LP['evidence'] = np.sum(logMargPr) LP['TransCount'] = TransCount LP['Htable'] = Htable LP['mHtable'] = mHtable else: # Track pair-wise assignment probs for each sequence respPair = np.empty((nAtom, K, K)) # Run the forward backward algorithm on each sequence for n in range(Data.nDoc): start = Data.doc_range[n] stop = Data.doc_range[n + 1] logLik_n = logLik[start:stop] # Adding in start state probs, in log space for stability. logLik_n[0] += logstartPi # Line A resp_n, respPair_n, lp_n = \ FwdBwdAlg(startPi, transPi, logLik_n) resp[start:stop] = resp_n respPair[start:stop] = respPair_n logMargPr[n] = lp_n LP['evidence'] = np.sum(logMargPr) LP['resp'] = resp LP['respPair'] = respPair # ... end if statement on limitMemoryLP return LP def FwdBwdAlg(PiInit, PiMat, logSoftEv): '''Execute forward-backward algorithm for one sequence. Args ------- piInit : 1D array, size K initial transition distribution to each of the K states must be valid probability vector (positive entries, sums to one) piMat : 2D array, size KxK piMat[j] is transition distribution from state j to all K states. each row must be probability vector (positive entries, sums to one) logSoftEv : 2D array, size TxK logSoftEv[t] := log p( x[t] | z[tk] = 1) log likelihood of observation t under state k if given exactly, * resp, respPair will be exact * logMargPrSeq will be exact if given up to an additive constant, * resp, respPair will be exact * logMargPrSeq will be off by an additive constant Returns ------- resp : 2D array, size T x K resp[t,k] = marg. prob. that step t assigned to state K p( z[t,k] = 1 | x[1], x[2], ... x[T]) respPair : 3D array, size T x K x K respPair[t,j,k] = prob. of the joint event that * step t-1 assigned to state j * step t assigned to state k Formally = p( z[t-1,j] = 1, z[t,k] = 1 | x[1], x[2], ... x[T]) respPair[0,:,:] is undefined, but kept so indexing consistent. logMargPrSeq : scalar real logMargPrSeq = joint log probability of the observed sequence log p( x[1], x[2], ... x[T] ) ''' PiInit, PiMat, K = _parseInput_TransParams(PiInit, PiMat) logSoftEv = _parseInput_SoftEv(logSoftEv, K) T = logSoftEv.shape[0] SoftEv, lognormC = expLogLik(logSoftEv) fmsg, margPrObs = FwdAlg(PiInit, PiMat, SoftEv) if not np.all(np.isfinite(margPrObs)): raise ValueError('NaN values found. Numerical badness!') bmsg = BwdAlg(PiInit, PiMat, SoftEv, margPrObs) resp = fmsg * bmsg respPair = calcRespPair_fast(PiMat, SoftEv, margPrObs, fmsg, bmsg, K, T) logMargPrSeq = np.log(margPrObs).sum() + lognormC.sum() return resp, respPair, logMargPrSeq def FwdBwdAlg_LimitMemory(PiInit, PiMat, logSoftEv, mPairIDs): '''Execute forward-backward algorithm using only O(K) memory. Args ------- piInit : 1D array, size K piMat : 2D array, size KxK logSoftEv : 2D array, size TxK Returns ------- resp : 2D array, size T x K resp[t,k] = marg. prob. that step t assigned to state K p( z[t,k] = 1 | x[1], x[2], ... x[T]) TransCount Htable logMargPrSeq : scalar real logMargPrSeq = joint log probability of the observed sequence log p( x[1], x[2], ... x[T] ) ''' PiInit, PiMat, K = _parseInput_TransParams(PiInit, PiMat) logSoftEv = _parseInput_SoftEv(logSoftEv, K) SoftEv, lognormC = expLogLik(logSoftEv) T = logSoftEv.shape[0] fmsg, margPrObs = FwdAlg(PiInit, PiMat, SoftEv) if not np.all(np.isfinite(margPrObs)): raise ValueError('NaN values found. Numerical badness!') bmsg = BwdAlg(PiInit, PiMat, SoftEv, margPrObs) resp = fmsg * bmsg logMargPrSeq = np.log(margPrObs).sum() + lognormC.sum() TransStateCount, Htable, mHtable = SummaryAlg( PiInit, PiMat, SoftEv, margPrObs, fmsg, bmsg, mPairIDs) return resp, logMargPrSeq, TransStateCount, Htable, mHtable def calcRespPair_forloop(PiMat, SoftEv, margPrObs, fmsg, bmsg, K, T): ''' Calculate pair-wise responsibilities for all adjacent timesteps Uses a simple, for-loop implementation. See calcRespPair_fast for a equivalent function that is much faster. Returns --------- respPair : 3D array, size T x K x K respPair[t,j,k] = prob. of the joint event that * step t-1 assigned to state j * step t assigned to state k Formally = p( z[t-1,j] = 1, z[t,k] = 1 | x[1], x[2], ... x[T]) respPair[0,:,:] is undefined, but kept so indexing consistent. ''' respPair = np.zeros((T, K, K)) for t in range(1, T): respPair[t] = np.outer(fmsg[t - 1], bmsg[t] * SoftEv[t]) respPair[t] *= PiMat / margPrObs[t] return respPair def calcRespPair_fast(PiMat, SoftEv, margPrObs, fmsg, bmsg, K, T, doCopy=0): ''' Calculate pair-wise responsibilities for all adjacent timesteps Uses a fast, vectorized algorithm. Returns --------- respPair : 3D array, size T x K x K respPair[t,j,k] = prob. of the joint event that * step t-1 assigned to state j * step t assigned to state k Formally = p( z[t-1,j] = 1, z[t,k] = 1 | x[1], x[2], ... x[T]) respPair[0,:,:] is undefined, but kept so indexing consistent. ''' if doCopy: bmsgSoftEv = SoftEv * bmsg else: bmsgSoftEv = SoftEv # alias bmsgSoftEv *= bmsg # in-place multiplication respPair = np.zeros((T, K, K)) respPair[1:] = fmsg[:-1][:, :, np.newaxis] * \ bmsgSoftEv[1:][:, np.newaxis, :] respPair *= PiMat[np.newaxis, :, :] respPair /= margPrObs[:, np.newaxis, np.newaxis] return respPair def FwdAlg(PiInit, PiMat, SoftEv): ''' Forward algorithm for a single HMM sequence. Wrapper for py/cpp. Related ------- FwdAlg_py Returns ------- fmsg : 2D array, size T x K fmsg[t,k] = p( z[t,k] = 1 | x[1] ... x[t] ) margPrObs : 1D array, size T margPrObs[t] = p( x[t] | x[1], x[2], ... x[t-1] ) ''' if cppReady() and PlatformConfig['FwdBwdImpl'] == "cpp": return FwdAlg_cpp(PiInit, PiMat, SoftEv) else: return FwdAlg_py(PiInit, PiMat, SoftEv) def BwdAlg(PiInit, PiMat, SoftEv, margPrObs): ''' Backward algorithm for a single HMM sequence. Wrapper for BwdAlg_py/BwdAlg_cpp. Related ------- BwdAlg_py Returns ------- bmsg : 2D array, size TxK bmsg[t,k] = p( x[t+1], x[t+2], ... x[T] | z[t,k] = 1 ) ------------------------------------- p( x[t+1], x[t+2], ... x[T] | x[1] ... x[t]) ''' if cppReady() and PlatformConfig['FwdBwdImpl'] == "cpp": return BwdAlg_cpp(PiInit, PiMat, SoftEv, margPrObs) else: return BwdAlg_py(PiInit, PiMat, SoftEv, margPrObs) def FwdAlg_py(PiInit, PiMat, SoftEv): ''' Forward algorithm for a single HMM sequence. In pure python. Execute forward message-passing on an observed sequence given HMM state transition params and likelihoods of each observation Args ------- piInit : 1D array, size K initial transition distribution to each of the K states must be valid probability vector (positive entries, sums to one) piMat : 2D array, size KxK piMat[j] is transition distribution from state j to all K states. each row must be probability vector (positive entries, sums to one) SoftEv : 2D array, size TxK SoftEv[t] := p( x[t] | z[tk] = 1) likelihood of observation t under state k given up to an additive constant for each t Returns ------- fmsg : 2D array, size T x K fmsg[t,k] = p( z[t,k] = 1 | x[1] ... x[t] ) margPrObs : 1D array, size T margPrObs[t] = p( x[t] | x[1], x[2], ... x[t-1] ) ''' T = SoftEv.shape[0] K = PiInit.size PiTMat = PiMat.T fmsg = np.empty((T, K)) margPrObs = np.zeros(T) for t in range(0, T): if t == 0: fmsg[t] = PiInit * SoftEv[0] else: fmsg[t] = np.dot(PiTMat, fmsg[t - 1]) * SoftEv[t] margPrObs[t] = np.sum(fmsg[t]) fmsg[t] /= margPrObs[t] return fmsg, margPrObs def BwdAlg_py(PiInit, PiMat, SoftEv, margPrObs): '''Backward algorithm for a single HMM sequence. In pure python. Takes as input the HMM state transition params, initial probabilities, and likelihoods of each observation. Requires running forward filtering first, to obtain correct scaling. Args ------- piInit : 1D array, size K initial transition distribution to each of the K states must be valid probability vector (positive entries, sums to one) piMat : 2D array, size KxK piMat[j] is transition distribution from state j to all K states. each row must be probability vector (positive entries, sums to one) SoftEv : 2D array, size TxK SoftEv[t] := p( x[t] | z[tk] = 1) likelihood of observation t under state k given up to an additive constant for each t margPrObs : 1D array, size T margPrObs[t] := p( x[t] | x[1], x[2], ... x[t-1] ) this is returned by FwdAlg Returns ------- bmsg : 2D array, size TxK bmsg[t,k] = p( x[t+1], x[t+2], ... x[T] | z[t,k] = 1 ) ------------------------------------- p( x[t+1], x[t+2], ... x[T] | x[1] ... x[t]) ''' T = SoftEv.shape[0] K = PiInit.size bmsg = np.ones((T, K)) for t in range(T - 2, -1, -1): bmsg[t] = np.dot(PiMat, bmsg[t + 1] * SoftEv[t + 1]) bmsg[t] /= margPrObs[t + 1] return bmsg def SummaryAlg(*args): ''' Summarize pairwise potentials of single HMM sequence. Related ------- SummaryAlg_py Returns ------- TransStateCount Htable ''' if cppReady() and PlatformConfig['FwdBwdImpl'] == "cpp": return SummaryAlg_cpp(*args) else: return SummaryAlg_py(*args) def SummaryAlg_py(PiInit, PiMat, SoftEv, margPrObs, fMsg, bMsg, mPairIDs=None): K = PiInit.size T = SoftEv.shape[0] if mPairIDs is None: M = 0 else: if len(mPairIDs) == 0: M = 0 else: mPairIDs = as2D(np.asarray(mPairIDs, dtype=np.int32)) assert mPairIDs.ndim == 2 assert mPairIDs.shape[1] == 2 assert mPairIDs.shape[0] > 0 M = mPairIDs.shape[0] mHtable = np.zeros((2 * M, K)) respPair_t = np.zeros((K, K)) Htable = np.zeros((K, K)) TransStateCount = np.zeros((K, K)) for t in range(1, T): respPair_t = np.outer(fMsg[t - 1], bMsg[t] * SoftEv[t]) respPair_t *= PiMat / margPrObs[t] TransStateCount += respPair_t respPair_t += 1e-100 rowwiseSum = np.sum(respPair_t, axis=1) Htable += respPair_t * np.log(respPair_t) \ - respPair_t * np.log(rowwiseSum)[:, np.newaxis] if M > 0: respPair = calcRespPair_fast(PiMat, SoftEv, margPrObs, fMsg, bMsg, K, T, doCopy=1) for m in range(M): kA = mPairIDs[m, 0] kB = mPairIDs[m, 1] mHtable[ 2 * m:2 * m + 2] = calc_sub_Htable_forMergePair( respPair, kA, kB) Htable *= -1 return TransStateCount, Htable, mHtable def expLogLik(logSoftEv, axis=1): ''' Return element-wise exp of input log likelihood Numerically safe, guaranteed not to underflow Returns -------- SoftEv : 2D array, size TxK equal to exp(logSoftEv), up to prop constant for each row lognormC : 1D array, size T gives log of the prop constant for each row ''' lognormC = np.max(logSoftEv, axis) if axis == 0: logSoftEv = logSoftEv - lognormC[np.newaxis, :] elif axis == 1: logSoftEv = logSoftEv - lognormC[:, np.newaxis] SoftEv = np.exp(logSoftEv) return SoftEv, lognormC def _parseInput_TransParams(PiInit, PiMat): PiInit = np.asarray(PiInit, dtype=np.float64) PiMat = np.asarray(PiMat, dtype=np.float64) assert PiInit.ndim == 1 K0 = PiInit.shape[0] assert PiMat.ndim == 2 J, K = PiMat.shape assert J == K assert K0 == K return PiInit, PiMat, K def _parseInput_SoftEv(logSoftEv, K): logSoftEv = np.asarray(logSoftEv, dtype=np.float64) Tl, Kl = logSoftEv.shape assert Kl == K return logSoftEv def runViterbiAlg(logSoftEv, logPi0, logPi): ''' Run viterbi algorithm to estimate MAP states for single sequence. Args ------ logSoftEv : 2D array, T x K log soft evidence matrix each row t := log p( x[t] | z[t]=k ) logPi0 : 1D array, K initial state log probability vector sums to one after exponentiating logPi : 2D array, K x K j-th row is is log transition probability vector for state j each row sums to one after exponentiating Returns ------ zHat : 1D array, length T, representing the MAP state sequence zHat[t] gives the integer label {1, 2, ... K} of state at timestep t ''' if
np.any(logPi0 > 0)
numpy.any
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri, 25 May 2018 20:29:09 @author: luohao """ """ CVPR2017 paper:<NAME>, <NAME>, <NAME>, et al. Re-ranking Person Re-identification with k-reciprocal Encoding[J]. 2017. url:http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhong_Re-Ranking_Person_Re-Identification_CVPR_2017_paper.pdf Matlab version: https://github.com/zhunzhong07/person-re-ranking """ """ API probFea: all feature vectors of the query set (torch tensor) probFea: all feature vectors of the gallery set (torch tensor) k1,k2,lambda: parameters, the original paper is (k1=20,k2=6,lambda=0.3) MemorySave: set to 'True' when using MemorySave mode Minibatch: avaliable when 'MemorySave' is 'True' """ import numpy as np import torch from scipy.spatial.distance import cdist import time import gc from tqdm import tqdm def euclidean_distance(qf, gf): m = qf.shape[0] n = gf.shape[0] dist_mat = torch.pow(qf,2).sum(dim=1, keepdim=True).expand(m,n) +\ torch.pow(gf,2).sum(dim=1, keepdim=True).expand(n,m).t() dist_mat.addmm_(1,-2,qf,gf.t()) # # for L2-norm feature # dist_mat = 2 - 2 * torch.matmul(qf, gf.t()) return dist_mat def batch_euclidean_distance(qf, gf, N=6000): m = qf.shape[0] n = gf.shape[0] dist_mat = [] for j in range(n // N + 1): temp_gf = gf[j * N:j * N + N] temp_qd = [] for i in range(m // N + 1): temp_qf = qf[i * N:i * N + N] temp_d = euclidean_distance(temp_qf, temp_gf) temp_qd.append(temp_d) temp_qd = torch.cat(temp_qd, dim=0) temp_qd = temp_qd / (torch.max(temp_qd, dim=0)[0]) dist_mat.append(temp_qd.t().cpu()) del temp_qd del temp_gf del temp_qf del temp_d torch.cuda.empty_cache() # empty GPU memory dist_mat = torch.cat(dist_mat, dim=0) return dist_mat # 将topK排序放到GPU里运算,并且只返回k1+1个结果 # Compute TopK in GPU and return (k1+1) results def batch_torch_topk(qf, gf, k1, N=6000): m = qf.shape[0] n = gf.shape[0] dist_mat = [] initial_rank = [] for j in range(n // N + 1): temp_gf = gf[j * N:j * N + N] temp_qd = [] for i in range(m // N + 1): temp_qf = qf[i * N:i * N + N] temp_d = euclidean_distance(temp_qf, temp_gf) temp_qd.append(temp_d) temp_qd = torch.cat(temp_qd, dim=0) temp_qd = temp_qd / (torch.max(temp_qd, dim=0)[0]) temp_qd = temp_qd.t() initial_rank.append(torch.topk(temp_qd, k=k1, dim=1, largest=False, sorted=True)[1]) del temp_qd del temp_gf del temp_qf del temp_d torch.cuda.empty_cache() # empty GPU memory initial_rank = torch.cat(initial_rank, dim=0).cpu().numpy() return initial_rank def batch_v(feat, R, all_num): V = np.zeros((all_num, all_num), dtype=np.float32) m = feat.shape[0] for i in tqdm(range(m)): temp_gf = feat[i].unsqueeze(0) # temp_qd = [] temp_qd = euclidean_distance(temp_gf, feat) temp_qd = temp_qd / (torch.max(temp_qd)) temp_qd = temp_qd.squeeze() temp_qd = temp_qd[R[i]] weight = torch.exp(-temp_qd) weight = (weight / torch.sum(weight)).cpu().numpy() V[i, R[i]] = weight.astype(np.float32) return V def k_reciprocal_neigh(initial_rank, i, k1): forward_k_neigh_index = initial_rank[i, :k1 + 1] backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1] fi = np.where(backward_k_neigh_index == i)[0] return forward_k_neigh_index[fi] def re_ranking(probFea, galFea, k1, k2, lambda_value): # The following naming, e.g. gallery_num, is different from outer scope. # Don't care about it. t1 = time.time() query_num = probFea.size(0) all_num = query_num + galFea.size(0) feat = torch.cat([probFea, galFea]).cuda() initial_rank = batch_torch_topk(feat, feat, k1 + 1, N=6000) # del feat del probFea del galFea torch.cuda.empty_cache() # empty GPU memory gc.collect() # empty memory # print('Using totally {:.2f}s to compute initial_rank'.format(time.time() - t1)) print('starting re_ranking') R = [] for i in tqdm(range(all_num)): # k-reciprocal neighbors k_reciprocal_index = k_reciprocal_neigh(initial_rank, i, k1) k_reciprocal_expansion_index = k_reciprocal_index for j in range(len(k_reciprocal_index)): candidate = k_reciprocal_index[j] candidate_k_reciprocal_index = k_reciprocal_neigh(initial_rank, candidate, int(np.around(k1 / 2))) if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2. / 3 * len( candidate_k_reciprocal_index): k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index) k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) R.append(k_reciprocal_expansion_index) gc.collect() # empty memory print('Using totally {:.2f}S to compute R'.format(time.time() - t1)) V = batch_v(feat, R, all_num) del R gc.collect() # empty memory print('Using totally {:.2f}S to compute V-1'.format(time.time() - t1)) initial_rank = initial_rank[:, :k2] ### 下面这个版本速度更快 ### Faster version if k2 != 1: V_qe = np.zeros_like(V, dtype=np.float16) for i in range(all_num): V_qe[i, :] = np.mean(V[initial_rank[i], :], axis=0) V = V_qe del V_qe del initial_rank ### 下面这个版本更省内存(约40%),但是更慢 ### Low-memory version '''gc.collect() # empty memory N = 2000 for j in range(all_num // N + 1): if k2 != 1: V_qe = np.zeros_like(V[:, j * N:j * N + N], dtype=np.float32) for i in range(all_num): V_qe[i, :] = np.mean(V[initial_rank[i], j * N:j * N + N], axis=0) V[:, j * N:j * N + N] = V_qe del V_qe del initial_rank''' gc.collect() # empty memory print('Using totally {:.2f}S to compute V-2'.format(time.time() - t1)) invIndex = [] for i in range(all_num): invIndex.append(np.where(V[:, i] != 0)[0]) print('Using totally {:.2f}S to compute invIndex'.format(time.time() - t1)) jaccard_dist = np.zeros((query_num, all_num), dtype=np.float32) for i in tqdm(range(query_num)): temp_min =
np.zeros(shape=[1, all_num], dtype=np.float32)
numpy.zeros
#!/usr/bin/python3 from argparse import ArgumentParser import datetime # date and time manipulations from matplotlib import pyplot import numpy as np import re # regular expression operations import requests # HTTP requests from termcolor import colored # colored terminal output def get_cookie_crumb(url='https://finance.yahoo.com/quote/SPY/history'): ''' Return site cookie and crumb needed to access stock data. Args: url: site providing historical stock data (optional) ''' res = requests.get(url) cookie = res.cookies['B'] crumb = None pattern = re.compile('.*"CrumbStore":\{"crumb":"(?P<crumb>[^"]+)"\}') for line in res.text.splitlines(): m = pattern.match(line) if m is not None: crumb = m.groupdict()['crumb'] return cookie, crumb def get_stock_data(stock, days, cookie, crumb, url='https://query1.finance.yahoo.com/v7/finance/download/'): ''' Return historic stock prices covering N days in the past from today. Args: stock: stock symbol days: number of days in the past from today cookie: site cookie needed to access stock data crumb: site crumb needed to access stock data url: site providing historical stock data (optional) ''' time_past = (datetime.date.today() - datetime.timedelta(days=days)).strftime('%s') time_curr = datetime.date.today().strftime('%s') interval = '1d' if days < 367 else '1wk' params = {'symbol': stock, 'period1': time_past, 'period2': time_curr, 'interval': interval, 'crumb': crumb} res = requests.get(url, params=params, cookies={'B' : cookie}) return res.text class StockAnalizer: ''' Provides several tools to analyze the historic prices of a given stock. On top of the stock price, several EMAs (Exponential Moving Averages) can also be displayed. The stock trend can be added as an overlay display. ''' def __init__(self): self.date = [] self.price = [] self.ema = {} self.trend = [] def process_stock_data(self, history): ''' Process historic stock prices and store them internally for future manipulations. Args: history: historic stock prices in a text format ''' date_idx = None price_idx = None process_header = True for line in history.splitlines(): data = line.split(',') if process_header: try: date_idx = data.index('Date') except: print('\ndate information not available\n') return try: price_idx = data.index('Close') except: print('\nprice information not available\n') return process_header = False continue if data[price_idx] == 'null': continue dt = data[date_idx].split('-') self.date.append(dt[1] + '/' + dt[2] + '/' + dt[0][2:]) # store date as MM/DD/YY self.price.append(float(data[price_idx])) def compute_ema_data(self, days): ''' Compute and store internally EMAs based on given number of days. Args: days: number of days to use when averaging ''' # return if no stock data if len(self.date) == 0: print('\ncompute_ema_data: skipping...no data available\n') return # compute EMAs self.ema[days] = [self.price[0]] w = 2.0 / (days + 1) # stock price weight for i in range(1, len(self.price)): ema = self.price[i] * w + self.ema[days][-1] * (1 - w) self.ema[days].append(ema) def compute_trend_data(self, ema_key, stride): ''' Compute and store internally the trend of the stock over time. The trend is calculated based on previously computed EMA and the given stride. Args: ema_key: specifies what EMA to use when computing the trend stride: determines what reference value to use when computing the trend ''' # return if EMA key not found if ema_key not in self.ema.keys(): print('\ncompute_trend_data: skipping...selected EMA not available\n') return # compute the trend for i in range(len(self.date)): ref = self.ema[ema_key][max(0, i - stride)] dif = 100.0 * (self.ema[ema_key][i] - ref) / ref # as percentage self.trend.append(dif) def plot_data(self, stock, period, path): ''' Show on a plot the historic stock price, the computed EMAs and the trend if available. Args: stock: stock symbol period: some text indicating the time period that is displayed path: save plot if path is provided ''' # return if no stock data if len(self.date) == 0: print('\nplot_data: skipping...no data available\n') return # set up the plot fig = pyplot.figure(1, figsize=(10, 4)) fig.subplots_adjust(left=0.07, bottom=0.1, right=0.93, top=0.9) plt_trend = fig.subplots() plt_trend.set_ylabel('Trend (%)') plt_trend.yaxis.label.set_color('green') plt_trend.tick_params(axis='y', colors='green') plt_price = plt_trend.twinx() plt_price.set_ylabel('Price ($)') # plot stock price if len(self.date) != 0: plt_price.plot(self.date, self.price, 'black', linewidth=1.5) plt_price.yaxis.set_label_coords(-0.07, 0.5) plt_price.yaxis.tick_left() # plot EMAs ema_clr = ['blue', 'red', 'purple', 'orange'] for i, key in enumerate(self.ema.keys()): plt_price.plot(self.date, self.ema[key], ema_clr[i % len(ema_clr)], linewidth=1, label='EMA '+str(key)) # plot trend if len(self.trend) != 0: plt_trend.plot(self.date, self.trend, 'green', linewidth=1, linestyle='dotted') plt_trend.axhline(y=0.0, color='grey', linewidth=1, linestyle='dotted') plt_trend.yaxis.set_label_coords(1.07, 0.5) plt_trend.yaxis.tick_right() # set up labels on x-axis nx = 8 # number of labels on x-axis pyplot.xticks([int(1.0 * i * (len(self.date) - 1) / (nx - 1)) for i in range(nx)]) # set up title price_now = self.price[-1] price_old = self.price[0] pyplot.suptitle( stock.upper() + ' • ${:.2f}'.format(price_now) + ' • {:.2f}% ('.format(100.0 * (price_now - price_old) / price_old) + period.upper() + ')' ) plt_price.legend(frameon=False) if path is not None: pyplot.savefig(path + stock.lower() + '_' + period.lower(), dpi=100) pyplot.show() def main(): # set up command-line options parser = ArgumentParser(description='Display trends of the selected stock(s).', add_help=True) parser.add_argument('positional', metavar='stock', nargs='+', help='stock symbol(s)') group_time = parser.add_mutually_exclusive_group(required=True) group_time.add_argument('-w', '--week', metavar='time', type=int, help='time interval in weeks') group_time.add_argument('-m', '--month', metavar='time', type=int, help='time interval in months') group_time.add_argument('-y', '--year', metavar='time', type=int, help='time interval in years') group_extra = parser.add_mutually_exclusive_group() group_extra.add_argument('-c', '--correlation', action='store_true', help='compute stock correlation(s) (at least two stocks must be given)') group_extra.add_argument('-s', '--save', metavar='path', help='save stock trends as PNG files using given path') args = parser.parse_args() # parse arguments stocks = args.positional if args.week is not None: period = args.week * 7 period_str = str(args.week) + 'W' elif args.month is not None: period = args.month * 30 period_str = str(args.month) + 'M' elif args.year is not None: period = args.year * 365 period_str = str(args.year) + 'Y' if args.correlation and len(stocks) < 2: print('\nat least two stocks must be given to compute correlation\n') exit() # get site handles while True: cookie, crumb = get_cookie_crumb() if '\\u002' not in crumb: break # process stocks stock_ana = {} for stock in stocks: history = get_stock_data(stock, period, cookie, crumb) if 'error' in history: print('\nunable to retrive data for ' + stock.upper() + '\n') continue stock_ana[stock] = StockAnalizer() stock_ana[stock].process_stock_data(history) # print correlation(s) if args.correlation: prices = [] for stock, analzr in stock_ana.items(): price_diff =
np.diff(analzr.price)
numpy.diff
# Copyright 2020 Lawrence Livermore National Security, LLC and other authors: <NAME>, <NAME>, <NAME> # SPDX-License-Identifier: MIT import numpy as np import tensorflow as tf from model import generator from utils import block_diagonal from skimage.measure import compare_psnr from PIL import Image import pybm3d import os from skimage.io import imsave from utils import grid_imsave, merge def projector_tf(imgs,phi=None): csproj = tf.matmul(imgs,tf.squeeze(phi)) return csproj def sample_Z(m, n): return np.random.uniform(-1,1,size=[m, n]) def GPP_SC_solve(test_img_name='Parrots',a_m=1.0,b_m=0.0,savedir='outs_sc_tf',USE_BM3D=False): modelsave ='./gan_models/gen_models_corrupt-cifar32' fname = '/p/lustre1/anirudh1/GAN/mimicGAN/IMAGENET/test_images/{}.tif'.format(test_img_name) if not os.path.exists(savedir): os.makedirs(savedir) I_x = I_y = 256 d_x = d_y = 32 dim_x = d_x*d_y batch_size = (I_x*I_y)//(dim_x) n_measure = 0.1 lr_factor = 1.0#*batch_size//64 n_img_plot = int(np.sqrt(batch_size)) dim_z = 100 dim_phi = int(n_measure*dim_x) nIter = 151 def mimic_correction_v2(phi_old,y_obs,G_curr,n_batch=batch_size): a_list = [] b_list = [] for i in range(n_batch): phi_block = block_diagonal(1*[phi_old]) y_block = tf.reshape(y_obs[i,:],[1,1*dim_phi]) G_block = tf.reshape(G_curr[i,:],[1,1*dim_x]) I = tf.ones_like(phi_old) I_block = block_diagonal(1*[I]) y_m = tf.matmul(G_block,I_block) y_hat = tf.matmul(G_block,phi_block) theta_1 = tf.squeeze(tf.matmul(y_hat,tf.transpose(y_hat))) theta_2 = tf.squeeze(tf.matmul(y_hat,tf.transpose(y_m))) C0 = tf.matmul(y_block,tf.transpose(y_hat)) theta_4 = tf.matmul(y_m,tf.transpose(y_m)) C1 = tf.matmul(y_block,tf.transpose(y_m)) a_est = tf.squeeze((theta_4*C0-C1*theta_2)/(theta_1*theta_4 - theta_2*theta_2)) b_est = tf.squeeze((C1 - a_est*theta_2)/theta_4) # a_est = tf.squeeze((C1-theta_4*b_est)/(theta_2)) a_list.append(a_est) b_list.append(b_est) a_approx = tf.reduce_mean(a_list) b_approx = tf.reduce_mean(b_list) # b_approx = tf.squeeze((C1 - a_approx*theta_2)/theta_4) # a_approx = tf.squeeze((C1-theta_4*b_approx)/(theta_2)) return a_approx,b_approx x_test = Image.open(fname).convert(mode='L').resize((I_x,I_y)) x_test_ = np.array(x_test)/255. # x_test_ = 2*x_test_-1 x_test = [] for i in range(n_img_plot): for j in range(n_img_plot): _x = x_test_[i*d_x:d_x*(i+1),j*d_y:d_y*(j+1)] x_test.append(_x) x_test = np.array(x_test) x_test = np.expand_dims(x_test,3) test_images = x_test[:batch_size,:,:,:] grid_imsave(test_images,[n_img_plot,n_img_plot],'{}/gt_sample.png'.format(savedir)) tf.reset_default_graph() tf.set_random_seed(0) np.random.seed(4321) Y_obs_ph = tf.placeholder(tf.float32,[batch_size,dim_phi]) phi_ph = tf.placeholder(tf.float32,[dim_x,dim_phi]) lr = tf.placeholder(tf.float32) tmp = tf.random_uniform([100,dim_z],minval=-1.0,maxval=1.0) tmp = tf.expand_dims(tf.reduce_mean(tmp,axis=0),axis=0) z_ = tf.tile(tmp,[batch_size,1]) z_prior_ = tf.Variable(z_,name="z_prior") G_sample_ = 0.5*generator(z_prior_,False)+0.5 G_sample = tf.image.resize_images(G_sample_,[d_x,d_y],tf.image.ResizeMethod.BICUBIC) G_sample_re = tf.reshape(G_sample,[-1,dim_x]) a_est,b_est = mimic_correction_v2(phi_ph,Y_obs_ph,G_sample_re) phi_est = a_est*phi_ph+b_est proj_init = projector_tf(G_sample_re,phi_ph) proj_corrected = projector_tf(G_sample_re,phi_est) G_loss = tf.reduce_mean(tf.square(proj_corrected-Y_obs_ph)) loss = tf.reduce_mean(tf.abs(proj_corrected-Y_obs_ph)) z_mean = tf.expand_dims(tf.reduce_mean(z_prior_,axis=0),axis=0) z_mean = tf.tile(z_mean,[64,1]) z_reg_loss = tf.reduce_mean(tf.abs(z_prior_-z_mean)) opt_loss = G_loss t_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) g_vars = [var for var in t_vars if 'Generator' in var.name] solution_opt = tf.train.RMSPropOptimizer(lr).minimize(opt_loss, var_list=[z_prior_]) saver = tf.train.Saver(g_vars) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) ckpt = tf.train.get_checkpoint_state(modelsave) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print("************ Generator weights restored! **************") nb = batch_size z_test = sample_Z(100,dim_z) phi_np = np.random.randn(dim_x,dim_phi) phi_test_np = a_m*phi_np+ b_m y_obs = np.matmul(test_images.reshape(-1,dim_x),phi_test_np) lr_start = 5e-3 #TBD a_ests = [] b_ests = [] psnrs = [] for i in range(nIter): # lr_new = lr_start*0.99**(1.*i/nIter) if i<30: lr_new = lr_start else: lr_new = 7e-3 if i %10==0: G_imgs,tr_loss,a_estimate,b_estimate = sess.run([G_sample,G_loss,a_est,b_est],feed_dict={phi_ph:phi_np,Y_obs_ph:y_obs}) print('iter: {:d}, a*-estiate: {:.4f}, b*-estimate: {:.4f}'.format(i,a_estimate,b_estimate)) merged = merge(G_imgs,[n_img_plot,n_img_plot]) psnr0 = compare_psnr(x_test_,merged,data_range=1.0) if USE_BM3D: merged_clean = pybm3d.bm3d.bm3d(merged,0.25) psnr1 = compare_psnr(x_test_,merged_clean,data_range=1.0) merged_clean =
np.array(merged_clean*255,dtype=np.uint8)
numpy.array
#!/usr/bin/env python from sklearn.cluster import AgglomerativeClustering from sklearn.mixture import BayesianGaussianMixture import numpy as np from hdphmm.utils import stats, timeseries import tqdm class Cluster: def __init__(self, params, distance_threshold=2., eigs=False, diags=False, means=False, algorithm='bayesian', ncomponents=10, max_iter=1500, weight_concentration_prior_type='dirichlet_process', weight_concentration_prior=None, mean_precision_prior=1, init_params='random', nclusters=None, linkage='ward', convert_rz=False): """ Cluster like parameter sets NOTE this is only made for AR(1) at the moment. :param params: parameters for each trajectory. If a single trajectory was analyzed, you can just pass a single \ dict, otherwise pass a list of dicts :param distance_threshold: clustering parameter :param eigs: if True, use largest eigenvalue of AR coefficient and covariance matrices instead of flattened \ matrices. :param means: if True, take the mean of each set of parameters :param algorithm: type of clustering algorithm.'bayesian' and 'agglomerative' are implemented :type params: list or dict :type distance_threshold: float :type eigs: bool :type algorithm: str """ cluster_fxn = {'bayesian': self._bayesian, 'agglomerative': self._agglomerative} try: self.cluster_fxn = cluster_fxn[algorithm] except KeyError: raise Exception("Clustering algorithm, '%s', not implemented. Use either 'bayesian' or 'agglomerative'" % algorithm) self.means = means self.ncomponents = ncomponents self.max_iter = max_iter self.weight_concentration_prior_type = weight_concentration_prior_type self.gamma = weight_concentration_prior self.mean_precision_prior = mean_precision_prior self.init_params = init_params self.eigs = eigs self.diags = diags self.nclusters = nclusters self.convert_rz = convert_rz if self.nclusters is not None: self.distance_threshold = None else: self.distance_threshold = distance_threshold self.linkage = linkage if isinstance(params, dict): A = None sigma = None if 'A' in params.keys(): A = self._flatten_A(np.copy(params['A'])) if 'sigma' in params.keys(): sigma = self._flatten_sigma(np.copy(params['sigma'])) mu = None if 'mu' in params.keys(): mu = np.copy(params['mu']) if len(mu.shape) == 1: mu = mu[:, np.newaxis] T_ = None if 'T' in params.keys(): # This should already be in the form -log(1 - T) T_ = np.copy(params['T']) if len(T_.shape) == 1: T_ = T_[:, np.newaxis] # Note that these values should be transformed # print(T_[:10, 0]) # T_[:, 0] = 1 / (1 - T_[:, 0]) # print(T_[:10, 0]) # for i, t in tqdm.tqdm(enumerate(T)): # T[i] = timeseries.dwell(t[0], ntrials=100) elif isinstance(params, list): A = self._flatten_A(params[0]['A']) sigma = self._flatten_sigma(params[0]['sigma']) for param_set in params[1:]: A = np.concatenate((A, self._flatten_A(param_set['A']))) sigma = np.concatenate((sigma, self._flatten_sigma(param_set['sigma']))) else: raise Exception('Input data type not recognized. Please pass a list or a dict.') if A is not None: if len(A.shape) < 2: A = A[:, np.newaxis] if sigma is not None: if len(sigma.shape) < 2: sigma = sigma[:, np.newaxis] self.X = np.concatenate((A, sigma), axis=1) else: self.X = A elif sigma is not None: if len(sigma.shape) < 2: sigma = sigma[:, np.newaxis] self.X = sigma if mu is not None: if A is None and sigma is None: self.X = mu else: self.X = np.concatenate((self.X, mu), axis=1) if T_ is not None: if A is None and sigma is None and mu is None: self.X = T_ else: self.X = np.concatenate((self.X, T_), axis=1) if algorithm is 'agglomerative': for d in range(self.X.shape[1]): outliers_removed = stats.remove_outliers(self.X[:, d]) # outliers_removed = np.copy(self.X[:, d]) # print(outliers_removed.size) # self.X[:, d] -= outliers_removed.min() # self.X[:, d] /= outliers_removed.max() self.X[:, d] -= outliers_removed.mean() self.X[:, d] /= outliers_removed.std() self.labels = None self.clusters = None # clusters = AgglomerativeClustering(n_clusters=None, distance_threshold=distance_threshold) # self.labels = clusters.fit_predict(X) def fit(self): self.cluster_fxn() self.labels = self.clusters.fit_predict(self.X) self._remap_labels() def _remap_labels(self): """ relabel the labels counting from zero :return: """ map_states = dict() unique_labels = np.unique(self.labels) for i, label in enumerate(unique_labels): map_states[label] = i self.labels = [map_states[l] for l in self.labels] self.nclusters = unique_labels.size def _agglomerative(self): self.clusters = AgglomerativeClustering(n_clusters=self.nclusters, distance_threshold=self.distance_threshold, linkage=self.linkage) def _bayesian(self): self.clusters = BayesianGaussianMixture(n_components=self.ncomponents, max_iter=self.max_iter, weight_concentration_prior_type=self.weight_concentration_prior_type, weight_concentration_prior=self.gamma, mean_precision_prior=self.mean_precision_prior, init_params=self.init_params, verbose=0) def _flatten_A(self, A): if self.eigs: reordered = np.moveaxis(A, -1, 0)#[:, 0, ...] # reorder axes of A eigs = np.linalg.eig(reordered)[0].real # eigenvalues of each matrix if self.convert_rz: eigs = np.concatenate((np.square(eigs[:, :2]).sum(axis=1)[:, np.newaxis], eigs[:, [2]]), axis=1) return eigs # imaginary component usually very close to zero elif self.diags: return np.array([np.diag(A[..., a]) for a in range(A.shape[2])]) else: # a = np.zeros([A.shape[0], A.shape[-1], A.shape[2]*A.shape[3]]) # for i in range(A.shape[-1]): # for j in range(A.shape[0]): # a[j, i, :] = A[j, 0, ..., i].flatten() return A.reshape((A.shape[0]*A.shape[1], A.shape[2])).T # if self.means: # # return a.mean(axis=0) # # else: # # return np.reshape(a, (a.shape[0]*a.shape[1], a.shape[2])) def _flatten_sigma(self, sigma): if self.eigs: reordered =
np.moveaxis(sigma, -1, 0)
numpy.moveaxis
import numpy as np from matplotlib.figure import Figure from matplotlib.artist import setp from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import colors, cm from matplotlib.backends.backend_pdf import PdfPages def plot_fancy_occupancy(hist, title, z_max=None, filename=None): if z_max == 'median': cmap = cm.get_cmap('coolwarm') else: cmap = cm.get_cmap('viridis') cmap.set_bad('w') if z_max == 'median': z_max = 2 * np.ma.median(hist) elif z_max == 'maximum' or z_max is None: z_max = np.ma.max(hist) if z_max < 1 or hist.all() is np.ma.masked or np.allclose(0, hist): z_max = 1.0 fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) ax.set_title(title, size=6) extent = [0.5, 1152.5, 576.5, 0.5] bounds = np.linspace(start=0, stop=z_max, num=255, endpoint=True) norm = colors.BoundaryNorm(bounds, cmap.N) hist = np.ma.masked_equal(hist, 0) im = ax.imshow(hist, interpolation='none', aspect='auto', cmap=cmap, norm=norm, extent=extent) ax.set_ylim((576.5, 0.5)) ax.set_xlim((0.5, 1152.5)) ax.set_xlabel('Column') ax.set_ylabel('Row') # create new axes on the right and on the top of the current axes # The first argument of the new_vertical(new_horizontal) method is # the height (width) of the axes to be created in inches. divider = make_axes_locatable(ax) axHistx = divider.append_axes("top", 1.2, pad=0.2, sharex=ax) axHisty = divider.append_axes("right", 1.2, pad=0.2, sharey=ax) cax = divider.append_axes("right", size="5%", pad=0.1) cb = fig.colorbar(im, cax=cax, ticks=np.linspace(start=0, stop=z_max, num=9, endpoint=True)) cb.set_label("#") # make some labels invisible setp(axHistx.get_xticklabels() + axHisty.get_yticklabels(), visible=False) hight =
np.ma.sum(hist, axis=0)
numpy.ma.sum
# -*- coding: utf-8 -*- """ Created on Wed Jul 25 14:35:23 2018 a module for orthogonal linear separation analysis (OLSA) @author: setsuo, shotaro, and tadahaya """ import sys import csv import math import os import numpy as np import pandas as pd np.seterr(divide='ignore', invalid='ignore') import time from sklearn.decomposition import PCA from scipy import stats from scipy.cluster.hierarchy import ward,leaves_list from .data import Result class Varimax: """Varimax rotation""" def __init__(self, X): self.n = np.shape(X)[0] self.p = np.shape(X)[1] self.A = np.matrix(X) print("ok1") if self.p > 1: self.h = [] for i in range(0, self.n): sum = self.A[i].dot(self.A[i].T)[0,0] self.h.append(math.sqrt(sum)) if self.h[i]!=0: self.A[i] /= self.h[i] def rotateV(self,acceptable_error=1.0e-9): """varimax rotation""" mm = lambda x: x*x if (self.p < 2): return self.A while True: ckA = np.matrix(self.A.A) for i in range(0, self.p): for j in range(i + 1, self.p): x = np.matrix(self.A.T[i].A) y = np.matrix(self.A.T[j].A) u = np.matrix(x.A**2 - y.A**2) v = np.matrix(2.0 * x.A * y.A) cA = np.sum(u) cB = np.sum(v) cC = u.dot(u.T)[0,0] - v.dot(v.T)[0,0] cD = 2.0 * u.dot(v.T)[0,0] num = cD - 2 * cA * cB / self.n den = cC - (mm(cA) - mm(cB)) /self.n theta4 = math.atan(num / den) if (num > 0.0): if (theta4 < 0.0): theta4 += math.pi else: if (theta4 > 0.0): theta4 += math.pi theta = theta4 / 4.0 tx = self.A.T[i] * math.cos(theta) + self.A.T[j] * math.sin(theta) ty = -self.A.T[i] * math.sin(theta) + self.A.T[j] * math.cos(theta) self.A.T[i] = tx self.A.T[j] = ty dif = np.sum((ckA.A-self.A.A)**2) print("\r" + str(dif),end="") if (dif < acceptable_error): for i in range(0, self.n): self.A[i] *= self.h[i] break if math.isnan(dif): print("error") sys.exit() print("") return self.A class SmirnovGrubbs: def __init__(self): self.RemainedIndexes = list() self.RemovedIndexesHigher = list() self.RemovedIndexesLower = list() self.NonbiasedVar = float() self.alpha = float() def calcSG(TS,alpha): """conduct SG test to exclude the data with unusual TS""" res = SmirnovGrubbs() res.alpha = alpha Data = list() RemovedDataHigher = list() RemovedDataLower = list() for i in range(0,TS.shape[0]): Data.append([i,TS[i]]) while True: n=len(Data) if n<3: break t = stats.t.isf((alpha/n) / 2, n-2) Gtest = (n-1)/math.sqrt(n) * math.sqrt(t**2 / (n-2 + t**2)) mean=0.0 for d in Data: mean = mean + d[1] mean = mean / n var = 0.0 for d in Data: var = var + (d[1]-mean)*(d[1]-mean) var = var / n sd = math.sqrt(var) maxindex = Data[0][0] maxvalue = math.fabs(Data[0][1] - mean) for i in range(0,len(Data)): if maxvalue < math.fabs(Data[i][1] - mean): maxindex = i maxvalue = math.fabs(Data[i][1] - mean) #SmirnovGrubbs if maxvalue / sd > Gtest: if (Data[maxindex][1]-mean)>0: RemovedDataHigher.append([Data[maxindex][0],Data[maxindex][1]]) else: RemovedDataLower.append([Data[maxindex][0],Data[maxindex][1]]) del Data[maxindex] else: break mean=0.0 for d in Data: mean = mean + d[1] mean = mean / n ubvar = 0.0 for d in Data: ubvar = ubvar + (d[1]-mean)*(d[1]-mean) ubvar = ubvar / (n-1.0) res.NonbiasedVar = ubvar for d in Data: res.RemainedIndexes.append(int(d[0])) for d in RemovedDataHigher: res.RemovedIndexesHigher.append(int(d[0])) for d in RemovedDataLower: res.RemovedIndexesLower.append(int(d[0])) return res def usspca(Data,accumulation=0.95,IsSphered=True, UseMirror=True,UseSmirnovGrubbs=True,WardClusterSort=True): """ conduct Unit Spherized Symmetric PCA Parameters ---------- Data: DataClass object subjected to analysis accumulation: float, default 0.95 % of cumulative contribution of the calculated vectors IsSphered: boolean, default True whether data is unit-sphereized before calculation UseMirror: boolean, default True whether the input data set is combined with the origin-symmetric set before calculation UseSmirnovGrubbs: boolean, default True whether outliers are excluded according to SG test WardClusterSort: boolean, default True whether response score matrix is sorted according to clustering with ward method """ if WardClusterSort==True: Data2 = Data.wardclustersort() else: Data2 = Data res = Result() res.accumulation = accumulation res.sphered = IsSphered res.Name = Data2.Name[:] res.index = Data2.index[:] res.X = np.array(Data2.X) res.filename = Data2.filename print ('********************************') print ('The conditions of this proccess') print(('Contribution Accumulation Max is ' + str(accumulation))) print(('IsSphered Flag is ' + str(IsSphered))) print(('UseMirror Flag is ' + str(UseMirror))) print(('UseSmirnovGrubbs Flag is ' + str(UseSmirnovGrubbs))) print ('********************************') #store Total Strength res.TS = np.array([np.linalg.norm(s) for s in res.X.T]) if UseSmirnovGrubbs==True: SGres = calcSG(res.TS,0.05) print("excluded samples by SG test") print("too large norm:") print(list([res.Name[s] for s in SGres.RemovedIndexesHigher])) print("too small norm:") print(list([res.Name[s] for s in SGres.RemovedIndexesLower])) #data reconstruction remainedX = np.array([res.X.T[s] for s in SGres.RemainedIndexes]).T else: #data reconstruction remainedX = res.X #map the data on a unit sphere XS =
np.array(res.X)
numpy.array
#!/usr/bin/env python from __future__ import absolute_import from __future__ import division from __future__ import print_function def error(msg, code=9): print('Error: ' + msg) exit(code) try: import argparse except: error('This version of python is not new enough. python 2.7 or newer is required.') try: from netCDF4 import Dataset except: error('Unable to import netCDF4 module. Check your PYTHONPATH.\n' + 'Perhaps try:\n module load python_netcdf4') try: import numpy as np except: error('Unable to import numpy module. Check your PYTHONPATH.\n' + 'Perhaps try:\n module load python_numpy') try: import matplotlib.pyplot as plt except: error('Unable to import matplotlib.pyplot module. Check your PYTHONPATH.\n' + 'Perhaps try:\n module load python_matplotlib') from matplotlib.widgets import Button, RadioButtons, TextBox, CheckButtons from matplotlib.colors import LinearSegmentedColormap import shutil as sh from os.path import dirname, basename, join, splitext import time import sys import os import pwd def main(): # Command line arguments parser = argparse.ArgumentParser(description='''Point-wise editing of topography. Ignore all the controls in the toolbar at the top of the window. Zoom in and out with the scroll wheel. Pan the view with the North, South, East and West buttons. Use +, -, Flip buttons to modify the colormap. Set the prescribed depth with the textbox at the bottom. Left click on a cell to apply the prescribed depth value. Right click on a cell to reset to the original value. Double left click to assign the highest of the 4 nearest points with depth<0. Close the window to write the edits to the output NetCDF file, and also to a .txt file. ''', epilog='Written by <NAME> (2013) and <NAME> (2020)') parser.add_argument('filename', type=str, help='NetCDF input file to read.') parser.add_argument('variable', type=str, nargs='?', default='depth', help='Name of variable to edit. Defaults to "depth".') parser.add_argument('--output', type=str, metavar='outfile', nargs=1, default=[None], help='Specify output NetCDF filename. Default is "edit_" prepended to the name of the input file. Text output filename is the same but with .nc replaced by .txt.') parser.add_argument('--ref', type=str, metavar='reffile', nargs=1, default=[None], help='NetCDF reference input file to use for copying points from. Must have the same dimensions and variable name as filename.') parser.add_argument('--apply', type=str, metavar='editfile', nargs=1, default=[None], help='Apply edits from iEdit, jEdit, zEdit variables in a NetCDF file, or from an ascii text file. Two text file formats are supported: whitespace-delimited (in which the first row begins with editTopo.py and ends with a version number (must be 1), data rows contain i, j, old, new (integers i, j count from 0; old is ignored), and anything following # is ignored), and the old edits file format (comma delimited i, j, new (i, j count from 1 and may be single integers or start:end inclusive integer ranges), and anything following # is ignored).') parser.add_argument('--nogui', action='store_true', default=False, help="Don't open GUI. Best used with --apply, in which case editfile is applied to filename and saved as outfile, then program exits.") parser.add_argument('--overwrite', action='store_true', default=False, help="Permit overwriting existing output files.") optCmdLineArgs = parser.parse_args() createGUI(optCmdLineArgs.filename, optCmdLineArgs.variable, optCmdLineArgs.output[0], optCmdLineArgs.ref[0], optCmdLineArgs.apply[0], optCmdLineArgs.nogui, optCmdLineArgs.overwrite) def createGUI(fileName, variable, outFile, refFile, applyFile, nogui, overwrite): if not outFile: outFile = join(dirname(fileName), 'edit_'+basename(fileName)) editsFile = splitext(outFile)[0]+'.txt' if fileName == outFile: error('Output filename must differ from input filename "{}". Exiting.'.format(fileName)) if not overwrite: if os.path.exists(outFile) or os.path.exists(editsFile): error('"{}" or "{}" already exists. To overwrite, use the --overwrite option.'.format(outFile, editsFile)) # Open NetCDF files try: rg = Dataset(fileName, 'r') except: error('There was a problem opening input NetCDF file "'+fileName+'".') rgVar = rg.variables[variable] # handle to the variable dims = rgVar.dimensions # tuple of dimensions depth = rgVar[:] # Read the data #depth = depth[0:600,0:600] (nj, ni) = depth.shape print('Range of input depths: min=', np.amin(depth), 'max=', np.amax(depth)) ref = None if refFile: try: ref = Dataset(refFile, 'r').variables[variable][:] except: error('There was a problem opening reference NetCDF file "'+refFile+'".') try: sg = Dataset('supergrid.nc', 'r') lon = sg.variables['x'][:] lon = lon[0:2*nj+1:2, 0:2*ni+1:2] lat = sg.variables['y'][:] lat = lat[0:2*nj+1:2, 0:2*ni+1:2] except: lon, lat = np.meshgrid(np.arange(ni+1), np.arange(nj+1)) fullData = Topography(lon, lat, depth, ref) class Container: def __init__(self): self.view = None self.edits = None self.data = None self.quadMesh = None self.cbar = None self.ax = None self.syms = None self.useref = False self.textbox = None cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.7, 0.0), (1.0, 0.9, 0.0)), 'green': ((0.0, 0.0, 0.0), (0.5, 0.7, 0.2), (1.0, 1.0, 0.0)), 'blue': ((0.0, 0.0, 0.2), (0.5, 1.0, 0.0), (1.0, 0.9, 0.0))} cdict_r = {'red': ((0.0, 0.0, 0.0), (0.497, 0.7, 0.0), (1.0, 0.9, 0.0)), 'green': ((0.0, 0.0, 0.0), (0.497, 0.7, 0.2), (1.0, 1.0, 0.0)), 'blue': ((0.0, 0.0, 0.2), (0.497, 1.0, 0.0), (1.0, 0.9, 0.0))} self.cmap1 = LinearSegmentedColormap('my_colormap', cdict, 256) self.cmap2 = LinearSegmentedColormap('my_colormap', cdict_r, 256).reversed() self.cmap3 = plt.get_cmap('seismic') self.cmap = self.cmap1 self.prevcmap = self.cmap self.clim = 6000 self.plotdiff = False self.fieldname = None All = Container() All.view = View(ni, nj) All.edits = Edits() # Read edit data, if it exists if 'iEdit' in rg.variables: jEdit = rg.variables['iEdit'][:] iEdit = rg.variables['jEdit'][:] zEdit = rg.variables['zEdit'][:] # Original value of edited data for l, i in enumerate(iEdit): All.edits.setVal(fullData.height[iEdit[l], jEdit[l]]) fullData.height[iEdit[l], jEdit[l]] = zEdit[l] # Restore data All.edits.add(iEdit[l], jEdit[l]) if applyFile: try: # first try opening as a NetCDF apply = Dataset(applyFile, 'r') if 'iEdit' in apply.variables: jEdit = apply.variables['iEdit'][:] iEdit = apply.variables['jEdit'][:] zNew = apply.variables[variable] for l, i in enumerate(iEdit): All.edits.add(iEdit[l], jEdit[l], zNew[iEdit[l], jEdit[l]]) apply.close() except: try: # if that fails, try opening as a text file with open(applyFile, 'rt') as edFile: edCount = 0 line = edFile.readline() version = None if line.startswith('editTopo.py'): version = line.strip().split()[-1] if version is None: # assume this is in comma-delimited format ii, jj, zNew # comment # where ii, jj may be integers or start:end inclusive integer ranges, # indexed counting from 1 while line: linedata = line.strip().split('#')[0].strip() if linedata: jEdits, iEdits, zNew = linedata.split(',') # swaps meaning of i & j iEdits = [int(x) for x in iEdits.strip().split(':')] jEdits = [int(x) for x in jEdits.strip().split(':')] zNew = float(zNew.strip()) for ed in [iEdits, jEdits]: if len(ed) == 1: ed.append(ed[0]+1) elif len(ed) == 2: ed[1] += 1 else: raise ValueError for i in range(*iEdits): for j in range(*jEdits): All.edits.add(i-1, j-1, zNew) # -1 because ii, jj count from 1 edCount += 1 line = edFile.readline() elif version == '1': # whitespace-delimited format jEdit iEdit zOld zNew # comment # where ii, jj are integer indices counting from 0 while line: line = edFile.readline() linedata = line.strip().split('#')[0].strip() if linedata: jEdit, iEdit, _, zNew = linedata.split() # swap meaning of i & j; ignore zOld iEdit = int(iEdit) jEdit = int(jEdit) zNew = float(zNew) All.edits.add(iEdit, jEdit, zNew) edCount += 1 else: error('Unsupported version "{}" in "{}".'.format(version, applyFile)) print('Applied {} cell edits from "{}".'.format(edCount, applyFile)) except: error('There was a problem applying edits from "'+applyFile+'".') All.data = fullData.cloneWindow( (All.view.i0, All.view.j0), (All.view.iw, All.view.jw)) All.fieldname = All.data.fieldnames[0] if All.edits.ijz: All.data.applyEdits(fullData, All.edits.ijz) # A mask based solely on value of depth # notLand = np.where( depth<0, 1, 0) # wet = ice9it(600,270,depth) # plt.rcParams['toolbar'] = 'None' # don't use - also disables statusbar def replot(All): if All.cbar is not None: All.cbar.remove() h = plt.pcolormesh(All.data.longitude, All.data.latitude, All.data.plotfield, cmap=All.cmap, vmin=-All.clim, vmax=All.clim) hc = plt.colorbar() return(h, hc) All.quadMesh, All.cbar = replot(All) All.syms = All.edits.plot(fullData) dir(All.syms) All.ax = plt.gca() All.ax.set_xlim(All.data.xlim) All.ax.set_ylim(All.data.ylim) if fullData.haveref: def setsource(label): All.fieldname = label All.data.plotfield = All.data.fields[All.fieldname] All.plotdiff = All.fieldname == All.data.fieldnames[2] if All.plotdiff and All.cmap != All.cmap3: All.prevcmap = All.cmap All.cmap = All.cmap3 else: All.cmap = All.prevcmap All.quadMesh.set_cmap(All.cmap) All.cbar.mappable.set_cmap(All.cmap) All.quadMesh.set_array(All.data.plotfield.ravel()) plt.draw() sourcebuttons = RadioButtons(plt.axes([.88, .4, 0.12, 0.15]), All.data.fieldnames) sourcebuttons.on_clicked(setsource) def setDepth(str): try: All.edits.setVal(float(str)) except: pass tbax = plt.axes([0.12, 0.01, 0.3, 0.05]) textbox = TextBox(tbax, 'set depth', '0') textbox.on_submit(setDepth) textbox.on_text_change(setDepth) def nothing(x,y): return '' tbax.format_coord = nothing # stop status bar displaying coords in textbox All.textbox = textbox if fullData.haveref: All.useref = True userefcheck = CheckButtons(plt.axes([0.42, 0.01, 0.11, 0.05]), ['use ref'], [All.useref]) def setuseref(_): All.useref = userefcheck.get_status()[0] if not All.useref: All.edits.setVal(0.0) All.textbox.set_val(repr(All.edits.newDepth)) userefcheck.on_clicked(setuseref) else: All.useref = False lowerButtons = Buttons(left=.9) def undoLast(event): All.edits.pop() All.data = fullData.cloneWindow( (All.view.i0, All.view.j0), (All.view.iw, All.view.jw), fieldname=All.fieldname) All.data.applyEdits(fullData, All.edits.ijz) All.quadMesh.set_array(All.data.plotfield.ravel()) All.edits.updatePlot(fullData, All.syms) plt.draw() lowerButtons.add('Undo', undoLast) upperButtons = Buttons(bottom=1-.0615) def colorScale(event): Levs = [50, 100, 200, 500, 1000, 2000, 3000, 4000, 5000, 6000] i = Levs.index(All.clim) if event == ' + ': i = min(i+1, len(Levs)-1) elif event == ' - ': i = max(i-1, 0) elif event == 'Flip' and not All.plotdiff: if All.cmap == All.cmap1: All.cmap = All.cmap2 else: All.cmap = All.cmap1 All.clim = Levs[i] All.quadMesh.set_clim(vmin=-All.clim, vmax=All.clim) All.quadMesh.set_cmap(All.cmap) All.cbar.mappable.set_clim(vmin=-All.clim, vmax=All.clim) All.cbar.mappable.set_cmap(All.cmap) plt.draw() def moveVisData(di, dj): All.view.move(di, dj) All.data = fullData.cloneWindow( (All.view.i0, All.view.j0), (All.view.iw, All.view.jw), fieldname=All.fieldname) All.data.applyEdits(fullData, All.edits.ijz) plt.sca(All.ax) plt.cla() All.quadMesh, All.cbar = replot(All) All.ax.set_xlim(All.data.xlim) All.ax.set_ylim(All.data.ylim) All.syms = All.edits.plot(fullData) plt.draw() def moveWindowLeft(event): moveVisData(-1, 0) upperButtons.add('West', moveWindowLeft) def moveWindowRight(event): moveVisData(1, 0) upperButtons.add('East', moveWindowRight) def moveWindowDown(event): moveVisData(0, -1) upperButtons.add('South', moveWindowDown) def moveWindowUp(event): moveVisData(0, 1) upperButtons.add('North', moveWindowUp) climButtons = Buttons(bottom=1-.0615, left=0.75) def incrCScale(event): colorScale(' + ') climButtons.add(' + ', incrCScale) def decrCScale(event): colorScale(' - ') climButtons.add(' - ', decrCScale) def revcmap(event): colorScale('Flip') climButtons.add('Flip', revcmap) plt.sca(All.ax) def onClick(event): # Mouse button click if event.inaxes == All.ax and event.button == 1 and event.xdata: # left click: edit point (i, j) = findPointInMesh(fullData.longitude, fullData.latitude, event.xdata, event.ydata) if i is not None: (I, J) = findPointInMesh(All.data.longitude, All.data.latitude, event.xdata, event.ydata) if event.dblclick: nVal = -99999 if All.data.height[I+1, J] < 0: nVal = max(nVal, All.data.height[I+1, J]) if All.data.height[I-1, J] < 0: nVal = max(nVal, All.data.height[I-1, J]) if All.data.height[I, J+1] < 0: nVal = max(nVal, All.data.height[I, J+1]) if All.data.height[I, J-1] < 0: nVal = max(nVal, All.data.height[I, J-1]) if nVal == -99999: return All.edits.add(i, j, nVal) All.data.height[I, J] = nVal else: All.edits.add(i, j) All.data.height[I, J] = All.edits.get() if All.data.haveref: All.data.diff[I, J] = All.data.height[I, J] - All.data.ref[I, J] All.quadMesh.set_array(All.data.plotfield.ravel()) All.edits.updatePlot(fullData, All.syms) plt.draw() elif event.inaxes == All.ax and event.button == 3 and event.xdata: # right click: undo edit (i, j) = findPointInMesh(fullData.longitude, fullData.latitude, event.xdata, event.ydata) if i is not None: All.edits.delete(i, j) All.data = fullData.cloneWindow( (All.view.i0, All.view.j0), (All.view.iw, All.view.jw), fieldname=All.fieldname) All.data.applyEdits(fullData, All.edits.ijz) All.quadMesh.set_array(All.data.plotfield.ravel()) All.edits.updatePlot(fullData, All.syms) plt.draw() elif event.inaxes == All.ax and event.button == 2 and event.xdata: zoom(event) # Re-center plt.gcf().canvas.mpl_connect('button_press_event', onClick) def zoom(event): # Scroll wheel up/down if event.button == 'up': scale_factor = 1/1.5 # deal with zoom in elif event.button == 'down': scale_factor = 1.5 # deal with zoom out else: scale_factor = 1.0 new_xlim, new_ylim = newLims( All.ax.get_xlim(), All.ax.get_ylim(), (event.xdata, event.ydata), All.data.xlim, All.data.ylim, All.view.ni, All.view.nj, scale_factor) if new_xlim is None: return # No change in limits All.view.seti(new_xlim) All.view.setj(new_ylim) All.data = fullData.cloneWindow( (All.view.i0, All.view.j0), (All.view.iw, All.view.jw), fieldname=All.fieldname) All.data.applyEdits(fullData, All.edits.ijz) plt.sca(All.ax) plt.cla() All.quadMesh, All.cbar = replot(All) # All.ax.set_xlim(All.data.xlim) # All.ax.set_ylim(All.data.ylim) All.syms = All.edits.plot(fullData) All.ax.set_xlim(new_xlim) All.ax.set_ylim(new_ylim) # All.cbar.mappable.set_clim(vmin=-All.clim, vmax=All.clim) # All.cbar.mappable.set_cmap(All.cmap) plt.draw() # force re-draw plt.gcf().canvas.mpl_connect('scroll_event', zoom) def statusMesg(x, y): j, i = findPointInMesh(fullData.longitude, fullData.latitude, x, y) if All.useref: All.textbox.set_val(repr(fullData.ref[j, i])) # callback calls All.edits.setVal if i is not None: height = fullData.height[j, i] newval = All.edits.getEdit(j, i) if newval is not None: return 'depth(%i,%i) = %g (was %g) depth - set depth = %g' % \ (i, j, newval, height, newval - All.edits.newDepth) else: return 'depth(%i,%i) = %g depth - set depth = %g' % \ (i, j, height, height - All.edits.newDepth) else: return 'new depth = %g' % \ (All.edits.newDepth) All.ax.format_coord = statusMesg if not nogui: print(""" Ignore all the controls in the toolbar at the top of the window. Zoom in and out with the scroll wheel. Pan the view with the North, South, East and West buttons. Use +, -, Flip buttons to modify the colormap. Set the prescribed depth with the textbox at the bottom. Left click on a cell to apply the prescribed depth value. Right click on a cell to reset to the original value. Double left click to assign the highest of the 4 nearest points with depth<0. Close the window to write the edits to the output NetCDF file, and also to a .txt file. """) plt.show() # The following is executed after GUI window is closed # All.edits.list() if not outFile == ' ': print('Made %i edits.' % (len(All.edits.ijz))) print('Writing edited topography to "'+outFile+'".') # Create new netcdf file if not fileName == outFile: sh.copyfile(fileName, outFile) try: rg = Dataset(outFile, 'r+') except: error('There was a problem opening "'+outFile+'".') rgVar = rg.variables[variable] # handle to the variable dims = rgVar.dimensions # tuple of dimensions rgVar[:] = fullData.height[:, :] # Write the data if All.edits.ijz: # print('Applying %i edits' % (len(All.edits.ijz))) if 'nEdits' in rg.dimensions: numEdits = rg.dimensions['nEdits'] else: numEdits = rg.createDimension( 'nEdits', 0) # len(All.edits.ijz)) if 'iEdit' in rg.variables: iEd = rg.variables['iEdit'] else: iEd = rg.createVariable('iEdit', 'i4', ('nEdits',)) iEd.long_name = 'i-index of edited data' if 'jEdit' in rg.variables: jEd = rg.variables['jEdit'] else: jEd = rg.createVariable('jEdit', 'i4', ('nEdits',)) jEd.long_name = 'j-index of edited data' if 'zEdit' in rg.variables: zEd = rg.variables['zEdit'] else: zEd = rg.createVariable('zEdit', 'f4', ('nEdits',)) zEd.long_name = 'Original value of edited data' try: zEd.units = rgVar.units except AttributeError: zEd.units = 'm' hist_str = 'made %i changes (i, j, old, new): ' % len(All.edits.ijz) for l, (i, j, z) in enumerate(All.edits.ijz): if l > 0: hist_str += ', ' iEd[l] = j jEd[l] = i zEd[l] = rgVar[i, j] rgVar[i, j] = z hist_str += repr((j, i, zEd[l].item(), rgVar[i, j].item())) print(hist_str.replace(': ', ':\n').replace('), ', ')\n')) hist_str = time.ctime(time.time()) + ' ' \ + ' '.join(sys.argv) \ + ' ' + hist_str if 'history' not in rg.ncattrs(): rg.history = hist_str else: rg.history = rg.history + ' | ' + hist_str # write editsFile even if no edits, so editsFile will match outFile print('Writing list of edits to text file "'+editsFile+'" (this can be used with --apply).') try: with open(editsFile, 'wt') as edfile: edfile.write('editTopo.py edits file version 1\n') edfile.write('#\n# This file can be used as an argument for editTopo.py --apply\n#\n') edfile.write('# created: ' + time.ctime(time.time()) + '\n') edfile.write('# by: ' + pwd.getpwuid(os.getuid()).pw_name + '\n') edfile.write('# via: ' + ' '.join(sys.argv) + '\n#\n') if All.edits.ijz: ii, jj, _ = zip(*All.edits.ijz) news = [rgVar[i, j].item() for (i, j, _) in All.edits.ijz] olds = [fullData.height[i, j].item() for (i, j, _) in All.edits.ijz] iiwidth = max([len(repr(x)) for x in ii], default=0) + 2 jjwidth = max([len(repr(x)) for x in jj], default=0) + 2 oldwidth = max([len(repr(x)) for x in olds], default=0) + 2 edfile.write('# ' + \ 'i'.rjust(jjwidth-2) + # swaps meaning of i & j 'j'.rjust(iiwidth) + # ditto ' ' + 'old'.ljust(oldwidth) + 'new' + '\n') for (i, j, old, new) in zip(ii, jj, olds, news): edfile.write(repr(j).rjust(jjwidth) + # swaps meaning of i & j repr(i).rjust(iiwidth) + # ditto ' ' + repr(old).ljust(oldwidth) + repr(new) + '\n') else: edfile.write('# i j old new\n') except: error('There was a problem creating "'+editsFile+'".') rg.close() def ice9it(i, j, depth): # Iterative implementation of "ice 9" wetMask = 0*depth (ni, nj) = wetMask.shape stack = set() stack.add((i, j)) while stack: (i, j) = stack.pop() if wetMask[i, j] or depth[i, j] >= 0: continue wetMask[i, j] = 1 if i > 0: stack.add((i-1, j)) else: stack.add((ni-1, j)) if i < ni-1: stack.add((i+1, j)) else: stack.add((0, j)) if j > 0: stack.add((i, j-1)) if j < nj-1: stack.add((i, j+1)) return wetMask def findPointInMesh(meshX, meshY, pointX, pointY): def sign(x): if x > 0: return 1.0 elif x < 0: return -1.0 else: return 0. def crossProd(u0, v0, u1, v1): return sign(u0*v1 - u1*v0) def isPointInConvexPolygon(pX, pY, p): u0 = pX[0]-pX[-1] v0 = pY[0]-pY[-1] u1 = pX[-1] - p[0] v1 = pY[-1] - p[1] firstSign = crossProd(u0, v0, u1, v1) for n in range(len(pX)-1): u0 = pX[n+1]-pX[n] v0 = pY[n+1]-pY[n] u1 = pX[n] - p[0] v1 = pY[n] - p[1] if crossProd(u0, v0, u1, v1)*firstSign < 0: return False return True def recurIJ(mX, mY, p, ij00, ij22): # Unpack indices i0 = ij00[0] i2 = ij22[0] j0 = ij00[1] j2 = ij22[1] # Test bounding box first (bounding box is larger than polygon) xmin = min(np.amin(mX[i0, j0:j2]), np.amin( mX[i2, j0:j2]), np.amin(mX[i0:i2, j0]), np.amin(mX[i0:i2, j2])) xmax = max(np.amax(mX[i0, j0:j2]), np.amax( mX[i2, j0:j2]), np.amax(mX[i0:i2, j0]), np.amax(mX[i0:i2, j2])) ymin = min(np.amin(mY[i0, j0:j2]), np.amin( mY[i2, j0:j2]), np.amin(mY[i0:i2, j0]), np.amin(mY[i0:i2, j2])) ymax = max(np.amax(mY[i0, j0:j2]), np.amax( mY[i2, j0:j2]), np.amax(mY[i0:i2, j0]),
np.amax(mY[i0:i2, j2])
numpy.amax
# General Packages from math import atan2, degrees from datetime import datetime from pathlib import Path import time import pprint import numpy as np import pandas as pd import pickle # Plotting import matplotlib.pyplot as plt import matplotlib.ticker as mtick from matplotlib.dates import date2num import seaborn as sns # Scaling from sklearn.preprocessing import StandardScaler settings = { # # audit settings 'data_name': 'credit', 'method_name': 'logreg', 'normalize_data': True, 'force_rational_actions': False, # # script flags 'audit_recourse': True, 'plot_audits': True, 'print_flag': True, 'save_flag': True, 'randomseed': 2338, # # placeholders 'method_suffixes': [''], 'audit_suffixes': [''], } # Paths repo_dir = Path(__file__).absolute().parent.parent paper_dir = repo_dir / 'paper/' # directory containing paper related info data_dir = paper_dir / 'data/' # directory containing data files results_dir = paper_dir / 'results/' # directory containing results # create directories that don't exist for d in [data_dir, results_dir]: d.mkdir(exist_ok = True) # Formatting Options np.set_printoptions(precision = 4, suppress = False) pd.set_option('display.max_columns', 30) pd.options.mode.chained_assignment = None pp = pprint.PrettyPrinter(indent = 4) # Plotting Settings sns.set(style="white", palette="muted", color_codes = True) plt.rcParams['font.size'] = 20 plt.rcParams['axes.labelsize'] = 24 plt.rcParams['axes.spines.top'] = False plt.rcParams['axes.spines.right'] = False plt.rcParams['xtick.labelsize'] = 20 plt.rcParams['ytick.labelsize'] = 20 plt.rc('legend', fontsize = 20) # file names output_dir = results_dir / settings['data_name'] output_dir.mkdir(exist_ok = True) if settings['normalize_data']: settings['method_suffixes'].append('normalized') if settings['force_rational_actions']: settings['audit_suffixes'].append('rational') # set file header settings['dataset_file'] = '%s/%s_processed.csv' % (data_dir, settings['data_name']) settings['file_header'] = '%s/%s_%s%s' % (output_dir, settings['data_name'], settings['method_name'], '_'.join(settings['method_suffixes'])) settings['audit_file_header'] = '%s%s' % (settings['file_header'], '_'.join(settings['audit_suffixes'])) settings['model_file'] = '%s_models.pkl' % settings['file_header'] settings['audit_file'] = '%s_audit_results.pkl' % settings['audit_file_header'] # Recourse Objects from recourse.action_set import ActionSet from recourse.builder import RecourseBuilder from recourse.auditor import RecourseAuditor from recourse.flipset import Flipset ### Helper Functions for Experimental Script def load_data(): """Helper function to load in data, and output that and optionally a scaler object: Output: data: dict with the following fields outcome_name: Name of the outcome variable (inferred as the first column.) variable_names: A list of names indicating input columns. X: The input features for our model. y: The column of the dataframe indicating our outcome variable. scaler: The sklearn StandardScaler used to normalize the dataset, if we wish to scale. X_scaled: Scaled version of X, if we wish to scale X_train: The training set: set to the whole dataset if not scaled. Set to X_scaled if we do scale. scaler: Object used to scale data. If "scale" is set to None, then this is returned as None. """ # data set data_df = pd.read_csv(settings['dataset_file']) data = { 'outcome_name': data_df.columns[0], 'variable_names': data_df.columns[1:].tolist(), 'X': data_df.iloc[:, 1:], 'y': data_df.iloc[:, 0] } scaler = None data['X_train'] = data['X'] data['scaler'] = None if settings['normalize_data']: from sklearn.preprocessing import StandardScaler scaler = StandardScaler(copy=True, with_mean=True, with_std=True) data['X_scaled'] = pd.DataFrame(scaler.fit_transform(data['X'].to_numpy(dtype=float), data['y'].values), columns=data['X'].columns) data['X_train'] = data['X_scaled'] data['scaler'] = scaler return data, scaler def undo_coefficient_scaling(clf = None, coefficients = None, intercept = 0.0, scaler = None): """ given coefficients and data for scaled data, returns coefficients and intercept for unnormalized data w = w_scaled / sigma b = b_scaled - (w_scaled / sigma).dot(mu) = b_scaled - w.dot(mu) :param sklearn linear classifier :param coefficients: vector of coefficients :param intercept: scalar for the intercept function :param scaler: sklearn.Scaler or :return: coefficients and intercept for unnormalized data """ if coefficients is None: assert clf is not None assert intercept == 0.0 assert hasattr(clf, 'coef_') coefficients = clf.coef_ intercept = clf.intercept_ if hasattr(clf, 'intercept_') else 0.0 if scaler is None: w = np.array(coefficients) b = float(intercept) else: isinstance(scaler, StandardScaler) x_shift = np.array(scaler.mean_) x_scale = np.sqrt(scaler.var_) w = coefficients / x_scale b = intercept - np.dot(w, x_shift) w = np.array(w).flatten() b = float(b) return w, b def get_coefficient_df(model_dict, variable_names = None, scaler = None): """ extract coefficients of all models and store them into a data.frame :param model_dict: dictionary of models :param variable_names: :return: """ # get the coefficient values assert isinstance(model_dict, dict) coef_df = [] for k in sorted(model_dict.keys()): coef_vals = model_dict[k].coef_.flatten() intercept_val = model_dict[k].intercept_[0] coef_vals, intercept_val = undo_coefficient_scaling(coefficients = coef_vals, intercept = intercept_val, scaler = scaler) if variable_names is None: coef_vals = (pd.Series(coef_vals, index = ['x%d' % j for j in range(coef_vals)]).to_frame(k)) else: coef_vals = (pd.Series(coef_vals, index = variable_names).to_frame(k)) coef_df.append(coef_vals) return pd.concat(coef_df, axis = 1) def format_gridsearch_df(grid_search_df, settings, n_coefficients, invert_C = True): """ Take a fitted GridSearchCV and return: model_stats_df: data frame containing 1 row for fold x free parameter instance. columns include: - 'data_name', - 'method_name', - 'free_parameter_name', - 'free_parameter_value' (for each item in free parameter), - training error, - testing error, - n_coefficients :param grid_search_df: :param n_coefficients: size of input dataset :param invert_C: if C is a parameter, invert it (C = 1/lambda in l1 regression) :return: """ train_score_df = (grid_search_df .loc[:, filter(lambda x: 'train_score' in x and 'split' in x, grid_search_df.columns)] .unstack() .reset_index() .rename(columns={'level_0': 'split_num', 0: 'train_score'}) .set_index('level_1') .assign(split_num=lambda df: df.apply(lambda x: x['split_num'].replace('_train_score', ''), axis=1)) ) test_score_df = (grid_search_df .loc[:, filter(lambda x: 'test_score' in x and 'split' in x, grid_search_df.columns)] .unstack() .reset_index() .rename(columns={'level_0': 'split_num', 0: 'test_score'}) .set_index('level_1') .assign(split_num=lambda df: df.apply(lambda x: x['split_num'].replace('_test_score', ''), axis=1))) model_stats_df= pd.concat([train_score_df, test_score_df.drop('split_num', axis=1)], axis=1) model_stats_df['dataname'] = settings['data_name'] param_df = (grid_search_df['params'] .apply(pd.Series)) if invert_C: param_df['C'] = 1 / param_df['C'] param_df = (param_df.rename( columns={col: 'param %d: %s' % (idx, col) for idx, col in enumerate(param_df.columns)}) ).assign(key=grid_search_df['key']) model_stats_df = (model_stats_df .merge(param_df, left_index=True, right_index=True) ) return model_stats_df.assign(n_coefficients=n_coefficients) def get_flipset_solutions(model, data, action_set, mip_cost_type = 'max', scaler = None, print_flag = True): """ Run a basic audit of a model on the training dataset. :param model: :param data: :param action_set: :param mip_cost_type: :param scaler: :return: """ if scaler is not None: yhat = model.predict(data['X_scaled']) coefficients, intercept = undo_coefficient_scaling(coefficients=
np.array(model.coef_)
numpy.array
""" This module is used to generate a 3d mesh based on a 2d section in the xy-plane that is revolved around the x-axis. Note that only quadratic elements are supported. For linear elements, Abaqus' builtin routine works reasonably well (although the node coordinate accuracy seem a bit low), see :py:func:`~rollover.three_d.wheel.substructure.generate_3d_mesh` """ from __future__ import print_function import numpy as np from rollover.utils import naming_mod as names def generate(wheel_model, mesh_size): """ Based on a meshed 2d-profile of a wheel, generate a 3d-revolved mesh with angular spacing such that the elements on the outer radius have a circumferential size of mesh_size. :param wheel_model: A model that contains a wheel part with a 2d section mesh :type wheel_model: Model object (Abaqus) :param mesh_size: The mesh size to decide the angular increments :type mesh_size: float :returns: The wheel part and the angles for the element end planes :type: tuple( Part object(Abaqus), np.array ) """ wheel_part = wheel_model.parts[names.wheel_part] # 1) Extract the 2d mesh mesh_2d = get_2d_mesh(wheel_part) # 2) Create the 3d-mesh mesh_3d = make_3d_mesh_quad(mesh_2d, mesh_size) # 3) Save the 3d-mesh to a part definition in an abaqus input file input_file = save_3d_mesh_to_inp(mesh_3d) # 4) Import the mesh. Delete the old part, and import the 3d mesh del wheel_model.parts[names.wheel_part] wheel_model.PartFromInputFile(inputFileName=input_file) wheel_part = wheel_model.parts[names.wheel_part] return wheel_part, mesh_3d['angles'] def get_2d_mesh(wheel_part): """ Based on the wheel part, determine the 2d mesh information :param wheel_part: The wheel part containing the 2d mesh :type wheel_part: Part object (Abaqus) :returns: Mesh specification with the following fields: - nodes: np.array with node coordinates - elements: dictionary with keys according to number of nodes in element: N3,N4,N6,N8. Each item contains a list of list of node labels - edge_nodes: list of labels of nodes that belong to the edges of the elements (and not the corners) - corner_nodes: list of labels of nodes that belong to the corners of the elements. :rtype: dict """ node_coords = np.array([n.coordinates for n in wheel_part.nodes]) elements = {'N3': [], 'N4': [], 'N6': [], 'N8': []} edge_nodes = [] corner_nodes = [] for e in wheel_part.elements: enods = e.connectivity num_enods = len(enods) key = 'N' + str(num_enods) if key in elements: elements[key].append(enods) else: raise ValueError('Unknown element type with ' + str(num_enods) + ' nodes.\n' + '- Element label: ' + e.label + '\n' + '- Element nodes: ' + enods + '\n' + '- Element type : ' + e.type + '\n') if num_enods > 4: # 2nd order, second half of nodes on edges for n in enods[:num_enods/2]: if n not in corner_nodes: corner_nodes.append(n) for n in enods[num_enods/2:]: if n not in edge_nodes: edge_nodes.append(n) else: # 1st order elements, all nodes at corners for n in enods: if n not in corner_nodes: corner_nodes.append(n) the_mesh = {'nodes': node_coords, 'elements': elements, 'edge_nodes': edge_nodes, 'corner_nodes': corner_nodes} return the_mesh def make_3d_mesh_quad(mesh_2d, mesh_size): """ Revolve a 2d-mesh into a 3d-mesh :param mesh_2d: Mesh specification with the following fields: - nodes: np.array with node coordinates - elements: dictionary with keys according to number of nodes in element: N3,N4,N6,N8. Each item contains a list of list of node labels - edge_nodes: list of labels of nodes that belong to the edges of the elements (and not the corners) - corner_nodes: list of labels of nodes that belong to the corners of the elements. :type mesh_2d: dict :param mesh_size: The circumferential mesh size at largest radius :type mesh_size: float :returns: Mesh specification with the following fields: - nodes: np.array with node coordinates - elements: dictionary with keys according to number of nodes in element: N15, N20. Each item contains a list of list of node labels - angles: np.array of angles for angular increments of elements. :rtype: dict """ nodes_2d = mesh_2d['nodes'] elems_2d = mesh_2d['elements'] edge_node_num_2d = mesh_2d['edge_nodes'] corner_node_num_2d = mesh_2d['corner_nodes'] r_outer = np.max(np.abs(nodes_2d[:, 1])) num_angles = int(r_outer*2*np.pi/mesh_size) angles = np.linspace(0, 2*np.pi, num_angles+1)[:-1] delta_angle = angles[1]-angles[0] # Calculate size of mesh and allocate variables num_corner_nodes_2d = len(corner_node_num_2d) num_edge_nodes_2d = len(edge_node_num_2d) num_nodes_per_section = 2*num_corner_nodes_2d + num_edge_nodes_2d nodes = np.zeros((num_nodes_per_section*num_angles, 3), dtype=np.float) corner_node_num = np.zeros((num_corner_nodes_2d, num_angles), dtype=np.int) edge_ip_node_num = np.zeros((num_edge_nodes_2d, num_angles), dtype=np.int) edge_op_node_num = np.zeros((num_corner_nodes_2d, num_angles), dtype=np.int) edge_op_node_num[-1,-1] = -1 # Used the first iteration in the loop for i, ang in enumerate(angles): # Corner nodes corner_node_num[:, i] = edge_op_node_num[-1,i-1] + 1 + np.arange(num_corner_nodes_2d) for j, num in enumerate(corner_node_num[:,i]): coords_2d = nodes_2d[corner_node_num_2d[j], :] nodes[num, :] = rotate_coords(coords_2d, ang) # Edge nodes (in plane) edge_ip_node_num[:, i] = corner_node_num[-1,i] + 1 + np.arange(num_edge_nodes_2d) for j, num in enumerate(edge_ip_node_num[:,i]): coords_2d = nodes_2d[edge_node_num_2d[j], :] nodes[num, :] = rotate_coords(coords_2d, ang) # Edge nodes (out of plane, i.e. between angle increments, # stemming from corner nodes in 2d) edge_op_node_num[:, i] = edge_ip_node_num[-1,i] + 1 + np.arange(num_corner_nodes_2d) for j, num in enumerate(edge_op_node_num[:,i]): coords_2d = nodes_2d[corner_node_num_2d[j], :] nodes[num, :] = rotate_coords(coords_2d, ang + delta_angle/2.0) angle_inds = np.arange(num_angles+1) angle_inds[-1] = 0 hex20_elems = get_elements(elems_2d['N8'], angle_inds, corner_node_num_2d, edge_node_num_2d, corner_node_num, edge_ip_node_num, edge_op_node_num) wedge15_elems = get_elements(elems_2d['N6'], angle_inds, corner_node_num_2d, edge_node_num_2d, corner_node_num, edge_ip_node_num, edge_op_node_num) mesh_3d = {'nodes': nodes, 'elements': {'N15': wedge15_elems, 'N20': hex20_elems}, 'angles': angles} return mesh_3d def get_elements(elem_2d_con, angle_inds, corner_node_num_2d, edge_node_num_2d, corner_node_num, edge_ip_node_num, edge_op_node_num): """ Get the node lists of the revolved elements belonging to a given set of node lists of elements from the 2d mesh. :param elem_2d_con: list of list of 2d nodes for each element :type elem_2d_con: list[ list[ int ] ] :param angle_inds: indices of angles, counting 0, 1, 2, ..., N, 0 :type angle_inds: np.array :param corner_node_num_2d: node numbers of corner nodes from 2d :type corner_node_num_2d: list[ int ] :param edge_node_num_2d: node numbers for edge nodes from 2d :type edge_node_num_2d: list[ int ] :param corner_node_num: array of node numbers for corner nodes in 3d. First index refers to index in corner_node_num_2d and second index to angle_inds :type corner_node_num: np.array( int ) :param edge_ip_node_num: array of node numbers for in-plane nodes in 3d. First index refers to index in edge_node_num_2d and second to angle_inds :type edge_ip_node_num: np.array( int ) :param edge_op_node_num: array of node numbers for out-of-plane nodes in 3d. First index refers to index in corner_node_num_2d and second to angle_inds. :type edge_op_node_num: np.array( int ) :returns: list of list containing element node labels for 3d mesh :rtype: np.array """ elems = [] n = len(elem_2d_con[0])/2 for enodes in elem_2d_con: corner_rows = [corner_node_num_2d.index(node_num) for node_num in enodes[:n]] edge_rows = [edge_node_num_2d.index(node_num) for node_num in enodes[n:]] for i in range(len(angle_inds)-1): elems.append([]) # Corner nodes for j in range(2): for cr in corner_rows: elems[-1].append(corner_node_num[cr, angle_inds[i+(1-j)]]) # Edge nodes in plane for j in range(2): for er in edge_rows: elems[-1].append(edge_ip_node_num[er, angle_inds[i+(1-j)]]) # Edge nodes between planes for cr in corner_rows: elems[-1].append(edge_op_node_num[cr, angle_inds[i]]) return np.array(elems) def rotate_coords(coords, angles): """ Rotate 2d coords in the xy-plane around the x-axis. .. note:: The function supports either a list of coordinates or a list of angles, not both at the same time :param coords: Coordinates in xy-plane to be rotated. Can also contain z-coordinate, but this is ignored. Can be either a single coordinate, or 2d array. In the latter case, the last index should give the axis, i.e. size [N,2] or [N,3] where N is number of coords :type coords: np.array :param angles: List of angles to rotate a single coordinate with. :type angles: float, int, list, np.array :returns: An array of rotated coordinates: [N, 3], where N is number of coordinates, i.e. N=max(len(angles), coords.shape[0]) :rtype: np.array """ if isinstance(angles, (float, int)): rot_ang = [angles] else: rot_ang = angles if len(coords.shape) == 1: coords_rotated = np.zeros((len(rot_ang), 3)) coords_rotated[:,0] = coords[0]*np.ones((len(rot_ang))) coords_rotated[:,1] = coords[1]*np.cos(rot_ang) coords_rotated[:,2] = coords[1]*np.sin(rot_ang) elif len(rot_ang) == 1: coords_rotated = np.zeros((coords.shape[1], 3)) coords_rotated[:,0] = coords[:, 0] coords_rotated[:,1] = coords[:, 1]*
np.cos(rot_ang[0])
numpy.cos
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Mar 14 18:25:54 2018 @author: paul """ import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import griddata fs = 14 def plots(model): # ============================================================================= # hystersis loop # ============================================================================= fig, ax = plt.subplots() time = model.time x = model.x dot_x = model.dot_x Delta_x = model.Delta_x distance = model.distance car = 0 start = 0 end = model.iters iters = end - start jump = 1 # just plot every 3rd iteration to save time fs =14 c = np.linspace(model.time[start],model.time[end-1],iters) #ax.set_title("velocity vs. headway, car=" + str(car)) ax_scatter = ax.scatter(Delta_x[car,start:end:jump],dot_x[car,start:end:jump],marker="x",s=10,c=c[::jump]) ax.set_xlabel('headway [m]', fontsize = fs) ax.set_ylabel('velocity [s]',fontsize = fs) #ax.set_ylim(0,10) #ax.set_xlim(0,15) ax.tick_params(direction="in") ax.set_title(r'ANN, $L=$'+str(model.L)) cb=fig.colorbar(ax_scatter, ax=ax) cb.set_label(label="time [s]",size=fs) # ============================================================================= # trajectories # ============================================================================= fig, ax = plt.subplots() for j in
np.arange(0,model.N,jump)
numpy.arange
import cvxpy as cvx import numpy as np from typing import Optional, Set, Dict, Any from snc.agents.hedgehog.minimal_draining_time import compute_minimal_draining_time_from_workload \ as compute_min_drain_time from snc.agents.hedgehog.strategic_idling.strategic_idling import StrategicIdlingOutput, \ StrategicIdlingCore from snc.agents.hedgehog.strategic_idling.strategic_idling_hedging import StrategicIdlingHedging from snc.agents.hedgehog.strategic_idling.strategic_idling_utils import get_dynamic_bottlenecks, \ is_pull_model from snc.utils.snc_types import WorkloadSpace, StateSpace class StrategicIdlingHedgehogNaiveGTO(StrategicIdlingHedging): """ StrategicIdlingHedgehogNaiveGTO simply ensures that dynamic bottlenecks which determine the minimum draining time in the network are not allowed to idle. """ def _is_switching_curve_regime(self, w: WorkloadSpace, current_workload_variables: Dict[str, Any]) -> bool: """ The switching curve regime is determined by checking if workload at minimum cost effective state (w_star) corresponds to longer minimum draining time than for current workload. :param w: current state in workload space, i.e. w = Xi x. :param current_workload_variables: dictionary of relevant variables in workload space. It must contain w_star. :return: bool """ assert not is_pull_model(self.model_type), \ f"Minimum draining time is computed assuming workload vectors with o_s = 1. " \ f"But current environment is: {self.model_type}." w_star = current_workload_variables['w_star'] current_min_drain_time = compute_min_drain_time(w, self._load) new_min_drain_time = compute_min_drain_time(w_star, self._load) tol = 1e-3 assert new_min_drain_time >= current_min_drain_time - tol, \ "Something is wrong here! Idling a non-dynamic bottleneck shouldn't increase the " \ f"draining time, but it has increased by {new_min_drain_time - current_min_drain_time}." return new_min_drain_time > current_min_drain_time def _handle_switching_curve_regime(self, w: WorkloadSpace, current_workload_vars: Dict[str, Any]) -> Dict[str, Any]: """ In case switching curve regime has been identified, this method finds the current set of dynamic bottlenecks which determine the minimum draining time and returns the strategic idling output with idling set of all bottlenecks excluding the dynamic ones. :param w: current state in workload space, i.e. w = Xi @ x. :param current_workload_vars: dictionary containing all the current worloadspace variables. :return: Strategic idling decision with k_idling set overriden. """ dynamic_bottlenecks = get_dynamic_bottlenecks(w, self._workload_mat, self._load) k_idling_set = np.array([i for i in range(len(w)) if i not in dynamic_bottlenecks]) current_workload_vars['k_idling_set'] = k_idling_set return current_workload_vars def _verify_standard_hedging_regime(self, current_workload_vars: Dict[str, Any]) -> None: """ Method is called in order to check whether network is indeed facing a standard hedging regime by computing the dot product between the drift vector and vector determining the boundary of monotone region (psi_plus). Positive dot product corresponds to standard hedging regime. :param current_workload_vars: dictionary containing all the current workload-space vars. """ hedging_case = current_workload_vars['hedging_case'] if hedging_case == 'standard': # Method invalid if psi_plus is altered artificially. psi_plus = current_workload_vars['psi_plus'] drift = (1 - self._load).reshape(-1, 1) psi_drift_dot = psi_plus.T @ drift eps = 1e-6 # numerical tolerance assert psi_drift_dot > -eps def get_allowed_idling_directions(self, state: StateSpace) -> StrategicIdlingOutput: """ Method returns idling decision corresponding to either standard hedging or switching curve regimes. :param state: current buffer state of the network. :return: set of allowed idling resources with auxiliary variables """ w = self._workload_mat @ state self._verify_offline_preliminaries() if self._is_negative_orthant(w) and not self._is_1d_workload_relaxation(w): idling_decision_dict = self._negative_workloads(w) regime = "negative_workloads" else: current_workload_vars = self._non_negative_workloads(w) if self._is_decision_not_to_idle(current_workload_vars['k_idling_set']): idling_decision_dict = current_workload_vars regime = "no_dling" elif self._is_switching_curve_regime(w, current_workload_vars): idling_decision_dict = self._handle_switching_curve_regime(w, current_workload_vars) regime = "switching_curve" else: idling_decision_dict = self._add_standard_hedging(w, current_workload_vars) self._verify_standard_hedging_regime(idling_decision_dict) regime = "standard_hedging" idling_decision = self._get_null_strategic_idling_output(**idling_decision_dict) if self.debug_info: print(f"beta_star: {idling_decision.beta_star}, " f"k_iling_set: {idling_decision.k_idling_set}, " f"sigma_2_h: {idling_decision.sigma_2_h}, " f"delta_h: {idling_decision.delta_h}, " f"regime: {regime}") return idling_decision class StrategicIdlingHedgehogGTO(StrategicIdlingHedgehogNaiveGTO): """ This class follows 'StrategicIdlingHedgehogNaiveGTO' but when encountering switching curve regime adopts a more explicit GTO policy and tries to minimise the instantaneous cost without compromising minimum draining time. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._current_dyn_bot_set: Optional[Set[int]] = None self._min_drain_lp: Optional[cvx.Problem] = None self._min_drain_x: Optional[cvx.Variable] = None self._workload_critical_mat: Optional[cvx.Parameter] = None self._workload_rest_mat: Optional[cvx.Parameter] = None self._drain_time_rest_mat: Optional[cvx.Parameter] = None self._w_critical: Optional[cvx.Parameter] = None self._w_rest: Optional[cvx.Parameter] = None self._min_drain_time: Optional[cvx.Parameter] = None def _create_find_workload_with_min_draining_time_by_idling_lp_program(self): num_resources, num_buffers = self._workload_mat.shape n = num_resources m = num_buffers x_var = cvx.Variable((m, 1), nonneg=True) # Variable workload_critical_mat = cvx.Parameter((n, m)) # workload matrix for dynamic bottlenecks workload_rest_mat = cvx.Parameter((n, m)) # workload matrix for remaining bottlenecks drain_time_rest_mat = cvx.Parameter((n, m)) # draining time matrix for remaining bottlenecks w_critical = cvx.Parameter((n, 1)) # workload vector for dynamic bottlenecks w_rest = cvx.Parameter((n, 1)) # workload vector for remaining bottlenecks min_drain_time = cvx.Parameter(nonneg=True) # minimum draining time w = w_critical + w_rest # the full workload vector penalty_coeff_w_star = self.strategic_idling_params.penalty_coeff_w_star objective = cvx.Minimize( self._cost_per_buffer.T @ x_var + penalty_coeff_w_star * cvx.sum(self._workload_mat @ x_var - w)) constraints = [ # Don't idle critical bottlenecks. workload_critical_mat @ x_var == w_critical, # Reduce cost by idling (increasing workload). workload_rest_mat @ x_var >= w_rest, # Don't idle beyond the minimum draining time. drain_time_rest_mat @ x_var <= min_drain_time] lp_problem = cvx.Problem(objective, constraints) self._min_drain_lp = lp_problem self._min_drain_x = x_var self._workload_critical_mat = workload_critical_mat self._workload_rest_mat = workload_rest_mat self._drain_time_rest_mat = drain_time_rest_mat self._w_critical = w_critical self._w_rest = w_rest self._min_drain_time = min_drain_time def _find_workload_with_min_draining_time_by_idling(self, w: WorkloadSpace) -> WorkloadSpace: """ This method first identifies a set of current dynamic bottlenecks which determine the minimum draining time. If this set has changed from the previous call to the method, the corresponding LP constraints for dynamic and remaining bottlenecks are updated. LP is then solved to yield the target workload vector corresponding to minimum effective cost subject to minimum draining time constraint. :param w: current state in workload space, i.e. w = Xi x. :return: w_min_drain, target workload vector """ dyn_bot_set = get_dynamic_bottlenecks(w, self._workload_mat, self._load) ind_dyn_bot = np.array(list(dyn_bot_set)) # Update parameters of LP only when they change, i.e. when set of dynamic bottlenecks change if self._current_dyn_bot_set is None or dyn_bot_set != self._current_dyn_bot_set: workload_critical_mat =
np.zeros_like(self._workload_mat)
numpy.zeros_like
import math import time from typing import Tuple import numpy as np from pgdrive.utils.cutils import import_cutils cutils = import_cutils() number_pos_inf = float("inf") number_neg_inf = float("-inf") def safe_clip(array, min_val, max_val): array = np.nan_to_num(array.astype(np.float), copy=False, nan=0.0, posinf=max_val, neginf=min_val) return np.clip(array, min_val, max_val).astype(np.float64) def safe_clip_for_small_array(array, min_val, max_val): array = list(array) for i in range(len(array)): if math.isnan(array[i]): array[i] = 0.0 elif array[i] == number_pos_inf: array[i] = max_val elif array[i] == number_neg_inf: array[i] = min_val array[i] = clip(array[i], min_val, max_val) return array def wrap_to_pi(x: float) -> float: return ((x + np.pi) % (2 * np.pi)) - np.pi def get_vertical_vector(vector: np.array): length = norm(vector[0], vector[1]) return (vector[1] / length, -vector[0] / length), (-vector[1] / length, vector[0] / length) def time_me(fn): def _wrapper(*args, **kwargs): start = time.clock() fn(*args, **kwargs) print("%s cost %s second" % (fn.__name__, time.clock() - start)) return _wrapper def norm(x, y): # return math.sqrt(x**2 + y**2) return cutils.cutils_norm(x, y) def distance_greater(vec1, vec2, length): """Return whether the distance between two vectors is greater than the given length.""" return ((vec1[0] - vec2[0])**2 + (vec1[1] - vec2[1])**2) > length**2 def clip(a, low, high): # Since we clip all observation all the times. So adding a breakpoint in this function is really helpful! # if a < low: # print('Small Value') # if a > high: # print('Large Value') # return min(max(a, low), high) return cutils.cutils_clip(a, low, high) def dot(a, b): return a[0] * b[0] + a[1] * b[1] def dot3(a, b): return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] def do_every(duration: float, timer: float) -> bool: return duration < timer def not_zero(x: float, eps: float = 1e-2) -> float: if abs(x) > eps: return x elif x > 0: return eps else: return -eps def rotated_rectangles_intersect(rect1: Tuple, rect2: Tuple) -> bool: """ Do two rotated rectangles intersect? :param rect1: (center, length, width, angle) :param rect2: (center, length, width, angle) :return: do they? """ return has_corner_inside(rect1, rect2) or has_corner_inside(rect2, rect1) def point_in_rectangle(point, rect_min, rect_max) -> bool: """ Check if a point is inside a rectangle :param point: a point (x, y) :param rect_min: x_min, y_min :param rect_max: x_max, y_max """ return rect_min[0] <= point[0] <= rect_max[0] and rect_min[1] <= point[1] <= rect_max[1] def point_in_rotated_rectangle(point: np.ndarray, center: np.ndarray, length: float, width: float, angle: float) \ -> bool: """ Check if a point is inside a rotated rectangle :param point: a point :param center: rectangle center :param length: rectangle length :param width: rectangle width :param angle: rectangle angle [rad] :return: is the point inside the rectangle """ c, s = math.cos(angle), math.sin(angle) r = np.array([[c, -s], [s, c]]) ru = r.dot(point - center) return point_in_rectangle(ru, (-length / 2, -width / 2), (length / 2, width / 2)) def has_corner_inside(rect1: Tuple, rect2: Tuple) -> bool: """ Check if rect1 has a corner inside rect2 :param rect1: (center, length, width, angle) :param rect2: (center, length, width, angle) """ (c1, l1, w1, a1) = rect1 (c2, l2, w2, a2) = rect2 c1 = np.array(c1) l1v = np.array([l1 / 2, 0]) w1v = np.array([0, w1 / 2]) r1_points = np.array([[0, 0], -l1v, l1v, -w1v, w1v, -l1v - w1v, -l1v + w1v, +l1v - w1v, +l1v + w1v]) c, s = math.cos(a1), math.sin(a1) r = np.array([[c, -s], [s, c]]) rotated_r1_points = r.dot(r1_points.transpose()).transpose() return any([point_in_rotated_rectangle(c1 +
np.squeeze(p)
numpy.squeeze
import numpy as np from scipy.integrate import cumtrapz def imp_to_step(t_imp, y_imp): dt = np.median(
np.diff(t_imp)
numpy.diff
import torch import numpy as np from multiprocessing.pool import Pool from collections import Counter import shutil import subprocess import tifffile as tiff import platform import re import os def iou_pytorch(predictions, labels): """ Online IoU-metric (batch-wise over all classes). :param predictions: Batch of predictions. :type predictions: :param labels: Batch of ground truths / label images. :type labels: :param device: cuda (gpu) or cpu. :type device: :return: Intersection over union. """ a = predictions.clone().detach() # Apply sigmoid activation function in one-class problems a = torch.sigmoid(a) # Flatten predictions and apply threshold a = a.view(-1) > torch.tensor([0.5], requires_grad=False, device=a.device) # Flatten labels b = labels.clone().detach().view(-1).bool() # Calculate intersection over union intersection = torch.sum((a * b).float()) union = torch.sum(torch.max(a, b).float()) iou = intersection / (union + 1e-6) return iou def metric_collection(prediction, ground_truth, num_threads=8, path_ctc_software=None): """ Calculation of Rand-Index, Jaccard-Index, mean average precision at different intersection over union thresholds (P_IoU), precision, recall, F-score and split/merged/missing/spurious objects. :param prediction: Prediction with intensity coded nuclei. :type prediction: :param ground_truth: Ground truth image with intensity coded nuclei. :type ground_truth: :param num_threads: Number of threads to speeden up the computation. :type num_threads: int :return: Dictionary containing the metric scores. """ # Create copy of the prediction and ground truth to avoid changing them pred, gt = np.copy(prediction), np.copy(ground_truth) # Find intensity coded nuclei in the ground truth image and the prediction (simply looking for the maximum is not # possible because in the post-processing numbered seeds can vanish, additionally for tracking data some nuclei # may not appear at that time point) nucleus_ids_ground_truth, nucleus_ids_prediction = get_nucleus_ids(gt), get_nucleus_ids(pred) # Number of cell nuclei in the ground truth image and in the prediction num_nuclei_ground_truth, num_nuclei_prediction = len(nucleus_ids_ground_truth), len(nucleus_ids_prediction) # Check for empty predictions if num_nuclei_prediction == 0: return {'Rand_index': 0, 'Jaccard_index': 0, 'Aggregated_Jaccard_index': 0, 'P_IoU': 0, 'Precision': 0, 'Recall': 0, 'F-Score': 0, 'Split': 0, 'Merged': 0, 'Missing': num_nuclei_ground_truth, 'Spurious': 0 }, 0 # Check for missing nuclei ids in the prediction. To build the intersection histogram the nuclei_ids should range # from 1 to the number of nuclei. if num_nuclei_prediction != pred.max(): hist = np.histogram(pred, bins=range(1, pred.max() + 2), range=(1, pred.max() + 1)) # Find missing values missing_values = np.where(hist[0] == 0)[0] # Decrease the ids of the nucleus with higher id than the missing. Reverse the list to avoid problems in case # of multiple missing objects for th in reversed(missing_values): pred[pred > th] = pred[pred > th] - 1 # Check for missing nuclei ids in the ground truth. To build the intersection histogram the nuclei_ids should range # from 1 to the number of nuclei. if num_nuclei_ground_truth != gt.max(): hist = np.histogram(gt, bins=range(1, gt.max() + 2), range=(1, gt.max() + 1)) # Find missing values missing_values = np.where(hist[0] == 0)[0] # Decrease the ids of the nucleus with higher id than the missing. Reverse the list to avoid problems in case # of multiple missing objects for th in reversed(missing_values): gt[gt > th] = gt[gt > th] - 1 # Change the background label from 0 to num_nuclei + 1. This enables to calculate the intersection with the # background efficiently. bg_gt, bg_pred = num_nuclei_ground_truth + 1, num_nuclei_prediction + 1 pred[pred == 0] = bg_pred gt[gt == 0] = bg_gt nucleus_ids_ground_truth, nucleus_ids_prediction = get_nucleus_ids(gt), get_nucleus_ids(pred) # Preallocate arrays for the intersection histogram intersections = np.zeros(shape=(num_nuclei_ground_truth+1, num_nuclei_prediction+1), dtype=np.uint64) # Create list to calculate the histogram entries in parallel result_list = [] if (num_nuclei_prediction + 1) > num_threads: fraction = (num_nuclei_prediction + 1) / num_threads # + 1 because the background is added for i in range(num_threads): result_list.append([pred, gt, nucleus_ids_prediction[int(i * fraction):int((i+1) * fraction)], nucleus_ids_ground_truth]) else: result_list.append([pred, gt, nucleus_ids_prediction, nucleus_ids_ground_truth]) # Calculate the intersection histogram entries in parallel pool = Pool(num_threads) intersection_hist_entries = pool.map(intersection_hist_col, result_list) pool.close() # Pack the intersection histogram column lists into a single list for i in range(len(intersection_hist_entries)): for j in range(len(intersection_hist_entries[i])): col = intersection_hist_entries[i][j][0] if col == bg_pred: # Move background column to the first col = 0 intersections[:, col] = intersection_hist_entries[i][j][1] # Calculate Rand index and Jaccard index a, b, c, n = 0, 0, 0, len(prediction.flatten()) for i in range(intersections.shape[0]): row_sum = np.sum(intersections[i, :], dtype=np.uint64) b += row_sum * (row_sum - 1) / 2 for j in range(intersections.shape[1]): if i == 0: col_sum = np.sum(intersections[:, j], dtype=np.uint64) c += col_sum * (col_sum - 1) / 2 a += intersections[i, j].astype(np.float64) * (intersections[i, j].astype(np.float64) - 1) / 2 b -= a c -= a d = n * (n - 1) / 2 - a - b - c rand, jaccard = (a + d) / (a + b + c + d), (a + d) / (b + c + d) # Match objects with maximum intersections to detect split, merged, missing and spurious objects gt_matches, pred_matches, merged, missing, split, spurious = [], [], 0, 0, 0, 0 for i in range(intersections.shape[0]): gt_matches.append(np.argmax(intersections[i, :])) for j in range(intersections.shape[1]): pred_matches.append(np.argmax(intersections[:, j])) gt_matches_counts, pred_matches_counts = Counter(gt_matches), Counter(pred_matches) for nucleus in gt_matches_counts: if nucleus == 0 and gt_matches_counts[nucleus] > 1: missing = gt_matches_counts[nucleus] - 1 elif nucleus != 0 and gt_matches_counts[nucleus] > 1: merged += gt_matches_counts[nucleus] - 1 for nucleus in pred_matches_counts: if nucleus == 0 and pred_matches_counts[nucleus] > 1: spurious = pred_matches_counts[nucleus] - 1 elif nucleus != 0 and pred_matches_counts[nucleus] > 1: split += pred_matches_counts[nucleus] - 1 # Aggregated Jaccard index and P_IoU (for the best IoU it does not matter if the predictions are matched to ground # truth nuclei or the other way around since the lowest threshold used later is 0.5, for the Jaccard-index it does). result_list = [] # Create list to find the best intersections and the corresponding unions in parallel if len(gt_matches) > num_threads: fraction = len(gt_matches) / num_threads for i in range(num_threads): result_list.append([pred, gt, intersections, list(range(int(i * fraction), int((i+1) * fraction)))]) else: result_list.append([pred, gt, intersections, list(range(1, len(gt_matches)))]) pool = Pool(num_threads) best_intersections_unions = pool.map(aggregated_iou_score, result_list) pool.close() aggregated_intersection, aggregated_union, used_nuclei_pred, iou = 0, 0, [], [] for i in range(len(best_intersections_unions)): aggregated_intersection += best_intersections_unions[i][0] aggregated_union += best_intersections_unions[i][1] used_nuclei_pred = used_nuclei_pred + best_intersections_unions[i][2] iou = iou + best_intersections_unions[i][3] for nucleus in nucleus_ids_prediction[:-1]: # Exclude background if nucleus not in used_nuclei_pred: aggregated_union += np.sum(pred == nucleus) aggregated_jaccard_index = aggregated_intersection / aggregated_union # Preallocate arrays for true positives, false negatives and true positives for each IoU threshold tp = np.zeros(shape=(10,), dtype=np.uint16) fp = np.zeros(shape=(10,), dtype=np.uint16) fn = np.zeros(shape=(10,), dtype=np.uint16) # Count true positives, false positives and false negatives for different IoU-thresholds th for i, th in enumerate(np.arange(0.5, 1.0, 0.05)): matches = iou > th # True positive: IoU > threshold tp[i] =
np.count_nonzero(matches)
numpy.count_nonzero
# -------------- # Importing header files import numpy as np import warnings warnings.filterwarnings('ignore') #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Reading file data = np.genfromtxt(path, delimiter=",", skip_header=1) #Code starts here census=np.concatenate((new_record,data),axis=0) print(census.shape) age=census[:,0] max_age=np.max(age) min_age=np.min(age) age_mean=np.round_(np.mean(age),2) age_std=np.round_(np.std(age),2) print(age,min_age,max_age,age_mean,age_std) race_0=np.where(census[:,2]==0)[0] print(race_0) race_1=
np.where(census[:,2]==1)
numpy.where
from __future__ import division, print_function import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.mplot3d import Axes3D import streakline #import streakline2 import myutils import ffwd from streams import load_stream, vcirc_potential, store_progparams, wrap_angles, progenitor_prior #import streams import astropy import astropy.units as u from astropy.constants import G from astropy.table import Table import astropy.coordinates as coord import gala.coordinates as gc import scipy.linalg as la import scipy.interpolate import scipy.optimize import zscale import itertools import copy import pickle # observers # defaults taken as in astropy v2.0 icrs mw_observer = {'z_sun': 27.*u.pc, 'galcen_distance': 8.3*u.kpc, 'roll': 0*u.deg, 'galcen_coord': coord.SkyCoord(ra=266.4051*u.deg, dec=-28.936175*u.deg, frame='icrs')} vsun = {'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} vsun0 = {'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} gc_observer = {'z_sun': 27.*u.pc, 'galcen_distance': 0.1*u.kpc, 'roll': 0*u.deg, 'galcen_coord': coord.SkyCoord(ra=266.4051*u.deg, dec=-28.936175*u.deg, frame='icrs')} vgc = {'vcirc': 0*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} vgc0 = {'vcirc': 0*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} MASK = -9999 pparams_fid = [np.log10(0.5e10)*u.Msun, 0.7*u.kpc, np.log10(6.8e10)*u.Msun, 3*u.kpc, 0.28*u.kpc, 430*u.km/u.s, 30*u.kpc, 1.57*u.rad, 1*u.Unit(1), 1*u.Unit(1), 1*u.Unit(1), 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0*u.deg, 0*u.deg, 0*u.kpc, 0*u.km/u.s, 0*u.mas/u.yr, 0*u.mas/u.yr] #pparams_fid = [0.5e-5*u.Msun, 0.7*u.kpc, 6.8e-5*u.Msun, 3*u.kpc, 0.28*u.kpc, 430*u.km/u.s, 30*u.kpc, 1.57*u.rad, 1*u.Unit(1), 1*u.Unit(1), 1*u.Unit(1), 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0*u.deg, 0*u.deg, 0*u.kpc, 0*u.km/u.s, 0*u.mas/u.yr, 0*u.mas/u.yr] class Stream(): def __init__(self, x0=[]*u.kpc, v0=[]*u.km/u.s, progenitor={'coords': 'galactocentric', 'observer': {}, 'pm_polar': False}, potential='nfw', pparams=[], minit=2e4*u.Msun, mfinal=2e4*u.Msun, rcl=20*u.pc, dr=0.5, dv=2*u.km/u.s, dt=1*u.Myr, age=6*u.Gyr, nstars=600, integrator='lf'): """Initialize """ setup = {} if progenitor['coords']=='galactocentric': setup['x0'] = x0 setup['v0'] = v0 elif (progenitor['coords']=='equatorial') & (len(progenitor['observer'])!=0): if progenitor['pm_polar']: a = v0[1].value phi = v0[2].value v0[1] = a*np.sin(phi)*u.mas/u.yr v0[2] = a*np.cos(phi)*u.mas/u.yr # convert positions xeq = coord.SkyCoord(x0[0], x0[1], x0[2], **progenitor['observer']) xgal = xeq.transform_to(coord.Galactocentric) setup['x0'] = [xgal.x.to(u.kpc), xgal.y.to(u.kpc), xgal.z.to(u.kpc)]*u.kpc # convert velocities setup['v0'] = gc.vhel_to_gal(xeq.icrs, rv=v0[0], pm=v0[1:], **vsun) #setup['v0'] = [v.to(u.km/u.s) for v in vgal]*u.km/u.s else: raise ValueError('Observer position needed!') setup['dr'] = dr setup['dv'] = dv setup['minit'] = minit setup['mfinal'] = mfinal setup['rcl'] = rcl setup['dt'] = dt setup['age'] = age setup['nstars'] = nstars setup['integrator'] = integrator setup['potential'] = potential setup['pparams'] = pparams self.setup = setup self.setup_aux = {} self.fill_intid() self.fill_potid() self.st_params = self.format_input() def fill_intid(self): """Assign integrator ID for a given integrator choice Assumes setup dictionary has an 'integrator' key""" if self.setup['integrator']=='lf': self.setup_aux['iaux'] = 0 elif self.setup['integrator']=='rk': self.setup_aux['iaux'] = 1 def fill_potid(self): """Assign potential ID for a given potential choice Assumes d has a 'potential' key""" if self.setup['potential']=='nfw': self.setup_aux['paux'] = 3 elif self.setup['potential']=='log': self.setup_aux['paux'] = 2 elif self.setup['potential']=='point': self.setup_aux['paux'] = 0 elif self.setup['potential']=='gal': self.setup_aux['paux'] = 4 elif self.setup['potential']=='lmc': self.setup_aux['paux'] = 6 elif self.setup['potential']=='dipole': self.setup_aux['paux'] = 8 elif self.setup['potential']=='quad': self.setup_aux['paux'] = 9 elif self.setup['potential']=='octu': self.setup_aux['paux'] = 10 def format_input(self): """Format input parameters for streakline.stream""" p = [None]*12 # progenitor position p[0] = self.setup['x0'].si.value p[1] = self.setup['v0'].si.value # potential parameters p[2] = [x.si.value for x in self.setup['pparams']] # stream smoothing offsets p[3] = [self.setup['dr'], self.setup['dv'].si.value] # potential and integrator choice p[4] = self.setup_aux['paux'] p[5] = self.setup_aux['iaux'] # number of steps and stream stars p[6] = int(self.setup['age']/self.setup['dt']) p[7] = int(p[6]/self.setup['nstars']) # cluster properties p[8] = self.setup['minit'].si.value p[9] = self.setup['mfinal'].si.value p[10] = self.setup['rcl'].si.value # time step p[11] = self.setup['dt'].si.value return p def generate(self): """Create streakline model for a stream of set parameters""" #xm1, xm2, xm3, xp1, xp2, xp3, vm1, vm2, vm3, vp1, vp2, vp3 = streakline.stream(*p) stream = streakline.stream(*self.st_params) self.leading = {} self.leading['x'] = stream[:3]*u.m self.leading['v'] = stream[6:9]*u.m/u.s self.trailing = {} self.trailing['x'] = stream[3:6]*u.m self.trailing['v'] = stream[9:12]*u.m/u.s def observe(self, mode='cartesian', wangle=0*u.deg, units=[], errors=[], nstars=-1, sequential=False, present=[], logerr=False, observer={'z_sun': 0.*u.pc, 'galcen_distance': 8.3*u.kpc, 'roll': 0*u.deg, 'galcen_ra': 300*u.deg, 'galcen_dec': 20*u.deg}, vobs={'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s}, footprint='none', rotmatrix=None): """Observe the stream stream.obs holds all observations stream.err holds all errors""" x = np.concatenate((self.leading['x'].to(u.kpc).value, self.trailing['x'].to(u.kpc).value), axis=1) * u.kpc v = np.concatenate((self.leading['v'].to(u.km/u.s).value, self.trailing['v'].to(u.km/u.s).value), axis=1) * u.km/u.s if mode=='cartesian': # returns coordinates in following order # x(x, y, z), v(vx, vy, vz) if len(units)<2: units.append(self.trailing['x'].unit) units.append(self.trailing['v'].unit) if len(errors)<2: errors.append(0.2*u.kpc) errors.append(2*u.km/u.s) # positions x = x.to(units[0]) ex = np.ones(np.shape(x))*errors[0] ex = ex.to(units[0]) # velocities v = v.to(units[1]) ev = np.ones(np.shape(v))*errors[1] ev = ev.to(units[1]) self.obs = np.concatenate([x,v]).value self.err = np.concatenate([ex,ev]).value elif mode=='equatorial': # assumes coordinates in the following order: # ra, dec, distance, vrad, mualpha, mudelta if len(units)!=6: units = [u.deg, u.deg, u.kpc, u.km/u.s, u.mas/u.yr, u.mas/u.yr] if len(errors)!=6: errors = [0.2*u.deg, 0.2*u.deg, 0.5*u.kpc, 1*u.km/u.s, 0.2*u.mas/u.yr, 0.2*u.mas/u.yr] # define reference frame xgal = coord.Galactocentric(x, **observer) #frame = coord.Galactocentric(**observer) # convert xeq = xgal.transform_to(coord.ICRS) veq = gc.vgal_to_hel(xeq, v, **vobs) # store coordinates ra, dec, dist = [xeq.ra.to(units[0]).wrap_at(wangle), xeq.dec.to(units[1]), xeq.distance.to(units[2])] vr, mua, mud = [veq[2].to(units[3]), veq[0].to(units[4]), veq[1].to(units[5])] obs = np.hstack([ra, dec, dist, vr, mua, mud]).value obs = np.reshape(obs,(6,-1)) if footprint=='sdss': infoot = dec > -2.5*u.deg obs = obs[:,infoot] if np.allclose(rotmatrix, np.eye(3))!=1: xi, eta = myutils.rotate_angles(obs[0], obs[1], rotmatrix) obs[0] = xi obs[1] = eta self.obs = obs # store errors err = np.ones(np.shape(self.obs)) if logerr: for i in range(6): err[i] *= np.exp(errors[i].to(units[i]).value) else: for i in range(6): err[i] *= errors[i].to(units[i]).value self.err = err self.obsunit = units self.obserror = errors # randomly select nstars from the stream if nstars>-1: if sequential: select = np.linspace(0, np.shape(self.obs)[1], nstars, endpoint=False, dtype=int) else: select = np.random.randint(low=0, high=np.shape(self.obs)[1], size=nstars) self.obs = self.obs[:,select] self.err = self.err[:,select] # include only designated dimensions if len(present)>0: self.obs = self.obs[present] self.err = self.err[present] self.obsunit = [ self.obsunit[x] for x in present ] self.obserror = [ self.obserror[x] for x in present ] def prog_orbit(self): """Generate progenitor orbital history""" orbit = streakline.orbit(self.st_params[0], self.st_params[1], self.st_params[2], self.st_params[4], self.st_params[5], self.st_params[6], self.st_params[11], -1) self.orbit = {} self.orbit['x'] = orbit[:3]*u.m self.orbit['v'] = orbit[3:]*u.m/u.s def project(self, name, N=1000, nbatch=-1): """Project the stream from observed to native coordinates""" poly = np.loadtxt("../data/{0:s}_all.txt".format(name)) self.streak = np.poly1d(poly) self.streak_x = np.linspace(np.min(self.obs[0])-2, np.max(self.obs[0])+2, N) self.streak_y = np.polyval(self.streak, self.streak_x) self.streak_b = np.zeros(N) self.streak_l = np.zeros(N) pdot = np.polyder(poly) for i in range(N): length = scipy.integrate.quad(self._delta_path, self.streak_x[0], self.streak_x[i], args=(pdot,)) self.streak_l[i] = length[0] XB = np.transpose(np.vstack([self.streak_x, self.streak_y])) n = np.shape(self.obs)[1] if nbatch<0: nstep = 0 nbatch = -1 else: nstep = np.int(n/nbatch) i1 = 0 i2 = nbatch for i in range(nstep): XA = np.transpose(np.vstack([np.array(self.obs[0][i1:i2]), np.array(self.obs[1][i1:i2])])) self.emdist(XA, XB, i1=i1, i2=i2) i1 += nbatch i2 += nbatch XA = np.transpose(np.vstack([np.array(self.catalog['ra'][i1:]), np.array(self.catalog['dec'][i1:])])) self.emdist(XA, XB, i1=i1, i2=n) #self.catalog.write("../data/{0:s}_footprint_catalog.txt".format(self.name), format='ascii.commented_header') def emdist(self, XA, XB, i1=0, i2=-1): """""" distances = scipy.spatial.distance.cdist(XA, XB) self.catalog['b'][i1:i2] = np.min(distances, axis=1) imin = np.argmin(distances, axis=1) self.catalog['b'][i1:i2][self.catalog['dec'][i1:i2]<self.streak_y[imin]] *= -1 self.catalog['l'][i1:i2] = self.streak_l[imin] def _delta_path(self, x, pdot): """Return integrand for calculating length of a path along a polynomial""" return np.sqrt(1 + np.polyval(pdot, x)**2) def plot(self, mode='native', fig=None, color='k', **kwargs): """Plot stream""" # Plotting if fig==None: plt.close() plt.figure() ax = plt.axes([0.12,0.1,0.8,0.8]) if mode=='native': # Color setup cindices = np.arange(self.setup['nstars']) # colors of stream particles nor = mpl.colors.Normalize(vmin=0, vmax=self.setup['nstars']) # colormap normalization plt.plot(self.setup['x0'][0].to(u.kpc).value, self.setup['x0'][2].to(u.kpc).value, 'wo', ms=10, mew=2, zorder=3) plt.scatter(self.trailing['x'][0].to(u.kpc).value, self.trailing['x'][2].to(u.kpc).value, s=30, c=cindices, cmap='winter', norm=nor, marker='o', edgecolor='none', lw=0, alpha=0.1) plt.scatter(self.leading['x'][0].to(u.kpc).value, self.leading['x'][2].to(u.kpc).value, s=30, c=cindices, cmap='autumn', norm=nor, marker='o', edgecolor='none', lw=0, alpha=0.1) plt.xlabel("X (kpc)") plt.ylabel("Z (kpc)") elif mode=='observed': plt.subplot(221) plt.plot(self.obs[0], self.obs[1], 'o', color=color, **kwargs) plt.xlabel("RA") plt.ylabel("Dec") plt.subplot(223) plt.plot(self.obs[0], self.obs[2], 'o', color=color, **kwargs) plt.xlabel("RA") plt.ylabel("Distance") plt.subplot(222) plt.plot(self.obs[3], self.obs[4], 'o', color=color, **kwargs) plt.xlabel("V$_r$") plt.ylabel("$\mu\\alpha$") plt.subplot(224) plt.plot(self.obs[3], self.obs[5], 'o', color=color, **kwargs) plt.xlabel("V$_r$") plt.ylabel("$\mu\delta$") plt.tight_layout() #plt.minorticks_on() def read(self, fname, units={'x': u.kpc, 'v': u.km/u.s}): """Read stream star positions from a file""" t = np.loadtxt(fname).T n = np.shape(t)[1] ns = int((n-1)/2) self.setup['nstars'] = ns # progenitor self.setup['x0'] = t[:3,0] * units['x'] self.setup['v0'] = t[3:,0] * units['v'] # leading tail self.leading = {} self.leading['x'] = t[:3,1:ns+1] * units['x'] self.leading['v'] = t[3:,1:ns+1] * units['v'] # trailing tail self.trailing = {} self.trailing['x'] = t[:3,ns+1:] * units['x'] self.trailing['v'] = t[3:,ns+1:] * units['v'] def save(self, fname): """Save stream star positions to a file""" # define table t = Table(names=('x', 'y', 'z', 'vx', 'vy', 'vz')) # add progenitor info t.add_row(np.ravel([self.setup['x0'].to(u.kpc).value, self.setup['v0'].to(u.km/u.s).value])) # add leading tail infoobsmode tt = Table(np.concatenate((self.leading['x'].to(u.kpc).value, self.leading['v'].to(u.km/u.s).value)).T, names=('x', 'y', 'z', 'vx', 'vy', 'vz')) t = astropy.table.vstack([t,tt]) # add trailing tail info tt = Table(np.concatenate((self.trailing['x'].to(u.kpc).value, self.trailing['v'].to(u.km/u.s).value)).T, names=('x', 'y', 'z', 'vx', 'vy', 'vz')) t = astropy.table.vstack([t,tt]) # save to file t.write(fname, format='ascii.commented_header') # make a streakline model of a stream def stream_model(name='gd1', pparams0=pparams_fid, dt=0.2*u.Myr, rotmatrix=np.eye(3), graph=False, graphsave=False, observer=mw_observer, vobs=vsun, footprint='', obsmode='equatorial'): """Create a streakline model of a stream baryonic component as in kupper+2015: 3.4e10*u.Msun, 0.7*u.kpc, 1e11*u.Msun, 6.5*u.kpc, 0.26*u.kpc""" # vary progenitor parameters mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) for i in range(3): mock['x0'][i] += pparams0[26+i] mock['v0'][i] += pparams0[29+i] # vary potential parameters potential = 'octu' pparams = pparams0[:26] #print(pparams[0]) pparams[0] = (10**pparams0[0].value)*pparams0[0].unit pparams[2] = (10**pparams0[2].value)*pparams0[2].unit #pparams[0] = pparams0[0]*1e15 #pparams[2] = pparams0[2]*1e15 #print(pparams[0]) # adjust circular velocity in this halo vobs['vcirc'] = vcirc_potential(observer['galcen_distance'], pparams=pparams) # create a model stream with these parameters params = {'generate': {'x0': mock['x0'], 'v0': mock['v0'], 'progenitor': {'coords': 'equatorial', 'observer': mock['observer'], 'pm_polar': False}, 'potential': potential, 'pparams': pparams, 'minit': mock['mi'], 'mfinal': mock['mf'], 'rcl': 20*u.pc, 'dr': 0., 'dv': 0*u.km/u.s, 'dt': dt, 'age': mock['age'], 'nstars': 400, 'integrator': 'lf'}, 'observe': {'mode': mock['obsmode'], 'wangle': mock['wangle'], 'nstars':-1, 'sequential':True, 'errors': [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s, 0.5*u.mas/u.yr, 0.5*u.mas/u.yr], 'present': [0,1,2,3,4,5], 'observer': mock['observer'], 'vobs': mock['vobs'], 'footprint': mock['footprint'], 'rotmatrix': rotmatrix}} stream = Stream(**params['generate']) stream.generate() stream.observe(**params['observe']) ################################ # Plot observed stream and model if graph: observed = load_stream(name) Ndim = np.shape(observed.obs)[0] modcol = 'k' obscol = 'orange' ylabel = ['Dec (deg)', 'Distance (kpc)', 'Radial velocity (km/s)'] plt.close() fig, ax = plt.subplots(1, 3, figsize=(12,4)) for i in range(3): plt.sca(ax[i]) plt.gca().invert_xaxis() plt.xlabel('R.A. (deg)') plt.ylabel(ylabel[i]) plt.plot(observed.obs[0], observed.obs[i+1], 's', color=obscol, mec='none', ms=8, label='Observed stream') plt.plot(stream.obs[0], stream.obs[i+1], 'o', color=modcol, mec='none', ms=4, label='Fiducial model') if i==0: plt.legend(frameon=False, handlelength=0.5, fontsize='small') plt.tight_layout() if graphsave: plt.savefig('../plots/mock_observables_{}_p{}.png'.format(name, potential), dpi=150) return stream def progenitor_params(n): """Return progenitor parameters for a given stream""" if n==-1: age = 1.6*u.Gyr mi = 1e4*u.Msun mf = 2e-1*u.Msun x0, v0 = gd1_coordinates(observer=mw_observer) elif n==-2: age = 2.7*u.Gyr mi = 1e5*u.Msun mf = 2e4*u.Msun x0, v0 = pal5_coordinates(observer=mw_observer, vobs=vsun0) elif n==-3: age = 3.5*u.Gyr mi = 5e4*u.Msun mf = 2e-1*u.Msun x0, v0 = tri_coordinates(observer=mw_observer) elif n==-4: age = 2*u.Gyr mi = 2e4*u.Msun mf = 2e-1*u.Msun x0, v0 = atlas_coordinates(observer=mw_observer) out = {'x0': x0, 'v0': v0, 'age': age, 'mi': mi, 'mf': mf} return out def gal2eq(x, v, observer=mw_observer, vobs=vsun0): """""" # define reference frame xgal = coord.Galactocentric(np.array(x)[:,np.newaxis]*u.kpc, **observer) # convert xeq = xgal.transform_to(coord.ICRS) veq = gc.vgal_to_hel(xeq, np.array(v)[:,np.newaxis]*u.km/u.s, **vobs) # store coordinates units = [u.deg, u.deg, u.kpc, u.km/u.s, u.mas/u.yr, u.mas/u.yr] xobs = [xeq.ra.to(units[0]), xeq.dec.to(units[1]), xeq.distance.to(units[2])] vobs = [veq[2].to(units[3]), veq[0].to(units[4]), veq[1].to(units[5])] return(xobs, vobs) def gd1_coordinates(observer=mw_observer): """Approximate GD-1 progenitor coordinates""" x = coord.SkyCoord(ra=154.377*u.deg, dec=41.5309*u.deg, distance=8.2*u.kpc, **observer) x_ = x.galactocentric x0 = [x_.x.value, x_.y.value, x_.z.value] v0 = [-90, -250, -120] return (x0, v0) def pal5_coordinates(observer=mw_observer, vobs=vsun0): """Pal5 coordinates""" # sdss ra = 229.0128*u.deg dec = -0.1082*u.deg # bob's rrlyrae d = 21.7*u.kpc # harris #d = 23.2*u.kpc # odenkirchen 2002 vr = -58.7*u.km/u.s # fritz & kallivayalil 2015 mua = -2.296*u.mas/u.yr mud = -2.257*u.mas/u.yr d = 24*u.kpc x = coord.SkyCoord(ra=ra, dec=dec, distance=d, **observer) x0 = x.galactocentric v0 = gc.vhel_to_gal(x.icrs, rv=vr, pm=[mua, mud], **vobs).to(u.km/u.s) return ([x0.x.value, x0.y.value, x0.z.value], v0.value.tolist()) def tri_coordinates(observer=mw_observer): """Approximate Triangulum progenitor coordinates""" x = coord.SkyCoord(ra=22.38*u.deg, dec=30.26*u.deg, distance=33*u.kpc, **observer) x_ = x.galactocentric x0 = [x_.x.value, x_.y.value, x_.z.value] v0 = [-40, 155, 155] return (x0, v0) def atlas_coordinates(observer=mw_observer): """Approximate ATLAS progenitor coordinates""" x = coord.SkyCoord(ra=20*u.deg, dec=-27*u.deg, distance=20*u.kpc, **observer) x_ = x.galactocentric x0 = [x_.x.value, x_.y.value, x_.z.value] v0 = [40, 150, -120] return (x0, v0) # great circle orientation def find_greatcircle(stream=None, name='gd1', pparams=pparams_fid, dt=0.2*u.Myr, save=True, graph=True): """Save rotation matrix for a stream model""" if stream==None: stream = stream_model(name, pparams0=pparams, dt=dt) # find the pole ra = np.radians(stream.obs[0]) dec = np.radians(stream.obs[1]) rx = np.cos(ra) * np.cos(dec) ry = np.sin(ra) * np.cos(dec) rz = np.sin(dec) r = np.column_stack((rx, ry, rz)) # fit the plane x0 = np.array([0, 1, 0]) lsq = scipy.optimize.minimize(wfit_plane, x0, args=(r,)) x0 = lsq.x/np.linalg.norm(lsq.x) ra0 = np.arctan2(x0[1], x0[0]) dec0 = np.arcsin(x0[2]) ra0 += np.pi dec0 = np.pi/2 - dec0 # euler rotations R0 = myutils.rotmatrix(np.degrees(-ra0), 2) R1 = myutils.rotmatrix(np.degrees(dec0), 1) R2 = myutils.rotmatrix(0, 2) R = np.dot(R2, np.matmul(R1, R0)) xi, eta = myutils.rotate_angles(stream.obs[0], stream.obs[1], R) # put xi = 50 at the beginning of the stream xi[xi>180] -= 360 xi += 360 xi0 = np.min(xi) - 50 R2 = myutils.rotmatrix(-xi0, 2) R = np.dot(R2, np.matmul(R1, R0)) xi, eta = myutils.rotate_angles(stream.obs[0], stream.obs[1], R) if save: np.save('../data/rotmatrix_{}'.format(name), R) f = open('../data/mock_{}.params'.format(name), 'rb') mock = pickle.load(f) mock['rotmatrix'] = R f.close() f = open('../data/mock_{}.params'.format(name), 'wb') pickle.dump(mock, f) f.close() if graph: plt.close() fig, ax = plt.subplots(1,2,figsize=(10,5)) plt.sca(ax[0]) plt.plot(stream.obs[0], stream.obs[1], 'ko') plt.xlabel('R.A. (deg)') plt.ylabel('Dec (deg)') plt.sca(ax[1]) plt.plot(xi, eta, 'ko') plt.xlabel('$\\xi$ (deg)') plt.ylabel('$\\eta$ (deg)') plt.ylim(-5, 5) plt.tight_layout() plt.savefig('../plots/gc_orientation_{}.png'.format(name)) return R def wfit_plane(x, r, p=None): """Fit a plane to a set of 3d points""" Np = np.shape(r)[0] if np.any(p)==None: p = np.ones(Np) Q = np.zeros((3,3)) for i in range(Np): Q += p[i]**2 * np.outer(r[i], r[i]) x = x/np.linalg.norm(x) lsq = np.inner(x, np.inner(Q, x)) return lsq # observed streams #def load_stream(n): #"""Load stream observations""" #if n==-1: #observed = load_gd1(present=[0,1,2,3]) #elif n==-2: #observed = load_pal5(present=[0,1,2,3]) #elif n==-3: #observed = load_tri(present=[0,1,2,3]) #elif n==-4: #observed = load_atlas(present=[0,1,2,3]) #return observed def endpoints(name): """""" stream = load_stream(name) # find endpoints amin = np.argmin(stream.obs[0]) amax = np.argmax(stream.obs[0]) ra = np.array([stream.obs[0][i] for i in [amin, amax]]) dec = np.array([stream.obs[1][i] for i in [amin, amax]]) f = open('../data/mock_{}.params'.format(name), 'rb') mock = pickle.load(f) # rotate endpoints R = mock['rotmatrix'] xi, eta = myutils.rotate_angles(ra, dec, R) #xi, eta = myutils.rotate_angles(stream.obs[0], stream.obs[1], R) mock['ra_range'] = ra mock['xi_range'] = xi #np.percentile(xi, [10,90]) f.close() f = open('../data/mock_{}.params'.format(name), 'wb') pickle.dump(mock, f) f.close() def load_pal5(present, nobs=50, potential='gal'): """""" if len(present)==2: t = Table.read('../data/pal5_members.txt', format='ascii.commented_header') dist = 21.7 deltadist = 0.7 np.random.seed(34) t = t[np.random.randint(0, high=len(t), size=nobs)] nobs = len(t) d = np.random.randn(nobs)*deltadist + dist obs = np.array([t['ra'], t['dec'], d]) obsunit = [u.deg, u.deg, u.kpc] err = np.repeat( np.array([2e-4, 2e-4, 0.7]), nobs ).reshape(3, -1) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc] if len(present)==3: #t = Table.read('../data/pal5_kinematic.txt', format='ascii.commented_header') t = Table.read('../data/pal5_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d']]) obsunit = [u.deg, u.deg, u.kpc] err = np.array([t['err_ra'], t['err_dec'], t['err_d']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc] if len(present)==4: #t = Table.read('../data/pal5_kinematic.txt', format='ascii.commented_header') t = Table.read('../data/pal5_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d'], t['vr']]) obsunit = [u.deg, u.deg, u.kpc, u.km/u.s] err = np.array([t['err_ra'], t['err_dec'], t['err_d'], t['err_vr']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s] observed = Stream(potential=potential) observed.obs = obs observed.obsunit = obsunit observed.err = err observed.obserror = obserr return observed def load_gd1(present, nobs=50, potential='gal'): """""" if len(present)==3: t = Table.read('../data/gd1_members.txt', format='ascii.commented_header') dist = 0 deltadist = 0.5 np.random.seed(34) t = t[np.random.randint(0, high=len(t), size=nobs)] nobs = len(t) d = np.random.randn(nobs)*deltadist + dist d += t['l']*0.04836 + 9.86 obs = np.array([t['ra'], t['dec'], d]) obsunit = [u.deg, u.deg, u.kpc] err = np.repeat( np.array([2e-4, 2e-4, 0.5]), nobs ).reshape(3, -1) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc] if len(present)==4: #t = Table.read('../data/gd1_kinematic.txt', format='ascii.commented_header') t = Table.read('../data/gd1_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d'], t['vr']]) obsunit = [u.deg, u.deg, u.kpc, u.km/u.s] err = np.array([t['err_ra'], t['err_dec'], t['err_d'], t['err_vr']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s] ind = np.all(obs!=MASK, axis=0) observed = Stream(potential=potential) observed.obs = obs#[np.array(present)] observed.obsunit = obsunit observed.err = err#[np.array(present)] observed.obserror = obserr return observed def load_tri(present, nobs=50, potential='gal'): """""" if len(present)==4: t = Table.read('../data/tri_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d'], t['vr']]) obsunit = [u.deg, u.deg, u.kpc, u.km/u.s] err = np.array([t['err_ra'], t['err_dec'], t['err_d'], t['err_vr']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s] if len(present)==3: t = Table.read('../data/tri_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d']]) obsunit = [u.deg, u.deg, u.kpc] err = np.array([t['err_ra'], t['err_dec'], t['err_d']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc] ind = np.all(obs!=MASK, axis=0) observed = Stream(potential=potential) observed.obs = obs observed.obsunit = obsunit observed.err = err observed.obserror = obserr return observed def load_atlas(present, nobs=50, potential='gal'): """""" ra, dec = atlas_track() n = np.size(ra) d = np.random.randn(n)*2 + 20 obs = np.array([ra, dec, d]) obsunit = [u.deg, u.deg, u.kpc] err = np.array([np.ones(n)*0.05, np.ones(n)*0.05, np.ones(n)*2]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s] observed = Stream(potential=potential) observed.obs = obs observed.obsunit = obsunit observed.err = err observed.obserror = obserr return observed def atlas_track(): """""" ra0, dec0 = np.radians(77.16), np.radians(46.92 - 90) # euler rotations D = np.array([[np.cos(ra0), np.sin(ra0), 0], [-np.sin(ra0), np.cos(ra0), 0], [0, 0, 1]]) C = np.array([[np.cos(dec0), 0, np.sin(dec0)], [0, 1, 0], [-np.sin(dec0), 0, np.cos(dec0)]]) B = np.diag(np.ones(3)) R = np.dot(B, np.dot(C, D)) Rinv = np.linalg.inv(R) l0 = np.linspace(0, 2*np.pi, 500) b0 = np.zeros(500) xeq, yeq, zeq = myutils.eq2car(l0, b0) eq = np.column_stack((xeq, yeq, zeq)) eq_rot = np.zeros(np.shape(eq)) for i in range(np.size(l0)): eq_rot[i] = np.dot(Rinv, eq[i]) l0_rot, b0_rot = myutils.car2eq(eq_rot[:, 0], eq_rot[:, 1], eq_rot[:, 2]) ra_s, dec_s = np.degrees(l0_rot), np.degrees(b0_rot) ind_s = (ra_s>17) & (ra_s<30) ra_s = ra_s[ind_s] dec_s = dec_s[ind_s] return (ra_s, dec_s) def fancy_name(n): """Return nicely formatted stream name""" names = {-1: 'GD-1', -2: 'Palomar 5', -3: 'Triangulum', -4: 'ATLAS'} return names[n] # model parameters def get_varied_pars(vary): """Return indices and steps for a preset of varied parameters, and a label for varied parameters Parameters: vary - string setting the parameter combination to be varied, options: 'potential', 'progenitor', 'halo', or a list thereof""" if type(vary) is not list: vary = [vary] Nt = len(vary) vlabel = '_'.join(vary) pid = [] dp = [] for v in vary: o1, o2 = get_varied_bytype(v) pid += o1 dp += o2 return (pid, dp, vlabel) def get_varied_bytype(vary): """Get varied parameter of a particular type""" if vary=='potential': pid = [5,6,8,10,11] dp = [20*u.km/u.s, 2*u.kpc, 0.05*u.Unit(1), 0.05*u.Unit(1), 0.4e11*u.Msun] elif vary=='bary': pid = [0,1,2,3,4] # gd1 dp = [1e-1*u.Msun, 0.005*u.kpc, 1e-1*u.Msun, 0.002*u.kpc, 0.002*u.kpc] ## atlas & triangulum #dp = [0.4e5*u.Msun, 0.0005*u.kpc, 0.5e6*u.Msun, 0.0002*u.kpc, 0.002*u.kpc] # pal5 dp = [1e-2*u.Msun, 0.000005*u.kpc, 1e-2*u.Msun, 0.000002*u.kpc, 0.00002*u.kpc] dp = [1e-7*u.Msun, 0.5*u.kpc, 1e-7*u.Msun, 0.5*u.kpc, 0.5*u.kpc] dp = [1e-2*u.Msun, 0.5*u.kpc, 1e-2*u.Msun, 0.5*u.kpc, 0.5*u.kpc] elif vary=='halo': pid = [5,6,8,10] dp = [20*u.km/u.s, 2*u.kpc, 0.05*u.Unit(1), 0.05*u.Unit(1)] dp = [35*u.km/u.s, 2.9*u.kpc, 0.05*u.Unit(1), 0.05*u.Unit(1)] elif vary=='progenitor': pid = [26,27,28,29,30,31] dp = [1*u.deg, 1*u.deg, 0.5*u.kpc, 20*u.km/u.s, 0.3*u.mas/u.yr, 0.3*u.mas/u.yr] elif vary=='dipole': pid = [11,12,13] #dp = [1e-11*u.Unit(1), 1e-11*u.Unit(1), 1e-11*u.Unit(1)] dp = [0.05*u.pc/u.Myr**2, 0.05*u.pc/u.Myr**2, 0.05*u.pc/u.Myr**2] elif vary=='quad': pid = [14,15,16,17,18] dp = [0.5*u.Gyr**-2 for x in range(5)] elif vary=='octu': pid = [19,20,21,22,23,24,25] dp = [0.001*u.Gyr**-2*u.kpc**-1 for x in range(7)] else: pid = [] dp = [] return (pid, dp) def get_parlabel(pid): """Return label for a list of parameter ids Parameter: pid - list of parameter ids""" master = ['log $M_b$', '$a_b$', 'log $M_d$', '$a_d$', '$b_d$', '$V_h$', '$R_h$', '$\phi$', '$q_x$', '$q_y$', '$q_z$', '$a_{1,-1}$', '$a_{1,0}$', '$a_{1,1}$', '$a_{2,-2}$', '$a_{2,-1}$', '$a_{2,0}$', '$a_{2,1}$', '$a_{2,2}$', '$a_{3,-3}$', '$a_{3,-2}$', '$a_{3,-1}$', '$a_{3,0}$', '$a_{3,1}$', '$a_{3,2}$', '$a_{3,3}$', '$RA_p$', '$Dec_p$', '$d_p$', '$V_{r_p}$', '$\mu_{\\alpha_p}$', '$\mu_{\delta_p}$', ] master_units = ['dex', 'kpc', 'dex', 'kpc', 'kpc', 'km/s', 'kpc', 'rad', '', '', '', 'pc/Myr$^2$', 'pc/Myr$^2$', 'pc/Myr$^2$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'deg', 'deg', 'kpc', 'km/s', 'mas/yr', 'mas/yr', ] if type(pid) is list: labels = [] units = [] for i in pid: labels += [master[i]] units += [master_units[i]] else: labels = master[pid] units = master_units[pid] return (labels, units) def get_steps(Nstep=50, log=False): """Return deltax steps in both directions Paramerets: Nstep - number of steps in one direction (default: 50) log - if True, steps are logarithmically spaced (default: False)""" if log: step = np.logspace(-10, 1, Nstep) else: step = np.linspace(0.1, 10, Nstep) step = np.concatenate([-step[::-1], step]) return (Nstep, step) def lmc_position(): """""" ra = 80.8939*u.deg dec = -69.7561*u.deg dm = 18.48 d = 10**(1 + dm/5)*u.pc x = coord.SkyCoord(ra=ra, dec=dec, distance=d) xgal = [x.galactocentric.x.si, x.galactocentric.y.si, x.galactocentric.z.si] print(xgal) def lmc_properties(): """""" # penarrubia 2016 mass = 2.5e11*u.Msun ra = 80.8939*u.deg dec = -69.7561*u.deg dm = 18.48 d = 10**(1 + dm/5)*u.pc c1 = coord.SkyCoord(ra=ra, dec=dec, distance=d) cgal1 = c1.transform_to(coord.Galactocentric) xgal = np.array([cgal1.x.to(u.kpc).value, cgal1.y.to(u.kpc).value, cgal1.z.to(u.kpc).value])*u.kpc return (mass, xgal) # fit bspline to a stream model def fit_bspline(n, pparams=pparams_fid, dt=0.2*u.Myr, align=False, save='', graph=False, graphsave='', fiducial=False): """Fit bspline to a stream model and save to file""" Ndim = 6 fits = [None]*(Ndim-1) if align: rotmatrix = np.load('../data/rotmatrix_{}.npy'.format(n)) else: rotmatrix = None stream = stream_model(n, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) Nobs = 10 k = 3 isort = np.argsort(stream.obs[0]) ra = np.linspace(np.min(stream.obs[0])*1.05, np.max(stream.obs[0])*0.95, Nobs) t = np.r_[(stream.obs[0][isort][0],)*(k+1), ra, (stream.obs[0][isort][-1],)*(k+1)] for j in range(Ndim-1): fits[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][isort], stream.obs[j+1][isort], t, k=k) if len(save)>0: np.savez('../data/{:s}'.format(save), fits=fits) if graph: xlims, ylims = get_stream_limits(n, align) ylabel = ['R.A. (deg)', 'Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas/yr)', '$\mu_\delta$ (mas/yr)'] if align: ylabel[:2] = ['$\\xi$ (deg)', '$\\eta$ (deg)'] if fiducial: stream_fid = stream_model(n, pparams0=pparams_fid, dt=dt, rotmatrix=rotmatrix) fidsort = np.argsort(stream_fid.obs[0]) ra = np.linspace(np.min(stream_fid.obs[0])*1.05, np.max(stream_fid.obs[0])*0.95, Nobs) tfid = np.r_[(stream_fid.obs[0][fidsort][0],)*(k+1), ra, (stream_fid.obs[0][fidsort][-1],)*(k+1)] llabel = 'b-spline fit' else: llabel = '' plt.close() fig, ax = plt.subplots(2,5,figsize=(20,5), sharex=True, gridspec_kw = {'height_ratios':[3, 1]}) for i in range(Ndim-1): plt.sca(ax[0][i]) plt.plot(stream.obs[0], stream.obs[i+1], 'ko') plt.plot(stream.obs[0][isort], fits[i](stream.obs[0][isort]), 'r-', lw=2, label=llabel) if fiducial: fits_fid = scipy.interpolate.make_lsq_spline(stream_fid.obs[0][fidsort], stream_fid.obs[i+1][fidsort], tfid, k=k) plt.plot(stream_fid.obs[0], stream_fid.obs[i+1], 'wo', mec='k', alpha=0.1) plt.plot(stream_fid.obs[0][fidsort], fits_fid(stream_fid.obs[0][fidsort]), 'b-', lw=2, label='Fiducial') plt.ylabel(ylabel[i+1]) plt.xlim(xlims[0], xlims[1]) plt.ylim(ylims[i][0], ylims[i][1]) plt.sca(ax[1][i]) if fiducial: yref = fits_fid(stream.obs[0]) ycolor = 'b' else: yref = fits[i](stream.obs[0]) ycolor = 'r' plt.axhline(0, color=ycolor, lw=2) if fiducial: plt.plot(stream.obs[0][isort], stream.obs[i+1][isort] - stream_fid.obs[i+1][fidsort], 'wo', mec='k', alpha=0.1) plt.plot(stream.obs[0], stream.obs[i+1] - yref, 'ko') if fiducial: fits_diff = scipy.interpolate.make_lsq_spline(stream.obs[0][isort], stream.obs[i+1][isort] - stream_fid.obs[i+1][fidsort], t, k=k) plt.plot(stream.obs[0][isort], fits_diff(stream.obs[0][isort]), 'r--') plt.plot(stream.obs[0][isort], fits[i](stream.obs[0][isort]) - yref[isort], 'r-', lw=2, label=llabel) plt.xlabel(ylabel[0]) plt.ylabel('$\Delta$ {}'.format(ylabel[i+1].split(' ')[0])) if fiducial: plt.sca(ax[0][Ndim-2]) plt.legend(fontsize='small') plt.tight_layout() if len(graphsave)>0: plt.savefig('../plots/{:s}.png'.format(graphsave)) def fitbyt_bspline(n, pparams=pparams_fid, dt=0.2*u.Myr, align=False, save='', graph=False, graphsave='', fiducial=False): """Fit each tail individually""" Ndim = 6 fits = [None]*(Ndim-1) if align: rotmatrix = np.load('../data/rotmatrix_{}.npy'.format(n)) else: rotmatrix = None stream = stream_model(n, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) Nobs = 10 k = 3 isort = np.argsort(stream.obs[0]) ra = np.linspace(np.min(stream.obs[0])*1.05, np.max(stream.obs[0])*0.95, Nobs) t = np.r_[(stream.obs[0][isort][0],)*(k+1), ra, (stream.obs[0][isort][-1],)*(k+1)] for j in range(Ndim-1): fits[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][isort], stream.obs[j+1][isort], t, k=k) if len(save)>0: np.savez('../data/{:s}'.format(save), fits=fits) if graph: xlims, ylims = get_stream_limits(n, align) ylabel = ['R.A. (deg)', 'Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas/yr)', '$\mu_\delta$ (mas/yr)'] if align: ylabel[:2] = ['$\\xi$ (deg)', '$\\eta$ (deg)'] if fiducial: stream_fid = stream_model(n, pparams0=pparams_fid, dt=dt, rotmatrix=rotmatrix) plt.close() fig, ax = plt.subplots(2,Ndim,figsize=(20,4), sharex=True, gridspec_kw = {'height_ratios':[3, 1]}) for i in range(Ndim): plt.sca(ax[0][i]) Nhalf = int(0.5*np.size(stream.obs[i])) plt.plot(stream.obs[i][:Nhalf], 'o') plt.plot(stream.obs[i][Nhalf:], 'o') if fiducial: plt.plot(stream_fid.obs[i][:Nhalf], 'wo', mec='k', mew=0.2, alpha=0.5) plt.plot(stream_fid.obs[i][Nhalf:], 'wo', mec='k', mew=0.2, alpha=0.5) plt.ylabel(ylabel[i]) plt.sca(ax[1][i]) if fiducial: plt.plot(stream.obs[i][:Nhalf] - stream_fid.obs[i][:Nhalf], 'o') plt.plot(stream.obs[i][Nhalf:] - stream_fid.obs[i][Nhalf:], 'o') if fiducial: plt.sca(ax[0][Ndim-1]) plt.legend(fontsize='small') plt.tight_layout() if len(graphsave)>0: plt.savefig('../plots/{:s}.png'.format(graphsave)) else: return fig def get_stream_limits(n, align=False): """Return lists with limiting values in different dimensions""" if n==-1: xlims = [260, 100] ylims = [[-20, 70], [5, 15], [-400, 400], [-15,5], [-15, 5]] elif n==-2: xlims = [250, 210] ylims = [[-20, 15], [17, 27], [-80, -20], [-5,0], [-5, 0]] elif n==-3: xlims = [27, 17] ylims = [[10, 50], [34, 36], [-175, -50], [0.45, 1], [0.1, 0.7]] elif n==-4: xlims = [35, 10] ylims = [[-40, -20], [15, 25], [50, 200], [-0.5,0.5], [-1.5, -0.5]] if align: ylims[0] = [-5, 5] xup = [110, 110, 80, 80] xlims = [xup[np.abs(n)-1], 40] return (xlims, ylims) # step sizes for derivatives def iterate_steps(n): """Calculate derivatives for different parameter classes, and plot""" for vary in ['bary', 'halo', 'progenitor']: print(n, vary) step_convergence(n, Nstep=10, vary=vary) choose_step(n, Nstep=10, vary=vary) def iterate_plotsteps(n): """Plot stream models for a variety of model parameters""" for vary in ['bary', 'halo', 'progenitor']: print(n, vary) pid, dp, vlabel = get_varied_pars(vary) for p in range(len(pid)): plot_steps(n, p=p, Nstep=5, vary=vary, log=False) def plot_steps(n, p=0, Nstep=20, log=True, dt=0.2*u.Myr, vary='halo', verbose=False, align=True, observer=mw_observer, vobs=vsun): """Plot stream for different values of a potential parameter""" if align: rotmatrix = np.load('../data/rotmatrix_{}.npy'.format(n)) else: rotmatrix = None pparams0 = pparams_fid pid, dp, vlabel = get_varied_pars(vary) plabel, punit = get_parlabel(pid[p]) Nstep, step = get_steps(Nstep=Nstep, log=log) plt.close() fig, ax = plt.subplots(5,5,figsize=(20,10), sharex=True, gridspec_kw = {'height_ratios':[3, 1, 1, 1, 1]}) # fiducial model stream0 = stream_model(n, pparams0=pparams0, dt=dt, rotmatrix=rotmatrix, observer=observer, vobs=vobs) Nobs = 10 k = 3 isort = np.argsort(stream0.obs[0]) ra = np.linspace(np.min(stream0.obs[0])*1.05, np.max(stream0.obs[0])*0.95, Nobs) t = np.r_[(stream0.obs[0][isort][0],)*(k+1), ra, (stream0.obs[0][isort][-1],)*(k+1)] fits = [None]*5 for j in range(5): fits[j] = scipy.interpolate.make_lsq_spline(stream0.obs[0][isort], stream0.obs[j+1][isort], t, k=k) # excursions stream_fits = [[None] * 5 for x in range(2 * Nstep)] for i, s in enumerate(step[:]): pparams = [x for x in pparams0] pparams[pid[p]] = pparams[pid[p]] + s*dp[p] stream = stream_model(n, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) color = mpl.cm.RdBu(i/(2*Nstep-1)) #print(i, dp[p], pparams) # fits iexsort = np.argsort(stream.obs[0]) raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs) tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)] fits_ex = [None]*5 for j in range(5): fits_ex[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[j+1][iexsort], tex, k=k) stream_fits[i][j] = fits_ex[j] plt.sca(ax[0][j]) plt.plot(stream.obs[0], stream.obs[j+1], 'o', color=color, ms=2) plt.sca(ax[1][j]) plt.plot(stream.obs[0], stream.obs[j+1] - fits[j](stream.obs[0]), 'o', color=color, ms=2) plt.sca(ax[2][j]) plt.plot(stream.obs[0], fits_ex[j](stream.obs[0]) - fits[j](stream.obs[0]), 'o', color=color, ms=2) plt.sca(ax[3][j]) plt.plot(stream.obs[0], (fits_ex[j](stream.obs[0]) - fits[j](stream.obs[0]))/(s*dp[p]), 'o', color=color, ms=2) # symmetric derivatives ra_der = np.linspace(np.min(stream0.obs[0])*1.05, np.max(stream0.obs[0])*0.95, 100) for i in range(Nstep): color = mpl.cm.Greys_r(i/Nstep) for j in range(5): dy = stream_fits[i][j](ra_der) - stream_fits[-i-1][j](ra_der) dydx = -dy / np.abs(2*step[i]*dp[p]) plt.sca(ax[4][j]) plt.plot(ra_der, dydx, '-', color=color, lw=2, zorder=Nstep-i) # labels, limits xlims, ylims = get_stream_limits(n, align) ylabel = ['R.A. (deg)', 'Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas/yr)', '$\mu_\delta$ (mas/yr)'] if align: ylabel[:2] = ['$\\xi$ (deg)', '$\\eta$ (deg)'] for j in range(5): plt.sca(ax[0][j]) plt.ylabel(ylabel[j+1]) plt.xlim(xlims[0], xlims[1]) plt.ylim(ylims[j][0], ylims[j][1]) plt.sca(ax[1][j]) plt.ylabel('$\Delta$ {}'.format(ylabel[j+1].split(' ')[0])) plt.sca(ax[2][j]) plt.ylabel('$\Delta$ {}'.format(ylabel[j+1].split(' ')[0])) plt.sca(ax[3][j]) plt.ylabel('$\Delta${}/$\Delta${}'.format(ylabel[j+1].split(' ')[0], plabel)) plt.sca(ax[4][j]) plt.xlabel(ylabel[0]) plt.ylabel('$\langle$$\Delta${}/$\Delta${}$\\rangle$'.format(ylabel[j+1].split(' ')[0], plabel)) #plt.suptitle('Varying {}'.format(plabel), fontsize='small') plt.tight_layout() plt.savefig('../plots/observable_steps_{:d}_{:s}_p{:d}_Ns{:d}.png'.format(n, vlabel, p, Nstep)) def step_convergence(name='gd1', Nstep=20, log=True, layer=1, dt=0.2*u.Myr, vary='halo', align=True, graph=False, verbose=False, Nobs=10, k=3, ra_der=np.nan, Nra=50): """Check deviations in numerical derivatives for consecutive step sizes""" mock = pickle.load(open('../data/mock_{}.params'.format(name),'rb')) if align: rotmatrix = mock['rotmatrix'] xmm = mock['xi_range'] else: rotmatrix = np.eye(3) xmm = mock['ra_range'] # fiducial model pparams0 = pparams_fid stream0 = stream_model(name=name, pparams0=pparams0, dt=dt, rotmatrix=rotmatrix) if np.any(~np.isfinite(ra_der)): ra_der = np.linspace(xmm[0]*1.05, xmm[1]*0.95, Nra) Nra = np.size(ra_der) # parameters to vary pid, dp, vlabel = get_varied_pars(vary) Np = len(pid) dpvec = np.array([x.value for x in dp]) Nstep, step = get_steps(Nstep=Nstep, log=log) dydx_all = np.empty((Np, Nstep, 5, Nra)) dev_der = np.empty((Np, Nstep-2*layer)) step_der = np.empty((Np, Nstep-2*layer)) for p in range(Np): plabel = get_parlabel(pid[p]) if verbose: print(p, plabel) # excursions stream_fits = [[None] * 5 for x in range(2 * Nstep)] for i, s in enumerate(step[:]): if verbose: print(i, s) pparams = [x for x in pparams0] pparams[pid[p]] = pparams[pid[p]] + s*dp[p] stream = stream_model(name=name, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) # fits iexsort = np.argsort(stream.obs[0]) raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs) tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)] fits_ex = [None]*5 for j in range(5): fits_ex[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[j+1][iexsort], tex, k=k) stream_fits[i][j] = fits_ex[j] # symmetric derivatives dydx = np.empty((Nstep, 5, Nra)) for i in range(Nstep): color = mpl.cm.Greys_r(i/Nstep) for j in range(5): dy = stream_fits[i][j](ra_der) - stream_fits[-i-1][j](ra_der) dydx[i][j] = -dy / np.abs(2*step[i]*dp[p]) dydx_all[p] = dydx # deviations from adjacent steps step_der[p] = -step[layer:Nstep-layer] * dp[p] for i in range(layer, Nstep-layer): dev_der[p][i-layer] = 0 for j in range(5): for l in range(layer): dev_der[p][i-layer] += np.sum((dydx[i][j] - dydx[i-l-1][j])**2) dev_der[p][i-layer] += np.sum((dydx[i][j] - dydx[i+l+1][j])**2) np.savez('../data/step_convergence_{}_{}_Ns{}_log{}_l{}'.format(name, vlabel, Nstep, log, layer), step=step_der, dev=dev_der, ders=dydx_all, steps_all=np.outer(dpvec,step[Nstep:])) if graph: plt.close() fig, ax = plt.subplots(1,Np,figsize=(4*Np,4)) for p in range(Np): plt.sca(ax[p]) plt.plot(step_der[p], dev_der[p], 'ko') #plabel = get_parlabel(pid[p]) #plt.xlabel('$\Delta$ {}'.format(plabel)) plt.ylabel('D') plt.gca().set_yscale('log') plt.tight_layout() plt.savefig('../plots/step_convergence_{}_{}_Ns{}_log{}_l{}.png'.format(name, vlabel, Nstep, log, layer)) def choose_step(name='gd1', tolerance=2, Nstep=20, log=True, layer=1, vary='halo'): """""" pid, dp, vlabel = get_varied_pars(vary) Np = len(pid) plabels, units = get_parlabel(pid) punits = ['({})'.format(x) if len(x) else '' for x in units] t = np.load('../data/step_convergence_{}_{}_Ns{}_log{}_l{}.npz'.format(name, vlabel, Nstep, log, layer)) dev = t['dev'] step = t['step'] dydx = t['ders'] steps_all = t['steps_all'][:,::-1] Nra = np.shape(dydx)[-1] best = np.empty(Np) # plot setup da = 4 nrow = 2 ncol = Np plt.close() fig, ax = plt.subplots(nrow, ncol, figsize=(da*ncol, da*1.3), squeeze=False, sharex='col', gridspec_kw = {'height_ratios':[1.2, 3]}) for p in range(Np): # choose step dmin = np.min(dev[p]) dtol = tolerance * dmin opt_step = np.min(step[p][dev[p]<dtol]) opt_id = step[p]==opt_step best[p] = opt_step ## largest step w deviation smaller than 1e-4 #opt_step = np.max(step[p][dev[p]<1e-4]) #opt_id = step[p]==opt_step #best[p] = opt_step plt.sca(ax[0][p]) for i in range(5): for j in range(10): plt.plot(steps_all[p], np.tanh(dydx[p,:,i,np.int64(j*Nra/10)]), '-', color='{}'.format(i/5), lw=0.5, alpha=0.5) plt.axvline(opt_step, ls='-', color='r', lw=2) plt.ylim(-1,1) plt.ylabel('Derivative') plt.title('{}'.format(plabels[p])+'$_{best}$ = '+'{:2.2g}'.format(opt_step), fontsize='small') plt.sca(ax[1][p]) plt.plot(step[p], dev[p], 'ko') plt.axvline(opt_step, ls='-', color='r', lw=2) plt.plot(step[p][opt_id], dev[p][opt_id], 'ro') plt.axhline(dtol, ls='-', color='orange', lw=1) y0, y1 = plt.gca().get_ylim() plt.axhspan(y0, dtol, color='orange', alpha=0.3, zorder=0) plt.gca().set_yscale('log') plt.gca().set_xscale('log') plt.xlabel('$\Delta$ {} {}'.format(plabels[p], punits[p])) plt.ylabel('Derivative deviation') np.save('../data/optimal_step_{}_{}'.format(name, vlabel), best) plt.tight_layout(h_pad=0) plt.savefig('../plots/step_convergence_{}_{}_Ns{}_log{}_l{}.png'.format(name, vlabel, Nstep, log, layer)) def read_optimal_step(name, vary, equal=False): """Return optimal steps for a range of parameter types""" if type(vary) is not list: vary = [vary] dp = np.empty(0) for v in vary: dp_opt = np.load('../data/optimal_step_{}_{}.npy'.format(name, v)) dp = np.concatenate([dp, dp_opt]) if equal: dp = np.array([0.05, 0.05, 0.2, 1, 0.01, 0.01, 0.05, 0.1, 0.05, 0.1, 0.1, 10, 1, 0.01, 0.01]) return dp def visualize_optimal_steps(name='gd1', vary=['progenitor', 'bary', 'halo'], align=True, dt=0.2*u.Myr, Nobs=50, k=3): """""" mock = pickle.load(open('../data/mock_{}.params'.format(name),'rb')) if align: rotmatrix = mock['rotmatrix'] xmm = mock['xi_range'] else: rotmatrix = np.eye(3) xmm = mock['ra_range'] # varied parameters pparams0 = pparams_fid pid, dp_fid, vlabel = get_varied_pars(vary) Np = len(pid) dp_opt = read_optimal_step(name, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] fiducial = stream_model(name=name, pparams0=pparams0, dt=dt, rotmatrix=rotmatrix) iexsort = np.argsort(fiducial.obs[0]) raex = np.linspace(np.percentile(fiducial.obs[0], 10), np.percentile(fiducial.obs[0], 90), Nobs) tex = np.r_[(fiducial.obs[0][iexsort][0],)*(k+1), raex, (fiducial.obs[0][iexsort][-1],)*(k+1)] fit = scipy.interpolate.make_lsq_spline(fiducial.obs[0][iexsort], fiducial.obs[1][iexsort], tex, k=k) nrow = 2 ncol = np.int64((Np+1)/nrow) da = 4 c = ['b', 'b', 'b', 'r', 'r', 'r'] plt.close() fig, ax = plt.subplots(nrow, ncol, figsize=(ncol*da, nrow*da), squeeze=False) for p in range(Np): plt.sca(ax[p%2][int(p/2)]) for i, s in enumerate([-1.1, -1, -0.9, 0.9, 1, 1.1]): pparams = [x for x in pparams0] pparams[pid[p]] = pparams[pid[p]] + s*dp[p] stream = stream_model(name=name, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) # bspline fits to stream centerline iexsort = np.argsort(stream.obs[0]) raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs) tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)] fitex = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[1][iexsort], tex, k=k) plt.plot(raex, fitex(raex) - fit(raex), '-', color=c[i]) plt.xlabel('R.A. (deg)') plt.ylabel('Dec (deg)') #print(get_parlabel(p)) plt.title('$\Delta$ {} = {:.2g}'.format(get_parlabel(p)[0], dp[p]), fontsize='medium') plt.tight_layout() plt.savefig('../plots/{}_optimal_steps.png'.format(name), dpi=200) # observing modes def define_obsmodes(): """Output a pickled dictionary with typical uncertainties and dimensionality of data for a number of observing modes""" obsmodes = {} obsmodes['fiducial'] = {'sig_obs': np.array([0.1, 2, 5, 0.1, 0.1]), 'Ndim': [3,4,6]} obsmodes['binospec'] = {'sig_obs': np.array([0.1, 2, 10, 0.1, 0.1]), 'Ndim': [3,4,6]} obsmodes['hectochelle'] = {'sig_obs': np.array([0.1, 2, 1, 0.1, 0.1]), 'Ndim': [3,4,6]} obsmodes['desi'] = {'sig_obs': np.array([0.1, 2, 10, np.nan, np.nan]), 'Ndim': [4,]} obsmodes['gaia'] = {'sig_obs': np.array([0.1, 0.2, 10, 0.2, 0.2]), 'Ndim': [6,]} obsmodes['exgal'] = {'sig_obs': np.array([0.5, np.nan, 20, np.nan, np.nan]), 'Ndim': [3,]} pickle.dump(obsmodes, open('../data/observing_modes.info','wb')) def obsmode_name(mode): """Return full name of the observing mode""" if type(mode) is not list: mode = [mode] full_names = {'fiducial': 'Fiducial', 'binospec': 'Binospec', 'hectochelle': 'Hectochelle', 'desi': 'DESI-like', 'gaia': 'Gaia-like', 'exgal': 'Extragalactic'} keys = full_names.keys() names = [] for m in mode: if m in keys: name = full_names[m] else: name = m names += [name] return names # crbs using bspline def calculate_crb(name='gd1', dt=0.2*u.Myr, vary=['progenitor', 'bary', 'halo'], ra=np.nan, dd=0.5, Nmin=15, verbose=False, align=True, scale=False, errmode='fiducial', k=3): """""" mock = pickle.load(open('../data/mock_{}.params'.format(name),'rb')) if align: rotmatrix = mock['rotmatrix'] xmm = np.sort(mock['xi_range']) else: rotmatrix = np.eye(3) xmm = np.sort(mock['ra_range']) # typical uncertainties and data availability obsmodes = pickle.load(open('../data/observing_modes.info', 'rb')) if errmode not in obsmodes.keys(): errmode = 'fiducial' sig_obs = obsmodes[errmode]['sig_obs'] data_dim = obsmodes[errmode]['Ndim'] # mock observations if np.any(~np.isfinite(ra)): if (np.int64((xmm[1]-xmm[0])/dd + 1) < Nmin): dd = (xmm[1]-xmm[0])/Nmin ra = np.arange(xmm[0], xmm[1]+dd, dd) #ra = np.linspace(xmm[0]*1.05, xmm[1]*0.95, Nobs) #else: Nobs = np.size(ra) print(name, Nobs) err = np.tile(sig_obs, Nobs).reshape(Nobs,-1) # varied parameters pparams0 = pparams_fid pid, dp_fid, vlabel = get_varied_pars(vary) Np = len(pid) dp_opt = read_optimal_step(name, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] fits_ex = [[[None]*5 for x in range(2)] for y in range(Np)] if scale: dp_unit = unity_scale(dp) dps = [x*y for x,y in zip(dp, dp_unit)] # calculate derivatives for all parameters for p in range(Np): for i, s in enumerate([-1, 1]): pparams = [x for x in pparams0] pparams[pid[p]] = pparams[pid[p]] + s*dp[p] stream = stream_model(name=name, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) # bspline fits to stream centerline iexsort = np.argsort(stream.obs[0]) raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs) tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)] for j in range(5): fits_ex[p][i][j] = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[j+1][iexsort], tex, k=k) # populate matrix of derivatives and calculate CRB for Ndim in data_dim: #for Ndim in [6,]: Ndata = Nobs * (Ndim - 1) cyd = np.empty(Ndata) dydx = np.empty((Np, Ndata)) dy2 = np.empty((2, Np, Ndata)) for j in range(1, Ndim): for p in range(Np): dy = fits_ex[p][0][j-1](ra) - fits_ex[p][1][j-1](ra) dy2[0][p][(j-1)*Nobs:j*Nobs] = fits_ex[p][0][j-1](ra) dy2[1][p][(j-1)*Nobs:j*Nobs] = fits_ex[p][1][j-1](ra) #positive = np.abs(dy)>0 #if verbose: print('{:d},{:d} {:s} min{:.1e} max{:1e} med{:.1e}'.format(j, p, get_parlabel(pid[p])[0], np.min(np.abs(dy[positive])), np.max(np.abs(dy)), np.median(np.abs(dy)))) if scale: dydx[p][(j-1)*Nobs:j*Nobs] = -dy / np.abs(2*dps[p].value) else: dydx[p][(j-1)*Nobs:j*Nobs] = -dy / np.abs(2*dp[p].value) #if verbose: print('{:d},{:d} {:s} min{:.1e} max{:1e} med{:.1e}'.format(j, p, get_parlabel(pid[p])[0], np.min(np.abs(dydx[p][(j-1)*Nobs:j*Nobs][positive])), np.max(np.abs(dydx[p][(j-1)*Nobs:j*Nobs])), np.median(np.abs(dydx[p][(j-1)*Nobs:j*Nobs])))) #print(j, p, get_parlabel(pid[p])[0], dp[p], np.min(np.abs(dy)), np.max(np.abs(dy)), np.median(dydx[p][(j-1)*Nobs:j*Nobs])) cyd[(j-1)*Nobs:j*Nobs] = err[:,j-1]**2 np.savez('../data/crb/components_{:s}{:1d}_{:s}_a{:1d}_{:s}'.format(errmode, Ndim, name, align, vlabel), dydx=dydx, y=dy2, cyd=cyd, dp=dp_opt) # data component of the Fisher matrix cy = np.diag(cyd) cyi = np.diag(1. / cyd) caux = np.matmul(cyi, dydx.T) dxi = np.matmul(dydx, caux) # component based on prior knowledge of model parameters pxi = priors(name, vary) # full Fisher matrix cxi = dxi + pxi if verbose: cx = np.linalg.inv(cxi) cx = np.matmul(np.linalg.inv(np.matmul(cx, cxi)), cx) # iteration to improve inverse at large cond numbers sx = np.sqrt(np.diag(cx)) print('CRB', sx) print('condition {:g}'.format(np.linalg.cond(cxi))) print('standard inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0]))) cx = stable_inverse(cxi) print('stable inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0]))) np.savez('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}'.format(errmode, Ndim, name, align, vlabel), cxi=cxi, dxi=dxi, pxi=pxi) def priors(name, vary): """Return covariance matrix with prior knowledge about parameters""" mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) cprog = mock['prog_prior'] cbary = np.array([0.1*x.value for x in pparams_fid[:5]])**-2 chalo = np.zeros(4) cdipole = np.zeros(3) cquad = np.zeros(5) coctu = np.zeros(7) priors = {'progenitor': cprog, 'bary': cbary, 'halo': chalo, 'dipole': cdipole, 'quad': cquad, 'octu': coctu} cprior = np.empty(0) for v in vary: cprior = np.concatenate([cprior, priors[v]]) pxi = np.diag(cprior) return pxi def scale2invert(name='gd1', Ndim=6, vary=['progenitor', 'bary', 'halo'], verbose=False, align=True, errmode='fiducial'): """""" pid, dp_fid, vlabel = get_varied_pars(vary) #dp = read_optimal_step(name, vary) d = np.load('../data/crb/components_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) dydx = d['dydx'] cyd = d['cyd'] y = d['y'] dp = d['dp'] dy = (y[1,:,:] - y[0,:,:]) dydx = (y[1,:,:] - y[0,:,:]) / (2*dp[:,np.newaxis]) scaling_par = np.median(np.abs(dydx), axis=1) dydx = dydx / scaling_par[:,np.newaxis] dydx_ = np.reshape(dydx, (len(dp), Ndim-1, -1)) scaling_dim = np.median(np.abs(dydx_), axis=(2,0)) dydx_ = dydx_ / scaling_dim[np.newaxis,:,np.newaxis] cyd_ = np.reshape(cyd, (Ndim-1, -1)) cyd_ = cyd_ / scaling_dim[:,np.newaxis] cyd = np.reshape(cyd_, (-1)) dydx = np.reshape(dydx_, (len(dp), -1)) mmin = np.min(np.abs(dy), axis=0) mmax = np.max(np.abs(dy), axis=0) mmed = np.median(np.abs(dydx), axis=1) dyn_range = mmax/mmin #print(dyn_range) print(np.min(dyn_range), np.max(dyn_range), np.std(dyn_range)) cy = np.diag(cyd) cyi = np.diag(1. / cyd) caux = np.matmul(cyi, dydx.T) cxi = np.matmul(dydx, caux) print('condition {:e}'.format(np.linalg.cond(cxi))) cx = np.linalg.inv(cxi) cx = np.matmul(np.linalg.inv(np.matmul(cx, cxi)), cx) # iteration to improve inverse at large cond numbers print('standard inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0]))) cx = stable_inverse(cxi, maxiter=30) print('stable inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0]))) def unity_scale(dp): """""" dim_scale = 10**np.array([2, 3, 3, 2, 4, 3, 7, 7, 5, 7, 7, 4, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 4]) dim_scale = 10**np.array([3, 2, 3, 4, 0, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3]) #dim_scale = 10**np.array([2, 3, 3, 1, 3, 2, 5, 5, 3, 5, 5, 2, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3]) #dim_scale = 10**np.array([2, 3, 3, 1, 3, 2, 5, 5, 3, 5, 5, 2, 2, 4, 4, 3, 3, 3]) dp_unit = [(dp[x].value*dim_scale[x])**-1 for x in range(len(dp))] return dp_unit def test_inversion(name='gd1', Ndim=6, vary=['progenitor', 'bary', 'halo'], align=True, errmode='fiducial'): """""" pid, dp, vlabel = get_varied_pars(vary) d = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = d['cxi'] N = np.shape(cxi)[0] cx_ = np.linalg.inv(cxi) cx = stable_inverse(cxi, verbose=True, maxiter=100) #cx_ii = stable_inverse(cx, verbose=True, maxiter=50) print('condition {:g}'.format(np.linalg.cond(cxi))) print('linalg inverse', np.allclose(np.matmul(cx_,cxi), np.eye(N))) print('stable inverse', np.allclose(np.matmul(cx,cxi), np.eye(N))) #print(np.matmul(cx,cxi)) #print('inverse inverse', np.allclose(cx_ii, cxi)) def stable_inverse(a, maxiter=20, verbose=False): """Invert a matrix with a bad condition number""" N = np.shape(a)[0] # guess q = np.linalg.inv(a) qa = np.matmul(q,a) # iterate for i in range(maxiter): if verbose: print(i, np.sqrt(np.sum((qa - np.eye(N))**2)), np.allclose(qa, np.eye(N))) if np.allclose(qa, np.eye(N)): return q qai = np.linalg.inv(qa) q = np.matmul(qai,q) qa = np.matmul(q,a) return q def crb_triangle(n, vary, Ndim=6, align=True, plot='all', fast=False): """""" pid, dp, vlabel = get_varied_pars(vary) plabels, units = get_parlabel(pid) params = ['$\Delta$' + x + '({})'.format(y) for x,y in zip(plabels, units)] if align: alabel = '_align' else: alabel = '' fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) #print(cx[0][0]) if plot=='halo': cx = cx[:4, :4] params = params[:4] elif plot=='bary': cx = cx[4:9, 4:9] params = params[4:9] elif plot=='progenitor': cx = cx[9:, 9:] params = params[9:] Nvar = len(params) plt.close() dax = 2 fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(dax*Nvar, dax*Nvar), sharex='col', sharey='row') for i in range(0,Nvar-1): for j in range(i+1,Nvar): plt.sca(ax[j-1][i]) cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]]) w, v = np.linalg.eig(cx_2d) if np.all(np.isreal(v)): theta = np.degrees(np.arccos(v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=mpl.cm.bone(0.5), lw=2) plt.gca().add_patch(e) plt.gca().autoscale_view() #plt.xlim(-ylim[i],ylim[i]) #plt.ylim(-ylim[j], ylim[j]) if j==Nvar-1: plt.xlabel(params[i]) if i==0: plt.ylabel(params[j]) # turn off unused axes for i in range(0,Nvar-1): for j in range(i+1,Nvar-1): plt.sca(ax[i][j]) plt.axis('off') plt.tight_layout() plt.savefig('../plots/crb_triangle_{:s}_{:d}_{:s}_{:d}_{:s}.pdf'.format(alabel, n, vlabel, Ndim, plot)) def crb_triangle_alldim(name='gd1', vary=['progenitor', 'bary', 'halo'], align=True, plot='all', fast=False, scale=False, errmode='fiducial'): """Show correlations in CRB between a chosen set of parameters in a triangle plot""" pid, dp_fid, vlabel = get_varied_pars(vary) dp_opt = read_optimal_step(name, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] plabels, units = get_parlabel(pid) punits = [' ({})'.format(x) if len(x) else '' for x in units] params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)] if plot=='halo': i0 = 11 i1 = 15 elif plot=='bary': i0 = 6 i1 = 11 elif plot=='progenitor': i0 = 0 i1 = 6 elif plot=='dipole': i0 = 15 i1 = len(params) else: i0 = 0 i1 = len(params) Nvar = i1 - i0 params = params[i0:i1] if scale: dp_unit = unity_scale(dp) #print(dp_unit) dp_unit = dp_unit[i0:i1] pid = pid[i0:i1] label = ['RA, Dec, d', 'RA, Dec, d, $V_r$', 'RA, Dec, d, $V_r$, $\mu_\\alpha$, $\mu_\delta$'] plt.close() dax = 2 fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(dax*Nvar, dax*Nvar), sharex='col', sharey='row') for l, Ndim in enumerate([3, 4, 6]): fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] #cxi = np.load('../data/crb/bspline_cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npy'.format(errmode, Ndim, name, align, vlabel)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) cx = cx[i0:i1,i0:i1] for i in range(0,Nvar-1): for j in range(i+1,Nvar): plt.sca(ax[j-1][i]) if scale: cx_2d = np.array([[cx[i][i]/dp_unit[i]**2, cx[i][j]/(dp_unit[i]*dp_unit[j])], [cx[j][i]/(dp_unit[j]*dp_unit[i]), cx[j][j]/dp_unit[j]**2]]) else: cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]]) w, v = np.linalg.eig(cx_2d) if np.all(np.isreal(v)): theta = np.degrees(np.arctan2(v[1][0], v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=mpl.cm.bone(0.1+l/4), lw=2, label=label[l]) plt.gca().add_patch(e) if l==1: plt.gca().autoscale_view() if j==Nvar-1: plt.xlabel(params[i]) if i==0: plt.ylabel(params[j]) # turn off unused axes for i in range(0,Nvar-1): for j in range(i+1,Nvar-1): plt.sca(ax[i][j]) plt.axis('off') plt.sca(ax[int(Nvar/2-1)][int(Nvar/2-1)]) plt.legend(loc=2, bbox_to_anchor=(1,1)) plt.tight_layout() plt.savefig('../plots/cxi_{:s}_{:s}_a{:1d}_{:s}_{:s}.pdf'.format(errmode, name, align, vlabel, plot)) def compare_optimal_steps(): """""" vary = ['progenitor', 'bary', 'halo', 'dipole', 'quad'] vary = ['progenitor', 'bary', 'halo'] for name in ['gd1', 'tri']: print(name) print(read_optimal_step(name, vary)) def get_crb(name, Nstep=10, vary=['progenitor', 'bary', 'halo'], first=True): """""" if first: store_progparams(name) wrap_angles(name, save=True) progenitor_prior(name) find_greatcircle(name=name) endpoints(name) for v in vary: step_convergence(name=name, Nstep=Nstep, vary=v) choose_step(name=name, Nstep=Nstep, vary=v) calculate_crb(name=name, vary=vary, verbose=True) crb_triangle_alldim(name=name, vary=vary) ######################## # cartesian coordinates # accelerations def acc_kepler(x, p=1*u.Msun): """Keplerian acceleration""" r = np.linalg.norm(x)*u.kpc a = -G * p * 1e11 * r**-3 * x return a.to(u.pc*u.Myr**-2) def acc_bulge(x, p=[pparams_fid[j] for j in range(2)]): """""" r = np.linalg.norm(x)*u.kpc a = -(G*p[0]*x/(r * (r + p[1])**2)).to(u.pc*u.Myr**-2) return a def acc_disk(x, p=[pparams_fid[j] for j in range(2,5)]): """""" R = np.linalg.norm(x[:2])*u.kpc z = x[2] a = -(G*p[0]*x * (R**2 + (p[1] + np.sqrt(z**2 + p[2]**2))**2)**-1.5).to(u.pc*u.Myr**-2) a[2] *= (1 + p[2]/np.sqrt(z**2 + p[2]**2)) return a def acc_nfw(x, p=[pparams_fid[j] for j in [5,6,8,10]]): """""" r = np.linalg.norm(x)*u.kpc q = np.array([1*u.Unit(1), p[2], p[3]]) a = (p[0]**2 * p[1] * r**-3 * (1/(1+p[1]/r) - np.log(1+r/p[1])) * x * q**-2).to(u.pc*u.Myr**-2) return a def acc_dipole(x, p=[pparams_fid[j] for j in range(11,14)]): """Acceleration due to outside dipole perturbation""" pv = [x.value for x in p] a = np.sqrt(3/(4*np.pi)) * np.array([pv[2], pv[0], pv[1]])*u.pc*u.Myr**-2 return a def acc_quad(x, p=[pparams_fid[j] for j in range(14,19)]): """Acceleration due to outside quadrupole perturbation""" a = np.zeros(3)*u.pc*u.Myr**-2 f = 0.5*np.sqrt(15/np.pi) a[0] = x[0]*(f*p[4] - f/np.sqrt(3)*p[2]) + x[1]*f*p[0] + x[2]*f*p[3] a[1] = x[0]*f*p[0] - x[1]*(f*p[4] + f/np.sqrt(3)*p[2]) + x[2]*f*p[1] a[2] = x[0]*f*p[3] + x[1]*f*p[1] + x[2]*2*f/np.sqrt(3)*p[2] return a.to(u.pc*u.Myr**-2) def acc_octu(x, p=[pparams_fid[j] for j in range(19,26)]): """Acceleration due to outside octupole perturbation""" a = np.zeros(3)*u.pc*u.Myr**-2 f = np.array([0.25*np.sqrt(35/(2*np.pi)), 0.5*np.sqrt(105/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(7/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(105/np.pi), 0.25*np.sqrt(35/(2*np.pi))]) xu = x.unit pu = p[0].unit pvec = np.array([i.value for i in p]) * pu dmat = np.ones((3,7)) * f * pvec * xu**2 x = np.array([i.value for i in x]) dmat[0] *= np.array([6*x[0]*x[1], x[1]*x[2], -2*x[0]*x[1], -6*x[0]*x[2], 4*x[2]**2-x[1]**2-3*x[0]**2, 2*x[0]*x[2], 3*x[0]**2-3*x[1]**2]) dmat[1] *= np.array([3*x[0]**2-3*x[1]**2, x[0]*x[2], 4*x[2]**2-x[0]**2-3*x[1]**2, -6*x[1]*x[2], -2*x[0]*x[1], -2*x[1]*x[2], -6*x[0]*x[1]]) dmat[2] *= np.array([0, x[0]*x[1], 8*x[1]*x[2], 6*x[2]**2-3*x[0]**2-3*x[1]**2, 8*x[0]*x[2], x[0]**2-x[1]**2, 0]) a = np.einsum('ij->i', dmat) * dmat.unit return a.to(u.pc*u.Myr**-2) # derivatives def der_kepler(x, p=1*u.Msun): """Derivative of Kepler potential parameters wrt cartesian components of the acceleration""" r = np.linalg.norm(x)*u.kpc dmat = np.zeros((3,1)) * u.pc**-1 * u.Myr**2 * u.Msun dmat[:,0] = (-r**3/(G*x)).to(u.pc**-1 * u.Myr**2 * u.Msun) * 1e-11 return dmat.value def pder_kepler(x, p=1*u.Msun): """Derivative of cartesian components of the acceleration wrt to Kepler potential parameter""" r = np.linalg.norm(x)*u.kpc dmat = np.zeros((3,1)) * u.pc * u.Myr**-2 * u.Msun**-1 dmat[:,0] = (-G*x*r**-3).to(u.pc * u.Myr**-2 * u.Msun**-1) * 1e11 return dmat.value def pder_nfw(x, pu=[pparams_fid[j] for j in [5,6,8,10]]): """Calculate derivatives of cartesian components of the acceleration wrt halo potential parameters""" p = pu q = np.array([1, p[2], p[3]]) # physical quantities r = np.linalg.norm(x)*u.kpc a = acc_nfw(x, p=pu) # derivatives dmat = np.zeros((3, 4)) # Vh dmat[:,0] = 2*a/p[0] # Rh dmat[:,1] = a/p[1] + p[0]**2 * p[1] * r**-3 * (1/(p[1]+p[1]**2/r) - 1/(r*(1+p[1]/r)**2)) * x * q**-2 # qy, qz for i in [1,2]: dmat[i,i+1] = (-2*a[i]/q[i]).value return dmat def pder_bulge(x, pu=[pparams_fid[j] for j in range(2)]): """Calculate derivarives of cartesian components of the acceleration wrt Hernquist bulge potential parameters""" # coordinates r = np.linalg.norm(x)*u.kpc # accelerations ab = acc_bulge(x, p=pu[:2]) # derivatives dmat = np.zeros((3, 2)) # Mb dmat[:,0] = ab/pu[0] # ab dmat[:,1] = 2 * ab / (r + pu[1]) return dmat def pder_disk(x, pu=[pparams_fid[j] for j in range(2,5)]): """Calculate derivarives of cartesian components of the acceleration wrt Miyamoto-Nagai disk potential parameters""" # coordinates R = np.linalg.norm(x[:2])*u.kpc z = x[2] aux = np.sqrt(z**2 + pu[2]**2) # accelerations ad = acc_disk(x, p=pu) # derivatives dmat = np.zeros((3, 3)) # Md dmat[:,0] = ad / pu[0] # ad dmat[:,1] = 3 * ad * (pu[1] + aux) / (R**2 + (pu[1] + aux)**2) # bd dmat[:2,2] = 3 * ad[:2] * (pu[1] + aux) / (R**2 + (pu[1] + aux)**2) * pu[2] / aux dmat[2,2] = (3 * ad[2] * (pu[1] + aux) / (R**2 + (pu[1] + aux)**2) * pu[2] / aux - G * pu[0] * z * (R**2 + (pu[1] + aux)**2)**-1.5 * z**2 * (pu[2]**2 + z**2)**-1.5).value return dmat def der_dipole(x, pu=[pparams_fid[j] for j in range(11,14)]): """Calculate derivatives of dipole potential parameters wrt (Cartesian) components of the acceleration vector a""" # shape: 3, Npar dmat = np.zeros((3,3)) f = np.sqrt((4*np.pi)/3) dmat[0,2] = f dmat[1,0] = f dmat[2,1] = f return dmat def pder_dipole(x, pu=[pparams_fid[j] for j in range(11,14)]): """Calculate derivatives of (Cartesian) components of the acceleration vector a wrt dipole potential parameters""" # shape: 3, Npar dmat = np.zeros((3,3)) f = np.sqrt(3/(4*np.pi)) dmat[0,2] = f dmat[1,0] = f dmat[2,1] = f return dmat def der_quad(x, p=[pparams_fid[j] for j in range(14,19)]): """Caculate derivatives of quadrupole potential parameters wrt (Cartesian) components of the acceleration vector a""" f = 2/np.sqrt(15/np.pi) s = np.sqrt(3) x = [1e-3/i.value for i in x] dmat = np.ones((3,5)) * f dmat[0] = np.array([x[1], 0, -s*x[0], x[2], x[0]]) dmat[1] = np.array([x[0], x[2], -s*x[1], 0, -x[1]]) dmat[2] = np.array([0, x[1], 0.5*s*x[2], x[0], 0]) return dmat def pder_quad(x, p=[pparams_fid[j] for j in range(14,19)]): """Caculate derivatives of (Cartesian) components of the acceleration vector a wrt quadrupole potential parameters""" f = 0.5*np.sqrt(15/np.pi) s = 1/np.sqrt(3) x = [1e-3*i.value for i in x] dmat = np.ones((3,5)) * f dmat[0] *= np.array([x[1], 0, -s*x[0], x[2], x[0]]) dmat[1] *= np.array([x[0], x[2], -s*x[1], 0, -x[1]]) dmat[2] *= np.array([0, x[1], 2*s*x[2], x[0], 0]) return dmat def pder_octu(x, p=[pparams_fid[j] for j in range(19,26)]): """Caculate derivatives of (Cartesian) components of the acceleration vector a wrt octupole potential parameters""" f = np.array([0.25*np.sqrt(35/(2*np.pi)), 0.5*np.sqrt(105/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(7/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(105/np.pi), 0.25*np.sqrt(35/(2*np.pi))]) x = [1e-3*i.value for i in x] dmat = np.ones((3,7)) * f dmat[0] *= np.array([6*x[0]*x[1], x[1]*x[2], -2*x[0]*x[1], -6*x[0]*x[2], 4*x[2]**2-x[1]**2-3*x[0]**2, 2*x[0]*x[2], 3*x[0]**2-3*x[1]**2]) dmat[1] *= np.array([3*x[0]**2-3*x[1]**2, x[0]*x[2], 4*x[2]**2-x[0]**2-3*x[1]**2, -6*x[1]*x[2], -2*x[0]*x[1], -2*x[1]*x[2], -6*x[0]*x[1]]) dmat[2] *= np.array([0, x[0]*x[1], 8*x[1]*x[2], 6*x[2]**2-3*x[0]**2-3*x[1]**2, 8*x[0]*x[2], x[0]**2-x[1]**2, 0]) return dmat def crb_ax(n, Ndim=6, vary=['halo', 'bary', 'progenitor'], align=True, fast=False): """Calculate CRB inverse matrix for 3D acceleration at position x in a halo potential""" pid, dp, vlabel = get_varied_pars(vary) if align: alabel = '_align' else: alabel = '' # read in full inverse CRB for stream modeling cxi = np.load('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) # subset halo parameters Nhalo = 4 cq = cx[:Nhalo,:Nhalo] if fast: cqi = np.linalg.inv(cq) else: cqi = stable_inverse(cq) xi = np.array([-8.3, 0.1, 0.1])*u.kpc x0, v0 = gd1_coordinates() #xi = np.array(x0)*u.kpc d = 50 Nb = 20 x = np.linspace(x0[0]-d, x0[0]+d, Nb) y = np.linspace(x0[1]-d, x0[1]+d, Nb) x = np.linspace(-d, d, Nb) y = np.linspace(-d, d, Nb) xv, yv = np.meshgrid(x, y) xf = np.ravel(xv) yf = np.ravel(yv) af = np.empty((Nb**2, 3)) plt.close() fig, ax = plt.subplots(3,3,figsize=(11,10)) dimension = ['x', 'y', 'z'] xlabel = ['y', 'x', 'x'] ylabel = ['z', 'z', 'y'] for j in range(3): if j==0: xin = np.array([np.repeat(x0[j], Nb**2), xf, yf]).T elif j==1: xin = np.array([xf, np.repeat(x0[j], Nb**2), yf]).T elif j==2: xin = np.array([xf, yf, np.repeat(x0[j], Nb**2)]).T for i in range(Nb**2): #xi = np.array([xf[i], yf[i], x0[2]])*u.kpc xi = xin[i]*u.kpc a = acc_nfw(xi) dqda = halo_accelerations(xi) cai = np.matmul(dqda, np.matmul(cqi, dqda.T)) if fast: ca = np.linalg.inv(cai) else: ca = stable_inverse(cai) a_crb = (np.sqrt(np.diag(ca)) * u.km**2 * u.kpc**-1 * u.s**-2).to(u.pc*u.Myr**-2) af[i] = np.abs(a_crb/a) af[i] = a_crb for i in range(3): plt.sca(ax[j][i]) im = plt.imshow(af[:,i].reshape(Nb,Nb), extent=[-d, d, -d, d], cmap=mpl.cm.gray) #, norm=mpl.colors.LogNorm(), vmin=1e-2, vmax=0.1) plt.xlabel(xlabel[j]+' (kpc)') plt.ylabel(ylabel[j]+' (kpc)') divider = make_axes_locatable(plt.gca()) cax = divider.append_axes("top", size="4%", pad=0.05) plt.colorbar(im, cax=cax, orientation='horizontal') plt.gca().xaxis.set_ticks_position('top') cax.tick_params(axis='x', labelsize='xx-small') if j==0: plt.title('a$_{}$'.format(dimension[i]), y=4) plt.tight_layout(rect=[0,0,1,0.95]) plt.savefig('../plots/acc_{}_{}_{}.png'.format(n, vlabel, Ndim)) def acc_cart(x, components=['bary', 'halo', 'dipole']): """""" acart = np.zeros(3) * u.pc*u.Myr**-2 dict_acc = {'bary': [acc_bulge, acc_disk], 'halo': [acc_nfw], 'dipole': [acc_dipole], 'quad': [acc_quad], 'octu': [acc_octu], 'point': [acc_kepler]} accelerations = [] for c in components: accelerations += dict_acc[c] for acc in accelerations: a_ = acc(x) acart += a_ return acart def acc_rad(x, components=['bary', 'halo', 'dipole']): """Return radial acceleration""" r = np.linalg.norm(x) * x.unit theta = np.arccos(x[2].value/r.value) phi = np.arctan2(x[1].value, x[0].value) trans = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)]) a_cart = acc_cart(x, components=components) a_rad = np.dot(a_cart, trans) return a_rad def ader_cart(x, components=['bary', 'halo', 'dipole']): """""" dacart = np.empty((3,0)) dict_der = {'bary': [der_bulge, der_disk], 'halo': [der_nfw], 'dipole': [der_dipole], 'quad': [der_quad], 'point': [der_kepler]} derivatives = [] for c in components: derivatives += dict_der[c] for ader in derivatives: da_ = ader(x) dacart = np.hstack((dacart, da_)) return dacart def apder_cart(x, components=['bary', 'halo', 'dipole']): """""" dacart = np.empty((3,0)) dict_der = {'bary': [pder_bulge, pder_disk], 'halo': [pder_nfw], 'dipole': [pder_dipole], 'quad': [pder_quad], 'octu': [pder_octu], 'point': [pder_kepler]} derivatives = [] for c in components: derivatives += dict_der[c] for ader in derivatives: da_ = ader(x) dacart = np.hstack((dacart, da_)) return dacart def apder_rad(x, components=['bary', 'halo', 'dipole']): """Return dar/dx_pot (radial acceleration/potential parameters) evaluated at vector x""" r = np.linalg.norm(x) * x.unit theta = np.arccos(x[2].value/r.value) phi = np.arctan2(x[1].value, x[0].value) trans = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)]) dadq_cart = apder_cart(x, components=components) dadq_rad = np.einsum('ij,i->j', dadq_cart, trans) return dadq_rad def crb_acart(n, Ndim=6, vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], component='all', align=True, d=20, Nb=50, fast=False, scale=False, relative=True, progenitor=False, errmode='fiducial'): """""" pid, dp_fid, vlabel = get_varied_pars(vary) if align: alabel = '_align' else: alabel = '' if relative: vmin = 1e-2 vmax = 1 rlabel = ' / a' else: vmin = 3e-1 vmax = 1e1 rlabel = ' (pc Myr$^{-2}$)' # read in full inverse CRB for stream modeling cxi = np.load('../data/crb/bspline_cxi{:s}_{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, errmode, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Npoint = [6, 5, 4, 3, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] Npot = np.shape(cq)[0] if fast: cqi = np.linalg.inv(cq) else: cqi = stable_inverse(cq) if scale: dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]]) scale_mat = np.outer(scale_vec, scale_vec) cqi *= scale_mat if progenitor: x0, v0 = gd1_coordinates() else: x0 = np.array([4, 4, 0]) Rp = np.linalg.norm(x0[:2]) zp = x0[2] R = np.linspace(-d, d, Nb) k = x0[1]/x0[0] x = R/np.sqrt(1+k**2) y = k * x z = np.linspace(-d, d, Nb) xv, zv = np.meshgrid(x, z) yv, zv = np.meshgrid(y, z) xin = np.array([np.ravel(xv), np.ravel(yv), np.ravel(zv)]).T Npix = np.size(xv) af = np.empty((Npix, 3)) derf = np.empty((Npix, 3, Npot)) for i in range(Npix): xi = xin[i]*u.kpc a = acc_cart(xi, components=components) dadq = apder_cart(xi, components=components) derf[i] = dadq ca = np.matmul(dadq, np.matmul(cq, dadq.T)) a_crb = np.sqrt(np.diag(ca)) * u.pc * u.Myr**-2 if relative: af[i] = np.abs(a_crb/a) else: af[i] = a_crb #print(xi, a_crb) # save np.savez('../data/crb_acart{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}'.format(alabel, errmode, n, vlabel, component, Ndim, d, Nb, relative), acc=af, x=xin, der=derf) plt.close() fig, ax = plt.subplots(1, 3, figsize=(15, 5)) label = ['$\Delta$ $a_X$', '$\Delta$ $a_Y$', '$\Delta$ $a_Z$'] for i in range(3): plt.sca(ax[i]) im = plt.imshow(af[:,i].reshape(Nb, Nb), origin='lower', extent=[-d, d, -d, d], cmap=mpl.cm.gray, vmin=vmin, vmax=vmax, norm=mpl.colors.LogNorm()) if progenitor: plt.plot(Rp, zp, 'r*', ms=10) plt.xlabel('R (kpc)') plt.ylabel('Z (kpc)') divider = make_axes_locatable(plt.gca()) cax = divider.append_axes("right", size="3%", pad=0.1) plt.colorbar(im, cax=cax) plt.ylabel(label[i] + rlabel) plt.tight_layout() plt.savefig('../plots/crb_acc_cart{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}.png'.format(alabel, errmode, n, vlabel, component, Ndim, d, Nb, relative)) def crb_acart_cov(n, Ndim=6, vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], component='all', j=0, align=True, d=20, Nb=30, fast=False, scale=False, relative=True, progenitor=False, batch=False, errmode='fiducial'): """""" pid, dp_fid, vlabel = get_varied_pars(vary) if align: alabel = '_align' else: alabel = '' if relative: vmin = 1e-2 vmax = 1 rlabel = ' / a' else: vmin = -0.005 vmax = 0.005 #vmin = 1e-2 #vmax = 1e0 rlabel = ' (pc Myr$^{-2}$)' # read in full inverse CRB for stream modeling cxi = np.load('../data/crb/bspline_cxi{:s}_{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, errmode, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] Npot = np.shape(cq)[0] if fast: cqi = np.linalg.inv(cq) else: cqi = stable_inverse(cq) if scale: dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]]) scale_mat = np.outer(scale_vec, scale_vec) cqi *= scale_mat if progenitor: prog_coords = {-1: gd1_coordinates(), -2: pal5_coordinates(), -3: tri_coordinates(), -4: atlas_coordinates()} x0, v0 = prog_coords[n] print(x0) else: x0 = np.array([4, 4, 0]) Rp = np.linalg.norm(x0[:2]) zp = x0[2] R = np.linspace(-d, d, Nb) k = x0[1]/x0[0] x = R/np.sqrt(1+k**2) y = k * x z = np.linspace(-d, d, Nb) xv, zv = np.meshgrid(x, z) yv, zv = np.meshgrid(y, z) xin = np.array([np.ravel(xv), np.ravel(yv), np.ravel(zv)]).T Npix = np.size(xv) af = np.empty((Npix, 3)) derf = np.empty((Npix*3, Npot)) for i in range(Npix): xi = xin[i]*u.kpc a = acc_cart(xi, components=components) dadq = apder_cart(xi, components=components) derf[i*3:(i+1)*3] = dadq ca = np.matmul(derf, np.matmul(cq, derf.T)) Nx = Npot Nw = Npix*3 vals, vecs = la.eigh(ca, eigvals=(Nw - Nx - 2, Nw - 1)) ## check orthogonality: #for i in range(Npot-1): #for k in range(i+1, Npot): #print(i, k) #print(np.dot(vecs[:,i], vecs[:,k])) #print(np.dot(vecs[::3,i], vecs[::3,k]), np.dot(vecs[1::3,i], vecs[1::3,k]), np.dot(vecs[1::3,i], vecs[1::3,k])) # save np.savez('../data/crb_acart_cov{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}_{:d}'.format(alabel, errmode, n, vlabel, component, Ndim, d, Nb, relative, progenitor), x=xin, der=derf, c=ca) plt.close() fig, ax = plt.subplots(1, 3, figsize=(15, 5)) if j==0: vcomb = np.sqrt(np.sum(vecs**2*vals, axis=1)) label = ['($\Sigma$ Eigval $\\times$ Eigvec$^2$ $a_{}$'.format(x)+')$^{1/2}$' for x in ['X', 'Y', 'Z']] vmin = 1e-2 vmax = 5e0 norm = mpl.colors.LogNorm() else: vcomb = vecs[:,j] label = ['Eig {} $a_{}$'.format(np.abs(j), x) for x in ['X', 'Y', 'Z']] vmin = -0.025 vmax = 0.025 norm = None for i in range(3): plt.sca(ax[i]) #im = plt.imshow(vecs[i::3,j].reshape(Nb, Nb), origin='lower', extent=[-d, d, -d, d], cmap=mpl.cm.gray, vmin=vmin, vmax=vmax) im = plt.imshow(vcomb[i::3].reshape(Nb, Nb), origin='lower', extent=[-d, d, -d, d], cmap=mpl.cm.gray, vmin=vmin, vmax=vmax, norm=norm) if progenitor: plt.plot(Rp, zp, 'r*', ms=10) plt.xlabel('R (kpc)') plt.ylabel('Z (kpc)') divider = make_axes_locatable(plt.gca()) cax = divider.append_axes("right", size="3%", pad=0.1) plt.colorbar(im, cax=cax) plt.ylabel(label[i]) plt.tight_layout() if batch: return fig else: plt.savefig('../plots/crb_acc_cart_cov{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}_{:d}_{:d}.png'.format(alabel, errmode, n, vlabel, component, np.abs(j), Ndim, d, Nb, relative, progenitor)) def a_vecfield(vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], component='all', d=20, Nb=10): """Plot acceleration field in R,z plane""" if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] x0 = np.array([4, 4, 0]) R = np.linspace(-d, d, Nb) k = x0[1]/x0[0] x = R/np.sqrt(1+k**2) y = k * x z = np.linspace(-d, d, Nb) xv, zv = np.meshgrid(x, z) yv, zv = np.meshgrid(y, z) xin = np.array([np.ravel(xv), np.ravel(yv), np.ravel(zv)]).T Rin = np.linalg.norm(xin[:,:2], axis=1) * np.sign(xin[:,0]) zin = xin[:,2] Npix = np.size(xv) acart_pix = np.empty((Npix, 3)) acyl_pix = np.empty((Npix, 2)) for i in range(Npix): xi = xin[i]*u.kpc acart = acc_cart(xi, components=components) acart_pix[i] = acart acyl_pix[:,0] = np.linalg.norm(acart_pix[:,:2], axis=1) * -np.sign(xin[:,0]) acyl_pix[:,1] = acart_pix[:,2] plt.close() plt.figure() plt.quiver(Rin, zin, acyl_pix[:,0], acyl_pix[:,1]) plt.tight_layout() def a_crbcov_vecfield(n, Ndim=6, vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], errmode='fiducial', component='all', j=0, align=True, d=20, Nb=10, fast=False, scale=True, relative=False, progenitor=False, batch=False): """""" pid, dp_fid, vlabel = get_varied_pars(vary) if align: alabel = '_align' else: alabel = '' if relative: vmin = 1e-2 vmax = 1 rlabel = ' / a' else: vmin = -0.005 vmax = 0.005 #vmin = 1e-2 #vmax = 1e0 rlabel = ' (pc Myr$^{-2}$)' # read in full inverse CRB for stream modeling cxi = np.load('../data/crb/bspline_cxi{:s}_{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, errmode, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] Npot = np.shape(cq)[0] if fast: cqi = np.linalg.inv(cq) else: cqi = stable_inverse(cq) if scale: dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]]) scale_mat = np.outer(scale_vec, scale_vec) cqi *= scale_mat if progenitor: x0, v0 = gd1_coordinates() else: x0 = np.array([4, 4, 0]) Rp = np.linalg.norm(x0[:2]) zp = x0[2] R = np.linspace(-d, d, Nb) k = x0[1]/x0[0] x = R/np.sqrt(1+k**2) y = k * x z = np.linspace(-d, d, Nb) xv, zv = np.meshgrid(x, z) yv, zv = np.meshgrid(y, z) xin = np.array([np.ravel(xv), np.ravel(yv), np.ravel(zv)]).T Rin = np.linalg.norm(xin[:,:2], axis=1) * np.sign(xin[:,0]) zin = xin[:,2] Npix = np.size(xv) acart_pix = np.empty((Npix, 3)) acyl_pix = np.empty((Npix, 2)) vcomb_pix = np.empty((Npix, 2)) af = np.empty((Npix, 3)) derf = np.empty((Npix*3, Npot)) for i in range(Npix): xi = xin[i]*u.kpc a = acc_cart(xi, components=components) acart_pix[i] = a dadq = apder_cart(xi, components=components) derf[i*3:(i+1)*3] = dadq acyl_pix[:,0] = np.linalg.norm(acart_pix[:,:2], axis=1) * -np.sign(xin[:,0]) acyl_pix[:,1] = acart_pix[:,2] ca = np.matmul(derf, np.matmul(cq, derf.T)) Nx = Npot Nw = Npix*3 vals, vecs = la.eigh(ca, eigvals=(Nw - Nx - 2, Nw - 1)) if j==0: vcomb = np.sqrt(np.sum(vecs**2*vals, axis=1)) label = ['($\Sigma$ Eigval $\\times$ Eigvec$^2$ $a_{}$'.format(x)+')$^{1/2}$' for x in ['X', 'Y', 'Z']] vmin = 1e-3 vmax = 1e-1 norm = mpl.colors.LogNorm() else: vcomb = vecs[:,j]*np.sqrt(vals[j]) label = ['Eig {} $a_{}$'.format(np.abs(j), x) for x in ['X', 'Y', 'Z']] vmin = -0.025 vmax = 0.025 norm = None vcomb_pix[:,0] = np.sqrt(vcomb[0::3]**2 + vcomb[1::3]**2) * -np.sign(xin[:,0]) #vcomb_pix[:,0] = np.sqrt(vcomb[0::3]**2 + vcomb[1::3]**2) * -np.sign(vcomb[0::3]) vcomb_pix[:,1] = vcomb[2::3] plt.close() fig, ax = plt.subplots(1,2,figsize=(10,5)) plt.sca(ax[0]) plt.quiver(Rin, zin, acyl_pix[:,0], acyl_pix[:,1], pivot='middle') plt.xlabel('R (kpc)') plt.ylabel('Z (kpc)') plt.title('Acceleration {}'.format(component), fontsize='medium') plt.sca(ax[1]) plt.quiver(Rin, zin, vcomb_pix[:,0], vcomb_pix[:,1], pivot='middle', headwidth=0, headlength=0, headaxislength=0, scale=0.02, scale_units='xy') plt.xlabel('R (kpc)') plt.ylabel('Z (kpc)') plt.title('Eigenvector {}'.format(np.abs(j)), fontsize='medium') plt.tight_layout() if batch: return fig else: plt.savefig('../plots/afield_crbcov{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}_{:d}.png'.format(alabel, errmode, n, vlabel, component, np.abs(j), Ndim, d, Nb, relative)) def summary(n, mode='scalar', vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], errmode='fiducial', component='all'): """""" pid, dp_fid, vlabel = get_varied_pars(vary) fn = {'scalar': crb_acart_cov, 'vector': a_crbcov_vecfield} bins = {'scalar': 30, 'vector': 10} Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] Npars = {'bary': Nbary, 'halo': Nhalo, 'dipole': Ndipole, 'quad': Nquad, 'point': Npoint} if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] Niter = [Npars[x] for x in components] Niter = sum(Niter) + 1 pp = PdfPages('../plots/acceleration_{}_{}_{}_{}_{}.pdf'.format(n, errmode, vlabel, component, mode)) for i in range(Niter): print(i, Niter) fig = fn[mode](-1, progenitor=True, batch=True, errmode=errmode, vary=vary, component=component, j=-i, d=20, Nb=bins[mode]) pp.savefig(fig) pp.close() ######### # Summary def full_names(): """""" full = {'gd1': 'GD-1', 'atlas': 'ATLAS', 'tri': 'Triangulum', 'ps1a': 'PS1A', 'ps1b': 'PS1B', 'ps1c': 'PS1C', 'ps1d': 'PS1D', 'ps1e': 'PS1E', 'ophiuchus': 'Ophiuchus', 'hermus': 'Hermus', 'kwando': 'Kwando', 'orinoco': 'Orinoco', 'sangarius': 'Sangarius', 'scamander': 'Scamander'} return full def full_name(name): """""" full = full_names() return full[name] def get_done(sort_length=False): """""" done = ['gd1', 'tri', 'atlas', 'ps1a', 'ps1c', 'ps1e', 'ophiuchus', 'kwando', 'orinoco', 'sangarius', 'hermus', 'ps1d'] done = ['gd1', 'tri', 'atlas', 'ps1a', 'ps1c', 'ps1e', 'kwando', 'orinoco', 'sangarius', 'hermus', 'ps1d'] # length if sort_length: tosort = [] for name in done: mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) tosort += [np.max(mock['xi_range']) - np.min(mock['xi_range'])] done = [x for _,x in sorted(zip(tosort,done))] else: tosort = [] vary = ['progenitor', 'bary', 'halo'] Ndim = 6 errmode = 'fiducial' align = True pid, dp_fid, vlabel = get_varied_pars(vary) pid_vh = myutils.wherein(np.array(pid), np.array([5])) for name in done: fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] cx = stable_inverse(cxi) crb = np.sqrt(np.diag(cx)) tosort += [crb[pid_vh]] done = [x for _,x in sorted(zip(tosort,done))][::-1] return done def store_mocks(): """""" done = get_done() for name in done: stream = stream_model(name) np.save('../data/streams/mock_observed_{}'.format(name), stream.obs) def period(name): """Return orbital period in units of stepsize and number of complete periods""" orbit = stream_orbit(name=name) r = np.linalg.norm(orbit['x'].to(u.kpc), axis=0) a = np.abs(np.fft.rfft(r)) f = np.argmax(a[1:]) + 1 p = np.size(a)/f return (p, f) def extract_crbs(Ndim=6, vary=['progenitor', 'bary', 'halo'], component='halo', errmode='fiducial', j=0, align=True, fast=False, scale=False): """""" pid, dp_fid, vlabel = get_varied_pars(vary) names = get_done() tout = Table(names=('name', 'crb')) pparams0 = pparams_fid pid_comp, dp_fid2, vlabel2 = get_varied_pars(component) Np = len(pid_comp) pid_crb = myutils.wherein(np.array(pid), np.array(pid_comp)) plt.close() fig, ax = plt.subplots(Np,1,figsize=(10,15), subplot_kw=dict(projection='mollweide')) for name in names[:]: fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) crb = np.sqrt(np.diag(cx)) #print([pparams0[pid_comp[i]] for i in range(Np)]) crb_frac = [crb[pid_crb[i]]/pparams0[pid_comp[i]].value for i in range(Np)] print(name, crb_frac) stream = stream_model(name=name) for i in range(Np): plt.sca(ax[i]) color_index = np.array(crb_frac[:]) color_index[color_index>0.2] = 0.2 color_index /= 0.2 color = mpl.cm.viridis(color_index[i]) plt.plot(np.radians(stream.obs[0]), np.radians(stream.obs[1]), 'o', color=color, ms=4) for i in range(Np): plt.sca(ax[i]) #plt.xlabel('RA') plt.ylabel('Dec') plt.text(0.9, 0.9, '$\Delta$ {}'.format(get_parlabel(pid_comp[i])[0]), fontsize='medium', transform=plt.gca().transAxes, va='bottom', ha='left') plt.grid() plt.xlabel('RA') # add custom colorbar sm = plt.cm.ScalarMappable(cmap=mpl.cm.viridis, norm=plt.Normalize(vmin=0, vmax=20)) # fake up the array of the scalar mappable. Urgh... sm._A = [] if component=='bary': cb_pad = 0.1 else: cb_pad = 0.06 cb = fig.colorbar(sm, ax=ax.ravel().tolist(), pad=cb_pad, aspect=40, ticks=np.arange(0,21,5)) cb.set_label('Cramer $-$ Rao bounds (%)') #plt.tight_layout() plt.savefig('../plots/crb_onsky_{}.png'.format(component)) def vhrh_correlation(Ndim=6, vary=['progenitor', 'bary', 'halo'], component='halo', errmode='fiducial', align=True): """""" names = get_done() t = Table.read('../data/crb/ar_orbital_summary.fits') N = len(names) p = np.empty(N) pid, dp_fid, vlabel = get_varied_pars(vary) pid_comp, dp_fid2, vlabel2 = get_varied_pars(component) i = pid_comp[0] j = pid_comp[1] for e, name in enumerate(names): fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] cx = stable_inverse(cxi) p[e] = cx[i][j]/np.sqrt(cx[i][i]*cx[j][j]) plt.close() plt.figure() plt.plot(t['rapo'], p, 'ko') def allstream_2d(Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', align=True, relative=False): """Compare 2D constraints between all streams""" pid, dp_fid, vlabel = get_varied_pars(vary) names = get_done() N = len(names) # plot setup ncol = np.int64(np.ceil(np.sqrt(N))) nrow = np.int64(np.ceil(N/ncol)) w_ = 8 h_ = 1.1 * w_*nrow/ncol alpha = 1 lw = 2 frac = [0.8, 0.5, 0.2] # parameter pairs paramids = [8, 11, 12, 13, 14] all_comb = list(itertools.combinations(paramids, 2)) comb = sorted(list(set(all_comb))) Ncomb = len(comb) #print(comb) pp = PdfPages('../plots/allstreams_2d_{}_a{:1d}_{}_r{:1d}.pdf'.format(errmode, align, vlabel, relative)) for c in range(Ncomb): l, k = comb[c] plt.close() fig, ax = plt.subplots(nrow, ncol, figsize=(w_, h_), sharex=True, sharey=True) for i in range(N): plt.sca(ax[np.int64(i/ncol)][i%ncol]) for e, Ndim in enumerate([3,4,6]): color = mpl.cm.bone(frac[e]) fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, names[i], align, vlabel)) cxi = fm['cxi'] cx = stable_inverse(cxi) cx_2d = np.array([[cx[k][k], cx[k][l]], [cx[l][k], cx[l][l]]]) if relative: pk = pparams_fid[pid[k]].value pl = pparams_fid[pid[l]].value fid_2d = np.array([[pk**2, pk*pl], [pk*pl, pl**2]]) cx_2d = cx_2d / fid_2d * 100**2 w, v = np.linalg.eig(cx_2d) if np.all(np.isreal(v)): theta = np.degrees(np.arctan2(v[1][0], v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=color, alpha=alpha, lw=lw) plt.gca().add_patch(e) txt = plt.text(0.9, 0.9, full_name(names[i]), fontsize='small', transform=plt.gca().transAxes, ha='right', va='top') txt.set_bbox(dict(facecolor='w', alpha=0.7, ec='none')) if relative: plt.xlim(-20, 20) plt.ylim(-20,20) else: plt.gca().autoscale_view() plabels, units = get_parlabel([pid[k],pid[l]]) if relative: punits = [' (%)' for x in units] else: punits = [' ({})'.format(x) if len(x) else '' for x in units] params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)] for i in range(ncol): plt.sca(ax[nrow-1][i]) plt.xlabel(params[0]) for i in range(nrow): plt.sca(ax[i][0]) plt.ylabel(params[1]) for i in range(N, ncol*nrow): plt.sca(ax[np.int64(i/ncol)][i%ncol]) plt.axis('off') plt.tight_layout(h_pad=0, w_pad=0) pp.savefig(fig) pp.close() # circular velocity def pder_vc(x, p=[pparams_fid[j] for j in [0,1,2,3,4,5,6,8,10]], components=['bary', 'halo']): """""" N = np.size(x) # components if 'bary' in components: bulge = np.array([G*x*(x+p[1])**-2, -2*G*p[0]*x*(x+p[1])**-3]) aux = p[3] + p[4] disk = np.array([G*x**2*(x**2 + aux**2)**-1.5, -3*G*p[2]*x**2*aux*(x**2 + aux**2)**-2.5, -3*G*p[2]*x**2*aux*(x**2 + aux**2)**-2.5]) nfw = np.array([2*p[5]*(p[6]/x*np.log(1+x.value/p[6].value) - (1+x.value/p[6].value)**-1), p[5]**2*(np.log(1+x.value/p[6].value)/x - (x+p[6])**-1 - x*(x+p[6])**-2), np.zeros(N), np.zeros(N)]) pder = np.vstack([bulge, disk, nfw]) else: pder = np.array([2*p[0]*(p[1]/x*np.log(1+x.value/p[1].value) - (1+x.value/p[1].value)**-1), p[0]**2*(np.log(1+x.value/p[1].value)/x - (x+p[1])**-1 - x*(x+p[1])**-2), np.zeros(N), np.zeros(N)]) return pder def delta_vc_vec(Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', component='all', j=0, align=True, d=200, Nb=1000, fast=False, scale=False, ascale=False): """""" pid, dp_fid, vlabel = get_varied_pars(vary) names = get_done() labels = full_names() colors = {x: mpl.cm.bone(e/len(names)) for e, x in enumerate(names)} #colors = {'gd1': mpl.cm.bone(0), 'atlas': mpl.cm.bone(0.5), 'tri': mpl.cm.bone(0.8)} plt.close() fig, ax = plt.subplots(1,2,figsize=(10,5)) for name in names: # read in full inverse CRB for stream modeling fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] Npot = np.shape(cq)[0] if fast: cqi = np.linalg.inv(cq) else: cqi = stable_inverse(cq) if scale: dp_opt = read_optimal_step(name, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]]) scale_mat = np.outer(scale_vec, scale_vec) cqi *= scale_mat x = np.linspace(0.01, d, Nb)*u.kpc Npix = np.size(x) derf = np.transpose(pder_vc(x, components=components)) ca = np.matmul(derf, np.matmul(cq, derf.T)) Nx = Npot Nw = Nb vals, vecs = la.eigh(ca, eigvals=(Nw - Nx - 2, Nw - 1)) if j==0: vcomb = np.sqrt(np.sum(vecs**2*vals, axis=1)) #label = ['($\Sigma$ Eigval $\\times$ Eigvec$^2$ $a_{}$'.format(x)+')$^{1/2}$' for x in ['X', 'Y', 'Z']] else: vcomb = vecs[:,j]*np.sqrt(vals[j]) #label = ['Eig {} $a_{}$'.format(np.abs(j), x) for x in ['X', 'Y', 'Z']] mcomb = (vcomb*u.km**2*u.s**-2 * x / G).to(u.Msun) vc_true = vcirc_potential(x, pparams=pparams_fid) # relate to orbit orbit = stream_orbit(name=name) r = np.linalg.norm(orbit['x'].to(u.kpc), axis=0) rmin = np.min(r) rmax = np.max(r) rcur = r[0] r0 = r[-1] print(name, rcur, r0) e = (rmax - rmin)/(rmax + rmin) l = np.cross(orbit['x'].to(u.kpc), orbit['v'].to(u.km/u.s), axisa=0, axisb=0) p, Np = period(name) np.savez('../data/crb/vcirc_{:s}{:1d}_{:s}_a{:1d}_{:s}'.format(errmode, Ndim, name, align, vlabel), dvc=np.sqrt(vcomb), vc=vc_true.value, r=x.value, rperi=rmin, rapo=rmax, rcur=rcur, r0=r0, ecc=e, l=l, p=p, Np=Np) if ascale: x = x * rmax**-1 #x = x * rcur**-1 # plot plt.sca(ax[0]) plt.plot(x, np.sqrt(vcomb), '-', lw=3, color=colors[name], label=labels[name]) #plt.plot(x, vc_true, 'r-') plt.sca(ax[1]) plt.plot(x, np.sqrt(vcomb)/vc_true, '-', lw=3, color=colors[name], label=labels[name]) #plt.plot(x, mcomb, '-', lw=3, color=colors[name], label=labels[name]) plt.sca(ax[0]) if ascale: plt.xlim(0,5) plt.xlabel('r/r$_{apo}$') else: plt.xlabel('r (kpc)') plt.ylabel('$\Delta$ $V_c$ (km s$^{-1}$)') #plt.ylim(0, 100) plt.sca(ax[1]) plt.legend(loc=1, frameon=True, handlelength=1, fontsize='small') if ascale: plt.xlim(0,5) plt.xlabel('r/r$_{apo}$') else: plt.xlabel('r (kpc)') plt.ylabel('$\Delta$ $V_c$ / $V_c$') #plt.ylabel('$\Delta$ $M_{enc}$ ($M_\odot$)') #plt.ylim(0, 1e11) plt.tight_layout() plt.savefig('../plots/vc_r_summary_apo{:d}.pdf'.format(ascale)) def delta_vc_correlations(Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', component='all', j=0, align=True, d=200, Nb=1000, r=False, fast=False, scale=False): """""" pid, dp_fid, vlabel = get_varied_pars(vary) elabel = '' ylabel = 'min ($\Delta$ $V_c$ / $V_c$)' if r: ylabel = 'r(min($\Delta$ $V_c$ / $V_c$)) (kpc)' elabel = 'r' names = get_done() labels = full_names() colors = {x: mpl.cm.bone(e/len(names)) for e, x in enumerate(names)} plt.close() fig, ax = plt.subplots(2,3,figsize=(15,9)) for name in names: d = np.load('../data/crb/vcirc_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) rel_dvc = np.min(d['dvc'] / d['vc']) if r: idmin = np.argmin(d['dvc'] / d['vc']) rel_dvc = d['r'][idmin] mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) dlambda = np.max(mock['xi_range']) - np.min(mock['xi_range']) plt.sca(ax[0][0]) if r: plt.plot(d['rapo'], d['rapo'], 'r.', zorder=0, lw=1.5) plt.plot(d['rapo'], rel_dvc, 'o', ms=10, color=colors[name], label=labels[name]) plt.xlabel('$r_{apo}$ (kpc)') plt.ylabel(ylabel) plt.sca(ax[0][1]) #plt.plot(d['rcur']/d['rapo'], rel_dvc, 'o', ms=10, color=colors[name]) if r: plt.plot(d['rapo'], d['rapo'], 'r.', zorder=0, lw=1.5) plt.plot(d['rcur'], rel_dvc, 'o', ms=10, color=colors[name]) #plt.plot(d['r0'], rel_dvc, 'ro') plt.xlabel('$r_{current}$') plt.ylabel(ylabel) plt.sca(ax[0][2]) ecc = np.sqrt(1 - (d['rperi']/d['rapo'])**2) ecc = d['ecc'] plt.plot(ecc, rel_dvc, 'o', ms=10, color=colors[name], label=labels[name]) plt.xlabel('Eccentricity') plt.ylabel(ylabel) plt.sca(ax[1][0]) plt.plot(np.median(np.abs(d['l'][:,2])/np.linalg.norm(d['l'], axis=1)), rel_dvc, 'o', ms=10, color=colors[name]) plt.xlabel('|L_z|/|L|') plt.ylabel(ylabel) plt.sca(ax[1][1]) plt.plot(d['Np'], rel_dvc, 'o', ms=10, color=colors[name]) #plt.xlabel('$r_{peri}$ (kpc)') plt.xlabel('Completed periods') plt.ylabel(ylabel) plt.sca(ax[1][2]) plt.plot(dlambda, rel_dvc, 'o', ms=10, color=colors[name]) plt.xlabel('$\Delta$ $\\xi$ (deg)') plt.ylabel(ylabel) plt.sca(ax[0][2]) plt.legend(fontsize='small', handlelength=0.1) plt.tight_layout() plt.savefig('../plots/delta_vc{}_correlations.pdf'.format(elabel)) def collate_orbit(Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', align=True): """Store all of the properties on streams""" pid, dp_fid, vlabel = get_varied_pars(vary) names = get_done() N = len(names) Nmax = len(max(names, key=len)) tname = np.chararray(N, itemsize=Nmax) vcmin = np.empty(N) r_vcmin = np.empty(N) Labs = np.empty((N,3)) lx = np.empty(N) ly = np.empty(N) lz = np.empty(N) Lmod = np.empty(N) period = np.empty(N) Nperiod = np.empty(N) ecc = np.empty(N) rperi = np.empty(N) rapo = np.empty(N) rcur = np.empty(N) length = np.empty(N) for e, name in enumerate(names[:]): d = np.load('../data/crb/vcirc_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) idmin = np.argmin(d['dvc'] / d['vc']) mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) dlambda = np.max(mock['xi_range']) - np.min(mock['xi_range']) tname[e] = name vcmin[e] = (d['dvc'] / d['vc'])[idmin] r_vcmin[e] = d['r'][idmin] if e==0: Nr = np.size(d['r']) dvc = np.empty((N, Nr)) vc = np.empty((N, Nr)) r = np.empty((N, Nr)) dvc[e] = d['dvc'] vc[e] = d['dvc'] / d['vc'] r[e] = d['r'] Labs[e] = np.median(np.abs(d['l']), axis=0) Lmod[e] = np.median(np.linalg.norm(d['l'], axis=1)) lx[e] = np.abs(np.median(d['l'][:,0]/np.linalg.norm(d['l'], axis=1))) ly[e] = np.abs(np.median(d['l'][:,1]/np.linalg.norm(d['l'], axis=1))) lz[e] = np.abs(np.median(d['l'][:,2]/np.linalg.norm(d['l'], axis=1))) period[e] = d['p'] Nperiod[e] = d['Np'] ecc[e] = d['ecc'] rperi[e] = d['rperi'] rapo[e] = d['rapo'] rcur[e] = d['rcur'] length[e] = dlambda t = Table([tname, vcmin, r_vcmin, dvc, vc, r, Labs, Lmod, lx, ly, lz, period, Nperiod, length, ecc, rperi, rapo, rcur], names=('name', 'vcmin', 'rmin', 'dvc', 'vc', 'r', 'Labs', 'Lmod', 'lx', 'ly', 'lz', 'period', 'Nperiod', 'length', 'ecc', 'rperi', 'rapo', 'rcur')) t.pprint() t.write('../data/crb/vc_orbital_summary.fits', overwrite=True) # radial acceleration def ar_r(Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', align=True, Nsight=1, seed=39): """Calculate precision in radial acceleration as a function of galactocentric radius""" np.random.seed(seed) pid, dp_fid, vlabel = get_varied_pars(vary) components = [c for c in vary if c!='progenitor'] names = get_done() N = len(names) Nmax = len(max(names, key=len)) tname = np.chararray(N, itemsize=Nmax) armin = np.empty((N, Nsight)) r_armin = np.empty((N, Nsight)) Labs = np.empty((N,3)) lx = np.empty(N) ly = np.empty(N) lz = np.empty(N) Lmod = np.empty(N) period_ = np.empty(N) Nperiod = np.empty(N) ecc = np.empty(N) rperi = np.empty(N) rapo = np.empty(N) rcur = np.empty(N) length = np.empty(N) Npix = 300 r = np.linspace(0.1, 200, Npix) dar = np.empty((N, Nsight, Npix)) ar = np.empty((N, Nsight, Npix)) rall = np.empty((N, Nsight, Npix)) plt.close() fig, ax = plt.subplots(1,3, figsize=(15,5)) for e, name in enumerate(names[:]): # read in full inverse CRB for stream modeling fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] cx = stable_inverse(cxi) cq = cx[6:,6:] Npot = np.shape(cq)[0] # relate to orbit orbit = stream_orbit(name=name) ro = np.linalg.norm(orbit['x'].to(u.kpc), axis=0) rmin = np.min(ro) rmax = np.max(ro) rcur_ = ro[0] r0 = ro[-1] e_ = (rmax - rmin)/(rmax + rmin) l = np.cross(orbit['x'].to(u.kpc), orbit['v'].to(u.km/u.s), axisa=0, axisb=0) p, Np = period(name) mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) for s in range(Nsight): if Nsight==1: # single sightline x0 = mock['x0'] xeq = coord.SkyCoord(ra=x0[0], dec=x0[1], distance=x0[2]) xg = xeq.transform_to(coord.Galactocentric) rg = np.linalg.norm(np.array([xg.x.value, xg.y.value, xg.z.value])) theta = np.arccos(xg.z.value/rg) phi = np.arctan2(xg.y.value, xg.x.value) else: u_ = np.random.random(1) v_ = np.random.random(1) theta = np.arccos(2*u_ - 1) phi = 2 * np.pi * v_ xin = np.array([r*np.sin(theta)*np.cos(phi), r*np.sin(theta)*np.sin(phi), r*np.cos(theta)]).T arad_pix = np.empty((Npix, 1)) af = np.empty(Npix) derf = np.empty((Npix, Npot)) for i in range(Npix): xi = xin[i]*u.kpc a = acc_rad(xi, components=components) af[i] = a dadq = apder_rad(xi, components=components) derf[i] = dadq ca = np.matmul(derf, np.matmul(cq, derf.T)) Nx = Npot Nw = Npix vals, vecs = la.eigh(ca, eigvals=(Nw - Nx - 2, Nw - 1)) vcomb = np.sqrt(np.sum(vecs**2*vals, axis=1)) # store idmin = np.argmin(vcomb / np.abs(af)) armin[e][s] = (vcomb / np.abs(af))[idmin] r_armin[e][s] = r[idmin] dar[e][s] = vcomb ar[e][s] = vcomb / np.abs(af) rall[e][s] = r dlambda = np.max(mock['xi_range']) - np.min(mock['xi_range']) tname[e] = name Labs[e] = np.median(np.abs(l), axis=0) Lmod[e] = np.median(np.linalg.norm(l, axis=1)) lx[e] = np.abs(np.median(l[:,0]/np.linalg.norm(l, axis=1))) ly[e] = np.abs(np.median(l[:,1]/np.linalg.norm(l, axis=1))) lz[e] = np.abs(np.median(l[:,2]/np.linalg.norm(l, axis=1))) period_[e] = p Nperiod[e] = Np ecc[e] = e_ rperi[e] = rmin rapo[e] = rmax rcur[e] = rcur_ length[e] = dlambda t = Table([tname, armin, r_armin, dar, ar, rall, Labs, Lmod, lx, ly, lz, period_, Nperiod, length, ecc, rperi, rapo, rcur], names=('name', 'armin', 'rmin', 'dar', 'ar', 'r', 'Labs', 'Lmod', 'lx', 'ly', 'lz', 'period', 'Nperiod', 'length', 'ecc', 'rperi', 'rapo', 'rcur')) t.pprint() t.write('../data/crb/ar_orbital_summary_{}_sight{:d}.fits'.format(vlabel, Nsight), overwrite=True) plt.tight_layout() def plot_ar(current=False, vary=['progenitor', 'bary', 'halo'], Nsight=1): """Explore constraints on radial acceleration, along the progenitor line""" pid, dp_fid, vlabel = get_varied_pars(vary) t = Table.read('../data/crb/ar_orbital_summary_{}_sight{:d}.fits'.format(vlabel, Nsight)) N = len(t) fapo = t['rapo']/np.max(t['rapo']) fapo = t['rapo']/100 flen = t['length']/(np.max(t['length']) + 10) fcolor = fapo plt.close() fig, ax = plt.subplots(1, 4, figsize=(20,5)) for i in range(N): color = mpl.cm.bone(fcolor[i]) lw = flen[i] * 5 plt.sca(ax[0]) plt.plot(t['r'][i][0], t['ar'][i][1], '-', color=color, lw=lw) plt.xlabel('R (kpc)') plt.ylabel('$\Delta$ $a_r$ / $a_r$') plt.ylim(0, 3.5) armin = np.median(t['armin'], axis=1) armin_err = 0.5 * (np.percentile(t['armin'], 84, axis=1) - np.percentile(t['armin'], 16, axis=1)) rmin = np.median(t['rmin'], axis=1) rmin_err = 0.5 * (np.percentile(t['rmin'], 84, axis=1) - np.percentile(t['rmin'], 16, axis=1)) plt.sca(ax[1]) plt.scatter(t['length'], armin, c=fcolor, cmap='bone', vmin=0, vmax=1) plt.errorbar(t['length'], armin, yerr=armin_err, color='k', fmt='none', zorder=0) plt.xlabel('Length (deg)') plt.ylabel('min $\Delta$ $a_r$') plt.ylim(0, 3.5) plt.sca(ax[2]) a = np.linspace(0,90,100) plt.plot(a, a, 'k-') #plt.plot(a, 2*a, 'k--') #plt.plot(a, 3*a, 'k:') plt.scatter(t['rcur'], rmin, c=fcolor, cmap='bone', vmin=0, vmax=1) plt.errorbar(t['rcur'], rmin, yerr=rmin_err, color='k', fmt='none', zorder=0) plt.xlabel('$R_{cur}$ (kpc)') plt.ylabel('$R_{min}$ (kpc)') #for i in range(len(t)): #plt.text(t['rcur'][i], rmin[i]+5, t['name'][i], fontsize='small') plt.xlim(0,90) plt.ylim(0,90) plt.sca(ax[3]) a = np.linspace(0,90,100) plt.plot(a, a, 'k-') #plt.plot(a, 2*a, 'k--') #plt.plot(a, 3*a, 'k:') plt.scatter(t['rapo'], rmin, c=fcolor, cmap='bone', vmin=0, vmax=1) plt.errorbar(t['rapo'], rmin, yerr=rmin_err, color='k', fmt='none', zorder=0) plt.xlabel('$R_{apo}$ (kpc)') plt.ylabel('$R_{min}$ (kpc)') plt.xlim(0,90) plt.ylim(0,90) plt.tight_layout() plt.savefig('../plots/ar_crb_{}_sight{:d}.pdf'.format(vlabel, Nsight)) # save stream constraints tout = Table([t['name'], t['rapo'], t['rcur'], t['length'], rmin, rmin_err, armin, armin_err], names=('name', 'rapo', 'rcur', 'length', 'rmin', 'rmin_err', 'armin', 'armin_err')) tout.write('../data/ar_constraints_{}_sight{}.fits'.format(vlabel, Nsight), overwrite=True) def plot_all_ar(Nsight=50): """Explore constraints on radial acceleration, along the progenitor line""" alist = [0.2, 0.4, 0.7, 1] mslist = [11, 9, 7, 5] lwlist = [8, 6, 4, 2] fc = [0.8, 0.6, 0.4, 0.2] vlist = [['progenitor', 'bary', 'halo'], ['progenitor', 'bary', 'halo', 'dipole'], ['progenitor', 'bary', 'halo', 'dipole', 'quad'], ['progenitor', 'bary', 'halo', 'dipole', 'quad', 'octu']] labels = ['Fiducial Galaxy', '+ dipole', '++ quadrupole', '+++ octupole'] alist = [0.2, 0.55, 1] #mslist = [11, 8, 5] mslist = [13, 10, 7] #lwlist = [8, 5, 2] lwlist = [9, 6, 3] fc = [0.8, 0.5, 0.2] vlist = [['progenitor', 'bary', 'halo'], ['progenitor', 'bary', 'halo', 'dipole', 'quad'], ['progenitor', 'bary', 'halo', 'dipole', 'quad', 'octu']] labels = ['Fiducial Galaxy', '++ quadrupole', '+++ octupole'] plt.close() fig, ax = plt.subplots(1, 3, figsize=(13.5,4.5)) for e, vary in enumerate(vlist): pid, dp_fid, vlabel = get_varied_pars(vary) t = Table.read('../data/crb/ar_orbital_summary_{}_sight{:d}.fits'.format(vlabel, Nsight)) N = len(t) color = mpl.cm.viridis(fc[e]) lw = lwlist[e] ms = mslist[e] alpha = alist[e] plt.sca(ax[0]) for i in range(0,5,4): plt.plot(t['r'][i][0], t['ar'][i][1], '-', color=color, lw=lw, alpha=alpha) plt.xlabel('r (kpc)') plt.ylabel('$\Delta$ $a_r$ / $a_r$') plt.ylim(0, 3.5) armin = np.median(t['armin'], axis=1) armin_err = 0.5 * (np.percentile(t['armin'], 84, axis=1) - np.percentile(t['armin'], 16, axis=1)) rmin = np.median(t['rmin'], axis=1) rmin_err = 0.5 * (np.percentile(t['rmin'], 84, axis=1) - np.percentile(t['rmin'], 16, axis=1)) # fit exponential p = np.polyfit(t['length'], np.log(armin), 1) print(1/p[0], np.exp(p[1])) poly = np.poly1d(p) x_ = np.linspace(np.min(t['length']), np.max(t['length']), 100) y_ = poly(x_) plt.sca(ax[1]) plt.plot(x_, np.exp(y_), '-', color=color, alpha=alpha, lw=lw, label='') plt.plot(t['length'], armin, 'o', color=color, ms=ms, alpha=alpha, label=labels[e]) plt.errorbar(t['length'], armin, yerr=armin_err, color=color, fmt='none', zorder=0, alpha=alpha) #plt.plot(t['length'], np.log(armin), 'o', color=color, ms=ms, alpha=alpha, label=labels[e]) #plt.errorbar(t['length'], np.log(armin), yerr=np.log(armin_err), color=color, fmt='none', zorder=0, alpha=alpha) if e==len(vlist)-1: plt.legend(loc=1, fontsize='small', handlelength=0.5, frameon=False) plt.xlabel('Stream length (deg)') plt.ylabel('min $\Delta$ $a_r$') plt.ylim(0, 3.5) plt.sca(ax[2]) a = np.linspace(0,90,100) plt.plot(a, a, 'k-', alpha=0.4) plt.plot(t['rcur'], rmin, 'o', color=color, ms=ms, alpha=alpha) plt.errorbar(t['rcur'], rmin, yerr=rmin_err, color=color, fmt='none', zorder=0, alpha=alpha) plt.xlabel('$R_{cur}$ (kpc)') plt.ylabel('$R_{min}$ (kpc)') plt.xlim(0,90) plt.ylim(0,90) #plt.sca(ax[3]) #a = np.linspace(0,90,100) #plt.plot(a, a, 'k-') #plt.plot(t['rapo'], rmin, 'o', color=color, ms=ms, alpha=alpha) #plt.errorbar(t['rapo'], rmin, yerr=rmin_err, color=color, fmt='none', zorder=0, alpha=alpha) #plt.xlabel('$R_{apo}$ (kpc)') #plt.ylabel('$R_{min}$ (kpc)') #plt.xlim(0,90) #plt.ylim(0,90) plt.tight_layout() plt.savefig('../plots/ar_crb_all_sight{:d}.pdf'.format(Nsight)) plt.savefig('../paper/ar_crb_all.pdf') def ar_multi(Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', align=True, Nsight=1, seed=39, verbose=True): """Calculate precision in radial acceleration as a function of galactocentric radius for multiple streams""" np.random.seed(seed) pid, dp_fid, vlabel = get_varied_pars(vary) components = [c for c in vary if c!='progenitor'] Npar = len(pid) names = get_done() N = len(names) Nmax = len(max(names, key=len)) armin = np.empty((N, Nsight)) r_armin = np.empty((N, Nsight)) Npix = 300 r = np.linspace(0.1, 200, Npix) dar = np.empty((N, Nsight, Npix)) ar = np.empty((N, Nsight, Npix)) rall = np.empty((N, Nsight, Npix)) plt.close() fig, ax = plt.subplots(1,1, figsize=(8,6)) plt.sca(ax) for k in range(N): names_in = [names[x] for x in range(k+1)] if verbose: print(k, names_in) cxi_all = np.zeros((Npar, Npar)) for e, name in enumerate(names_in): # read in full inverse CRB for stream modeling fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] cxi_all = cxi_all + cxi cx_all = stable_inverse(cxi_all) cq = cx_all[6:,6:] Npot = np.shape(cq)[0] for s in range(Nsight): if Nsight==1: # single sightline mock = pickle.load(open('../data/mock_{}.params'.format('gd1'), 'rb')) x0 = mock['x0'] xeq = coord.SkyCoord(ra=x0[0], dec=x0[1], distance=x0[2]) xg = xeq.transform_to(coord.Galactocentric) rg = np.linalg.norm(np.array([xg.x.value, xg.y.value, xg.z.value])) theta = np.arccos(xg.z.value/rg) phi = np.arctan2(xg.y.value, xg.x.value) else: u_ = np.random.random(1) v_ = np.random.random(1) theta = np.arccos(2*u_ - 1) phi = 2 * np.pi * v_ xin = np.array([r*np.sin(theta)*np.cos(phi), r*np.sin(theta)*np.sin(phi), r*np.cos(theta)]).T arad_pix = np.empty((Npix, 1)) af = np.empty(Npix) derf = np.empty((Npix, Npot)) for i in range(Npix): xi = xin[i]*u.kpc a = acc_rad(xi, components=components) af[i] = a dadq = apder_rad(xi, components=components) derf[i] = dadq ca = np.matmul(derf, np.matmul(cq, derf.T)) Nx = Npot Nw = Npix vals, vecs = la.eigh(ca, eigvals=(Nw - Nx - 2, Nw - 1)) vcomb = np.sqrt(np.sum(vecs**2*vals, axis=1)) # store idmin = np.argmin(vcomb / np.abs(af)) armin[k][s] = (vcomb / np.abs(af))[idmin] r_armin[k][s] = r[idmin] dar[k][s] = vcomb ar[k][s] = vcomb / np.abs(af) rall[k][s] = r plt.plot(rall[k][s], ar[k][s]*100, '-', color=mpl.cm.viridis_r(k/12.), lw=2) t = Table([armin, r_armin, dar, ar, rall], names=('armin', 'rmin', 'dar', 'ar', 'r')) t.pprint() t.write('../data/crb/ar_multistream{}_{}_sight{:d}.fits'.format(N, vlabel, Nsight), overwrite=True) plt.xlabel('r (kpc)') plt.ylabel('$\Delta$ $a_r$ / $a_r$ (%)') plt.ylim(0,100) # add custom colorbar sm = plt.cm.ScalarMappable(cmap=mpl.cm.viridis_r, norm=plt.Normalize(vmin=1, vmax=12)) # fake up the array of the scalar mappable. Urgh... sm._A = [] divider = make_axes_locatable(plt.gca()) cax = divider.append_axes('right', size='4%', pad=0.05) #cb = fig.colorbar(sm, ax=cax, pad=0.1, aspect=40, ticks=np.arange(1,13,3)) cb = plt.colorbar(sm, cax=cax, ticks=np.arange(1,13,3)) cb.set_label('Number of streams') plt.tight_layout() plt.savefig('../plots/ar_multistream{}_{}_sight{:d}.png'.format(N, vlabel, Nsight)) # flattening def delta_q(q='x', Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', j=0, align=True, fast=False, scale=False): """""" pid, dp_fid, vlabel = get_varied_pars(vary) kq = {'x': 0, 'z': 2} iq = {'x': 2, 'z': 3} labelq = {'x': '$_x$', 'z': '$_z$'} component = 'halo' pparams0 = pparams_fid pid_comp, dp_fid2, vlabel2 = get_varied_pars(component) Np = len(pid_comp) pid_crb = myutils.wherein(np.array(pid), np.array(pid_comp)) names = get_done() labels = full_names() colors = {x: mpl.cm.bone(e/len(names)) for e, x in enumerate(names)} plt.close() fig, ax = plt.subplots(1,3,figsize=(15,5)) for name in names: #for n in [-1,]: # read in full inverse CRB for stream modeling fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) crb_all = np.sqrt(np.diag(cx)) crb = [crb_all[pid_crb[i]] for i in range(Np)] crb_frac = [crb_all[pid_crb[i]]/pparams0[pid_comp[i]].value for i in range(Np)] delta_q = crb[iq[q]] ## choose the appropriate components: #Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] #if 'progenitor' not in vary: #Nprog = 0 #nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} #nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad, 'all': np.shape(cx)[0], 'point': 1} #if 'progenitor' not in vary: #nstart['dipole'] = Npoint #nend['dipole'] = Npoint + Ndipole #if component in ['bary', 'halo', 'dipole', 'quad', 'point']: #components = [component] #else: #components = [x for x in vary if x!='progenitor'] #cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] #if ('progenitor' not in vary) & ('bary' not in vary): #cq = cx #Npot = np.shape(cq)[0] #if scale: #dp_opt = read_optimal_step(n, vary) #dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] #dp_unit = unity_scale(dp) #scale_vec = np.array([x.value for x in dp_unit[nstart[component]:nend[component]]]) #scale_mat = np.outer(scale_vec, scale_vec) #cqi /= scale_mat #delta_q = np.sqrt(cq[iq[q], iq[q]]) # relate to orbit orbit = stream_orbit(name=name) r = np.linalg.norm(orbit['x'].to(u.kpc), axis=0) rmin = np.min(r) rmax = np.max(r) e = (rmax - rmin)/(rmax + rmin) e = rmin/rmax l = np.cross(orbit['x'].to(u.kpc), orbit['v'].to(u.km/u.s), axisa=0, axisb=0) ltheta = np.median(l[:,kq[q]]/np.linalg.norm(l, axis=1)) langle = np.degrees(np.arccos(ltheta)) sigltheta = np.std(l[:,kq[q]]/np.linalg.norm(l, axis=1)) plt.sca(ax[0]) plt.plot(e, delta_q, 'o', color=colors[name], label=labels[name]) plt.sca(ax[1]) plt.plot(sigltheta, delta_q, 'o', color=colors[name], label=labels[name]) plt.sca(ax[2]) plt.plot(np.abs(ltheta), delta_q, 'o', color=colors[name], label=labels[name]) plt.sca(ax[0]) plt.legend(frameon=False, handlelength=1, fontsize='small') plt.xlabel('Eccentricity') plt.ylabel('$\Delta$ q{}'.format(labelq[q])) plt.xlim(0,1) #plt.ylim(0, 1e11) plt.sca(ax[1]) plt.xlabel('$\sigma$ L{}'.format(labelq[q]) + ' (kpc km s$^{-1}$)') plt.ylabel('$\Delta$ q{}'.format(labelq[q])) plt.sca(ax[2]) plt.xlabel('|L{}| / |L|'.format(labelq[q])) plt.ylabel('$\Delta$ q{}'.format(labelq[q])) plt.tight_layout() plt.savefig('../plots/delta_q{}.pdf'.format(q)) ### # multiple streams ### def pairs_pdf(Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', component='halo', align=True, summary=False): """""" pid, dp_fid, vlabel = get_varied_pars(vary) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad} #, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] pid_comp = pid[nstart[component]:nend[component]] plabels, units = get_parlabel(pid_comp) punits = [' ({})'.format(x) if len(x) else '' for x in units] params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)] done = get_done() N = len(done) pp = PdfPages('../plots/corner_pairs_{:s}{:1d}_a{:1d}_{:s}_{:s}_{:d}.pdf'.format(errmode, Ndim, align, vlabel, component, summary)) fig = None ax = None for i in range(N): di = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, done[i], align, vlabel)) cxi_i = di['cxi'] for j in range(i+1,N): dj = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, done[j], align, vlabel)) cxi_j = dj['cxi'] cxi = cxi_i + cxi_j cx = stable_inverse(cxi) cx_i = stable_inverse(cxi_i) cx_j = stable_inverse(cxi_j) # select component of the parameter space cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] cq_i = cx_i[nstart[component]:nend[component], nstart[component]:nend[component]] cq_j = cx_j[nstart[component]:nend[component], nstart[component]:nend[component]] Nvar = np.shape(cq)[0] print(done[i], done[j]) print(np.sqrt(np.diag(cq))) print(np.sqrt(np.diag(cq_i))) print(np.sqrt(np.diag(cq_j))) if summary==False: fig = None ax = None # plot ellipses fig, ax = corner_ellipses(cq, fig=fig, ax=ax) fig, ax = corner_ellipses(cq_i, alpha=0.5, fig=fig, ax=ax) fig, ax = corner_ellipses(cq_j, alpha=0.5, fig=fig, ax=ax) # labels plt.title('{} & {}'.format(done[i], done[j])) for k in range(Nvar-1): plt.sca(ax[-1][k]) plt.xlabel(params[k]) plt.sca(ax[k][0]) plt.ylabel(params[k+1]) pp.savefig(fig) else: fig, ax = corner_ellipses(cq, fig=fig, ax=ax, alpha=0.5) if summary: # labels for k in range(Nvar-1): plt.sca(ax[-1][k]) plt.xlabel(params[k]) plt.sca(ax[k][0]) plt.ylabel(params[k+1]) pp.savefig(fig) pp.close() def multi_pdf(Nmulti=3, Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', component='halo', align=True): """Create a pdf with each page containing a corner plot with constraints on a given component of the model from multiple streams""" pid, dp_fid, vlabel = get_varied_pars(vary) Ntot = len(pid) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad} #, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] pid_comp = pid[nstart[component]:nend[component]] plabels, units = get_parlabel(pid_comp) punits = [' ({})'.format(x) if len(x) else '' for x in units] params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)] Nvar = len(pid_comp) pparams0 = pparams_fid pparams_comp = [pparams0[x] for x in pid_comp] pparams_arr = np.array([x.value for x in pparams_comp]) pp = PdfPages('../plots/corner_multi{:d}_{:s}{:1d}_a{:1d}_{:s}_{:s}.pdf'.format(Nmulti, errmode, Ndim, align, vlabel, component)) fig = None ax = None done = get_done() N = len(done) if Nmulti>N: Nmulti = N t = np.arange(N, dtype=np.int64).tolist() all_comb = list(itertools.combinations(t, Nmulti)) comb = sorted(list(set(all_comb))) Ncomb = len(comb) comb_all = np.ones((Ncomb, N)) * np.nan cx_all = np.empty((Ncomb, Nvar, Nvar)) p_all = np.empty((Ncomb, Nvar)) prel_all = np.empty((Ncomb, Nvar)) for i in range(Ncomb): print(i, [done[i_] for i_ in comb[i]]) cxi = np.zeros((Ntot, Ntot)) fig = None ax = None for j in range(Nmulti): ind = comb[i][j] #print('{} '.format(done[ind]), end='') dj = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, done[ind], align, vlabel)) cxi_ = dj['dxi'] cxi = cxi + cxi_ # select component of the parameter space cx_ = stable_inverse(cxi_) cq_ = cx_[nstart[component]:nend[component], nstart[component]:nend[component]] if Ncomb==1: np.save('../data/crb/cx_multi1_{:s}{:1d}_{:s}_a{:1d}_{:s}_{:s}'.format(errmode, Ndim, done[ind], align, vlabel, component), cq_) print(np.sqrt(np.diag(cq_))) fig, ax = corner_ellipses(cq_, alpha=0.5, fig=fig, ax=ax) cx = stable_inverse(cxi + dj['pxi']) cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] print(np.sqrt(np.diag(cq))) #label = '.'.join([done[comb[i][i_]] for i_ in range(Nmulti)]) #np.save('../data/crb/cx_multi{:d}_{:s}{:1d}_{:s}_a{:1d}_{:s}_{:s}'.format(Nmulti, errmode, Ndim, label, align, vlabel, component), cq) cx_all[i] = cq p_all[i] = np.sqrt(np.diag(cq)) prel_all[i] = p_all[i]/pparams_arr comb_all[i][:Nmulti] = np.array(comb[i]) fig, ax = corner_ellipses(cq, fig=fig, ax=ax) # labels title = ' + '.join([done[comb[i][i_]] for i_ in range(Nmulti)]) plt.suptitle(title) for k in range(Nvar-1): plt.sca(ax[-1][k]) plt.xlabel(params[k]) plt.sca(ax[k][0]) plt.ylabel(params[k+1]) plt.tight_layout(rect=(0,0,1,0.95)) pp.savefig(fig) np.savez('../data/crb/cx_collate_multi{:d}_{:s}{:1d}_a{:1d}_{:s}_{:s}'.format(Nmulti, errmode, Ndim, align, vlabel, component), comb=comb_all, cx=cx_all, p=p_all, p_rel=prel_all) pp.close() def collate(Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', component='halo', align=True, Nmax=None): """""" done = get_done() N = len(done) if Nmax==None: Nmax = N t = np.arange(N, dtype=np.int64).tolist() pid, dp_fid, vlabel = get_varied_pars(vary) Ntot = len(pid) pparams0 = pparams_fid pid_comp, dp_fid2, vlabel2 = get_varied_pars(component) Np = len(pid_comp) pid_crb = myutils.wherein(np.array(pid), np.array(pid_comp)) pparams_comp = [pparams0[x] for x in pid_comp] pparams_arr = np.array([x.value for x in pparams_comp]) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad} #, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] pid_comp = pid[nstart[component]:nend[component]] plabels, units = get_parlabel(pid_comp) punits = [' ({})'.format(x) if len(x) else '' for x in units] params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)] Nvar = len(pid_comp) for i in range(1, Nmax+1): Nmulti = i all_comb = list(itertools.combinations(t, Nmulti)) comb = sorted(list(set(all_comb))) Ncomb = len(comb) comb_all = np.ones((Ncomb, N)) * np.nan cx_all = np.empty((Ncomb, Nvar, Nvar)) p_all = np.empty((Ncomb, Nvar)) prel_all = np.empty((Ncomb, Nvar)) for j in range(Ncomb): label = '.'.join([done[comb[j][i_]] for i_ in range(Nmulti)]) cx = np.load('../data/crb/cx_multi{:d}_{:s}{:1d}_{:s}_a{:1d}_{:s}_{:s}.npy'.format(Nmulti, errmode, Ndim, label, align, vlabel, component)) cx_all[j] = cx p_all[j] = np.sqrt(np.diag(cx)) prel_all[j] = p_all[j]/pparams_arr comb_all[j][:Nmulti] = np.array(comb[j]) np.savez('../data/crb/cx_collate_multi{:d}_{:s}{:1d}_a{:1d}_{:s}_{:s}'.format(Nmulti, errmode, Ndim, align, vlabel, component), comb=comb_all, cx=cx_all, p=p_all, p_rel=prel_all) def nstream_improvement(Ndim=6, vary=['progenitor', 'bary', 'halo'], errmode='fiducial', component='halo', align=True, relative=False): """Show how much parameters improve by including additional streams""" pid, dp_fid, vlabel = get_varied_pars(vary) done = get_done() N = len(done) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad} #, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] pid_comp = pid[nstart[component]:nend[component]] plabels, units = get_parlabel(pid_comp) if relative: punits = [' (%)' for x in units] else: punits = [' ({})'.format(x) if len(x) else '' for x in units] params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)] Nvar = len(pid_comp) pparams0 = pparams_fid pparams_comp = [pparams0[x] for x in pid_comp] pparams_arr = np.array([x.value for x in pparams_comp]) median = np.empty((Nvar, N)) x = np.arange(N) + 1 da = 3 ncol = 2 nrow = np.int64(Nvar/ncol) w = 4 * da h = nrow * da plt.close() fig, ax = plt.subplots(nrow, ncol, figsize=(w,h), sharex='col') for i in range(N): Nmulti = i+1 t = np.arange(N, dtype=np.int64).tolist() all_comb = list(itertools.combinations(t, Nmulti)) comb = sorted(list(set(all_comb))) Ncomb = len(comb) coll = np.load('../data/crb/cx_collate_multi{:d}_{:s}{:1d}_a{:1d}_{:s}_{:s}.npz'.format(Nmulti, errmode, Ndim, align, vlabel, component)) comb_all = coll['comb'] cq_all = coll['cx'] p_all = coll['p'] if relative: p_all = p_all * 100 / pparams_arr median = np.median(p_all, axis=0) Ncomb = np.shape(comb_all)[0] nst = np.ones(Ncomb) * Nmulti for k in range(Nvar): plt.sca(ax[k%ncol][np.int64(k/ncol)]) if (i==0) & (k==0): plt.plot(nst, p_all[:,k], 'o', color='0.8', ms=10, label='Single combination of N streams') plt.plot(Nmulti, median[k], 'wo', mec='k', mew=2, ms=10, label='Median over different\ncombinations of N streams') else: plt.plot(nst, p_all[:,k], 'o', color='0.8', ms=10) plt.plot(Nmulti, median[k], 'wo', mec='k', mew=2, ms=10) if Nmulti<=3: if Nmulti==1: Nmin = 3 else: Nmin = 1 ids_min = p_all[:,k].argsort()[:Nmin] for j_ in range(Nmin): best_names = [done[np.int64(i_)] for i_ in comb[ids_min[j_]][:Nmulti]] print(k, j_, best_names) label = ', '.join(best_names) plt.text(Nmulti, p_all[ids_min[j_],k], '{}'.format(label), fontsize='xx-small') #print(ids_min) #idmin = np.argmin(p_all[:,k]) #print(k, [done[np.int64(i_)] for i_ in comb[idmin][:Nmulti]]) for k in range(Nvar): plt.sca(ax[k%ncol][np.int64(k/ncol)]) plt.gca().set_yscale('log') plt.gca().set_xscale('log') if relative: plt.gca().yaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda y,pos: ('{{:.{:1d}f}}'.format(int(np.maximum(-np.log10(y),0)))).format(y))) plt.ylabel(params[k]) if k==0: plt.legend(frameon=False, fontsize='small', loc=1) if k%ncol==nrow-1: plt.xlabel('Number of streams in a combination') plt.tight_layout() plt.savefig('../plots/nstream_improvement_{:s}{:1d}_a{:1d}_{:s}_{:s}_{:1d}.pdf'.format(errmode, Ndim, align, vlabel, component, relative)) def corner_ellipses(cx, dax=2, color='k', alpha=1, lw=2, fig=None, ax=None, autoscale=True, correlate=False): """Corner plot with ellipses given by an input matrix""" # assert square matrix Nvar = np.shape(cx)[0] if correlate: Npair = np.int64(Nvar*(Nvar - 1)/2) pcc = np.empty((3,Npair)) k = 0 if (np.any(fig)==None) | (np.any(ax)==None): plt.close() fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(dax*Nvar, dax*Nvar), sharex='col', sharey='row') for i in range(0,Nvar-1): for j in range(i+1,Nvar): plt.sca(ax[j-1][i]) cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]]) if correlate: pcc[0,k] = i pcc[1,k] = j pcc[2,k] = cx[i][j]/np.sqrt(cx[i][i]*cx[j][j]) k += 1 w, v = np.linalg.eig(cx_2d) if np.all(np.isreal(v)): theta = np.degrees(np.arctan2(v[1][0], v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=color, alpha=alpha, lw=lw) plt.gca().add_patch(e) if autoscale: plt.gca().autoscale_view() # turn off unused axes for i in range(0,Nvar-1): for j in range(i+1,Nvar-1): plt.sca(ax[i][j]) plt.axis('off') plt.tight_layout() if correlate: return(fig, ax, pcc) else: return (fig, ax) ### # compare observing modes ### def comp_errmodes_old(n, errmodes=['binospec', 'fiducial', 'hectochelle'], Ndim=4, vary=['progenitor', 'bary', 'halo'], plot='halo', align=True, fast=False, scale=False): """""" pid, dp_fid, vlabel = get_varied_pars(vary) dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] plabels, units = get_parlabel(pid) params = ['$\Delta$' + x + '({})'.format(y) for x,y in zip(plabels, units)] if align: alabel = '_align' else: alabel = '' if plot=='halo': i0 = 11 i1 = 15 elif plot=='bary': i0 = 6 i1 = 11 elif plot=='progenitor': i0 = 0 i1 = 6 elif plot=='dipole': i0 = 15 i1 = len(params) else: i0 = 0 i1 = len(params) Nvar = i1 - i0 params = params[i0:i1] if scale: dp_unit = unity_scale(dp) #print(dp_unit) dp_unit = dp_unit[i0:i1] pid = pid[i0:i1] #print(params, dp_unit, Nvar, len(pid), len(dp_unit)) #label = ['RA, Dec, d', 'RA, Dec, d, $V_r$', 'RA, Dec, d, $V_r$, $\mu_\\alpha$, $\mu_\delta$'] label = errmodes plt.close() dax = 2 fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(dax*Nvar, dax*Nvar), sharex='col', sharey='row') for l, errmode in enumerate(errmodes): cxi = np.load('../data/crb/bspline_cxi{:s}_{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, errmode, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) cx = cx[i0:i1,i0:i1] #print(np.sqrt(np.diag(cx))) for i in range(0,Nvar-1): for j in range(i+1,Nvar): plt.sca(ax[j-1][i]) if scale: cx_2d = np.array([[cx[i][i]/dp_unit[i]**2, cx[i][j]/(dp_unit[i]*dp_unit[j])], [cx[j][i]/(dp_unit[j]*dp_unit[i]), cx[j][j]/dp_unit[j]**2]]) else: cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]]) w, v = np.linalg.eig(cx_2d) if np.all(np.isreal(v)): theta = np.degrees(np.arctan2(v[1][0], v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=mpl.cm.bone(0.1+l/4), lw=2, label=label[l]) plt.gca().add_patch(e) if l==1: plt.gca().autoscale_view() if j==Nvar-1: plt.xlabel(params[i]) if i==0: plt.ylabel(params[j]) # turn off unused axes for i in range(0,Nvar-1): for j in range(i+1,Nvar-1): plt.sca(ax[i][j]) plt.axis('off') plt.sca(ax[int(Nvar/2-1)][int(Nvar/2-1)]) plt.legend(loc=2, bbox_to_anchor=(1,1)) plt.tight_layout() plt.savefig('../plots/crb_triangle_alldim{:s}_comparison_{:d}_{:s}_{:s}.pdf'.format(alabel, n, vlabel, plot)) def comp_obsmodes(vary=['progenitor', 'bary', 'halo'], align=True, component='halo'): """Compare CRBs from different observing modes""" pid, dp_fid, vlabel = get_varied_pars(vary) pid_comp, dp_fid2, vlabel2 = get_varied_pars(component) Nvar = len(pid_comp) plabels, units = get_parlabel(pid_comp) punits = [' (%)' for x in units] params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)] plainlabels = ['V_h', 'R_h', 'q_x', 'q_z'] names = get_done() errmodes = ['fiducial', 'fiducial', 'fiducial', 'desi', 'gaia'] Ndims = [ 3, 4, 6, 4, 6] Nmode = len(errmodes) # fiducial errmode = 'fiducial' Ndim = 6 coll_fiducial = np.load('../data/crb/cx_collate_multi1_{:s}{:1d}_a{:1d}_{:s}_{:s}.npz'.format(errmode, Ndim, align, vlabel, component)) #errmodes = ['fiducial', 'gaia', 'desi'] #Ndims = [6,6,4] labels = {'desi': 'DESI-like', 'gaia': 'Gaia-like', 'fiducial': 'Fiducial'} cfrac = {'desi': 0.8, 'gaia': 0.6, 'fiducial': 0.2} cmap = {'fiducial': mpl.cm.bone, 'desi': mpl.cm.pink, 'gaia': mpl.cm.pink} frac = [0.8, 0.5, 0.2, 0.5, 0.2] ls_all = ['-', '-', '-', '--', '--'] a = 0.7 da = 3 ncol = 2 nrow = np.int64(Nvar/ncol) w = 4 * da h = nrow * da * 1.3 plt.close() fig, ax = plt.subplots(nrow+2, ncol, figsize=(w, h), sharex=True, gridspec_kw = {'height_ratios':[3, 1.2, 3, 1.2]}) for i in range(Nmode): errmode = errmodes[i] Ndim = Ndims[i] coll = np.load('../data/crb/cx_collate_multi1_{:s}{:1d}_a{:1d}_{:s}_{:s}.npz'.format(errmode, Ndim, align, vlabel, component)) lw = np.sqrt(Ndims[i]) * 2 ls = ls_all[i] #color = mpl.cm.bone(cfrac[errmodes[i]]) color = cmap[errmode](frac[i]) for j in range(Nvar): #plt.sca(ax[j]) plt.sca(ax[j%ncol*2][np.int64(j/ncol)]) if labels[errmode]=='Fiducial': label = '{} {}D'.format(labels[errmode], Ndims[i]) else: label = '{} ({}D)'.format(labels[errmode], Ndims[i]) plt.plot(coll['p_rel'][:,j]*100, '-', ls=ls, alpha=a, lw=lw, color=color, label=label) plt.sca(ax[j%ncol*2+1][np.int64(j/ncol)]) plt.plot(coll['p_rel'][:,j]/coll_fiducial['p_rel'][:,j], '-', ls=ls, alpha=a, lw=lw, color=color) #print(errmode, j, np.median(coll['p_rel'][:,j]/coll_fiducial['p_rel'][:,j]), np.std(coll['p_rel'][:,j]/coll_fiducial['p_rel'][:,j])) for j in range(Nvar): plt.sca(ax[j%ncol*2][np.int64(j/ncol)]) plt.ylabel(params[j]) plt.gca().set_yscale('log') plt.gca().yaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda y,pos: ('{{:.{:1d}f}}'.format(int(np.maximum(-np.log10(y),0)))).format(y))) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.sca(ax[j%ncol*2+1][np.int64(j/ncol)]) plt.ylabel('$\\frac{\Delta %s}{\Delta {%s}_{,\,Fid\,6D}}$'%(plainlabels[j], plainlabels[j]), fontsize='medium') plt.ylim(0.5, 10) plt.gca().set_yscale('log') plt.gca().yaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda y,pos: ('{{:.{:1d}f}}'.format(int(np.maximum(-np.log10(y),0)))).format(y))) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.sca(ax[nrow][ncol-1]) plt.legend(loc=0, fontsize='x-small', handlelength=0.8, frameon=True) # stream names for j in range(ncol): plt.sca(ax[0][j]) y0, y1 = plt.gca().get_ylim() fp = 0.8 yp = y0 + fp*(y1-y0) for e, name in enumerate(names): txt = plt.text(e, yp, name, ha='center', va='top', rotation=90, fontsize='x-small', color='0.2') txt.set_bbox(dict(facecolor='w', alpha=0.7, ec='none')) plt.tight_layout() plt.savefig('../plots/obsmode_comparison.pdf') def vel_improvement(vary=['progenitor', 'bary', 'halo'], align=True, component='halo', errmode='fiducial'): """""" pid, dp_fid, vlabel = get_varied_pars(vary) pid_comp, dp_fid2, vlabel2 = get_varied_pars(component) Nvar = len(pid_comp) plabels, units = get_parlabel(pid_comp) punits = [' (%)' for x in units] params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)] names = get_done() coll = [] for Ndim in [3,4,6]: coll += [np.load('../data/crb/cx_collate_multi1_{:s}{:1d}_a{:1d}_{:s}_{:s}.npz'.format(errmode, Ndim, align, vlabel, component))] rv = coll[0]['p_rel'] / coll[1]['p_rel'] pm = coll[1]['p_rel'] / coll[2]['p_rel'] N = len(names) prog_rv = np.empty(N) prog_pm = np.empty(N) for i in range(N): mock = pickle.load(open('../data/mock_{}.params'.format(names[i]), 'rb')) pms = np.array([x.value for x in mock['v0'][1:]]) prog_rv[i] = np.abs(mock['v0'][0].value) #prog_pm[i] = np.linalg.norm(pms) prog_pm[i] = max(np.abs(pms)) da = 2 plt.close() fig, ax = plt.subplots(Nvar, 3, figsize=(da*3, da*Nvar), sharex='col') for j in range(Nvar): plt.sca(ax[j][0]) plt.plot(prog_rv, rv[:,j], 'ko') plt.sca(ax[j][1]) plt.plot(prog_rv/prog_pm, pm[:,j], 'ko') plt.sca(ax[j][2]) plt.plot(prog_pm, pm[:,j], 'ko') plt.tight_layout() ### # Referee's report ### def mass_age(name='atlas', pparams0=pparams_fid, dt=0.2*u.Myr, rotmatrix=np.eye(3), graph=False, graphsave=False, observer=mw_observer, vobs=vsun, footprint='', obsmode='equatorial'): """Create a streakline model of a stream baryonic component as in kupper+2015: 3.4e10*u.Msun, 0.7*u.kpc, 1e11*u.Msun, 6.5*u.kpc, 0.26*u.kpc""" # vary progenitor parameters mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) for i in range(3): mock['x0'][i] += pparams0[26+i] mock['v0'][i] += pparams0[29+i] # vary potential parameters potential = 'octu' pparams = pparams0[:26] #print(pparams[0]) pparams[0] = (10**pparams0[0].value)*pparams0[0].unit pparams[2] = (10**pparams0[2].value)*pparams0[2].unit #pparams[0] = pparams0[0]*1e15 #pparams[2] = pparams0[2]*1e15 #print(pparams[0]) # adjust circular velocity in this halo vobs['vcirc'] = vcirc_potential(observer['galcen_distance'], pparams=pparams) ylabel = ['Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas yr$^{-1}$)', '$\mu_\delta$ (mas yr$^{-1}$)'] plt.close() fig, ax = plt.subplots(2, 5, figsize=(20,7), sharex='col', sharey='col', squeeze=False) for e, f in enumerate(np.arange(0.8,1.21,0.1)[::-1]): # create a model stream with these parameters params = {'generate': {'x0': mock['x0'], 'v0': mock['v0'], 'progenitor': {'coords': 'equatorial', 'observer': mock['observer'], 'pm_polar': False}, 'potential': potential, 'pparams': pparams, 'minit': f*mock['mi'], 'mfinal': mock['mf'], 'rcl': 20*u.pc, 'dr': 0., 'dv': 0*u.km/u.s, 'dt': dt, 'age': mock['age'], 'nstars': 400, 'integrator': 'lf'}, 'observe': {'mode': mock['obsmode'], 'wangle': mock['wangle'], 'nstars':-1, 'sequential':True, 'errors': [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s, 0.5*u.mas/u.yr, 0.5*u.mas/u.yr], 'present': [0,1,2,3,4,5], 'observer': mock['observer'], 'vobs': mock['vobs'], 'footprint': mock['footprint'], 'rotmatrix': rotmatrix}} stream = Stream(**params['generate']) stream.generate() stream.observe(**params['observe']) for i in range(5): plt.sca(ax[0][i]) plt.gca().invert_xaxis() #plt.xlabel('R.A. (deg)') plt.ylabel(ylabel[i]) plt.plot(stream.obs[0], stream.obs[i+1], 'o', color=mpl.cm.viridis(e/5), mec='none', ms=4, label='{:.2g}$\\times$10$^3$ M$_\odot$'.format(f*mock['mi'].to(u.Msun).value*1e-3)) if (i==0) & (e==4): plt.legend(frameon=True, handlelength=0.5, fontsize='small', markerscale=1.5) if i==2: plt.title('Age = {:.2g}'.format(mock['age'].to(u.Gyr)), fontsize='medium') params = {'generate': {'x0': mock['x0'], 'v0': mock['v0'], 'progenitor': {'coords': 'equatorial', 'observer': mock['observer'], 'pm_polar': False}, 'potential': potential, 'pparams': pparams, 'minit': mock['mi'], 'mfinal': mock['mf'], 'rcl': 20*u.pc, 'dr': 0., 'dv': 0*u.km/u.s, 'dt': dt, 'age': f*mock['age'], 'nstars': 400, 'integrator': 'lf'}, 'observe': {'mode': mock['obsmode'], 'wangle': mock['wangle'], 'nstars':-1, 'sequential':True, 'errors': [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s, 0.5*u.mas/u.yr, 0.5*u.mas/u.yr], 'present': [0,1,2,3,4,5], 'observer': mock['observer'], 'vobs': mock['vobs'], 'footprint': mock['footprint'], 'rotmatrix': rotmatrix}} stream = Stream(**params['generate']) stream.generate() stream.observe(**params['observe']) for i in range(5): plt.sca(ax[1][i]) plt.gca().invert_xaxis() plt.xlabel('R.A. (deg)') plt.ylabel(ylabel[i]) plt.plot(stream.obs[0], stream.obs[i+1], 'o', color=mpl.cm.viridis(e/5), mec='none', ms=4, label='{:.2g}'.format(f*mock['age'].to(u.Gyr))) if (i==0) & (e==4): plt.legend(frameon=True, handlelength=0.5, fontsize='small', markerscale=1.5) if i==2: plt.title('Initial mass = {:.2g}$\\times$10$^3$ M$_\odot$'.format(mock['mi'].to(u.Msun).value*1e-3), fontsize='medium') plt.tight_layout(w_pad=0) plt.savefig('../paper/age_mass_{}.png'.format(name)) # progenitor's orbit def prog_orbit(n): """""" orbit = stream_orbit(n) R = np.linalg.norm(orbit['x'][:2,:].to(u.kpc), axis=0)[::-1] x = orbit['x'][0].to(u.kpc)[::-1] y = orbit['x'][1].to(u.kpc)[::-1] z = orbit['x'][2].to(u.kpc)[::-1] c = np.arange(np.size(z))[::-1] plt.close() fig, ax = plt.subplots(1,3,figsize=(15,5)) plt.sca(ax[0]) plt.scatter(x, y, c=c, cmap=mpl.cm.gray) plt.xlabel('X (kpc)') plt.ylabel('Y (kpc)') plt.sca(ax[1]) plt.scatter(x, z, c=c, cmap=mpl.cm.gray) plt.xlabel('X (kpc)') plt.ylabel('Z (kpc)') plt.sca(ax[2]) plt.scatter(y, z, c=c, cmap=mpl.cm.gray) plt.xlabel('Y (kpc)') plt.ylabel('Z (kpc)') plt.tight_layout() plt.savefig('../plots/orbit_cartesian_{}.png'.format(n)) #plt.scatter(R[::-1], z[::-1], c=c[::-1], cmap=mpl.cm.gray) #plt.plot(Rp, zp, 'ko', ms=10) #plt.xlim(0,40) #plt.ylim(-20,20) def prog_orbit3d(name, symmetry=False): """""" orbit = stream_orbit(name) R = np.linalg.norm(orbit['x'][:2,:].to(u.kpc), axis=0)[::-1] x = orbit['x'][0].to(u.kpc)[::-1].value y = orbit['x'][1].to(u.kpc)[::-1].value z = orbit['x'][2].to(u.kpc)[::-1].value c = np.arange(np.size(z))[::-1] plt.close() fig = plt.figure(figsize=(9,9)) ax = fig.add_subplot(1,1,1, projection='3d') if symmetry: azimuth = {-1: 119, -2: -39, -3: -5, -4: -11} elevation = {-1: 49, -2: -117, -3: 49, -4: 60} ax.view_init(azim=azimuth[n], elev=elevation[n]) else: ax.view_init(azim=-10, elev=30) ax.set_frame_on(False) ax.scatter(x, y, z, 'o', depthshade=False, c=c, cmap=mpl.cm.YlOrBr_r) ax.set_xlabel('X (kpc)') ax.set_ylabel('Y (kpc)') ax.set_zlabel('Z (kpc)') plt.title('{}'.format(name)) plt.tight_layout() plt.savefig('../plots/orbit_3d_{}_{:d}.png'.format(name, symmetry)) def stream_orbit(name='gd1', pparams0=pparams_fid, dt=0.2*u.Myr, rotmatrix=np.eye(3), diagnostic=False, observer=mw_observer, vobs=vsun, footprint='', obsmode='equatorial'): """Create a streakline model of a stream baryonic component as in kupper+2015: 3.4e10*u.Msun, 0.7*u.kpc, 1e11*u.Msun, 6.5*u.kpc, 0.26*u.kpc""" # vary progenitor parameters mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) #for i in range(3): #mock['x0'][i] += pparams0[19+i] #mock['v0'][i] += pparams0[22+i] # vary potential parameters potential = 'quad' pparams = pparams0[:19] pparams[0] = pparams0[0]*1e10 pparams[2] = pparams0[2]*1e10 # adjust circular velocity in this halo vobs['vcirc'] = vcirc_potential(observer['galcen_distance'], pparams=pparams) # create a model stream with these parameters params = {'generate': {'x0': mock['x0'], 'v0': mock['v0'], 'progenitor': {'coords': 'equatorial', 'observer': mock['observer'], 'pm_polar': False}, 'potential': potential, 'pparams': pparams, 'minit': mock['mi'], 'mfinal': mock['mf'], 'rcl': 20*u.pc, 'dr': 0., 'dv': 0*u.km/u.s, 'dt': dt, 'age': mock['age'], 'nstars': 400, 'integrator': 'lf'}, 'observe': {'mode': mock['obsmode'], 'nstars':-1, 'sequential':True, 'errors': [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s, 0.5*u.mas/u.yr, 0.5*u.mas/u.yr], 'present': [0,1,2,3,4,5], 'observer': mock['observer'], 'vobs': mock['vobs'], 'footprint': mock['footprint'], 'rotmatrix': rotmatrix}} stream = Stream(**params['generate']) stream.prog_orbit() if diagnostic: r = np.linalg.norm(stream.orbit['x'].to(u.kpc), axis=0) rmin = np.min(r) rmax = np.max(r) e = (rmax - rmin)/(rmax + rmin) print(rmin, rmax, e) return stream.orbit def check_rcur(): """""" done = get_done()[::-1] N = len(done) t = Table.read('../data/crb/ar_orbital_summary.fits') for i, name in enumerate(done): mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) c = coord.ICRS(ra=mock['x0'][0], dec=mock['x0'][1], distance=mock['x0'][2]) gal = c.transform_to(coord.Galactocentric) rcur = np.sqrt(gal.x**2 + gal.y**2 + gal.z**2).to(u.kpc) print(done[i], rcur, np.array(t[t['name']==name]['rcur'])) # summary of parameter constraints def relative_crb(vary=['progenitor', 'bary', 'halo'], component='all', Ndim=6, align=True, fast=False, scale=False): """Plot crb_param/param for 3 streams""" pid, dp, vlabel = get_varied_pars(vary) if align: alabel = '_align' else: alabel = '' # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad, 'all': len(pid), 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] plabels, units = get_parlabel(pid) #params = ['$\Delta$' + x + '({})'.format(y) for x,y in zip(plabels, units)] params = [x for x in plabels] params = params[nstart[component]:nend[component]] Nvar = len(params) xpos = np.arange(Nvar) params_fid = np.array([pparams_fid[x].value for x in pid[nstart[component]:nend[component]]]) plt.close() plt.figure(figsize=(10,6)) for n in [-1,-2,-3]: cxi = np.load('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] if scale: dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]]) scale_mat = np.outer(scale_vec, scale_vec) cq /= scale_mat crb = np.sqrt(np.diag(cq)) crb_rel = crb / params_fid print(fancy_name(n)) #print(crb) print(crb_rel) plt.plot(xpos, crb_rel, 'o', label='{}'.format(fancy_name(n))) plt.legend(fontsize='small') plt.ylabel('Relative CRB') plt.xticks(xpos, params, rotation='horizontal', fontsize='medium') plt.xlabel('Parameter') plt.ylim(0, 0.2) #plt.gca().set_yscale('log') plt.tight_layout() plt.savefig('../plots/relative_crb_{:s}_{:s}_{:d}.png'.format(vlabel, component, Ndim)) def relative_crb_sky(vary=['progenitor', 'bary', 'halo'], component='all', Ndim=6, align=True, fast=False, scale=False): """""" pid, dp, vlabel = get_varied_pars(vary) if align: alabel = '_align' else: alabel = '' # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad, 'all': len(pid), 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] plabels, units = get_parlabel(pid) #params = ['$\Delta$' + x + '({})'.format(y) for x,y in zip(plabels, units)] params = [x for x in plabels] params = params[nstart[component]:nend[component]] Nvar = len(params) xpos = np.arange(Nvar) params_fid = np.array([pparams_fid[x].value for x in pid[nstart[component]:nend[component]]]) dd = 5 plt.close() fig, ax = plt.subplots(Nvar, 2, figsize=(dd, 0.5*dd*Nvar), sharex='col', sharey='col', gridspec_kw = {'width_ratios':[6, 1]}) for n in [-1,-2,-3]: cxi = np.load('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] if scale: dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]]) scale_mat = np.outer(scale_vec, scale_vec) cq /= scale_mat crb = np.sqrt(np.diag(cq)) crb_rel = crb / params_fid #print(fancy_name(n)) ##print(crb) #print(crb_rel) stream = stream_model(n) for i in range(Nvar): vmin, vmax = -2, 2 cind = (np.log10(crb_rel[i]) - vmin)/(vmax - vmin) color = mpl.cm.magma_r(cind) plt.sca(ax[i]) plt.plot(stream.obs[0], stream.obs[1], 'o', color=color) for i in range(Nvar): plt.sca(ax[i]) plt.gca().set_axis_bgcolor(mpl.cm.magma(0)) plt.gca().invert_xaxis() plt.title(params[i], fontsize='medium') plt.ylabel('Dec (deg)') if i==Nvar-1: plt.xlabel('R.A. (deg)') #plt.legend(fontsize='small') #plt.ylabel('Relative CRB') #plt.xticks(xpos, params, rotation='horizontal', fontsize='medium') #plt.xlabel('Parameter') #plt.gca().set_yscale('log') plt.tight_layout() plt.savefig('../plots/relative_crb_sky_{:s}_{:s}_{:d}.png'.format(vlabel, component, Ndim)) # toy problem: kepler + dipole import sklearn.datasets def create_fmi(n, Ndim=4, niter=20, alabel='_align', vlabel='point_dipole', Nobsdim=6): """""" state = n invertible = False cnt = 0 for cnt in range(niter): cxi = sklearn.datasets.make_spd_matrix(Ndim, random_state=state) cx = stable_inverse(cxi) invertible = np.allclose(np.matmul(cxi, cx), np.eye(Ndim)) if invertible: break else: state = np.random.get_state() np.save('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}'.format(alabel, n, vlabel, Nobsdim), cxi) cx[0,1:] = 0 cx[1:,0] = 0 cxi = stable_inverse(cx) np.save('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}'.format(alabel, n+1, vlabel, Nobsdim), cxi) def basic_fmi(n=0, alabel='_align', vlabel='point_dipole', Nobsdim=6): """""" Ndim = 4 cxi = np.diag([1.5, 3, 1, 1]) np.save('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}'.format(alabel, n, vlabel, Nobsdim), cxi) def crb_toy(n, alabel='_align', Nobsdim=6, vlabel='point_dipole'): """""" def talk_crb_triangle(n=-1, vary=['progenitor', 'bary', 'halo'], plot='all', reveal=0, fast=False, scale=False): """Produce a triangle plot of 2D Cramer-Rao bounds for all model parameters using a given stream""" pid, dp_fid, vlabel = get_varied_pars(vary) dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] plabels, units = get_parlabel(pid) params = ['$\Delta$' + x + '({})'.format(y) for x,y in zip(plabels, units)] alabel='_align' if plot=='halo': i0 = 11 i1 = 15 elif plot=='bary': i0 = 6 i1 = 11 elif plot=='progenitor': i0 = 0 i1 = 6 elif plot=='dipole': i0 = 15 i1 = len(params) else: i0 = 0 i1 = len(params) Nvar = i1 - i0 params = params[i0:i1] #label = ['GD-1', 'Pal 5'] label = ['RA, Dec, d', 'RA, Dec, d, $V_r$', 'RA, Dec, d, $V_r$, $\mu_\\alpha$, $\mu_\delta$'] #name = columns[int(np.abs(n)-1)] #labels = ['RA, Dec, d', 'RA, Dec, d,\n$V_r$', 'RA, Dec, d,\n$V_r$, $\mu_\\alpha$, $\mu_\\delta$'] #params0 = ['$V_h$ (km/s)', '$R_h$ (kpc)', '$q_1$', '$q_z$', '$M_{LMC}$', '$X_p$', '$Y_p$', '$Z_p$', '$V_{xp}$', '$V_{yp}$', '$V_{zp}$'] #params = ['$\Delta$ '+x for x in params0] ylim = [150, 20, 0.5, 0.5, 5e11] ylim = [20, 10, 0.1, 0.1] plt.close() fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(8,8), sharex='col', sharey='row') # plot 2d bounds in a triangle fashion Ndim = 3 #labels = columns streams = np.array([-1,-2,-3,-4]) slist = streams[:reveal+1] #for l, n in enumerate(slist): for l, Ndim in enumerate([3, 4, 6]): cxi = np.load('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) cx = cx[i0:i1,i0:i1] for i in range(0,Nvar-1): for j in range(i+1,Nvar): plt.sca(ax[j-1][i]) if scale: cx_2d = np.array([[cx[i][i]/dp_unit[i]**2, cx[i][j]/(dp_unit[i]*dp_unit[j])], [cx[j][i]/(dp_unit[j]*dp_unit[i]), cx[j][j]/dp_unit[j]**2]]) else: cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]]) w, v = np.linalg.eig(cx_2d) if np.all(np.isreal(v)): theta = np.degrees(np.arccos(v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=mpl.cm.PuBu((l+3)/6), lw=3, label=label[l]) plt.gca().add_patch(e) if l==1: plt.gca().autoscale_view() if j==Nvar-1: plt.xlabel(params[i]) if i==0: plt.ylabel(params[j]) # turn off unused axes for i in range(0,Nvar-1): for j in range(i+1,Nvar-1): plt.sca(ax[i][j]) plt.axis('off') plt.sca(ax[int(Nvar/2-1)][int(Nvar/2-1)]) plt.legend(loc=2, bbox_to_anchor=(1,1)) #plt.title('Marginalized ') #plt.tight_layout() plt.tight_layout(h_pad=0.0, w_pad=0.0) plt.savefig('../plots/talk2/triangle_{}.png'.format(n)) #plt.savefig('../plots/talk2/triangle_{}.png'.format(reveal)) def talk_stream_comp(n=-1, vary=['progenitor', 'bary', 'halo'], plot='all', reveal=0, fast=False, scale=False): """Produce a triangle plot of 2D Cramer-Rao bounds for all model parameters using a given stream""" pid, dp_fid, vlabel = get_varied_pars(vary) dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] plabels, units = get_parlabel(pid) params = ['$\Delta$' + x + '({})'.format(y) for x,y in zip(plabels, units)] alabel='_align' if plot=='halo': i0 = 11 i1 = 15 elif plot=='bary': i0 = 6 i1 = 11 elif plot=='progenitor': i0 = 0 i1 = 6 elif plot=='dipole': i0 = 15 i1 = len(params) else: i0 = 0 i1 = len(params) Nvar = i1 - i0 params = params[i0:i1] label = ['GD-1', 'Pal 5', 'Triangulum'] #label = ['RA, Dec, d', 'RA, Dec, d, $V_r$', 'RA, Dec, d, $V_r$, $\mu_\\alpha$, $\mu_\delta$'] #name = columns[int(np.abs(n)-1)] #labels = ['RA, Dec, d', 'RA, Dec, d,\n$V_r$', 'RA, Dec, d,\n$V_r$, $\mu_\\alpha$, $\mu_\\delta$'] #params0 = ['$V_h$ (km/s)', '$R_h$ (kpc)', '$q_1$', '$q_z$', '$M_{LMC}$', '$X_p$', '$Y_p$', '$Z_p$', '$V_{xp}$', '$V_{yp}$', '$V_{zp}$'] #params = ['$\Delta$ '+x for x in params0] ylim = [150, 20, 0.5, 0.5, 5e11] ylim = [20, 10, 0.1, 0.1] plt.close() fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(8,8), sharex='col', sharey='row') # plot 2d bounds in a triangle fashion Ndim = 3 #labels = columns streams = np.array([-1,-2,-3,-4]) slist = streams[:reveal+1] for l, n in enumerate(slist): #for l, Ndim in enumerate([3, 4, 6]): cxi = np.load('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) cx = cx[i0:i1,i0:i1] for i in range(0,Nvar-1): for j in range(i+1,Nvar): plt.sca(ax[j-1][i]) if scale: cx_2d = np.array([[cx[i][i]/dp_unit[i]**2, cx[i][j]/(dp_unit[i]*dp_unit[j])], [cx[j][i]/(dp_unit[j]*dp_unit[i]), cx[j][j]/dp_unit[j]**2]]) else: cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]]) w, v = np.linalg.eig(cx_2d) if np.all(np.isreal(v)): theta = np.degrees(np.arctan2(v[1][0], v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=mpl.cm.YlOrBr((l+3)/6), lw=3, label=label[l]) plt.gca().add_patch(e) if l==0: plt.gca().autoscale_view() if j==Nvar-1: plt.xlabel(params[i]) if i==0: plt.ylabel(params[j]) # turn off unused axes for i in range(0,Nvar-1): for j in range(i+1,Nvar-1): plt.sca(ax[i][j]) plt.axis('off') plt.sca(ax[int(Nvar/2-1)][int(Nvar/2-1)]) plt.legend(loc=2, bbox_to_anchor=(1,1)) #plt.title('Marginalized ') #plt.tight_layout() plt.tight_layout(h_pad=0.0, w_pad=0.0) plt.savefig('../plots/talk2/comparison_{}.png'.format(reveal)) def test_ellipse(): """""" th = np.radians(60) v = np.array([[np.cos(th),np.sin(th)], [-np.sin(th),np.cos(th)]]) w = np.array([2,1]) plt.close() plt.figure() theta = np.degrees(np.arctan2(v[0][1], v[0][0])) print(theta, np.degrees(th)) e = mpl.patches.Ellipse((0,0), width=w[0]*2, height=w[1]*2, angle=theta, fc='none', ec='k', lw=2) plt.gca().add_artist(e) plt.xlim(-5,5) plt.ylim(-5,5) def test_ellipse2(): """""" v1 = np.array([1.5, -0.05]) v2 = np.array([0.01, 0.3]) c = np.outer(v1, v1) + np.outer(v2, v2) w, v = np.linalg.eig(c) print(w) print(v) plt.close() plt.figure() theta = np.degrees(np.arctan2(v[1][0], v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 print(width/height) e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec='k', lw=2) plt.gca().add_artist(e) plt.xlim(-5,5) plt.ylim(-5,5) plt.savefig('../plots/test_ellipse.png') def test_ellipse3(): """""" v1 = np.array([-28., -8.]) v2 = np.array([6., -21.]) c = np.outer(v1, v1) + np.outer(v2, v2) w, v =
np.linalg.eig(c)
numpy.linalg.eig
# -*- coding: utf-8 -*- """ .. codeauthor:: <NAME> <<EMAIL>> .. codeauthor:: <NAME> <<EMAIL>> """ import os import pickle import abc import numpy as np from torch.utils.data import Dataset class DatasetBase(abc.ABC, Dataset): def __init__(self): self._camera = None self._default_preprocessor = lambda x: x self.preprocessor = self._default_preprocessor def filter_camera(self, camera): assert camera in self.cameras self._camera = camera return self def __enter__(self): return self def __exit__(self, *exc): self._camera = None @abc.abstractmethod def __len__(self): pass def __getitem__(self, idx): sample = {'image': self.load_image(idx), 'depth': self.load_depth(idx), 'label': self.load_label(idx)} if self.split != 'train': # needed to compute mIoU on original image size sample['label_orig'] = sample['label'].copy() if self.with_input_orig: sample['image_orig'] = sample['image'].copy() sample['depth_orig'] = sample['depth'].copy().astype('float32') sample = self.preprocessor(sample) return sample @property @abc.abstractmethod def cameras(self): pass @property @abc.abstractmethod def class_names(self): pass @property @abc.abstractmethod def class_names_without_void(self): pass @property @abc.abstractmethod def class_colors(self): pass @property @abc.abstractmethod def class_colors_without_void(self): pass @property @abc.abstractmethod def n_classes(self): pass @property @abc.abstractmethod def n_classes_without_void(self): pass @property @abc.abstractmethod def split(self): pass @property @abc.abstractmethod def depth_mode(self): pass @property @abc.abstractmethod def depth_mean(self): pass @property @abc.abstractmethod def depth_std(self): pass @property @abc.abstractmethod def source_path(self): pass @property @abc.abstractmethod def with_input_orig(self): pass @property def camera(self): return self._camera @abc.abstractmethod def load_image(self, idx): pass @abc.abstractmethod def load_depth(self, idx): pass @abc.abstractmethod def load_label(self, idx): pass def color_label(self, label, with_void=True): if with_void: colors = self.class_colors else: colors = self.class_colors_without_void cmap = np.asarray(colors, dtype='uint8') return cmap[label] @staticmethod def static_color_label(label, colors): cmap = np.asarray(colors, dtype='uint8') return cmap[label] def compute_class_weights(self, weight_mode='median_frequency', c=1.02): assert weight_mode in ['median_frequency', 'logarithmic', 'linear'] # build filename class_weighting_filepath = os.path.join( self.source_path, f'weighting_{weight_mode}_' f'1+{self.n_classes_without_void}') if weight_mode == 'logarithmic': class_weighting_filepath += f'_c={c}' class_weighting_filepath += f'_{self.split}.pickle' if os.path.exists(class_weighting_filepath): class_weighting = pickle.load(open(class_weighting_filepath, 'rb')) print(f'Using {class_weighting_filepath} as class weighting') return class_weighting print('Compute class weights') n_pixels_per_class = np.zeros(self.n_classes) n_image_pixels_with_class = np.zeros(self.n_classes) for i in range(len(self)): label = self.load_label(i) h, w = label.shape current_dist = np.bincount(label.flatten(), minlength=self.n_classes) n_pixels_per_class += current_dist # For median frequency we need the pixel sum of the images where # the specific class is present. (It only matters if the class is # present in the image and not how many pixels it occupies.) class_in_image = current_dist > 0 n_image_pixels_with_class += class_in_image * h * w print(f'\r{i+1}/{len(self)}', end='') print() # remove void n_pixels_per_class = n_pixels_per_class[1:] n_image_pixels_with_class = n_image_pixels_with_class[1:] if weight_mode == 'linear': class_weighting = n_pixels_per_class elif weight_mode == 'median_frequency': frequency = n_pixels_per_class / n_image_pixels_with_class class_weighting = np.median(frequency) / frequency elif weight_mode == 'logarithmic': probabilities = n_pixels_per_class / np.sum(n_pixels_per_class) class_weighting = 1 / np.log(c + probabilities) if np.isnan(np.sum(class_weighting)): print(f"n_pixels_per_class: {n_pixels_per_class}") print(f"n_image_pixels_with_class: {n_image_pixels_with_class}") print(f"class_weighting: {class_weighting}") raise ValueError('class weighting contains NaNs') with open(class_weighting_filepath, 'wb') as f: pickle.dump(class_weighting, f) print(f'Saved class weights under {class_weighting_filepath}.') return class_weighting def compute_depth_mean_std(self, force_recompute=False): # ensure that mean and std are computed on train set only assert self.split == 'train' # build filename depth_stats_filepath = os.path.join( self.source_path, f'depth_{self.depth_mode}_mean_std.pickle') if not force_recompute and os.path.exists(depth_stats_filepath): depth_stats = pickle.load(open(depth_stats_filepath, 'rb')) print(f'Loaded depth mean and std from {depth_stats_filepath}') print(depth_stats) return depth_stats print('Compute mean and std for depth images.') pixel_sum = np.float64(0) pixel_nr =
np.uint64(0)
numpy.uint64
"""Used for simmyride """ import os from PIL import Image import numpy as np import numpngw import pdb def separate_labels(npim, label_list, outpath): """ For converting the classifier results to unreal masks """ for i,label in enumerate(label_list): out = np.zeros(npim.shape) out[npim == i+1] = 65535 out = out.astype(np.uint16) numpngw.write_png('%s.png' % os.path.join(outpath, label), out) train_size_per_class = 400 def combine_masks(img_list, outfile): """ For making the training set """ im=Image.open(img_list[0]).convert('L') acc = np.zeros(
np.array(im, dtype=np.float32)
numpy.array
import os import os.path import sys import numpy as np import pytest # Local files current_file = os.path.realpath(__file__) current_dir = os.path.dirname(current_file) sys.path.insert(0, os.path.join(os.path.dirname(current_dir), 'common_python')) import tools # ============================================== # Objects for Python data reader # ============================================== # Note: The Python data reader imports this file and calls the # functions below to ingest data. This is the only part of the script # that should be executed when the script is imported, or else the # Python data reader might misbehave. # Data np.random.seed(20190708) _num_samples = 23 _sample_size = 7 _samples = np.random.normal(size=(_num_samples,_sample_size)) _samples = _samples.astype(np.float32) # Sample access functions def get_sample(index): return _samples[index,:] def num_samples(): return _num_samples def sample_dims(): return (_sample_size,) # ============================================== # Setup LBANN experiment # ============================================== def setup_experiment(lbann): """Construct LBANN experiment. Args: lbann (module): Module for LBANN Python frontend """ trainer = lbann.Trainer() model = construct_model(lbann) data_reader = construct_data_reader(lbann) optimizer = lbann.NoOptimizer() return trainer, model, data_reader, optimizer def construct_model(lbann): """Construct LBANN model. Args: lbann (module): Module for LBANN Python frontend """ # Layer graph x = lbann.Input() obj = lbann.L2Norm2(x) layers = list(lbann.traverse_layer_graph(x)) metric = lbann.Metric(obj, name='obj') callbacks = [] # Compute expected value with NumPy vals = [] for i in range(num_samples()): x = get_sample(i) obj = np.inner(x, x) vals.append(obj) val = np.mean(vals) tol = 8 * val *
np.finfo(np.float32)
numpy.finfo
from __future__ import division, print_function, absolute_import import os.path import tempfile import shutil import numpy as np import warnings import glob from numpy.testing import (assert_equal, dec, decorate_methods, TestCase, run_module_suite, assert_allclose, assert_array_equal) from scipy import misc try: import PIL.Image except ImportError: _have_PIL = False else: _have_PIL = True # Function / method decorator for skipping PIL tests on import failure _pilskip = dec.skipif(not _have_PIL, 'Need to import PIL for this test') datapath = os.path.dirname(__file__) class TestPILUtil(TestCase): def test_imresize(self): im = np.random.random((10, 20)) for T in np.sctypes['float'] + [float]: # 1.1 rounds to below 1.1 for float16, 1.101 works im1 = misc.imresize(im, T(1.101)) assert_equal(im1.shape, (11, 22)) def test_imresize2(self): im = np.random.random((20, 30)) im2 = misc.imresize(im, (30, 40), interp='bicubic') assert_equal(im2.shape, (30, 40)) def test_imresize3(self): im = np.random.random((15, 30)) im2 = misc.imresize(im, (30, 60), interp='nearest') assert_equal(im2.shape, (30, 60)) def test_imresize4(self): im = np.array([[1, 2], [3, 4]]) # Check that resizing by target size, float and int are the same im2 = misc.imresize(im, (4, 4), mode='F') # output size im3 = misc.imresize(im, 2., mode='F') # fraction im4 = misc.imresize(im, 200, mode='F') # percentage assert_equal(im2, im3) assert_equal(im2, im4) def test_imresize5(self): im = np.random.random((25, 15)) im2 = misc.imresize(im, (30, 60), interp='lanczos') assert_equal(im2.shape, (30, 60)) def test_bytescale(self): x = np.array([0, 1, 2], np.uint8) y = np.array([0, 1, 2]) assert_equal(misc.bytescale(x), x) assert_equal(misc.bytescale(y), [0, 127, 255]) def test_bytescale_keywords(self): x = np.array([40, 60, 120, 200, 300, 500]) res_lowhigh = misc.bytescale(x, low=10, high=143) assert_equal(res_lowhigh, [10, 16, 33, 56, 85, 143]) res_cmincmax = misc.bytescale(x, cmin=60, cmax=300) assert_equal(res_cmincmax, [0, 0, 64, 149, 255, 255]) assert_equal(misc.bytescale(np.array([3, 3, 3]), low=4), [4, 4, 4]) def test_imsave(self): picdir = os.path.join(datapath, "data") for png in glob.iglob(picdir + "/*.png"): with warnings.catch_warnings(record=True): # PIL ResourceWarning img = misc.imread(png) tmpdir = tempfile.mkdtemp() try: fn1 = os.path.join(tmpdir, 'test.png') fn2 = os.path.join(tmpdir, 'testimg') # PIL ResourceWarning with warnings.catch_warnings(record=True): misc.imsave(fn1, img) misc.imsave(fn2, img, 'PNG') # PIL ResourceWarning with warnings.catch_warnings(record=True): data1 = misc.imread(fn1) data2 = misc.imread(fn2) assert_allclose(data1, img) assert_allclose(data2, img) assert_equal(data1.shape, img.shape) assert_equal(data2.shape, img.shape) finally: shutil.rmtree(tmpdir) decorate_methods(TestPILUtil, _pilskip) def tst_fromimage(filename, irange, shape): fp = open(filename, "rb") img = misc.fromimage(PIL.Image.open(fp)) fp.close() imin, imax = irange assert_equal(img.min(), imin) assert_equal(img.max(), imax)
assert_equal(img.shape, shape)
numpy.testing.assert_equal
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """loader""" import random import time from collections import defaultdict from multiprocessing import Process import numpy as np from .data_loader import DataLoader data_column = [ 'input_ids', 'position_ids', 'img_feat', 'img_pos_feat', 'audio_feat', 'audio_pos_ids', 'attention_mask', 'gather_index', 'txt_labels', 'txt_mask', 'txt_label_mask', 'img_mask_tgt', 'img_mask_tgt_mask', 'img_masks', 'mrc_label_target', 'mrfr_feat_target', 'audio_mask_tgt_mask', 'audio_masks', 'mafr_feat_target', 'itm_target', 'ma_neg_index', 'ma_neg_sample', 'mr_neg_index', 'mr_neg_sample', 'txt_gts', 'txt_masks', 'img_token_gts', 'img_token_masks', 'taskId' ] task2id = { 'mlmThree': 0, 'mrcThree': 1, 'mrfrThree': 2, 'mafrThree': 3, 'macThree': 4, "itmThree": 5, 'mrctThree': 6, "tdThree": 7, "idThree": 8, "adThree": 9, "ret": 10, "ftRet": 11, "ftCap": 12 } task2id_open = { 'mlmThree_open': 0, 'mrcThree_open': 1, 'mrfrThree_open': 2, 'mafrThree_open': 3, 'macThree_open': 4, "itmThree_open": 5, 'mrctThree_open': 6, "tdThree_open": 7, "idThree_open": 8, "adThree_open": 9 } class MetaLoader(): """ wraps multiple data loaders """ def __init__(self, loaders, batch_size=176, accum_steps=1, task_num=9, print_time=True): assert isinstance(loaders, dict) self.task_num = task_num self.name2loader = {} self.name2iter = {} self.name2iter2 = {} self.sampling_pools = [] self.loaders = loaders for n, l in loaders.items(): if isinstance(l, tuple): l, r = l elif isinstance(l, DataLoader): r = 1 else: raise ValueError() self.name2loader[n] = l self.name2iter[n] = iter(l) self.name2iter2[n] = iter(l) self.sampling_pools.extend([n] * r) self.task = self.sampling_pools[0] self.task_label = [0] * self.task_num self.step = 0 self.accum_steps = accum_steps self.bs = batch_size self.step_cnt = 0 self.flag = "iter1" self.iter1_init_cnt = 0 self.iter2_init_cnt = 0 self.task_index_list = np.random.permutation(self.task_num) random.seed(1) self.all_ids = [] self.print_time = print_time def init_iter(self, init_cnt): while init_cnt < self.task_num: local_task = self.sampling_pools[init_cnt] iter_tmp = iter(self.name2loader[local_task]) if self.flag == 'iter1': self.name2iter2[local_task] = iter_tmp else: self.name2iter[local_task] = iter_tmp init_cnt += 1 def return_ids(self): return self.all_ids def get_batch_params(self, batch): """ get_batch_params """ batch = defaultdict(lambda: None, batch) input_ids = batch.get('input_ids', None) position_ids = batch.get('position_ids', None) img_feat = batch['img_feat'] # self.bs, 10,d 2048 img_pos_feat = batch['img_pos_feat'] # self.bs, 10, 7 audio_feat = batch['audio_feat'] # self.bs, 10, 512 audio_pos_ids = batch['audio_pos_ids'] # 1, 10 # attention_mask: 32 * 191 attention_mask = batch['attn_masks'] # gather_index 32 * 191 gather_index = batch['gather_index'] txt_labels = batch['txt_labels'] txt_mask = batch['txt_mask'] txt_label_mask = batch['txt_label_mask'] img_mask_tgt = batch['img_mask_tgt'] # self.bs, 72 img_mask_tgt_mask = batch['img_mask_tgt_mask'] # self.bs*2, 2 img_masks = batch['img_masks'] # self.bs, 10 mrc_label_target = batch['label_targets'] # self.bs*2, 1 audio_mask_tgt_mask = batch['audio_mask_tgt_mask'] audio_masks = batch['audio_masks'] mrfr_feat_target = batch.get('mrfr_feat_target', None) mafr_feat_target = batch.get('mafr_feat_target', None) itm_target = batch.get('targets', None) ma_neg_index = batch.get('ma_neg_index', None) ma_neg_sample = batch.get('ma_neg_sample', None) mr_neg_index = batch.get('mr_neg_index', None) mr_neg_sample = batch.get('mr_neg_sample', None) txt_gts = batch.get('txt_gts', None) txt_masks = batch.get('txt_masks', None) img_token_gts = batch.get('img_token_gts', None) img_token_masks = batch.get('img_token_masks', None) return (input_ids, position_ids, img_feat, img_pos_feat, audio_feat, audio_pos_ids, attention_mask, gather_index, txt_labels, txt_mask, txt_label_mask, img_mask_tgt, img_mask_tgt_mask, img_masks, mrc_label_target, mrfr_feat_target, audio_mask_tgt_mask, audio_masks, mafr_feat_target, itm_target, ma_neg_index, ma_neg_sample, mr_neg_index, mr_neg_sample, txt_gts, txt_masks, img_token_gts, img_token_masks) def get_batch_check(self, batch, input_ids, position_ids, audio_feat, audio_pos_ids, attention_mask, txt_labels, txt_mask, txt_label_mask, img_mask_tgt, img_mask_tgt_mask, img_masks, mrc_label_target, mrfr_feat_target, audio_mask_tgt_mask, audio_masks, mafr_feat_target, itm_target, ma_neg_index, ma_neg_sample, mr_neg_index, mr_neg_sample, txt_gts, txt_masks, img_token_gts, img_token_masks): """ get_batch_check """ ids = batch.get('ids', None) if ids is not None: self.all_ids = self.all_ids + ids self.bs = attention_mask.shape[0] # text if input_ids is None: input_ids = np.zeros((self.bs, 30)).astype(np.int32) if position_ids is None: position_ids = np.zeros((1, 30)).astype(np.int32) if txt_labels is None: txt_labels = np.zeros((self.bs, 30)).astype(np.int32) if txt_mask is None: txt_mask = np.zeros((self.bs * 2, 5)).astype(np.int32) if txt_label_mask is None: txt_label_mask = np.zeros(self.bs * 2).astype(np.int32) # image if img_mask_tgt is None: img_mask_tgt = np.zeros((self.bs, 90)).astype(np.bool_) if img_mask_tgt_mask is None: img_mask_tgt_mask = np.zeros((self.bs * 2, 5)).astype(np.int32) if img_masks is None: img_masks = np.zeros((self.bs, 30)).astype(np.bool_) if mrc_label_target is None: mrc_label_target = np.zeros((self.bs * 2, 1)).astype(np.float32) # audio if audio_feat is None: audio_feat = np.zeros((self.bs, 30, 1024)).astype(np.float32) # 用attention_mask.shape[0]替换了self.bs if audio_pos_ids is None: audio_pos_ids = np.zeros((1, 30)).astype(np.int32) if mrfr_feat_target is None: mrfr_feat_target = np.zeros((self.bs * 2, 2048)).astype(np.float32) if audio_mask_tgt_mask is None: audio_mask_tgt_mask = np.zeros((self.bs * 2, 5)).astype(np.int32) if audio_masks is None: audio_masks = np.zeros((self.bs, 30)).astype(np.bool_) if mafr_feat_target is None: mafr_feat_target = np.zeros((self.bs * 2, 1024)).astype(np.float32) if itm_target is None: itm_target = np.zeros((self.bs,)).astype(np.int32) if ma_neg_index is None: ma_neg_index = np.zeros((self.bs * 2, 1)).astype(np.int32) if ma_neg_sample is None: ma_neg_sample = np.zeros((self.bs * 2, 30, 1024)).astype(np.float32) if mr_neg_index is None: mr_neg_index = np.zeros((self.bs * 2, 1)).astype(np.int32) if mr_neg_sample is None: mr_neg_sample = np.zeros((self.bs * 2, 30, 2048)).astype(np.float32) if txt_gts is None: txt_gts = np.zeros((self.bs, 90)).astype(np.int32) if txt_masks is None: txt_masks = np.ones((self.bs, 90)).astype(np.float32) if img_token_gts is None: img_token_gts =
np.zeros((self.bs, 64))
numpy.zeros
import numpy as np from contextlib import contextmanager from pytest import fixture, raises, mark from unittest.mock import patch import beyond.io.ccsds as ccsds from beyond.dates import Date, timedelta from beyond.io.tle import Tle from beyond.propagators.keplernum import KeplerNum from beyond.propagators.soi import SoINumerical from beyond.env.solarsystem import get_body from beyond.propagators.listeners import LightListener, NodeListener, find_event, ApsideListener from beyond.orbits.man import ImpulsiveMan, KeplerianImpulsiveMan, ContinuousMan, KeplerianContinuousMan import beyond.env.jpl as jpl @fixture def orbit_kepler(iss_tle): orbit = iss_tle.orbit() orbit.propagator = KeplerNum( timedelta(seconds=60), bodies=get_body('Earth') ) return orbit @fixture def molniya_kepler(molniya_tle): molniya = molniya_tle.orbit() molniya.propagator = KeplerNum( timedelta(seconds=120), bodies=get_body('Earth') ) return molniya @contextmanager def mock_step(orb): with patch('beyond.propagators.keplernum.KeplerNum._make_step', wraps=orb.propagator._make_step) as mock: yield mock def count_steps(td, step, inclusive=True): """Count how many steps it take to travel td Args: td (timedelta) step (timedelta) Return: int """ inclusive = 1 if inclusive else 0 return abs(td) // step + inclusive def plot_delta_a(dates, altitude, eccentricity=None): import matplotlib.pyplot as plt fig = plt.figure() g1 = fig.add_subplot(111) p1, = g1.plot(dates, altitude, label="altitude", color="orange") g1.set_ylabel("Altitude (m)") g1.yaxis.label.set_color(p1.get_color()) g1.grid(ls=":") if eccentricity: g2 = g1.twinx() p2, = g2.plot(dates, eccentricity, label="eccentricity") g2.set_ylabel("Eccentricity") g2.yaxis.label.set_color(p2.get_color()) g2.set_yscale('log') plt.tight_layout() plt.show() def test_propagate_rk4(orbit_kepler): orbit_kepler.propagator.method = KeplerNum.RK4 assert orbit_kepler.date == Date(2018, 5, 4, 13, 20, 47, 630976) # simple propagation with a Date object orb2 = orbit_kepler.propagate(orbit_kepler.date + timedelta(minutes=121, seconds=12)) assert orb2.date == Date(2018, 5, 4, 15, 21, 59, 630976) assert orb2.propagator.orbit is None # brand new propagator # simple propagation with a timedelta object orb3 = orb2.propagate(timedelta(minutes=12, seconds=5)) # Check if the propagator.orbit is initializd for orb2 # and not yet initialized for orb3 assert orb3.date == Date(2018, 5, 4, 15, 34, 4, 630976) assert orb2.propagator.orbit is not None assert orb3.propagator.orbit is None assert np.allclose( orb3, [-2267347.5906591383, 3865612.1569156954, -5093932.5567979375, -5238.634675262262, -5326.282920539333, -1708.6895889357945] ) # simple propagation with a negative step orb4 = orb3.propagate(timedelta(minutes=-15)) assert orb4.date == orb3.date - timedelta(minutes=15) def test_micro_step(orbit_kepler): with mock_step(orbit_kepler) as mock: # Propagation with micro-step (< to the Kepler propagator step size) orb2 = orbit_kepler.propagate(orbit_kepler.date + timedelta(seconds=20)) assert orb2.date == orbit_kepler.date + timedelta(seconds=20) assert mock.call_count == 7 with mock_step(orbit_kepler) as mock: # negative micro-step orb2 = orbit_kepler.propagate(orbit_kepler.date - timedelta(seconds=20)) assert orb2.date == orbit_kepler.date - timedelta(seconds=20) assert mock.call_count == 7 def test_propagate_euler(orbit_kepler): orbit_kepler.propagator.method = KeplerNum.EULER assert orbit_kepler.date == Date(2018, 5, 4, 13, 20, 47, 630976) orb2 = orbit_kepler.propagate(orbit_kepler.date + timedelta(minutes=121, seconds=12)) assert orb2.date == Date(2018, 5, 4, 15, 21, 59, 630976) assert orb2.propagator.orbit is None # brand new propagator orb3 = orb2.propagate(timedelta(minutes=12, seconds=5)) assert orb3.date == Date(2018, 5, 4, 15, 34, 4, 630976) assert orb2.propagator.orbit is not None assert orb3.propagator.orbit is None assert np.allclose( np.array(orb3), [-880124.9759610161, -10453560.873778934, 6457874.859314914, 4109.877000752121, 1881.4035807734163, 2961.5286009903316] ) def test_propagate_dopri(orbit_kepler): orbit_kepler.propagator.method = KeplerNum.DOPRI54 assert orbit_kepler.date == Date(2018, 5, 4, 13, 20, 47, 630976) orb2 = orbit_kepler.propagate(orbit_kepler.date + timedelta(minutes=121, seconds=12)) assert orb2.date == Date(2018, 5, 4, 15, 21, 59, 630976) assert orb2.propagator.orbit is None # brand new propagator orb3 = orb2.propagate(timedelta(minutes=12, seconds=5)) assert orb3.date == Date(2018, 5, 4, 15, 34, 4, 630976) assert orb2.propagator.orbit is not None # This propagator has been used assert orb3.propagator.orbit is None # This one not assert np.allclose( np.array(orb3), [-2267319.8725340427, 3865646.423538732, -5093927.810461366, -5238.647479926973, -5326.249640066392, -1708.7264386468821] ) def test_iter(orbit_kepler): data = [p for p in orbit_kepler.iter(stop=timedelta(minutes=120))] assert len(data) == 121 assert min(data, key=lambda x: x.date).date == orbit_kepler.date assert max(data, key=lambda x: x.date).date == orbit_kepler.date + timedelta(minutes=120) for p in data: # Check that no created Orbit object has an initialized propagator # i.e. that the propagation is done only by the propagator of orbit_kepler # This happened during development when dealing with listeners and should not happen # again due to the use of Ephem inside KeplerNum assert p.propagator.orbit is None data2 = [p for p in orbit_kepler.iter(stop=timedelta(minutes=120))] assert data[0].date == data2[0].date assert all(data[0] == data2[0]) assert data[0] is not data2[0] # TODO Test retropolation then extrapolation # same but with step interpolation def test_iter_on_dates(orbit_kepler): # Generate a free step ephemeris start = orbit_kepler.date stop = timedelta(hours=3) step = timedelta(seconds=10) drange = Date.range(start, stop, step, inclusive=True) ephem = orbit_kepler.ephem(dates=drange) assert ephem.start == start assert ephem.stop == start + stop assert ephem[1].date - ephem[0].date == step for p in ephem: assert p.propagator.orbit is None def test_duty_cycle(orbit_kepler): with mock_step(orbit_kepler) as mock: date = Date(2018, 5, 4, 15) orbit_kepler.propagate(date) assert mock.call_count == count_steps(orbit_kepler.date - date, orbit_kepler.propagator.step) assert mock.call_count == 100 with mock_step(orbit_kepler) as mock: date = orbit_kepler.date - timedelta(seconds=652) orbit_kepler.propagate(date) assert mock.call_count == count_steps(orbit_kepler.date - date, orbit_kepler.propagator.step) assert mock.call_count == 11 with mock_step(orbit_kepler) as mock: start = Date(2018, 5, 4, 13) stop = start + timedelta(minutes=90) data = [] for p in orbit_kepler.iter(start=start, stop=stop): data.append(p) assert len(data) == 91 assert data[0].date == start assert data[-1].date == stop assert mock.call_count == ( count_steps(orbit_kepler.date - start, orbit_kepler.propagator.step) + count_steps(stop - start, orbit_kepler.propagator.step, False) ) # assert mock.call_count == 125 def test_listener(orbit_kepler): with mock_step(orbit_kepler) as mock: start = Date(2018, 5, 4, 13) stop = start + timedelta(minutes=90) data = [] for p in orbit_kepler.iter(start=start, stop=stop, listeners=LightListener()): data.append(p) assert len(data) == 93 assert mock.call_count == ( count_steps(orbit_kepler.date - start, orbit_kepler.propagator.step) + count_steps(stop - start, orbit_kepler.propagator.step, False) ) # assert mock.call_count == 111 events = [x for x in data if x.event] assert len(events) == 2 assert events[0].date == Date(2018, 5, 4, 13, 8, 38, 869128) assert events[0].event.info == "Umbra exit" assert events[1].date == Date(2018, 5, 4, 14, 5, 21, 256924) assert events[1].event.info == "Umbra entry" with mock_step(orbit_kepler) as mock: start = Date(2018, 5, 4, 13) stop = start + timedelta(minutes=90) data = [] for p in orbit_kepler.iter(start=start, stop=stop, listeners=ApsideListener()): data.append(p) assert len(data) == 93 assert mock.call_count == ( count_steps(orbit_kepler.date - start, orbit_kepler.propagator.step) + count_steps(stop - start, orbit_kepler.propagator.step, False) ) # assert mock.call_count == 125 events = [x for x in data if x.event] assert len(events) == 2 assert str(events[0].date) == "2018-05-04T13:08:30.765143 UTC" assert events[0].event.info == "Periapsis" assert str(events[1].date) == "2018-05-04T13:54:50.178229 UTC" assert events[1].event.info == "Apoapsis" def test_man_impulsive(molniya_kepler): # Test of a circularisation of a molniya orbit # At apogee, this is roughly 1400 m/s with raises(ValueError): ImpulsiveMan(Date(2018, 9, 20, 13, 48, 21, 763091), (28, 0, 0, 0)) apo = find_event(molniya_kepler.iter(stop=timedelta(hours=26), listeners=ApsideListener()), 'Apoapsis', offset=1) man = ImpulsiveMan(apo.date, (1427., 0, 0), frame="TNW") # Check on the sensitivity of the find_event function apo2 = find_event(molniya_kepler.iter(start=molniya_kepler.date + timedelta(seconds=243, minutes=5), stop=timedelta(hours=26), listeners=ApsideListener()), 'Apoapsis', offset=1) assert abs(apo.date - apo2.date) < timedelta(seconds=1) molniya_kepler.maneuvers = man altitude = [] eccentricity = [] dates = [] for p in molniya_kepler.iter(stop=timedelta(hours=36)): altitude.append(p.copy(form='spherical').r - p.frame.center.body.r) eccentricity.append(p.copy(form="keplerian").e) dates.append(p.date.datetime) # plot_delta_a(dates, altitude, eccentricity) # retrieve the index of the first point after the maneuver man_idx = (np.array(dates) > man.date.datetime).argmax() alt_before = np.mean(altitude[:man_idx]) alt_after = np.mean(altitude[man_idx:]) ecc_before = np.mean(eccentricity[:man_idx]) ecc_after = np.mean(eccentricity[man_idx:]) assert abs(ecc_before - 6.47e-1) < 2e-4 assert abs(ecc_after - 3e-3) < 2e-4 # assert abs(ecc_after - 6.57e-4) < 1e-6 assert str(man.date) == "2018-05-03T16:29:23.246451 UTC" # 8'000 km increment in altitude assert 8000000 < alt_after - alt_before < 8200000 def test_man_delta_a(molniya_kepler): apo = find_event(molniya_kepler.iter(stop=timedelta(hours=26), listeners=ApsideListener()), 'Apoapsis', offset=1) man1 = KeplerianImpulsiveMan(apo.date, da=5900000) molniya_kepler.maneuvers = man1 altitude = [] dates = [] for p in molniya_kepler.iter(stop=timedelta(hours=26)): altitude.append(p.copy(form='spherical').r - p.frame.center.body.r) dates.append(p.date.datetime) # plot_delta_a(dates, altitude) man_idx = (np.array(dates) > man1.date.datetime).argmax() before = np.mean(altitude[:man_idx]) after = np.mean(altitude[man_idx:]) assert int(
np.linalg.norm(man1._dv)
numpy.linalg.norm
# -*- coding: utf-8 -*- """ 模型评估 Authors: dongrenguang(<EMAIL>) Date: 2021/10/24 """ import abc import numpy as np from ..core import Node class Metric(Node): """评估指标算子抽象基类 """ def __init__(self, *parents, **kargs): kargs['need_save'] = kargs.get('need_save', False) Node.__init__(self, *parents, **kargs) self.init() def reset(self): self.reset_value() self.init() @abc.abstractmethod def init(self): # 初始化节点,由具体子类实现 pass @staticmethod def prob_to_label(prob, threshold=0.5): """将预估值转化为标签 """ if prob.shape[0] > 1: # 多分类,预测类别为概率最大的类别 labels = np.zeros((prob.shape[0], 1)) labels[
np.argmax(prob, axis=0)
numpy.argmax
import numpy as np def cube_gradient(cube, idx_min, steps): grad = np.array(np.gradient(cube, *steps)) return grad[:, idx_min[0], idx_min[1], idx_min[2]] def gradient_norm(cube, idx_min, steps): window = 3 window_slices = [] for i_min in idx_min: x_slice = slice(i_min - window // 2, i_min + window // 2 + 1) window_slices.append(x_slice) gradient = cube_gradient(cube[tuple(window_slices)], idx_min, steps) return np.linalg.norm(gradient) def cube_hessian(cube, idx_min, steps): window = 5 window_slices = [] for i_min in idx_min: x_slice = slice(i_min - window // 2, i_min + window // 2 + 1) window_slices.append(x_slice) hessian = np.zeros((cube.ndim, cube.ndim) + cube[idx_min].shape) for i, grad_i in enumerate(
np.gradient(cube, *steps)
numpy.gradient
"""This python module implements the class ``ClassifierComparision`` which can be used to compare the accuracy results of two different classification results (e.g. results from different fruits.Fruit objects). This file can also be used as a scripted invoked from the command line. You get all available arguments with >>> python configs_compare.py -h The module can also be used without any dependencies to fruits. """ import os import argparse from typing import List, Union, Tuple import networkx as nx import numpy as np import pandas as pd import scipy as sp import matplotlib.pyplot as plt import matplotlib.ticker as ticker from fruitalyser import _get_color DEFAULT_COMPARISION_COLUMN = "FRUITS Acc" class ClassifierComparision: """Implements methods for the comparision of two classification techniques using the information of their accuracy on different datasets. :param acc1: A one dimensional numpy array containing accuracy results of one technique (the one that is expected to be better in general) for different datasets. :type acc1: np.ndarray :param acc2: A one dimensional numpy array containing accuracy results of a second technique. :type acc2: np.ndarray :param label1: Short label that describes the first technique. :type label1: str :param label2: Short label that describes the second technique. :type label2: str """ def __init__(self, accuracies: np.ndarray, labels: List[str]): self._ndatasets = accuracies.shape[0] self._nclassifiers = accuracies.shape[1] if len(labels) != self._nclassifiers: raise ValueError("Lengths of accuracies and labels differ") self._accuracies = accuracies.copy() maximum = self._accuracies.max() if maximum > 1.0: self._accuracies /= maximum self._labels = labels def scatterplot(self, indices: Union[List[Tuple[int, int]], None] = None, opacity: Union[List[float], None] = None) -> tuple: """Creates a 2D scatter plot for each pair of the given accuracy results. :param indices: List of integer pairs that define which methods to compare. If ``None`` is given, then all plots will be compared. :type indices: Union[List[Tuple[int]], None], optional :param opacity: List of floats that has the same length as the original accuracy results. The points in the scatter plot will be colored based on the values in this list., defaults to None :type opacity: Union[List[float], None], optional :returns: Figure and axis that you get from ``plt.subplots``. :rtype: tuple """ colors = np.zeros((self._ndatasets, 4)) colors[:, :3] = _get_color(0) colors[:, 3] = opacity if indices is None: indices = [(i, j) for i in range(self._nclassifiers) for j in range(self._nclassifiers)] fig, axs = plt.subplots(self._nclassifiers, self._nclassifiers) else: fig, axs = plt.subplots(len(indices), 1) if len(indices) == 1: axs = np.array([axs], dtype=object) axs = axs.reshape((len(indices), 1)) c = 0 for i in range(axs.shape[0]): for j in range(axs.shape[1]): ii, jj = indices[c] axs[i][j].axis('square') axs[i][j].set_xlim([0, 1]) axs[i][j].set_ylim([0, 1]) if ii == jj: weights = np.ones_like(self._accuracies[:, ii]) weights /= self._ndatasets axs[i][j].hist( self._accuracies[:, ii], weights=weights, ) else: axs[i][j].scatter( self._accuracies[:, jj], self._accuracies[:, ii], c=opacity, cmap="copper_r", ) axs[i][j].plot([0, 1], [0, 1], transform=axs[i][j].transAxes, color=_get_color(1), ls="--") axs[i][j].plot([0.05, 1], [0, 0.95], transform=axs[i][j].transAxes, color=_get_color(1)+(0.3,), ls="--") axs[i][j].plot([0, 0.95], [0.05, 1], transform=axs[i][j].transAxes, color=_get_color(1)+(0.3,), ls="--") meanii = self._accuracies[:, ii].mean() meanjj = self._accuracies[:, jj].mean() axs[i][j].axhline(meanii, xmin=0, xmax=meanii, color=_get_color(3)+(0.5,), ls="--") axs[i][j].axvline(meanjj, ymin=0, ymax=meanjj, color=_get_color(3)+(0.5,), ls="--") axs[i][j].text(0.02, 0.98, self._labels[ii], size="large", ha="left", va="top") axs[i][j].text(0.98, 0.02, self._labels[jj], size="large", ha="right", va="bottom") c += 1 return fig, axs def test_greater(self, i: int, j: int): """Tests whether the null-hypothesis of technique at index ``i`` being less or equally good compared to method ``j`` can be rejected by performing an one-sided paired Wilcoxon signed-rank test. :type i: int :type j: int :returns: Value of the test function and p-value of the test. :rtype: tuple """ stat, p = sp.stats.wilcoxon(self._accuracies[:, i], self._accuracies[:, j], alternative="greater") return stat, p def critical_difference_diagram(self, alpha: float = 0.05): """Draws and returns a figure of a critical difference diagram based on the accuracies given to the class object. This type of plot was described in the paper 'Statistical Comparision of Classifiers over Multiple Data Sets' by <NAME>, 2006. :param alpha: Significance value used for doing pairwise Wilcoxon signed-rank tests., defaults to 0.05 :type alpha: float, optional :returns: Figure and axis that matches to the return types of ``plt.subplots(1, 1)``. :rtype: tuple """ p = np.zeros((int(self._nclassifiers * (self._nclassifiers-1) / 2),), dtype=np.float32) c = 0 for i in range(self._nclassifiers - 1): for j in range(i+1, self._nclassifiers): p[c] = sp.stats.wilcoxon(self._accuracies[:, i], self._accuracies[:, j], zero_method='pratt')[1] c += 1 p_order = np.argsort(p) holm_bonferroni = alpha /
np.arange(p.shape[0], 0, -1)
numpy.arange
import numpy as np import cv2 from util.global_variables import GlobalVar def get_undistorted_image(img): # Use cv2.calibrateCamera() and cv2.undistort() # Convert to grayscale grayscaleimage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) obj_points, img_points, = GlobalVar().ret_calib_points() ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, grayscaleimage.shape[::-1], None, None) undist = cv2.undistort(img, mtx, dist, None, mtx) return undist def get_threshold_binary_image(img): gradx = apply_abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(20, 100)) grady = apply_abs_sobel_thresh(img, orient='y', sobel_kernel=3, thresh=(20, 100)) mag_binary = apply_mag_thresh(img, sobel_kernel=9, mag_thresh=(30, 100)) dir_binary = apply_dir_threshold(img, sobel_kernel=15, thresh=(0.7, 1.3)) color_transform_binary = apply_color_transform(img, s_thresh=(170, 255), sx_thresh=(20, 100)) combined = np.zeros_like(color_transform_binary) combined[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1)) | (color_transform_binary == 1)] = 1 return combined def apply_abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)): gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) if (orient == 'x'): sobelderivative = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) elif orient == 'y': sobelderivative = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) abs_sobel_dt =
np.absolute(sobelderivative)
numpy.absolute
import os import torch import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn import torch.nn.init as init import argparse from torch.autograd import Variable import torch.utils.data as data #from data import v2, v1, AnnotationTransform, VOCDetection, detection_collate, VOCroot, VOC_CLASSES from data import FISHdetection, detection_collate, v2, v1, BaseTransform from utils.augmentations import SSDAugmentation from layers.modules import MultiBoxLoss from ssd_multiphase_custom_512_group import build_ssd import numpy as np import time import h5py from sklearn.model_selection import train_test_split, KFold import copy from test_ap import test_net def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='Single Shot MultiBox Detector Training') parser.add_argument('--version', default='v2', help='conv11_2(v2) or pool6(v1) as last layer') parser.add_argument('--basenet', default='vgg16_reducedfc.pth', help='pretrained base model') parser.add_argument('--jaccard_threshold', default=0.5, type=float, help='Min Jaccard index for matching') parser.add_argument('--batch_size', default=16, type=int, help='Batch size for training') parser.add_argument('--resume', default=None, type=str, help='Resume from checkpoint') parser.add_argument('--num_workers', default=1, type=int, help='Number of workers used in dataloading') # parser.add_argument('--iterations', default=120000, type=int, help='Number of training iterations') parser.add_argument('--start_iter', default=0, type=int, help='Begin counting iterations starting from this value (should be used with resume)') parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model') parser.add_argument('--lr', '--learning-rate', default=5e-4, type=float, help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, help='momentum') parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD') parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD') parser.add_argument('--log_iters', default=True, type=bool, help='Print the loss at each iteration') parser.add_argument('--visdom', default=True, type=str2bool, help='Use visdom to for loss visualization') parser.add_argument('--send_images_to_visdom', type=str2bool, default=False, help='Sample a random image from each 10th batch, send it to visdom after augmentations step') parser.add_argument('--save_folder', default='weights/', help='Location to save checkpoint models') # parser.add_argument('--voc_root', default=VOCroot, help='Location of VOC root directory') args = parser.parse_args() if args.cuda and torch.cuda.is_available(): torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') #cfg = (v1, v2)[args.version == 'v2'] if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) """#################### Hyperparameters ####################""" ssd_dim = 512 # current CT dataset has mean pixel val of 33.5 means = (34, 34, 34) num_classes = 2 # lesion or background batch_size = args.batch_size #accum_batch_size = 32 #iter_size = accum_batch_size / batch_size max_iter = 10001 weight_decay = 0.0005 stepvalues = (5000, 8000) gamma = 0.1 momentum = 0.9 # use batchnorm for vgg & extras batch_norm = True # OHNM (online hard neg mining) ratio (pos:neg = 1:x) ohnm_neg_ratio = 1 # data augmentation hyperparams gt_pixel_jitter = 0.01 expand_ratio = 1.5 # CV hyperparams cross_validation = 5 # ap hyperparam confidence_threshold = 0.01 # string for output & weight name logging output_string = 'ssd512_group_vanilla_BN_10CV' """#########################################################""" if args.visdom: import visdom viz = visdom.Visdom() """"########## Data Loading & dimension matching ##########""" # load custom CT dataset datapath = '/home/vision/tkdrlf9202/Datasets/liver_lesion_aligned/lesion_dataset_4phase_aligned.h5' train_sets = [('liver_lesion')] def load_lesion_dataset(data_path): """ loads custom liver dataset if preprocessed h5 data exists, load it if not, load and preprocess raw liver dataset :param data_path: :return: flattened CT and mask data """ # check if the preprocessed dataset exists if os.path.isfile(data_path): # load the preprocessed dataset dump print('loading lesion dataset...') with h5py.File(data_path, 'r') as dataset_h5: group_ct = dataset_h5['ct'] group_coordinate = dataset_h5['coordinate'] ct = [i[:] for i in group_ct.values()] coordinate = [i[:] for i in group_coordinate.values()] dataset_h5.close() return ct, coordinate ct, coord = load_lesion_dataset(datapath) # ct: [subjects, sample, phase, channel, 512, 512] # coord: [subjects, sample, phase, channel, 5], [x_min, y_min, x_max, y_max, 0 (lesion class label)] format # make channels last & 0~255 uint8 image for idx in range(len(ct)): ct[idx] = np.transpose(ct[idx] * 255, [0, 1, 3, 4, 2]).astype(dtype=np.uint8) # use only coordinate from the middle slice, ditch the upper & lower ones coord[idx] = coord[idx][:, :, 1, :] """ use CV instead # split train & valid set, subject-level (without shuffle) ct_train, ct_valid, coord_ssd_train, coord_ssd_valid = train_test_split(ct, coord, test_size=0.1, shuffle=False) """ # 5-fold CV kf = KFold(n_splits=cross_validation) kf.get_n_splits(ct, coord) # flatten the subject & sample dimension for each sets by stacking ct_train = [] ct_valid = [] coord_ssd_train = [] coord_ssd_valid = [] for train_index, valid_index in kf.split(ct): ct_train_part = [ct[x] for ind, x in enumerate(train_index)] ct_valid_part = [ct[x] for ind, x in enumerate(valid_index)] coord_train_part = [coord[x] for ind, x in enumerate(train_index)] coord_valid_part = [coord[x] for ind, x in enumerate(valid_index)] ct_train.append(
np.vstack(ct_train_part)
numpy.vstack
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: <NAME> ## Computer Vision Center (CVC). Universitat Autonoma de Barcelona ## Email: <EMAIL> ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from datasets import omniglot import torchvision.transforms as transforms from PIL import Image import os.path import json import math from numpy import array import numpy as np #moved inside constructor #np.random.seed(2191) # for reproducibility # LAMBDA FUNCTIONS filenameToPILImage = lambda x: Image.open(x).convert('L') PiLImageResize = lambda x: x.resize((28,28)) np_reshape = lambda x: np.reshape(x, (28, 28, 1)) def base_classes_file_data( base_classes_file ): return array( json.load( open( base_classes_file ) ) ) class OmniglotNShotDataset(): def __init__(self, dataroot, batch_size = 100, classes_per_set=10, samples_per_class=1, is_use_sample_data = True, input_file="", input_labels_file="", total_input_files=-1, is_evaluation_only = False, evaluation_input_file = "", evaluation_labels_file = "", evaluate_classes = 1, is_eval_with_train_data = 0, negative_test_offset = 0, is_apply_pca_first = 0, cache_samples_for_evaluation = 100, is_run_time_predictions = False, pca_components = 900, is_evaluation_res_in_obj = False, total_base_classes = 0, is_visualize_data = False, is_run_validation_batch = True, is_compare = False, is_load_test_record = False, test_record_class = -1, test_record_index = -1, is_debug = True, is_switch_dim = False, is_batch_persistancy = False, is_load_file_data_only=False, test_batch_records=20): self.is_debug = is_debug if is_evaluation_only == False: np.random.seed(2191) # for reproducibility else: #for variational testing np.random.seed( np.random.randint(0, 1000) ) if is_use_sample_data: if not os.path.isfile(os.path.join(dataroot,'data.npy')): self.x = omniglot.OMNIGLOT(dataroot, download=True, transform=transforms.Compose([filenameToPILImage, PiLImageResize, np_reshape])) """ # Convert to the format of AntreasAntoniou. Format [nClasses,nCharacters,28,28,1] """ temp = dict() for (img, label) in self.x: if label in temp: temp[label].append(img) else: temp[label]=[img] self.x = [] # Free memory for classes in temp.keys(): self.x.append(np.array(temp[ list(temp.keys())[classes]])) self.x = np.array(self.x) temp = [] # Free memory np.save(os.path.join(dataroot,'data.npy'),self.x) else: self.x = np.load(os.path.join(dataroot,'data.npy')) else: self.x = [] self.x_to_be_predicted = [] self.x_to_be_predicted_cls_indexes = {} self.prediction_classes = 9 self.total_base_classes = total_base_classes #56 self.tvt_records = 500 #70 # 25 #11 #3 #19 self.tvt_records_fall_short_clss = {} self.re_records = 0 #2 #2 #10 self.choice_replace = True #necessary when number of samples are small self.is_batch_persistancy = is_batch_persistancy base_classes_file = input_file+"_base_classes.json" self.evaluate_classes = evaluate_classes self.is_eval_with_train_data = True if is_eval_with_train_data == 1 else False self.negative_test_offset = negative_test_offset self.is_run_time_predictions = is_run_time_predictions self.is_evaluation_res_in_obj = is_evaluation_res_in_obj self.test_batch_records = test_batch_records is_disable_heavy_functions_temporarily = True main_lsize = 1 if not os.path.exists( base_classes_file ) and is_load_test_record: main_lsize = 2 # if is_evaluation_only == False or not os.path.exists( base_classes_file ) or is_load_test_record: if is_debug: print( "(!) Merging inputs, should only be executed in training mode." ) input = [] input_labels = [] if is_debug: print("total_input_files") print(total_input_files) for i in range(0, total_input_files): if is_debug: print("total_input_files i " + str(i)) if i == 0: input = array( json.load( open( input_file.replace('{i}', str(i)) ) ) ) input_labels = array( json.load( open( input_labels_file.replace('{i}', str(i)) ) ) ) else: input = np.concatenate( ( input, array( json.load( open( input_file.replace('{i}', str(i)) ) ) ) ), axis=0 ) input_labels = np.concatenate( ( input_labels, array( json.load( open( input_labels_file.replace('{i}', str(i)) ) ) ) ), axis=0 ) temp = dict() temp_to_be_predicted = dict() sizei = len(input) if is_debug: print("sizei") print(sizei) test_record_index_cnt = -1 for li in range(0, main_lsize): for i in np.arange(sizei): #if is_evaluation_only == True and input_labels[i] >= self.prediction_classes: # continue if input_labels[i] >= self.total_base_classes: continue if is_load_test_record and (main_lsize == 1 or li == 1): if input_labels[i] == test_record_class: test_record_index_cnt = test_record_index_cnt + 1 if test_record_index_cnt == test_record_index: self.evaluation = np.zeros( ( self.total_base_classes, self.tvt_records, input[i].shape[0], input[i].shape[1], 1 ) ) self.evaluation[:,:,:,:,:] = input[i][:,:,np.newaxis] break else: if input_labels[i] in temp: if len( temp[input_labels[i]] ) >= self.tvt_records: #only 20 samples per class if self.re_records > 0 and is_evaluation_only == False and (input_labels[i] < self.total_base_classes or np.mod( input_labels[i] - self.total_base_classes, 30 ) == 0 or np.mod( input_labels[i] - (self.total_base_classes+1), 30 ) == 0): #True or False and (True or input_labels[i] == 6): lbl_val = input_labels[i] if input_labels[i] >= self.total_base_classes and np.mod( input_labels[i] - self.total_base_classes, 30 ) == 0: lbl_val = self.total_base_classes + int( (input_labels[i] - self.total_base_classes) / 30 ) if input_labels[i] >= self.total_base_classes and np.mod( input_labels[i] - (self.total_base_classes+1), 30 ) == 0: lbl_val = (self.total_base_classes*2) + int( (input_labels[i] - (self.total_base_classes+1)) / 30 ) if lbl_val in temp_to_be_predicted: if len( temp_to_be_predicted[lbl_val] ) >= self.re_records: #only 20 samples per class continue temp_to_be_predicted[lbl_val].append( input[i][:,:,np.newaxis] ) else: temp_to_be_predicted[lbl_val]=[input[i][:,:,np.newaxis]] continue temp[input_labels[i]].append( input[i][:,:,np.newaxis] ) else: temp[input_labels[i]]=[input[i][:,:,np.newaxis]] print( "temp.keys()" ) unique, counts = np.unique(input_labels, return_counts=True) tmpdict = dict(zip(unique, counts)) print( tmpdict ) print( sorted(tmpdict.items(), key=lambda x: x[1], reverse=True) ) print( temp[0][0] ) input = [] # Free memory input_labels = [] # Free memory self.x = [] # Free memory if not is_load_test_record or main_lsize == 2: print( " tvt_records_fall_short_clss 1 ", self.tvt_records_fall_short_clss, " 1 " ) print( "temp.keys ", temp.keys() ) for classes in temp.keys(): if False: self.x.append(np.array(temp[ list(temp.keys())[classes]])) self.tvt_records_fall_short_clss[classes] = len(self.x[len(self.x)-1]) else: #print( "list(temp.keys())[classes] ", list(temp.keys())[classes], classes ) self.x.append(np.array(temp[ list(temp.keys())[classes]])) print( "classes ", classes, len(self.x[len(self.x)-1]), self.test_batch_records) #TODO temp. below is temporary adaption to fix problem of less data for test, shouldn't be used permanantly and must train model again with less test batch record size if len(self.x[len(self.x)-1]) - self.test_batch_records <= 0: print( "self.x shape ", self.x[len(self.x)-1].shape ) ara = np.zeros( ( 10, self.x[len(self.x)-1].shape[1], self.x[len(self.x)-1].shape[2], self.x[len(self.x)-1].shape[3] ) ) for ari in range(0, ((len(self.x[len(self.x)-1]) - self.test_batch_records) * -1) + 10): ara[ari, :, :, :] = self.x[len(self.x)-1][ari, :, :, :] print( "self.x shape ", self.x[len(self.x)-1].shape, ara.shape ) self.x[len(self.x)-1] = np.concatenate( ( self.x[len(self.x)-1], ara ), axis=0 ) print( "classes ", classes, len(self.x[len(self.x)-1]), self.test_batch_records) self.tvt_records_fall_short_clss[classes] = len(self.x[len(self.x)-1]) - self.test_batch_records #20 if len(self.x[len(self.x)-1]) < self.tvt_records: #print( "self.x.shape ", self.x[len(self.x)-1].shape, len(self.x[len(self.x)-1]), self.x[len(self.x)-1] ) self.x[len(self.x)-1] = np.concatenate( ( self.x[len(self.x)-1], np.zeros( [ self.tvt_records - len(self.x[len(self.x)-1]), self.x[len(self.x)-1].shape[1], self.x[len(self.x)-1].shape[2], self.x[len(self.x)-1].shape[3] ] ) ), axis=0 ) #for xrecind in range(len(self.x[len(self.x)-1]), self.tvt_records): #print( "self.x.shape ", self.x[len(self.x)-1].shape, len(self.x[len(self.x)-1]), self.x[len(self.x)-1] ) print( self.tvt_records_fall_short_clss ) self.x = np.array(self.x) #np.save(os.path.join(dataroot,'data.npy'),self.x) if not is_disable_heavy_functions_temporarily: with open( base_classes_file, 'w') as outfile: json.dump(self.x.tolist(), outfile) if is_load_test_record: if main_lsize == 1: if is_debug: print("loaded prepared base_classes_file") self.x = array( json.load( open( base_classes_file ) ) ) else: if is_debug: print("Not loaded prepared base_classes_file") for cli in range(0, self.total_base_classes): self.tvt_records_fall_short_clss[cli] = test_record_index if is_debug: print(self.x.shape) print( "loaded test record " ) print( self.evaluation.shape ) temp = [] # Free memory if self.is_run_time_predictions: if is_debug: print( "temp_to_be_predicted.keys()" ) print( temp_to_be_predicted.keys() ) cls_index = 0 for classes in temp_to_be_predicted.keys(): self.x_to_be_predicted_cls_indexes[classes] = cls_index self.x_to_be_predicted.append(np.array(temp_to_be_predicted[ list(temp_to_be_predicted.keys())[classes]])) cls_index = cls_index + 1 self.x_to_be_predicted = np.array(self.x_to_be_predicted) temp_to_be_predicted = [] # Free memory #np.save(os.path.join(dataroot,'data.npy'),self.x) with open( base_classes_file+"_x_to_be_predicted.json", 'w') as outfile: json.dump(self.x_to_be_predicted.tolist(), outfile) else: if is_debug: print("loaded prepared base_classes_file") self.x = array( json.load( open( base_classes_file ) ) ) if is_debug: print(self.x.shape) if is_evaluation_only == False: if is_debug: print("loaded prepared x_to_be_predicted file") self.x_to_be_predicted = array( json.load( open( base_classes_file+"_x_to_be_predicted.json" ) ) ) # is_loaded_evaluation_file = False if is_evaluation_only == True and is_load_test_record == False: if not os.path.exists(evaluation_input_file.replace('{i}', str(0)) + "_prepared.json"): input = array( json.load( open( evaluation_input_file.replace('{i}', str(0)) ) ) ) input_labels = array( json.load( open( evaluation_labels_file.replace('{i}', str(0)) ) ) ) temp = dict() temp_to_be_predicted = dict() sizei = len(input) print("sizei") print(sizei) for i in np.arange(sizei): if input_labels[i] in temp: if len( temp[input_labels[i]] ) >= self.tvt_records: #only 20 samples per class if is_evaluation_only == False and (input_labels[i] < self.total_base_classes or np.mod( input_labels[i] - self.total_base_classes, 30 ) == 0 or np.mod( input_labels[i] - (self.total_base_classes+1), 30 ) == 0): #True or False and (True or input_labels[i] == 6): lbl_val = input_labels[i] if input_labels[i] >= self.total_base_classes and np.mod( input_labels[i] - self.total_base_classes, 30 ) == 0: lbl_val = self.total_base_classes + int( (input_labels[i] - self.total_base_classes) / 30 ) if input_labels[i] >= self.total_base_classes and np.mod( input_labels[i] - (self.total_base_classes+1), 30 ) == 0: lbl_val = (self.total_base_classes*2) + int( (input_labels[i] - (self.total_base_classes+1)) / 30 ) if lbl_val in temp_to_be_predicted: if len( temp_to_be_predicted[lbl_val] ) >= self.re_records: #only 20 samples per class continue temp_to_be_predicted[lbl_val].append( input[i][:,:,np.newaxis] ) else: temp_to_be_predicted[lbl_val]=[input[i][:,:,np.newaxis]] continue temp[input_labels[i]].append( input[i][:,:,np.newaxis] ) else: temp[input_labels[i]]=[input[i][:,:,np.newaxis]] """ print( "temp.keys()" ) #print( temp.keys() ) #for key, value in temp.items(): # if True or len(value) < 19: # print("key " + str(key) + " len " + str(len(value))) unique, counts = np.unique(input_labels, return_counts=True) print( dict(zip(unique, counts)) ) print(temp.keys()) """ input = [] # Free memory input_labels = [] # Free memory self.evaluation = [] for classes in temp.keys(): self.evaluation.append(np.array(temp[ list(temp.keys())[classes]])) self.evaluation = np.array(self.evaluation) temp = [] # Free memory else: print("loaded prepared evaluation_input_file") is_loaded_evaluation_file = True self.evaluation = array( json.load( open( evaluation_input_file.replace('{i}', str(0)) + "_prepared.json" ) ) ) """ #TODO temp if self.x.shape[2] >= 28 and self.x.shape[3] >= 108: self.x[:,:,27,99,0] = 0 self.x[:,:,27,103,0] = 0 self.x[:,:,27,107,0] = 0 if is_evaluation_only == False: if self.is_run_time_predictions: self.x_to_be_predicted[:,:,27,99,0] = 0 self.x_to_be_predicted[:,:,27,103,0] = 0 self.x_to_be_predicted[:,:,27,107,0] = 0 else: if self.evaluation.shape[2] >= 28 and self.evaluation.shape[3] >= 108: self.evaluation[:,:,27,99,0] = 0 self.evaluation[:,:,27,103,0] = 0 self.evaluation[:,:,27,107,0] = 0 """ #TODO tmp. compare """ print(self.x.shape) print(self.evaluation.shape) is_found = False for h in range(0, self.x.shape[0]): print("classssssssssssssssssssssssssssssssssssssssssssssssssssssssssss " + str(h)) for i in range(0, self.x.shape[1]): #print( "x indices val " + str(self.x[h,i,27,99,0]) + " " + str(self.x[h,i,27,103,0]) + " " + str(self.x[h,i,27,107,0]) ) xt = np.copy(self.x[h,i,:,:,:]) xt[27,99,0] = 0 xt[27,103,0] = 0 xt[27,107,0] = 0 et = np.copy(self.evaluation[self.evaluate_classes,0,:,:,:]) et[27,99,0] = 0 et[27,103,0] = 0 et[27,107,0] = 0 #print( "evaluation indices val " + str(self.evaluation[self.evaluate_classes,i,27,99,0]) + " " + str(self.evaluation[self.evaluate_classes,i,27,103,0]) + " " + str(self.evaluation[self.evaluate_classes,i,27,107,0]) ) result = np.subtract( xt, et) if (result > 1.0).sum() >= 1 or (result < -1.0).sum() >= 1: continue print ('the difference h ' + str(h) + ' i ' + str(i)) print (result) if (result > 0.0).sum() == 0 and (result < 0.0).sum() == 0: is_found = True self.evaluate_classes = h self.evaluation[self.evaluate_classes,:,27,99,0] = self.x[h,i,27,99,0] self.evaluation[self.evaluate_classes,:,27,103,0] = self.x[h,i,27,103,0] self.evaluation[self.evaluate_classes,:,27,107,0] = self.x[h,i,27,107,0] print("fioundddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd") break if is_found == True: break if is_found == False: sdfhsdhfkjhd if is_evaluation_only == True: is_found = False for i in range(0, self.x.shape[1]): xt = np.copy(self.x[self.evaluate_classes,i,:,:,:]) xt[27,99,0] = 0 xt[27,103,0] = 0 xt[27,107,0] = 0 et = np.copy(self.evaluation[self.evaluate_classes,0,:,:,:]) et[27,99,0] = 0 et[27,103,0] = 0 et[27,107,0] = 0 result = np.subtract( xt, et) if (result > 1.0).sum() >= 1 or (result < -1.0).sum() >= 1: continue #print ('the difference i ' + str(i)) #print (result) if (result > 0.0).sum() == 0 and (result < 0.0).sum() == 0: is_found = True self.evaluation[:,:,27,99,0] = self.x[self.evaluate_classes,i,27,99,0] self.evaluation[:,:,27,103,0] = self.x[self.evaluate_classes,i,27,103,0] self.evaluation[:,:,27,107,0] = self.x[self.evaluate_classes,i,27,107,0] print("fioundddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd") break if is_found == False: sdfhsdhfkjhd """ #TODO tmp. compare if is_evaluation_only == True and is_compare == True: is_found = False for c in range(0, self.x.shape[0]): for i in range(0, self.x.shape[1]): xt = np.copy(self.x[c,i,:,:,:]) et = np.copy(self.evaluation[self.evaluate_classes,0,:,:,:]) result = np.subtract( xt, et) if (result > 1.0).sum() >= 1 or (result < -1.0).sum() >= 1: continue #print ('the difference i ' + str(i)) #print (result) if (result > 0.0).sum() == 0 and (result < 0.0).sum() == 0: is_found = True print("c " + str(c) + " i " + str(i)) print("fioundddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd") break if is_found == False: print("loading prepared x_to_be_predicted file for testing") self.x_to_be_predicted = array( json.load( open( base_classes_file+"_x_to_be_predicted.json" ) ) ) self.x_to_be_predicted[:,:,27,99,0] = 0 self.x_to_be_predicted[:,:,27,103,0] = 0 self.x_to_be_predicted[:,:,27,107,0] = 0 for c in range(0, self.x_to_be_predicted.shape[0]): for i in range(0, self.x_to_be_predicted.shape[1]): xt = np.copy(self.x_to_be_predicted[c,i,:,:,:]) et = np.copy(self.evaluation[self.evaluate_classes,0,:,:,:]) result = np.subtract( xt, et) if (result > 1.0).sum() >= 1 or (result < -1.0).sum() >= 1: continue #print ('the difference i ' + str(i)) #print (result) if (result > 0.0).sum() == 0 and (result < 0.0).sum() == 0: is_found = True print("c " + str(c) + " i " + str(i)) print("x_to_be_predicted fioundddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd") break if is_found == False: print("not found") sdfhsdhfkjhd # self.shuffle_classes = [] #not used #np.arange(self.x.shape[0]) self.is_apply_pca_first = is_apply_pca_first #pca if self.is_apply_pca_first == 1: #data = self.x.reshape(self.x.shape[0]*self.x.shape[1], self.x.shape[2]*self.x.shape[3]) data = [] xcsize = self.x.shape[0] xssize = self.x.shape[1] for c in range(0, xcsize): for s in range(0, xssize): data.append( self.x[c, s, :, :, :].reshape( self.x.shape[2]*self.x.shape[3] ) ) if len(self.x_to_be_predicted) == 0: print("loading prepared x_to_be_predicted file for pca") self.x_to_be_predicted = array( json.load( open( base_classes_file+"_x_to_be_predicted.json" ) ) ) xtpcsize = self.x_to_be_predicted.shape[0] xtpssize = self.x_to_be_predicted.shape[1] for c in range(0, xtpcsize): for s in range(0, xtpssize): data.append( self.x_to_be_predicted[c, s, :, :, :].reshape( self.x.shape[2]*self.x.shape[3] ) ) if is_evaluation_only == True: if is_loaded_evaluation_file == True: xecsize = self.evaluation.shape[0] xessize = self.evaluation.shape[1] for c in range(0, xecsize): for s in range(0, xessize): data.append( self.evaluation[c, s, :, :, :].reshape( self.x.shape[2]*self.x.shape[3] ) ) else: data.append( self.evaluation[0, 0, :, :, :].reshape( self.x.shape[2]*self.x.shape[3] ) ) data = np.array(data) print(data.shape) """ ## #print("pca matlab") #from matplotlib.mlab import PCA #p = PCA(data) #print( p.Wt ) #print( p.Wt.shape ) # print( "pca custom from so https://stackoverflow.com/a/13224592" ) def PCA(data, dims_rescaled_data=2): """""" returns: data transformed in 2 dims/columns + regenerated original data pass in: data as 2D NumPy array """""" import numpy as NP from scipy import linalg as LA m, n = data.shape # mean center the data data -= data.mean(axis=0) # calculate the covariance matrix R = NP.cov(data, rowvar=False) # calculate eigenvectors & eigenvalues of the covariance matrix # use 'eigh' rather than 'eig' since R is symmetric, # the performance gain is substantial evals, evecs = LA.eigh(R) # sort eigenvalue in decreasing order idx = NP.argsort(evals)[::-1] evecs = evecs[:,idx] # sort eigenvectors according to same index evals = evals[idx] # select the first n eigenvectors (n is desired dimension # of rescaled data array, or dims_rescaled_data) evecs = evecs[:, :dims_rescaled_data] # carry out the transformation on the data using eigenvectors # and return the re-scaled data, eigenvalues, and eigenvectors return NP.dot(evecs.T, data.T).T, evals, evecs def test_PCA(data, dims_rescaled_data=2): ''' test by attempting to recover original data array from the eigenvectors of its covariance matrix & comparing that 'recovered' array with the original data ''' _ , _ , eigenvectors = PCA(data, dim_rescaled_data=2) data_recovered = NP.dot(eigenvectors, m).T data_recovered += data_recovered.mean(axis=0) assert NP.allclose(data, data_recovered) def plot_pca(data): from matplotlib import pyplot as MPL clr1 = '#2026B2' fig = MPL.figure() ax1 = fig.add_subplot(111) data_resc, data_orig = PCA(data) ax1.plot(data_resc[:, 0], data_resc[:, 1], '.', mfc=clr1, mec=clr1) MPL.show() #print( plot_pca(data) ) """ from sklearn.decomposition import PCA p = PCA(n_components = pca_components).fit_transform(data) print( type(p) ) print( p ) print( p.shape ) ind = 0 new_dimension = int( math.sqrt( pca_components ) ) self.x = np.zeros( ( xcsize, xssize, new_dimension, new_dimension, 1 ) ) for c in range(0, xcsize): for s in range(0, xssize): self.x[c, s, :, :, :] = p[ind].reshape( new_dimension, new_dimension, 1 ) ind = ind + 1 if is_evaluation_only == False: self.x_to_be_predicted = np.zeros( ( xtpcsize, xtpssize, new_dimension, new_dimension, 1 ) ) else: self.x_to_be_predicted = [] for c in range(0, xtpcsize): for s in range(0, xtpssize): if is_evaluation_only == False: self.x_to_be_predicted[c, s, :, :, :] = p[ind].reshape( new_dimension, new_dimension, 1 ) ind = ind + 1 if is_evaluation_only == True: self.evaluation = np.zeros( ( self.evaluation.shape[0], self.evaluation.shape[1], new_dimension, new_dimension, 1 ) ) if is_loaded_evaluation_file == True: for c in range(0, xecsize): for s in range(0, xessize): self.evaluation[c, s, :, :, :] = p[ind].reshape( new_dimension, new_dimension, 1 ) ind = ind + 1 else: self.evaluation[:, :, :, :, :] = p[ len(p) - 1 ].reshape( new_dimension, new_dimension, 1 ) data = [] p = [] #visualize if is_visualize_data == True: raise Exception("Not implemented yet") """ #TODO temp self.x = self.x[:30] self.evaluation = self.evaluation[0:30] shuffle_classes = np.arange(self.x.shape[0]) np.random.shuffle(shuffle_classes) print("shuffle_classes") print(shuffle_classes) self.shuffle_classes = shuffle_classes self.x = self.x[shuffle_classes] self.evaluation = self.evaluation[shuffle_classes] """ self.data_pack_shape_2 = None self.data_pack_shape_3 = None """ Constructs an N-Shot omniglot Dataset :param batch_size: Experiment batch_size :param classes_per_set: Integer indicating the number of classes per set :param samples_per_class: Integer indicating samples per class e.g. For a 20-way, 1-shot learning task, use classes_per_set=20 and samples_per_class=1 For a 5-way, 10-shot learning task, use classes_per_set=5 and samples_per_class=10 """ #shuffle_classes = np.arange(self.x.shape[0]) #np.random.shuffle(shuffle_classes) #self.x = self.x[shuffle_classes] self.cache_sample = 0 self.cache_sample_prediction = 0 self.is_rotate = False if is_use_sample_data: self.is_rotate = True self.cache_sample = 1000 self.cache_sample_prediction = 10 self.x_train, self.x_test, self.x_val = self.x[:1200], self.x[1200:1500], self.x[1500:] else: self.is_rotate = False self.cache_sample = 300 self.cache_sample_prediction = cache_samples_for_evaluation if is_evaluation_only == False: #self.x_train, self.x_test, self.x_val = self.x[:900], self.x[900:1200], self.x[1200:] #self.x_train, self.x_test, self.x_val = self.x[:30], self.x[30:43], self.x[43:] #self.x_train, self.x_test, self.x_val = self.x[:200], self.x[200:270], self.x[270:] if is_run_validation_batch: self.x_train, self.x_test, self.x_val = self.x[:4], None, self.x[4:] #, self.x[6:] else: self.x_train, self.x_test, self.x_val = self.x[:], None, None #, self.x[6:] if is_switch_dim: self.x_train = self.x_train.reshape( ( self.x_train.shape[0], self.x_train.shape[1], self.x_train.shape[3], self.x_train.shape[2], self.x_train.shape[4] ) ) if self.x_test is not None: self.x_test = self.x_test.reshape( ( self.x_test.shape[0], self.x_test.shape[1], self.x_test.shape[3], self.x_test.shape[2], self.x_train.shape[4] ) ) if self.x_val is not None: self.x_val = self.x_val.reshape( ( self.x_val.shape[0], self.x_val.shape[1], self.x_val.shape[3], self.x_val.shape[2], self.x_train.shape[4] ) ) else: self.x_train = self.x[:] if is_switch_dim: self.x_train = self.x_train.reshape( ( self.x_train.shape[0], self.x_train.shape[1], self.x_train.shape[3], self.x_train.shape[2], self.x_train.shape[4] ) ) self.evaluation = self.evaluation.reshape( ( self.evaluation.shape[0], self.evaluation.shape[1], self.evaluation.shape[3], self.evaluation.shape[2], self.evaluation.shape[4] ) ) #print( self.x_train[0][0] ) self.normalization() #print( self.x_train[0][0] ) self.batch_size = batch_size self.n_classes = self.x.shape[0] self.classes_per_set = classes_per_set self.samples_per_class = samples_per_class if not is_load_file_data_only: if is_evaluation_only == False: self.indexes = {"train": 0, "val": 0, "test": 0, "x_to_be_predicted": 0} self.datasets = {"train": self.x_train, "val": self.x_val, "test": self.x_test, "x_to_be_predicted": self.x_to_be_predicted} #original data cached self.datasets_cache = {"train": self.load_data_cache(self.datasets["train"], ""), #current epoch data cached "val": None if self.x_val == None else self.load_data_cache(self.datasets["val"], ""), "test": None if self.x_test == None else self.load_data_cache(self.datasets["test"], ""), "x_to_be_predicted": None if not self.is_run_time_predictions else self.load_data_cache(self.datasets["x_to_be_predicted"], "x_to_be_predicted")} else: self.indexes = {"evaluation": 0} self.datasets = {"evaluation": self.x_train} #original data cached self.datasets_cache = {"evaluation": self.load_data_cache_for_evaluation(self.datasets["evaluation"], "evaluation", self.evaluation, True)} def get_data_x(self): return self.x def normalization(self): """ Normalizes our data, to have a mean of 0 and sdt of 1 Normalizes our data, to have a mean of 0 and sdt of 1 """ return self.mean = np.mean(self.x_train) self.std = np.std(self.x_train) self.max = np.max(self.x_train) self.min = np.min(self.x_train) print("train_shape", self.x_train.shape, "test_shape", self.x_test.shape, "val_shape", self.x_val.shape, "x_to_be_predicted", self.x_to_be_predicted.shape) print("before_normalization", "mean", self.mean, "max", self.max, "min", self.min, "std", self.std) #if required for your data enable normatlization by uncommenting below code """ self.x_train = (self.x_train - self.mean) / self.std self.x_val = (self.x_val - self.mean) / self.std self.x_test = (self.x_test - self.mean) / self.std self.x_to_be_predicted = (self.x_to_be_predicted - self.mean) / self.std self.mean = np.mean(self.x_train) self.std = np.std(self.x_train) self.max = np.max(self.x_train) self.min = np.min(self.x_train) """ print("after_normalization", "mean", self.mean, "max", self.max, "min", self.min, "std", self.std) def load_data_cache(self, data_pack, data_pack_type): """ Collects 1000 batches data for N-shot learning :param data_pack: Data pack to use (any one of train, val, test) :return: A list with [support_set_x, support_set_y, target_x, target_y] ready to be fed to our networks """ if self.is_debug: print( "data_pack" ) print( data_pack_type ) print( data_pack.shape ) #here skip adding batch if batch persistancy is enabled for some specific requirements and cache is available then simply return the batch from cache if self.is_batch_persistancy: if todo_is_batch_cache_vailable: todo = True raise Exception("Not implemented yet") """ print( data_pack.shape[0] ) print( data_pack.shape[2] ) print( data_pack.shape[3] ) """ if self.data_pack_shape_2 == None: self.data_pack_shape_2 = data_pack.shape[2] if self.data_pack_shape_3 == None: self.data_pack_shape_3 = data_pack.shape[3] n_samples = self.samples_per_class * self.classes_per_set data_cache = [] for sample in range(self.cache_sample): """ #TODO temp. profiling, comment it when not needed import cProfile, pstats import io as StringIO print( "profiling start" ) pr = cProfile.Profile() pr.enable() """ support_set_x = np.zeros((self.batch_size, n_samples, self.data_pack_shape_2, self.data_pack_shape_3, 1)) support_set_y = np.zeros((self.batch_size, n_samples)) target_x = np.zeros((self.batch_size, self.samples_per_class, self.data_pack_shape_2, self.data_pack_shape_3, 1), dtype=np.int) target_y = np.zeros((self.batch_size, self.samples_per_class), dtype=np.int) support_set_y_actuals = np.zeros((self.batch_size, n_samples), dtype=np.int) target_y_actuals = np.zeros((self.batch_size, self.samples_per_class), dtype=np.int) for i in range(self.batch_size): pinds = np.random.permutation(n_samples) classes = np.random.choice(data_pack.shape[0], self.classes_per_set, False if not data_pack_type == "x_to_be_predicted" else False) #False # select 1-shot or 5-shot classes for test with repetition x_hat_class = np.random.choice(classes, self.samples_per_class, True) pinds_test = np.random.permutation(self.samples_per_class) ind = 0 ind_test = 0 for j, cur_class in enumerate(classes): # each class #print( "example_inds" ) if cur_class in x_hat_class: # Count number of times this class is inside the meta-test n_test_samples = np.sum(cur_class == x_hat_class) #example_inds = np.random.choice(data_pack.shape[1], self.samples_per_class + n_test_samples, self.choice_replace) example_inds = np.random.choice(self.tvt_records_fall_short_clss[cur_class], self.samples_per_class + n_test_samples, self.choice_replace) #print( "example_inds here 1 " + str(n_test_samples) ) else: #print( "example_inds here 2 ", cur_class, self.tvt_records_fall_short_clss[cur_class], self.samples_per_class ) #example_inds = np.random.choice(data_pack.shape[1], self.samples_per_class, False) example_inds = np.random.choice(self.tvt_records_fall_short_clss[cur_class], self.samples_per_class, False) #print( example_inds ) # meta-training for eind in example_inds[:self.samples_per_class]: support_set_x[i, pinds[ind], :, :, :] = data_pack[cur_class][eind] support_set_y[i, pinds[ind]] = j support_set_y_actuals[i, pinds[ind]] = (cur_class+1) * -1 ind = ind + 1 # meta-test for eind in example_inds[self.samples_per_class:]: """ print( "eind" ) print( eind ) print( cur_class ) print( i ) print( ind_test ) print( pinds_test[ind_test] ) """ target_x[i, pinds_test[ind_test], :, :, :] = data_pack[cur_class][eind] target_y[i, pinds_test[ind_test]] = j target_y_actuals[i, pinds_test[ind_test]] = (cur_class+1) * -1 ind_test = ind_test + 1 data_cache.append([support_set_x, support_set_y, target_x, target_y, support_set_y_actuals, target_y_actuals]) """ #TODO temp. profiling, comment it when not needed pr.disable() s = StringIO.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print( s.getvalue() ) sdfkjhskdfhkshdf """ return data_cache def load_data_cache_for_evaluation(self, data_pack, data_pack_type, data_pack_evaluation, is_init_call = None): """ Collects 1000 batches data for N-shot learning :param data_pack: Data pack to use (any one of train, val, test) :return: A list with [support_set_x, support_set_y, target_x, target_y] ready to be fed to our networks """ if self.is_debug: print( "data_pack" ) print( data_pack_type ) print( data_pack.shape ) print( "data_pack_evaluation" ) print( data_pack_evaluation.shape ) #shouldn't be called later during evaluation to speed up runtime if not is_init_call == True: raise Exception("Unexpected load cache call") """ print( data_pack.shape[0] ) print( data_pack.shape[2] ) print( data_pack.shape[3] ) """ if self.data_pack_shape_2 == None: self.data_pack_shape_2 = data_pack.shape[2] if self.data_pack_shape_3 == None: self.data_pack_shape_3 = data_pack.shape[3] #TODO temp. eval with train data is_eval_with_train_data = self.is_eval_with_train_data list_evaluated_clss = [] n_samples = self.samples_per_class * self.classes_per_set data_cache = [] for sample in range(0, self.cache_sample_prediction): """ #TODO temp. profiling, comment it when not needed import cProfile, pstats import io as StringIO print( "profiling start" ) pr = cProfile.Profile() pr.enable() """ self.evaluate_classes = math.floor(sample / 10) support_set_x = np.zeros((self.batch_size, n_samples, self.data_pack_shape_2, self.data_pack_shape_3, 1)) support_set_y = np.zeros((self.batch_size, n_samples), dtype=np.int)#) target_x = np.zeros((self.batch_size, self.samples_per_class, self.data_pack_shape_2, self.data_pack_shape_3, 1))#, dtype=np.int) target_y = np.zeros((self.batch_size, self.samples_per_class), dtype=np.int) target_y_actuals = np.zeros((self.batch_size, self.samples_per_class), dtype=np.int) for i in range(self.batch_size): pinds = np.random.permutation(n_samples) #classes = np.random.choice(data_pack.shape[0], self.classes_per_set, False if not data_pack_type == "x_to_be_predicted" else False) #False #classes = np.random.choice( self.prediction_classes, self.classes_per_set, False if not data_pack_type == "x_to_be_predicted" else False) if not self.is_evaluation_res_in_obj: classes = np.random.choice( 30, self.classes_per_set, False if not data_pack_type == "x_to_be_predicted" else False) else: classes = np.random.choice( data_pack.shape[0], self.classes_per_set, False if not data_pack_type == "x_to_be_predicted" else False) # select 1-shot or 5-shot classes for test with repetition if not self.is_evaluation_res_in_obj: x_hat_class = np.random.choice(classes, self.samples_per_class, True) else: #find least evaluated x_hat_class = [] for jtmp, tmp_class in enumerate(classes): if not tmp_class in list_evaluated_clss: list_evaluated_clss.append( tmp_class ) x_hat_class = np.array( [ tmp_class ] ) break if len(x_hat_class) == 0: for jtmp, tmp_class in enumerate(classes): if list_evaluated_clss.count(tmp_class) == 1: list_evaluated_clss.append( tmp_class ) x_hat_class = np.array( [ tmp_class ] ) break if len(x_hat_class) == 0: x_hat_class = np.random.choice(classes, self.samples_per_class, True) self.evaluate_classes = x_hat_class[0] pinds_test = np.random.permutation(self.samples_per_class) ind = 0 ind_test = 0 for j, cur_class in enumerate(classes): # each class example_inds_test = [] #print( "example_inds j " + str(j) ) if cur_class in x_hat_class: # Count number of times this class is inside the meta-test n_test_samples = np.sum(cur_class == x_hat_class) if is_eval_with_train_data == True or not cur_class == self.evaluate_classes: if not cur_class == self.evaluate_classes: #example_inds = np.random.choice(data_pack.shape[1], self.samples_per_class+n_test_samples, self.choice_replace) example_inds = np.random.choice(self.tvt_records_fall_short_clss[cur_class], self.samples_per_class+n_test_samples, self.choice_replace) else: #print( "example_inds_test here 1 in train mode" ) #example_inds = np.random.choice(data_pack.shape[1], self.samples_per_class + (n_test_samples - 1), self.choice_replace) example_inds = np.random.choice(self.tvt_records_fall_short_clss[cur_class], self.samples_per_class + (n_test_samples - 1), self.choice_replace) example_inds_test = np.array( [0] ) #np.random.choice(self.evaluate_classes, self.evaluate_classes, False) else: #print( "example_inds_test here 1 " ) #example_inds = np.random.choice(data_pack.shape[1], self.samples_per_class + (n_test_samples - 1), self.choice_replace) example_inds = np.random.choice(self.tvt_records_fall_short_clss[cur_class], self.samples_per_class + (n_test_samples - 1), self.choice_replace) example_inds_test = np.array( [0] ) #np.random.choice(self.evaluate_classes, self.evaluate_classes, False) #print( "example_inds here 1 " + str(n_test_samples) ) else: #print( "example_inds here 2 cur_class ", cur_class, " tvt_records_fall_short_clss ", self.tvt_records_fall_short_clss[cur_class], " samples_per_class ", self.samples_per_class ) #print( self.tvt_records_fall_short_clss ) #example_inds = np.random.choice(data_pack.shape[1], self.samples_per_class, False) example_inds = np.random.choice(self.tvt_records_fall_short_clss[cur_class], self.samples_per_class, False) #print( example_inds ) # meta-training for eind in example_inds[:self.samples_per_class]: support_set_x[i, pinds[ind], :, :, :] = data_pack[cur_class][eind] support_set_y[i, pinds[ind]] = j ind = ind + 1 # meta-test if is_eval_with_train_data == True and not cur_class == self.evaluate_classes: for eind in example_inds[self.samples_per_class:]: """ print( "eind" ) print( eind ) print( cur_class ) print( i ) print( ind_test ) print( pinds_test[ind_test] ) """ target_x[i, pinds_test[ind_test], :, :, :] = data_pack[cur_class][eind] target_y[i, pinds_test[ind_test]] = j ind_test = ind_test + 1 else: for eind in example_inds[self.samples_per_class:]: """ print( "eind" ) print( eind ) print( cur_class ) print( i ) print( ind_test ) print( pinds_test[ind_test] ) """ target_x[i, pinds_test[ind_test], :, :, :] = data_pack[cur_class][eind] target_y[i, pinds_test[ind_test]] = j ind_test = ind_test + 1 if len(example_inds_test) > 0: for eind in example_inds_test[:]: """ print( "eind" ) print( eind ) print( cur_class ) print( i ) print( ind_test ) print( pinds_test[ind_test] ) """ if is_eval_with_train_data == True: target_x[i, pinds_test[ind_test], :, :, :] = data_pack[cur_class+self.negative_test_offset][eind] else: target_x[i, pinds_test[ind_test], :, :, :] = data_pack_evaluation[cur_class+self.negative_test_offset][eind] target_y[i, pinds_test[ind_test]] = j target_y_actuals[i, pinds_test[ind_test]] = (cur_class+1+self.negative_test_offset) * -1 ind_test = ind_test + 1 data_cache.append([support_set_x, support_set_y, target_x, target_y, target_y_actuals]) """ #TODO temp. profiling, comment it when not needed pr.disable() s = StringIO.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print( s.getvalue() ) sdfkjhskdfhkshdf """ return data_cache def __get_batch(self, dataset_name): """ Gets next batch from the dataset with name. :param dataset_name: The name of the dataset (one of "train", "val", "test") :return: """ if self.indexes[dataset_name] >= len(self.datasets_cache[dataset_name]): self.indexes[dataset_name] = 0 self.datasets_cache[dataset_name] = self.load_data_cache(self.datasets[dataset_name], dataset_name) next_batch = self.datasets_cache[dataset_name][self.indexes[dataset_name]] self.indexes[dataset_name] += 1 x_support_set, y_support_set, x_target, y_target = next_batch return x_support_set, y_support_set, x_target, y_target def get_batch(self,str_type, rotate_flag = False): """ Get next batch :return: Next batch """ x_support_set, y_support_set, x_target, y_target = self.__get_batch(str_type) if rotate_flag: k = int(np.random.uniform(low=0, high=4)) # Iterate over the sequence. Extract batches. for i in np.arange(x_support_set.shape[0]): x_support_set[i,:,:,:,:] = self.__rotate_batch(x_support_set[i,:,:,:,:],k) # Rotate all the batch of the target images for i in np.arange(x_target.shape[0]): x_target[i,:,:,:,:] = self.__rotate_batch(x_target[i,:,:,:,:], k) return x_support_set, y_support_set, x_target, y_target def get_batch_custom(self,str_type, cls, rotate_flag = False): """ Get next batch :return: Next batch """ x_support_set, y_support_set, x_target, y_target = self.__get_batch(str_type) if rotate_flag: k = int(np.random.uniform(low=0, high=4)) # Iterate over the sequence. Extract batches. for i in np.arange(x_support_set.shape[0]): x_support_set[i,:,:,:,:] = self.__rotate_batch(x_support_set[i,:,:,:,:],k) # Rotate all the batch of the target images for i in np.arange(x_target.shape[0]): x_target[i,:,:,:,:] = self.__rotate_batch(x_target[i,:,:,:,:], k) """ print( "get_batch_custom" ) print( x_support_set.shape ) print( y_support_set.shape ) print( x_target.shape ) print( y_target.shape ) x_support_set_tmp, y_support_set_tmp, x_target_tmp, y_target_tmp = x_support_set, y_support_set, x_target, y_target for i in np.arange(8): x_support_set_tmp[i,:,:,:,:], y_support_set_tmp[i,:], x_target_tmp[i,:,:,:,:], y_target_tmp[i,:] = x_support_set[self.x_to_be_predicted_cls_indexes[cls]:self.x_to_be_predicted_cls_indexes[cls]+1,:,:,:,:], y_support_set[self.x_to_be_predicted_cls_indexes[cls]:self.x_to_be_predicted_cls_indexes[cls]+1,:], x_target[self.x_to_be_predicted_cls_indexes[cls]:self.x_to_be_predicted_cls_indexes[cls]+1,:,:,:,:], y_target[self.x_to_be_predicted_cls_indexes[cls]:self.x_to_be_predicted_cls_indexes[cls]+1,:] print( x_support_set_tmp.shape ) print( y_support_set_tmp ) print( x_target_tmp.shape ) print( y_target_tmp ) return x_support_set_tmp, y_support_set_tmp, x_target_tmp, y_target_tmp """ for i in np.arange( len(y_support_set) ): for j in np.arange( len(y_support_set[i]) ): if y_support_set[i][j] >= self.total_base_classes and y_support_set[i][j] < (self.total_base_classes*2): y_support_set[i][j] = self.total_base_classes + ( (y_support_set[i][j] - self.total_base_classes) * 30 ) if y_support_set[i][j] >= (self.total_base_classes*2): y_support_set[i][j] = (self.total_base_classes+1) + ( (y_support_set[i][j] - (self.total_base_classes+1)) * 30 ) for i in np.arange( len(y_target) ): for j in np.arange( len(y_target[i]) ): if y_target[i][j] >= self.total_base_classes and y_target[i][j] < (self.total_base_classes*2): y_target[i][j] = self.total_base_classes + ( (y_target[i][j] - self.total_base_classes) * 30 ) if y_target[i][j] >= (self.total_base_classes*2): y_target[i][j] = (self.total_base_classes+1) + ( (y_target[i][j] - (self.total_base_classes+1)) * 30 ) return x_support_set, y_support_set, x_target, y_target def __get_batch_training(self, dataset_name): """ Gets next batch from the dataset with name. :param dataset_name: The name of the dataset (one of "train", "val", "test") :return: """ if self.indexes[dataset_name] >= len(self.datasets_cache[dataset_name]): self.indexes[dataset_name] = 0 self.datasets_cache[dataset_name] = self.load_data_cache(self.datasets[dataset_name], dataset_name) next_batch = self.datasets_cache[dataset_name][self.indexes[dataset_name]] self.indexes[dataset_name] += 1 #x_support_set, y_support_set, x_target, y_target = next_batch #return x_support_set, y_support_set, x_target, y_target return next_batch def get_batch_training(self, str_type, rotate_flag = False): """ Get next batch :return: Next batch """ x_support_set, y_support_set, x_target, y_target, support_set_y_actuals, target_y_actuals = self.__get_batch_training(str_type) if self.is_rotate and rotate_flag: k = int(
np.random.uniform(low=0, high=4)
numpy.random.uniform
import os import numpy as np # make sure you have $CARLA_ROOT/PythonClient in your PYTHONPATH from carla.driving_benchmark.experiment_suites import CoRL2017 from rl_coach.logger import screen from rl_coach.agents.cil_agent import CILAgentParameters from rl_coach.architectures.embedder_parameters import InputEmbedderParameters from rl_coach.architectures.head_parameters import RegressionHeadParameters from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters from rl_coach.architectures.layers import Conv2d, Dense, BatchnormActivationDropout from rl_coach.base_parameters import VisualizationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.carla_environment import CarlaEnvironmentParameters from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters from rl_coach.filters.filter import InputFilter from rl_coach.filters.observation.observation_crop_filter import ObservationCropFilter from rl_coach.filters.observation.observation_reduction_by_sub_parts_name_filter import \ ObservationReductionBySubPartsNameFilter from rl_coach.filters.observation.observation_rescale_to_size_filter import ObservationRescaleToSizeFilter from rl_coach.filters.observation.observation_to_uint8_filter import ObservationToUInt8Filter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.schedules import ConstantSchedule from rl_coach.spaces import ImageObservationSpace from rl_coach.utilities.carla_dataset_to_replay_buffer import create_dataset from rl_coach.core_types import PickledReplayBuffer #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = TrainingSteps(500) schedule_params.evaluation_steps = EnvironmentEpisodes(5) schedule_params.heatup_steps = EnvironmentSteps(0) ################ # Agent Params # ################ agent_params = CILAgentParameters() # forward camera and measurements input agent_params.network_wrappers['main'].input_embedders_parameters = { 'CameraRGB': InputEmbedderParameters( scheme=[ Conv2d(32, 5, 2), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(32, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(64, 3, 2), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(64, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(128, 3, 2), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(128, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(256, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(256, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Dense(512), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.3), Dense(512), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.3) ], activation_function='none' # we define the activation function for each layer explicitly ), 'measurements': InputEmbedderParameters( scheme=[ Dense(128), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5), Dense(128), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5) ], activation_function='none' # we define the activation function for each layer explicitly ) } # simple fc middleware agent_params.network_wrappers['main'].middleware_parameters = \ FCMiddlewareParameters( scheme=[ Dense(512), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5) ], activation_function='none' ) # output branches agent_params.network_wrappers['main'].heads_parameters = [ RegressionHeadParameters( scheme=[ Dense(256), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5), Dense(256), BatchnormActivationDropout(activation_function='tanh') ], num_output_head_copies=4 # follow lane, left, right, straight ) ] # TODO: there should be another head predicting the speed which is connected directly to the forward camera embedding agent_params.network_wrappers['main'].batch_size = 120 agent_params.network_wrappers['main'].learning_rate = 0.0002 # crop and rescale the image + use only the forward speed measurement agent_params.input_filter = InputFilter() agent_params.input_filter.add_observation_filter('CameraRGB', 'cropping', ObservationCropFilter(crop_low=np.array([115, 0, 0]), crop_high=
np.array([510, -1, -1])
numpy.array
import tensorflow as tf import numpy as np import random from collections import deque from unityagents.brain import BrainParameters from unitytrainers.ppo.rl_teacher.segment_sampling import sample_segment_from_path from rl_teacher.nn import FullyConnectedMLP from rl_teacher.utils import corrcoef from keras import backend as K class ComparisonRewardPredictor(): """Predictor that trains a model to predict how much reward is contained in a trajectory segment""" def __init__(self, brain:BrainParameters , summary_writer, comparison_collector, agent_logger, label_schedule,clip_length): self.summary_writer = summary_writer self.agent_logger = agent_logger self.comparison_collector = comparison_collector self.label_schedule = label_schedule # Set up some bookkeeping self.recent_segments = deque(maxlen=200) # Keep a queue of recently seen segments to pull new comparisons from #self._frames_per_segment = clip_length * env.fps self._frames_per_segment = clip_length * 30 self._steps_since_last_training = 0 self._n_timesteps_per_predictor_training = 1e2 # How often should we train our predictor? self._elapsed_predictor_training_iters = 0 # Build and initialize our predictor model config = tf.ConfigProto( device_count={'GPU': 0} ) self.sess = tf.InteractiveSession(config=config) self.obs_shape =tuple([1,brain.vector_observation_space_size]) #self.discrete_action_space = not hasattr(env.action_space, "shape") self.act_shape = tuple([brain.vector_action_space_size]) self.graph = self._build_model() self.sess.run(tf.global_variables_initializer()) def _predict_rewards(self, obs_segments, act_segments, network): """ :param obs_segments: tensor with shape = (batch_size, segment_length) + obs_shape :param act_segments: tensor with shape = (batch_size, segment_length) + act_shape :param network: neural net with .run() that maps obs and act tensors into a (scalar) value tensor :return: tensor with shape = (batch_size, segment_length) """ batchsize = tf.shape(obs_segments)[0] segment_length = tf.shape(obs_segments)[1] # Temporarily chop up segments into individual observations and actions obs = tf.reshape(obs_segments, (-1,) + self.obs_shape) acts = tf.reshape(act_segments, (-1,) + self.act_shape) # Run them through our neural network rewards = network.run(obs, acts) # Group the rewards back into their segments return tf.reshape(rewards, (batchsize, segment_length)) def _build_model(self): """ Our model takes in path segments with states and actions, and generates Q values. These Q values serve as predictions of the true reward. We can compare two segments and sum the Q values to get a prediction of a label of which segment is better. We then learn the weights for our model by comparing these labels with an authority (either a human or synthetic labeler). """ # Set up observation placeholders self.segment_obs_placeholder = tf.placeholder( dtype=tf.float32,shape=self.obs_shape, name="obs_placeholder") self.segment_alt_obs_placeholder = tf.placeholder( dtype=tf.float32, shape=self.obs_shape, name="alt_obs_placeholder") self.segment_act_placeholder = tf.placeholder( dtype=tf.float32, shape=self.act_shape, name="act_placeholder") self.segment_alt_act_placeholder = tf.placeholder( dtype=tf.float32, shape=self.act_shape, name="alt_act_placeholder") # A vanilla multi-layer perceptron maps a (state, action) pair to a reward (Q-value) mlp = FullyConnectedMLP(self.obs_shape, self.act_shape) self.q_value = self._predict_rewards(self.segment_obs_placeholder, self.segment_act_placeholder, mlp) alt_q_value = self._predict_rewards(self.segment_alt_obs_placeholder, self.segment_alt_act_placeholder, mlp) # We use trajectory segments rather than individual (state, action) pairs because # video clips of segments are easier for humans to evaluate segment_reward_pred_left = tf.reduce_sum(self.q_value, axis=1) segment_reward_pred_right = tf.reduce_sum(alt_q_value, axis=1) reward_logits = tf.stack([segment_reward_pred_left, segment_reward_pred_right], axis=1) # (batch_size, 2) self.labels = tf.placeholder(dtype=tf.int32, shape=(None,), name="comparison_labels") # delta = 1e-5 # clipped_comparison_labels = tf.clip_by_value(self.comparison_labels, delta, 1.0-delta) data_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=reward_logits, labels=self.labels) self.loss_op = tf.reduce_mean(data_loss) global_step = tf.Variable(0, name='global_step', trainable=False) self.train_op = tf.train.AdamOptimizer().minimize(self.loss_op, global_step=global_step) return tf.get_default_graph() def predict_reward(self, path): """Predict the reward for each step in a given path""" with self.graph.as_default(): q_value = self.sess.run(self.q_value, feed_dict={ self.segment_obs_placeholder: np.asarray([path["obs"]]), self.segment_act_placeholder: np.asarray([path["actions"]]), K.learning_phase(): False }) return q_value[0] def path_callback(self, path): path_length = len(path["obs"]) self._steps_since_last_training += path_length self.agent_logger.log_episode(path) # We may be in a new part of the environment, so we take new segments to build comparisons from segment = sample_segment_from_path(path, int(self._frames_per_segment)) if segment: self.recent_segments.append(segment) # If we need more comparisons, then we build them from our recent segments if len(self.comparison_collector) < int(self.label_schedule.n_desired_labels): self.comparison_collector.add_segment_pair( random.choice(self.recent_segments), random.choice(self.recent_segments)) # Train our predictor every X steps if self._steps_since_last_training >= int(self._n_timesteps_per_predictor_training): self.train_predictor() self._steps_since_last_training -= self._steps_since_last_training def train_predictor(self): self.comparison_collector.label_unlabeled_comparisons() minibatch_size = min(64, len(self.comparison_collector.labeled_decisive_comparisons)) labeled_comparisons = random.sample(self.comparison_collector.labeled_decisive_comparisons, minibatch_size) left_obs = np.asarray([comp['left']['obs'] for comp in labeled_comparisons]) left_acts = np.asarray([comp['left']['actions'] for comp in labeled_comparisons]) right_obs = np.asarray([comp['right']['obs'] for comp in labeled_comparisons]) right_acts = np.asarray([comp['right']['actions'] for comp in labeled_comparisons]) labels = np.asarray([comp['label'] for comp in labeled_comparisons]) with self.graph.as_default(): _, loss = self.sess.run([self.train_op, self.loss_op], feed_dict={ self.segment_obs_placeholder: left_obs, self.segment_act_placeholder: left_acts, self.segment_alt_obs_placeholder: right_obs, self.segment_alt_act_placeholder: right_acts, self.labels: labels, K.learning_phase(): True }) self._elapsed_predictor_training_iters += 1 self._write_training_summaries(loss) def _write_training_summaries(self, loss): self.agent_logger.log_simple("predictor/loss", loss) # Calculate correlation between true and predicted reward by running validation on recent episodes recent_paths = self.agent_logger.get_recent_paths_with_padding() if len(recent_paths) > 1 and self.agent_logger.summary_step % 10 == 0: # Run validation every 10 iters validation_obs = np.asarray([path["obs"] for path in recent_paths]) validation_acts = np.asarray([path["actions"] for path in recent_paths]) q_value = self.sess.run(self.q_value, feed_dict={ self.segment_obs_placeholder: validation_obs, self.segment_act_placeholder: validation_acts, K.learning_phase(): False }) ep_reward_pred = np.sum(q_value, axis=1) reward_true = np.asarray([path['original_rewards'] for path in recent_paths]) ep_reward_true =
np.sum(reward_true, axis=1)
numpy.sum
import pytest import mock import os import numpy as np import awkward as awk from zinv.modules.readers import WeightMetTrigger class DummyColl(object): pass class DummyEvent(object): def __init__(self): self.iblock = 0 self.source = '' self.nsig = 0. self.attribute_variation_sources = [] self.cache = {} def register_function(self, event, name, function): self.__dict__[name] = function @pytest.fixture() def event(): return DummyEvent() @pytest.fixture() def module(): return WeightMetTrigger( correction_files = { 0: "http://www.hep.ph.ic.ac.uk/~sdb15/Analysis/ZinvWidth/data/mettrigger/met_trigger_correction_0mu.txt", 1: "http://www.hep.ph.ic.ac.uk/~sdb15/Analysis/ZinvWidth/data/mettrigger/met_trigger_correction_1mu.txt", 2: "http://www.hep.ph.ic.ac.uk/~sdb15/Analysis/ZinvWidth/data/mettrigger/met_trigger_correction_2mu.txt", }, ) def test_weightmettrigger_init(module): assert module.correction_files == { 0: "http://www.hep.ph.ic.ac.uk/~sdb15/Analysis/ZinvWidth/data/mettrigger/met_trigger_correction_0mu.txt", 1: "http://www.hep.ph.ic.ac.uk/~sdb15/Analysis/ZinvWidth/data/mettrigger/met_trigger_correction_1mu.txt", 2: "http://www.hep.ph.ic.ac.uk/~sdb15/Analysis/ZinvWidth/data/mettrigger/met_trigger_correction_2mu.txt", } assert module.cats == [0, 1, 2] assert all([hasattr(module, attr) for attr in [ "xcents", "corr", "statup", "statdown", "systup", "systdown", ]]) @pytest.mark.parametrize( "inputs,outputs", ( [{ "met": [-np.inf, -50., 0., 50., 100., 200., 200., 300., 1000., 2000., np.inf, np.nan], "mucounts": [0, 0, 0, 0, 0, 1, 2, 3, np.nan, 0, 0, 0], "nsig": 0., "source": "", }, { "eff": [0., 0., 0., 0.00085, 0.11995, 0.954119033, 0.9128533589, 1., 1., 1., 1., np.nan], }], [{ "met": [-np.inf, -50., 0., 50., 100., 200., 200., 300., 1000., 2000., np.inf, np.nan], "mucounts": [0, 0, 0, 0, 0, 1, 2, 3, np.nan, 0, 0, 0], "nsig": 1., "source": "metTrigStat", }, { "eff": [0., 0., 0., 0.000850255, 0.120748, 0.960702425, 0.9245834611, 1., 1., 1., 1., np.nan], }], [{ "met": [-np.inf, -50., 0., 50., 100., 200., 200., 300., 1000., 2000., np.inf, np.nan], "mucounts": [0, 0, 0, 0, 0, 1, 2, 3, np.nan, 0, 0, 0], "nsig": -1., "source": "metTrigStat", }, { "eff": [0., 0., 0., 0.000849785, 0.119164, 0.9473925085, 0.9009406438, 1., 1., 1., 1., np.nan], }], [{ "met": [-np.inf, -50., 0., 50., 100., 200., 200., 300., 1000., 2000., np.inf, np.nan], "mucounts": [0, 0, 0, 0, 0, 1, 2, 3, np.nan, 0, 0, 0], "nsig": 1., "source": "metTrigSyst", }, { "eff": [0., 0., 0., 0.00085004, 0.1201, 0.9554547996, 0.915318063, 1., 1., 1., 1., np.nan], }], [{ "met": [-np.inf, -50., 0., 50., 100., 200., 200., 300., 1000., 2000., np.inf, np.nan], "mucounts": [0, 0, 0, 0, 0, 1, 2, 3, np.nan, 0, 0, 0], "nsig": -1., "source": "metTrigSyst", }, { "eff": [0., 0., 0., 0.00084996, 0.1198, 0.95278326635380, 0.91038865487585, 1., 1., 1., 1., np.nan], }], ) ) def test_weightmettrigger_begin(module, event, inputs, outputs): event.nsig = inputs["nsig"] event.source = inputs["source"] module.begin(event) event.METnoX_pt = mock.Mock( side_effect=lambda ev, source, nsig: np.array(inputs["met"], dtype=np.float32), ) def mupt(ev, source, nsig, attr): assert attr == "pt" musele = DummyColl() musele.counts = np.array(inputs["mucounts"], dtype=np.float32) return musele event.MuonSelection = mock.Mock(side_effect=mupt) eff = event.WeightMETTrig(event, event.source, event.nsig) oeff = np.array(outputs["eff"], dtype=np.float32) print(eff) print(oeff) assert
np.allclose(eff, oeff, rtol=1e-5, equal_nan=True)
numpy.allclose
from __future__ import division import os import numpy as np from ..utils.importing import import_file class ImageClassifier(object): """ ImageClassifier workflow. This workflow is used to train image classification tasks, typically when the dataset cannot be stored in memory. Submissions need to contain two files, which by default are named: image_preprocessor.py and batch_classifier.py (they can be modified by changing `workflow_element_names`). image_preprocessor.py needs a `tranform` function, which is used for preprocessing the images. It takes an image as input and it returns an image as an output. Optionally, image_preprocessor.py can also have a function `transform_test`, which is used only to preprocess images at test time. Otherwise, if `transform_test` does not exist, `transform` is used at train and test time. batch_classifier.py needs a `BatchClassifier` class, which implements `fit` and `predict_proba`, where `fit` takes as input an instance of `BatchGeneratorBuilder`. Parameters ========== test_batch_size : int batch size used for testing. chunk_size : int size of the chunk used to load data from disk into memory. (see at the top of the file what a chunk is and its difference with the mini-batch size of neural nets). n_jobs : int the number of jobs used to load images from disk to memory as `chunks`. n_classes : int Total number of classes. """ def __init__(self, test_batch_size, chunk_size, n_jobs, n_classes, workflow_element_names=[ 'image_preprocessor', 'batch_classifier']): self.element_names = workflow_element_names self.test_batch_size = test_batch_size self.chunk_size = chunk_size self.n_jobs = n_jobs self.n_classes = n_classes def train_submission(self, module_path, folder_X_array, y_array, train_is=None): """Train a batch image classifier. module_path : str module where the submission is. the folder of the module have to contain batch_classifier.py and image_preprocessor.py. X_array : ArrayContainer vector of int vector of image IDs to train on (it is named X_array to be coherent with the current API, but as said here, it does not represent the data itself, only image IDs). y_array : vector of int vector of image labels corresponding to X_train train_is : vector of int indices from X_array to train on """ folder, X_array = folder_X_array if train_is is None: train_is = slice(None, None, None) image_preprocessor = import_file(module_path, self.element_names[0]) transform_img = image_preprocessor.transform transform_test_img = getattr(image_preprocessor, 'transform_test', transform_img) batch_classifier = import_file(module_path, self.element_names[1]) clf = batch_classifier.BatchClassifier() gen_builder = BatchGeneratorBuilder( X_array[train_is], y_array[train_is], transform_img, transform_test_img, folder=folder, chunk_size=self.chunk_size, n_classes=self.n_classes, n_jobs=self.n_jobs) clf.fit(gen_builder) return transform_img, transform_test_img, clf def test_submission(self, trained_model, folder_X_array): """Train a batch image classifier. trained_model : tuple (function, Classifier) tuple of a trained model returned by `train_submission`. X_array : ArrayContainer of int vector of image IDs to test on. (it is named X_array to be coherent with the current API, but as said here, it does not represent the data itself, only image IDs). """ folder, X_array = folder_X_array transform_img, transform_test_img, clf = trained_model it = _chunk_iterator( X_array, folder=folder, chunk_size=self.chunk_size) y_proba = [] for X in it: for i in range(0, len(X), self.test_batch_size): # 1) Preprocessing X_batch = X[i: i + self.test_batch_size] # X_batch = Parallel(n_jobs=self.n_jobs, backend='threading')( # delayed(transform_img)(x) for x in X_batch) X_batch = [transform_test_img(x) for x in X_batch] # X is a list of numpy arrrays at this point, convert it to a # single numpy array. try: X_batch = [x[np.newaxis, :, :, :] for x in X_batch] except IndexError: # single channel X_batch = [ x[np.newaxis, np.newaxis, :, :] for x in X_batch] X_batch = np.concatenate(X_batch, axis=0) # 2) Prediction y_proba_batch = clf.predict_proba(X_batch) y_proba.append(y_proba_batch) y_proba = np.concatenate(y_proba, axis=0) return y_proba class BatchGeneratorBuilder(object): """A batch generator builder for generating images on the fly. This class is a way to build training and validation generators that yield each time a tuple (X, y) of mini-batches. The generators are built in a way to fit into keras API of `fit_generator` (see https://keras.io/models/model/). An instance of this class is exposed to users `Classifier` through the `fit` function : model fitting is called by using "clf.fit(gen_builder)" where `gen_builder` is an instance of this class : `BatchGeneratorBuilder`. The fit function from `Classifier` should then use the instance to build train and validation generators, using the method `get_train_valid_generators` Parameters ========== X_array : ArrayContainer of int vector of image IDs to train on (it is named X_array to be coherent with the current API, but as said here, it does not represent the data itself, only image IDs). y_array : vector of int vector of image labels corresponding to `X_array` folder : str folder where the images are chunk_size : int size of the chunk used to load data from disk into memory. (see at the top of the file what a chunk is and its difference with the mini-batch size of neural nets). n_classes : int Total number of classes. This is needed because the array of labels, which is a vector of ints, is transformed into a onehot representation. n_jobs : int the number of jobs used to load images from disk to memory as `chunks`. """ def __init__(self, X_array, y_array, transform_img, transform_test_img, folder, chunk_size, n_classes, n_jobs): self.X_array = X_array self.y_array = y_array self.transform_img = transform_img self.transform_test_img = transform_test_img self.folder = folder self.chunk_size = chunk_size self.n_classes = n_classes self.n_jobs = n_jobs self.nb_examples = len(X_array) def get_train_valid_generators(self, batch_size=256, valid_ratio=0.1): """Build train and valid generators for keras. This method is used by the user defined `Classifier` to o build train and valid generators that will be used in keras `fit_generator`. Parameters ========== batch_size : int size of mini-batches valid_ratio : float between 0 and 1 ratio of validation data Returns ======= a 4-tuple (gen_train, gen_valid, nb_train, nb_valid) where: - gen_train is a generator function for training data - gen_valid is a generator function for valid data - nb_train is the number of training examples - nb_valid is the number of validation examples The number of training and validation data are necessary so that we can use the keras method `fit_generator`. """ nb_valid = int(valid_ratio * self.nb_examples) nb_train = self.nb_examples - nb_valid indices = np.arange(self.nb_examples) train_indices = indices[0:nb_train] valid_indices = indices[nb_train:] gen_train = self._get_generator( indices=train_indices, batch_size=batch_size) gen_valid = self._get_generator( indices=valid_indices, batch_size=batch_size) return gen_train, gen_valid, nb_train, nb_valid def _get_generator(self, indices=None, batch_size=256): if indices is None: indices = np.arange(self.nb_examples) # Infinite loop, as required by keras `fit_generator`. # However, as we provide the number of examples per epoch # and the user specifies the total number of epochs, it will # be able to end. while True: it = _chunk_iterator( X_array=self.X_array[indices], folder=self.folder, y_array=self.y_array[indices], chunk_size=self.chunk_size, n_jobs=self.n_jobs) for X, y in it: # 1) Preprocessing of X and y # X = Parallel( # n_jobs=self.n_jobs, backend='threading')(delayed( # self.transform_img)(x) for x in X) X = np.array([self.transform_img(x) for x in X]) # # X is a list of numpy arrrays at this point, convert it to a # single numpy array. try: X = [x[np.newaxis, :, :, :] for x in X] except IndexError: # single channel X = [x[np.newaxis, np.newaxis, :, :] for x in X] X = np.concatenate(X, axis=0) X = np.array(X, dtype='float32') # Convert y to onehot representation y = _to_categorical(y, num_classes=self.n_classes) # 2) Yielding mini-batches for i in range(0, len(X), batch_size): yield X[i:i + batch_size], y[i:i + batch_size] def _chunk_iterator(X_array, folder, y_array=None, chunk_size=1024, n_jobs=8): """Generate chunks of images, optionally with their labels. Parameters ========== X_array : ArrayContainer of int image ids to load (it is named X_array to be coherent with the current API, but as said here, it does not represent the data itself, only image IDs). y_array : vector of int labels corresponding to each image from X_array chunk_size : int chunk size folder : str folder where the images are n_jobs : int number of jobs used to load images in parallel Yields ====== if y_array is provided (not None): it yields each time a tuple (X, y) where X is a list of numpy arrays of images and y is a list of ints (labels). The length of X and y is `chunk_size` at most (it can be smaller). if y_array is not provided (it is None) it yields each time X where X is a list of numpy arrays of images. The length of X is `chunk_size` at most (it can be smaller). This is used for testing, where we don't have/need the labels. The shape of each element of X in both cases is (height, width, color), where color is 1 or 3 or 4 and height/width vary according to examples (hence the fact that X is a list instead of numpy array). """ from skimage.io import imread from joblib import delayed from joblib import Parallel for i in range(0, len(X_array), chunk_size): X_chunk = X_array[i:i + chunk_size] filenames = [ os.path.join(folder, '{}'.format(x)) for x in X_chunk] X = Parallel(n_jobs=n_jobs, backend='threading')(delayed(imread)( filename) for filename in filenames) if y_array is not None: y = y_array[i:i + chunk_size] yield X, y else: yield X def _to_categorical(y, num_classes=None): """Convert a class vector (integers) to binary class matrix. Taken from keras: https://github.com/fchollet/keras/blob/master/keras/utils/np_utils.py The reason it was taken from keras is to avoid importing theano which clashes with pytorch. E.g. for use with categorical_crossentropy. # Arguments y: class vector to be converted into a matrix (integers from 0 to num_classes). num_classes: total number of classes. # Returns A binary matrix representation of the input. """ y = np.array(y, dtype='int').ravel() if not num_classes: num_classes = np.max(y) + 1 n = y.shape[0] categorical = np.zeros((n, num_classes)) categorical[
np.arange(n)
numpy.arange
import numpy as np from sklearn.linear_model import LinearRegression import math from itertools import combinations def print_LR(X, w, y, add_bias = True, n = 5, verbose = False): W = np.diag(w) if verbose: print(W) Z1 = np.dot(np.dot(X.T,W), X) Z2 = np.linalg.inv(Z1) Z3 = np.dot(Z2, np.dot(X.T,W)) beta = np.dot(Z3, y) if verbose: print("Solution of regression:", beta) print(beta[-2]) if add_bias: weight_sum = np.sum(beta[:-1]) else: weight_sum = np.sum(beta) if verbose: print("Sum of weights (w.o. bias) :", weight_sum) if add_bias and verbose: print("Bias :", beta[-1]) return beta[:-1] def generate_X(n, interactions = [], add_bias = True): ''' n : number of elements interactions : [(0,1), (2,3), ..., (4,5)] ''' X = [] m = n + len(interactions) + int(add_bias) for i in range(n+1): for index_array in list(combinations(range(n), i)): x = np.zeros(m) if len(index_array) > 0: x[np.array(list(index_array))] = 1 for j, inter in enumerate(interactions): if set(inter).issubset(set(index_array)): x[j + n] = 1 if add_bias: x[-1] = 1 X.append(x) return
np.array(X)
numpy.array
import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf import tensorflow_addons as tfa import skopt as sk from sklearn.model_selection import train_test_split from tensorflow.keras import initializers from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.python.keras import backend as k from sklearn.ensemble import RandomForestRegressor import joblib import stability as stab from Data_processing import hough_theta, averaging_xy, threshold_theoretical import multiprocessing as mp def stability_generator(n_qd, res): if n_qd == 2: x, y, z, c, cc, dots = stab.stab_dqd(res) return x, y, z, c, cc, dots elif n_qd == 4: x, y, z, c, cc, dots = stab.stab_fqd(res) return x, y, z, c, cc, dots else: print('Error, n_qd can only take values of 2 or 4') def stab_red(n_qd, res): vg1, vg2, intensity, c, cc, dots = stability_generator(n_qd, res) x, y, z, _, _, _ = threshold_theoretical(vg1, vg2, intensity) xs, ys, _ = averaging_xy(x, y, z, int((len(x)) ** 0.5 * 10), int((len(x)) ** 0.2)) # Averaging points return xs, ys, c, cc, dots def line_to_theta(n_qd: int, res: int): xs, ys, c, cc, dots = stab_red(n_qd, res) theta = np.reshape(np.linspace(0, np.pi / 2, 500 + 1), (1, 500 + 1)) # Creating theta array # frequency and theta values extracted from Hough transform freq_t = hough_theta(np.transpose(np.vstack([xs, ys])), theta) p = stab.analytical_grad(c, cc, dots) return freq_t, p[:2] def create_grad_library(n: int): """ Runs line_to_theta multiple times to create a pandas data-frame of histograms with corresponding gradients @param n: number of inputs in data-frame @return: pandas data-frame """ # TODO try to parallelize for loop index = list(np.arange(0, 501 + 2, 1)) df = pd.DataFrame(columns=index) for i in range(n): try: hist, grad = line_to_theta(int(2 * np.random.randint(1, 3, 1)), 300) df = df.append(np.transpose(pd.DataFrame(np.append(hist, grad)))) except: print('An error occurred') return df def save_df(df, name): df.to_csv((str(name) + '.csv'), index=False) def create_model(learning_rate, num_dense_layers, num_dense_nodes, dropout=0.05): """ Creates model architecture for a NN to train on given different parameters @param learning_rate: learning rate of NN @param num_dense_layers: number of layers in the NN @param num_dense_nodes: number of nodes on each layer @param dropout: dropout probability @return: model to be trained """ # This model used ReLU for activation and a he_uniform initializer model = Sequential() model.add(Dense(501, activation='relu', input_shape=(501,), kernel_initializer=initializers.he_uniform())) # create a loop making a new dense layer for the amount passed to this model. # naming the layers helps avoid tensorflow error deep in the stack trace. for i in range(num_dense_layers): name = 'layer_dense_{0}'.format(i + 1) model.add(Dense(num_dense_nodes, activation='relu', name=name, kernel_initializer=initializers.he_uniform() )) model.add(Dropout(dropout)) # add our classification layer. model.add(Dense(3, activation='linear', kernel_initializer=initializers.he_uniform())) # setup our optimizer and compile adam = Adam(lr=learning_rate) # We use Adam as an optimiser model.compile(optimizer=adam, loss='mean_squared_error', # MSE is the quantity we want to minimise metrics=["mean_squared_error"]) return model def bayesian_optimisation(x_train, y_train, param_0): """ Uses Bayesian optimisation to find optimal hyper-parameters to tune the NN @param x_train: x values of training data @param y_train: y values of training data @param param_0: initial parameters @return: optimised hyper-parameters for NN """ # Set boundaries within which optimized hyper-parameters need to be in dim_learning_rate = sk.space.Real(low=1e-4, high=1e-2, prior='log-uniform', name='learning_rate') dim_num_dense_layers = sk.space.Integer(low=1, high=5, name='num_dense_layers') dim_num_dense_nodes = sk.space.Integer(low=30, high=512, name='num_dense_nodes') # dim_dropout = sk.space.Real(low=0, high=0.5, name='dropout') dimensions = [dim_learning_rate, dim_num_dense_layers, dim_num_dense_nodes # dim_dropout ] # Function to evaluate validation MSE for given hyper-parameters @sk.utils.use_named_args(dimensions=dimensions) def fitness(learning_rate, num_dense_layers, num_dense_nodes, dropout): # create model with given hyper-parameters model = create_model(learning_rate=learning_rate, num_dense_layers=num_dense_layers, num_dense_nodes=num_dense_nodes, # dropout=dropout ) # Train NN with given hyper-parameters blackbox = model.fit(x=x_train.values, # named blackbox because it represents the structure y=y_train.values, epochs=30, validation_split=0.15, ) # return the MSE for the last epoch. rms = blackbox.history['val_mean_squared_error'][-1] print() print("MSE: {}".format(rms)) print() del model # Clear the Keras session, otherwise it will keep adding new # models to the same TensorFlow graph each time we create # a model with a different set of hyper-parameters. k.clear_session() return rms # Use GP optimization to find best set of hyper-parameters gp_result = sk.gp_minimize(func=fitness, dimensions=dimensions, n_calls=500, x0=param_0) return gp_result def nn_training_data(name: str, split=0.10): """ Splits and normalises data_frame into train and test data @param split: split between train and test data, default is 0.1 @param name: Name of pandas data frame to load @return: """ # load data df = pd.read_csv(name, index_col=False) x, y = df.iloc[:, :501], df.iloc[:, 501:] y = np.arctan(-1 / y) # Split between training and test data x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=split) # use range to normalise data r_x, y_train = np.std(x_train.values, axis=0), y_train * 2 / np.pi x_train, x_test = x_train / r_x, x_test / r_x return x_train, y_train, x_test, y_test, r_x def RF_training(name: str, split=0.1): # load data x_train, y_train, x_test, y_test, r_x = nn_training_data(name, split) rf = RandomForestRegressor(n_estimators=1000, random_state=42) rf.fit(x_train.values, y_train.values) return rf def fit_model(model, x_train, y_train, val_split=0.15): black_box = model.fit(x_train.values, y_train.values, epochs=100, verbose=0, validation_split=val_split) return black_box def predict_model(model, x_test): return model.predict(x_test.values) * np.pi / 2 def evaluation(black_box): """ Plots learning curve of trained model @param black_box: trained model @return: """ history = black_box.history plt.figure() plt.subplot(1, 2, 1) plt.plot(history['mean_squared_error'], c='k') plt.plot(history['val_mean_squared_error'], c='r') plt.xlabel('Epochs', fontsize=18) plt.ylabel('MSE', fontsize=18) plt.subplot(1, 2, 2) plt.plot(history['loss'], c='k') plt.plot(history['val_loss'], c='r') plt.xlabel('Epochs', fontsize=18) plt.ylabel('Loss', fontsize=18) plt.legend(('Test', 'Validation')) plt.tight_layout() return history def save_model(name, model, r_x): model.save((name + '.h5')) drx = pd.DataFrame(r_x) drx.to_csv(('rx_' + name + '.csv'), index=False) def load_model(name): model = tf.keras.models.load_model((name + '.h5')) r_x = pd.read_csv(('rx_' + name + '.csv'), index_col=False) return model, r_x def predict_exp(model, freq, r_x): index = list(np.arange(0, 501, 1)) df = pd.DataFrame(columns=index) df = df.append(np.transpose(pd.DataFrame(freq))) df = df / np.transpose(r_x.values) t = model.predict(df.values) * np.pi / 2 return -1 / np.tan(t[0]) def load_all_models(n_models): all_models = list() reg_tree = joblib.load('models/tree_reg.sav') all_models.append(reg_tree) print('>loaded %s' % reg_tree) for i in range(n_models): # define filename for this ensemble NN1 = 'models/NN_' + str(i) + '.h5' # NN2 = 'models/NN_' + str(i*2+1) + '.h5' RF = 'models/RF_' + str(i) + '.sav' # load model from file nn1 = tf.keras.models.load_model(NN1) # nn2 = tf.keras.models.load_model(NN2) rf = joblib.load(RF) # add to list of members all_models.append(nn1) # all_models.append(nn2) all_models.append(rf) print('>loaded %s' % nn1) # print('>loaded %s' % nn2) print('>loaded %s' % rf) return all_models def stacked_predict(members, val): predict = None err_one, err_two = [], [] X = tf.constant(val) i = 0 for model in members: # make prediction # stack predictions into [rows, members, probabilities] if predict is None: predict = model.predict(val) else: if i%2 == 0: er_o, er_t = pred_ints(model, val) err_one, err_two =
np.append(err_one, er_o)
numpy.append
#!/usr/bin/env python3 import gc import os import sys import matplotlib matplotlib.use("Agg") # https://stackoverflow.com/questions/37604289 import numpy as np import pandas as pd from itertools import product from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from pathlib import Path from scipy.spatial.distance import pdist import fennec from fennec._utils import ( boxplot, draw_2D_plot, extract_cluster_silhouette, isinteractive, list_models, load_models, merge_models, myKernelPCA, pcacomp_to_model, reassign_tiny_cluster_mustlink, run_vbgmm, ) # - check is we are in the correct conda env if os.environ["CONDA_DEFAULT_ENV"] != "fennec2-dev": raise Exception("Not in correct conda environment") os.environ["OPENBLAS_NUM_THREADS"] = "16" os.environ["MKL_NUM_THREADS"] = "16" # -- functions in development --------------------------------------------------- def _nonredondant_pairwise_index(x): for i in range(len(x)): for j in range(i, len(x)): yield i, j def _count_must_link_np(ci, cj): """Count number of mustlink for cluster `ci` and `cj`""" import numpy as np global D_ml, curated_vbgmm_clus return D_ml[ np.ix_( np.where(curated_vbgmm_clus == ci)[0], np.where(curated_vbgmm_clus == cj)[0] ) ].count_nonzero() def _mysquareform(x, l): """Thanks to @pidupuis""" import numpy as np m = np.zeros([l, l]).astype(int) xs, ys = np.triu_indices(l) m[xs, ys] = m[ys, xs] = x return m def get_nb_mustlink_per_cluster(clus, D_ml, n_jobs=1, verbose=False): """ Return number of mustlink for each pair of cluster """ ## (incredibly ugly) list comprehension # return pd.DataFrame(data=_mysquareform([ # D_ml[ # np.ix_( # np.where(clus == ci)[0], # np.where(clus == cj)[0] # ) # ].count_nonzero() # for ci, cj in _nonredondant_pairwise_index(categ)], # l=len(categ)).reshape(len(categ), len(categ)), # index=categ, columns=categ) import numpy as np import pandas as pd from time import sleep from concurrent.futures import ProcessPoolExecutor categ = np.unique(clus) jobs = [] with ProcessPoolExecutor(max_workers=n_jobs) as pe: for ci, cj in _nonredondant_pairwise_index(categ): jobs.append(pe.submit(_count_must_link_np, categ[ci], categ[cj])) if verbose: while True: nb_f = 0 for j in jobs: if j.done(): nb_f += 1 if nb_f >= len(jobs): print("100% finised") break else: perc_f = nb_f / len(jobs) * 100 print("%05.2f%%" % perc_f, end="\r") sleep(1) cnt_ml = pd.DataFrame( data=_mysquareform([j.result() for j in jobs], l=len(categ)).reshape( len(categ), len(categ) ), index=categ, columns=categ, ) return cnt_ml def extract_unlink_clusters(curated_vbgmm_clus, D_ml, tol=0.9, verbose=True): """ If 2 clusters from `curated_vbgmm_clus` have at least 90% of must-link link from `D_ml`, they are dropped from the cluster list and set as `remaining_ids`. """ import numpy as np, os os.makedirs(f"{vbgmm_input_dir}/mustlink_info/", exist_ok=True) cnt_ml = get_nb_mustlink_per_cluster( curated_vbgmm_clus, D_ml, verbose=verbose, n_jobs=128 ) perc_ml = np.diag(cnt_ml) / cnt_ml.sum() pd.concat([cnt_ml, perc_ml]) cnt_ml.to_csv(f"{vbgmm_input_dir}/mustlink_info/iter{n}_nb_mustlink.csv") clustokeep = cnt_ml.index[perc_ml >= tol] remaining_ids = cnt_ml.index[perc_ml < tol] # return values # validated clusters retA = curated_vbgmm_clus[np.isin(curated_vbgmm_clus, clustokeep)] # remainings ids retB = curated_vbgmm_clus[np.isin(curated_vbgmm_clus, remaining_ids)] # max nb of cluster retC = len(retA) return retA, retB, retC # -------------------------------------------------------------------------------# # -- SCRIPT STARTS HERE ---------------------------------------------------------# # -------------------------------------------------------------------------------# if isinteractive(): # debug args if script is run in python shell h5file, label, overlap, init_type, mode, models_str = ( "DATA/S.completedata.l1000c10000o0.h5", "S", "0", "mustlink", "reassigntiny", # "contig2vec4", # "kmers4,contig2vec4,contig2vec6,ind15", # kmers5, "contig2vec4,contig2vec6,cov_gattaca31,ind15,kmers1001001,kmers110011,kmers3,kmers4", ) else: if len(sys.argv) != 7: raise Exception( "usage: python3 fennec_cluster_extraction_pipeline.py <file.h5> <label> <overlap> <init_type> <mode> <model1,model2,modelN>" ) else: _, h5file, label, overlap, init_type, mode, models_str = sys.argv assert init_type in ("kmeans", "mustlink"), "init_type is incorrect, got {}".format( init_type ) assert mode in ("nopostprocessing", "reassigntiny"), "mode is incorrect, got {}".format( mode ) # -- user input # vbgmm_input_dir = f"run.{label}.output/" vbgmm_input_dir = "/".join( ["NEW_FENNEC_RESULTS", label, overlap, init_type, mode, models_str, ""] ) min_length = 1000 # minimum sequence length max_cluster = 100 # maximum number of cluster to extract max_iter = 10 # maximum number of iteration # -- variables wanted_models = models_str.split(",") print(f"Models: {wanted_models}") # -- check what type of input we have (probably h5 or fasta) if not os.path.isfile(h5file): print("[ERROR] can not find file '%s'. Exiting." % h5file) # See: `fennec_sequence_characterization.py` sys.exit(1) # -- load data raw_models, remaining_ids, D_ml = load_models(h5file, wanted_models) print([(i, d.shape[1]) for i, d in raw_models.items()]) # -- set some parameters kpca_params = { "inertia": 0.85, "n_jobs": 128, "verbose": 3, "t": 0.25, } # see: help(myKernelPCA) min_nb_seq = 50 # default value, will be updated later max_pca_dim = min(250, sum([d.shape[1] for d in raw_models.values()]) // 3) problematic_cluster = {} # final cluster (id: [seqid]) HISTORY = {} # store data, pca, clusterings, filtered clusterings, etc. n = 0 # current iteration # -- open report files print(f"[INFO] Results will be saved in '{vbgmm_input_dir}'") os.makedirs(vbgmm_input_dir, exist_ok=True) os.makedirs(f"{vbgmm_input_dir}/comporigins/", exist_ok=True) os.makedirs(f"{vbgmm_input_dir}/mustlink_info/", exist_ok=True) pdf = PdfPages( vbgmm_input_dir + "/vbgmm_iterative_extraction_" + label + ".pdf", keep_empty=False ) # -- dev parameters devmode = False # if True, stop at each iteration force_gc = True # force garbage collection at the end of each iteration draw_plot = True # draw 2D plot of each clustering (take some times) # --------------------------- # # -- main loop starts here -- # # --------------------------- # while True: print(f"[INFO] --- ITERATION {n} {'-'*60}") print(f"[INFO] Number of sequence to process: {len(remaining_ids)}") # -- check if we have to continue if n >= max_iter: print("[END] It's already been %d iterations! Exiting." % n) problematic_cluster["maxiter_" + str(n)] = remaining_ids break if max_cluster <= 1: print("[END] I will search for only %d clusters Exiting." % max_cluster) problematic_cluster["lastcluster_" + str(n)] = remaining_ids break # -- select features print("[INFO] Merging models") D, pca_components, pca_explained_variance_ratio, n_comp = merge_models( raw_models, remaining_ids, pca_inertia=0.99, kpca_params=kpca_params ) print("[INFO] Merging models produced %d components" % n_comp) # - exporting the PCA explained variance ratio with open(f"{vbgmm_input_dir}/pca_explvarratio.txt", "a") as outfile: print(n, pca_explained_variance_ratio, file=outfile) # -- check if we have to continue if len(remaining_ids) < min_nb_seq: print( "[END] There is only %d sequences remaining (minimum %d per cluster). Exiting." % (len(D), min_nb_seq) ) problematic_cluster["notenough_" + str(n)] = remaining_ids break if n_comp > max_pca_dim: print( "[END] PCA produced %d components for %.2f %% of inertia (maximum is %d). Exiting." % (n_comp, 100 * 0.9999, max_pca_dim) ) problematic_cluster["unbinned_" + str(n)] = remaining_ids break # -- which models are used? for c in range(min(10, n_comp)): # 10 first components pcacomp_to_model( D[c], raw_models, n, outfile=f"{vbgmm_input_dir}/comporigins/pca_components_origin_comp{c}.csv", ) # - reindex D_ml to fit the current `D.index` print("[INFO] Reindexing must-link matrix") argid = np.array([D.index.get_loc(x) for x in remaining_ids]) msh = np.meshgrid(argid, argid) D_ml_sub = D_ml[msh[0], msh[1]] # TODO: Check for "clusterability" before clustering (see: https://github.com/alimuldal/diptest) # -- clustering vbgmm_clus = run_vbgmm( D, pca_components, D_ml_sub, vbgmm_input_dir, max_cluster, min_length, n, seed=666, init_type=init_type, epsilon=1e-2, verbose=2, ) assert vbgmm_clus.shape[0] == len( remaining_ids ), "[ERROR] Not all sequences were clustered!" # -- clustering post processing # - drop tiny cluster (reassign sequences eventually) if mode == "reassigntiny": curated_vbgmm_clus = reassign_tiny_cluster_mustlink( vbgmm_clus, D_ml_sub, verbose=True ) elif mode == "nopostprocessing": curated_vbgmm_clus = vbgmm_clus np.unique(curated_vbgmm_clus).size # - TODO: merge clusters with enough must-link relationships # _, _, _ = extract_unlink_clusters( # curated_vbgmm_clus, D_ml_sub, verbose=True # ) # count must link relationships between clusters cnt_ml = get_nb_mustlink_per_cluster( curated_vbgmm_clus, D_ml, verbose=True, n_jobs=128 ) perc_ml =
np.diag(cnt_ml)
numpy.diag
from core.dynamics import AffineDynamics, ConfigurationDynamics, LearnedDynamics, PDDynamics, ScalarDynamics from core.systems import Segway from core.controllers import Controller, FBLinController, LQRController, FilterController, PDController, QPController from core.util import differentiate import matplotlib from matplotlib.pyplot import cla, clf, figure, grid, legend, plot, savefig, show, subplot, title, xlabel, ylabel from numpy import array, concatenate, dot, identity, linspace, ones, savetxt, size, sqrt, zeros from numpy.random import uniform,seed import tensorflow as tf import numpy as np import pdb import pickle import os from tensorflow.python.client import device_lib from utils.SegwaySupport import initializeSystem, initializeSafetyFilter, simulateSafetyFilter, SafetyAngleAngleRate from utils.Plotting import plotTestStates, plotTrainStates, plotTrainMetaData, plotPhasePlane, plotLearnedCBF from utils.AuxFunc import findSafetyData, findLearnedSafetyData_nn, postProcessEpisode, shuffle_downsample, standardize, generateInitialPoints tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from core.dynamics import LearnedAffineDynamics from core.learning.keras import KerasResidualAffineModel from tensorflow.keras import Model, Sequential from tensorflow.keras.layers import Add, Dense, Dot, Input, Reshape, Lambda class LearnedSegwaySafetyAAR_NN(LearnedAffineDynamics): """ Class to setup the CBF and derivatives """ def __init__(self, segway_safety_aar, scalar_res_aff_model): self.dynamics = segway_safety_aar self.res_model = scalar_res_aff_model def process_drift(self, x, t): dhdx = self.dynamics.dhdx( x, t ) return concatenate([x, dhdx]) def process_act(self, x, t): dhdx = self.dynamics.dhdx( x, t ) return concatenate([x, dhdx]) def init_data(self, d_drift_in, d_act_in, m, d_out): return [zeros((0, d_drift_in)), zeros((0, d_act_in)), zeros((0, m)), zeros(0)] # Keras Residual Scalar Affine Model Definition class KerasResidualScalarAffineModel(KerasResidualAffineModel): def __init__(self, d_drift_in, d_act_in, d_hidden, m, d_out, us_std, optimizer='sgd', loss='mean_absolute_error'): drift_model = Sequential() drift_model.add(Dense(d_hidden, input_shape=(d_drift_in,), activation='relu')) drift_model.add(Dense(d_out)) self.drift_model = drift_model self.us_std = us_std drift_inputs = Input((d_drift_in,)) drift_residuals = self.drift_model(drift_inputs) act_model = Sequential() act_model.add(Dense(d_hidden, input_shape=(d_act_in,), activation='relu')) act_model.add(Dense(d_out * m)) act_model.add(Reshape((d_out, m))) self.act_model = act_model act_inputs = Input((d_act_in,)) act_residuals = self.act_model(act_inputs) us = Input((m,)) residuals = Add()([drift_residuals, Dot([2, 1])([act_residuals, Lambda(lambda x: x/self.us_std)(us) ])]) model = Model([drift_inputs, act_inputs, us], residuals) model.compile(optimizer, loss) self.model = model self.input_mean = None self.input_std = None def eval_drift(self, drift_input): #print(drift_input,self.input_mean,self.input_std) #print(array([(drift_input-self.input_mean)/self.input_std])) return self.drift_model.predict(array([(drift_input-self.input_mean)/self.input_std]))[0][0] def eval_act(self, act_input): return self.act_model.predict(array([(act_input-self.input_mean)/self.input_std]))[0][0]/self.us_std # Combined Controller class CombinedController(Controller): def __init__(self, controller_1, controller_2, weights): self.controller_1 = controller_1 self.controller_2 = controller_2 self.weights = weights def eval(self, x, t): u_1 = self.controller_1.process( self.controller_1.eval( x, t ) ) u_2 = self.controller_2.process( self.controller_2.eval( x, t ) ) return self.weights[ 0 ] * u_1 + self.weights[ 1 ] * u_2 def standardize(data_train): """ Standardize a dataset to have zero mean and unit standard deviation. :param data_train: 2-D Numpy array. Training data. :param data_test: 2-D Numpy array. Test data. :return: (train_set, test_set, mean, std), The standardized dataset and their mean and standard deviation before processing. """ std = np.std(data_train, 0, keepdims=True) std[std == 0] = 1 mean =
np.mean(data_train, 0, keepdims=True)
numpy.mean