prompt
stringlengths 131
11.8k
| completion
stringlengths 7
173
| api
stringlengths 11
48
|
---|---|---|
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = | dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts') | dspy.ColBERTv2 |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
| dspy.settings.configure(rm=colbertv2_wiki17_abstracts) | dspy.settings.configure |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = | dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500) | dspy.OpenAI |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
| dspy.settings.configure(lm=turbo, trace=[], temperature=0.7) | dspy.settings.configure |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = | HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0) | dspy.datasets.HotPotQA |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
prev_queries.append(query)
passages = self.retrieve(query).passages
context = deduplicate(context + passages)
if all_queries_distinct(prev_queries):
self.passed_suggestions += 1
pred = self.generate_answer(context=context, question=question)
pred = dspy.Prediction(context=context, answer=pred.answer)
return pred
class SimplifiedBaleenAssertions(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
dspy.Suggest(
len(query) <= 100,
"Query should be short and less than 100 characters",
)
dspy.Suggest(
validate_query_distinction_local(prev_queries, query),
"Query should be distinct from: "
+ "; ".join(f"{i+1}) {q}" for i, q in enumerate(prev_queries)),
)
prev_queries.append(query)
passages = self.retrieve(query).passages
context = deduplicate(context + passages)
if all_queries_distinct(prev_queries):
self.passed_suggestions += 1
pred = self.generate_answer(context=context, question=question)
pred = dspy.Prediction(context=context, answer=pred.answer)
return pred
evaluate_on_hotpotqa = | Evaluate(devset=devset, num_threads=10, display_progress=True, display_table=False) | dspy.evaluate.evaluate.Evaluate |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if | dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8) | dspy.evaluate.answer_exact_match_str |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = | dspy.InputField(desc="may contain relevant facts") | dspy.InputField |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = | dspy.InputField() | dspy.InputField |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = | dspy.OutputField(desc="often between 1 and 5 words") | dspy.OutputField |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = | dspy.InputField(desc="may contain relevant facts") | dspy.InputField |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = | dspy.InputField() | dspy.InputField |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = | dspy.OutputField() | dspy.OutputField |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not | dspy.evaluate.answer_exact_match(example, pred) | dspy.evaluate.answer_exact_match |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not | dspy.evaluate.answer_passage_match(example, pred) | dspy.evaluate.answer_passage_match |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = | dspy.Retrieve(k=passages_per_hop) | dspy.Retrieve |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = | dspy.ChainOfThought(GenerateAnswer) | dspy.ChainOfThought |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
prev_queries.append(query)
passages = self.retrieve(query).passages
context = deduplicate(context + passages)
if all_queries_distinct(prev_queries):
self.passed_suggestions += 1
pred = self.generate_answer(context=context, question=question)
pred = | dspy.Prediction(context=context, answer=pred.answer) | dspy.Prediction |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
prev_queries.append(query)
passages = self.retrieve(query).passages
context = deduplicate(context + passages)
if all_queries_distinct(prev_queries):
self.passed_suggestions += 1
pred = self.generate_answer(context=context, question=question)
pred = dspy.Prediction(context=context, answer=pred.answer)
return pred
class SimplifiedBaleenAssertions(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = | dspy.Retrieve(k=passages_per_hop) | dspy.Retrieve |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
prev_queries.append(query)
passages = self.retrieve(query).passages
context = deduplicate(context + passages)
if all_queries_distinct(prev_queries):
self.passed_suggestions += 1
pred = self.generate_answer(context=context, question=question)
pred = dspy.Prediction(context=context, answer=pred.answer)
return pred
class SimplifiedBaleenAssertions(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = | dspy.ChainOfThought(GenerateAnswer) | dspy.ChainOfThought |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
prev_queries.append(query)
passages = self.retrieve(query).passages
context = deduplicate(context + passages)
if all_queries_distinct(prev_queries):
self.passed_suggestions += 1
pred = self.generate_answer(context=context, question=question)
pred = dspy.Prediction(context=context, answer=pred.answer)
return pred
class SimplifiedBaleenAssertions(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
dspy.Suggest(
len(query) <= 100,
"Query should be short and less than 100 characters",
)
dspy.Suggest(
validate_query_distinction_local(prev_queries, query),
"Query should be distinct from: "
+ "; ".join(f"{i+1}) {q}" for i, q in enumerate(prev_queries)),
)
prev_queries.append(query)
passages = self.retrieve(query).passages
context = deduplicate(context + passages)
if all_queries_distinct(prev_queries):
self.passed_suggestions += 1
pred = self.generate_answer(context=context, question=question)
pred = | dspy.Prediction(context=context, answer=pred.answer) | dspy.Prediction |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [ | dspy.ChainOfThought(GenerateSearchQuery) | dspy.ChainOfThought |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
prev_queries.append(query)
passages = self.retrieve(query).passages
context = | deduplicate(context + passages) | dsp.utils.deduplicate |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
prev_queries.append(query)
passages = self.retrieve(query).passages
context = deduplicate(context + passages)
if all_queries_distinct(prev_queries):
self.passed_suggestions += 1
pred = self.generate_answer(context=context, question=question)
pred = dspy.Prediction(context=context, answer=pred.answer)
return pred
class SimplifiedBaleenAssertions(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [ | dspy.ChainOfThought(GenerateSearchQuery) | dspy.ChainOfThought |
import dspy
from dsp.utils import deduplicate
from dspy.datasets import HotPotQA
from dspy.predict.retry import Retry
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
import os
import openai
openai.api_key = os.getenv('OPENAI_API_KEY')
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
turbo = dspy.OpenAI(model='gpt-3.5-turbo', max_tokens=500)
dspy.settings.configure(lm=turbo, trace=[], temperature=0.7)
dataset = HotPotQA(train_seed=1, train_size=300, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
def validate_query_distinction_local(previous_queries, query):
"""check if query is distinct from previous queries"""
if previous_queries == []:
return True
if dspy.evaluate.answer_exact_match_str(query, previous_queries, frac=0.8):
return False
return True
def validate_context_and_answer_and_hops(example, pred, trace=None):
if not dspy.evaluate.answer_exact_match(example, pred):
return False
if not dspy.evaluate.answer_passage_match(example, pred):
return False
return True
def gold_passages_retrieved(example, pred, trace=None):
gold_titles = set(map(dspy.evaluate.normalize_text, example['gold_titles']))
found_titles = set(map(dspy.evaluate.normalize_text, [c.split(' | ')[0] for c in pred.context]))
return gold_titles.issubset(found_titles)
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
class GenerateSearchQuery(dspy.Signature):
"""Write a simple search query that will help answer a complex question."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
query = dspy.OutputField()
def all_queries_distinct(prev_queries):
query_distinct = True
for i, query in enumerate(prev_queries):
if validate_query_distinction_local(prev_queries[:i], query) == False:
query_distinct = False
break
return query_distinct
class SimplifiedBaleen(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
prev_queries.append(query)
passages = self.retrieve(query).passages
context = deduplicate(context + passages)
if all_queries_distinct(prev_queries):
self.passed_suggestions += 1
pred = self.generate_answer(context=context, question=question)
pred = dspy.Prediction(context=context, answer=pred.answer)
return pred
class SimplifiedBaleenAssertions(dspy.Module):
def __init__(self, passages_per_hop=2, max_hops=2):
super().__init__()
self.generate_query = [dspy.ChainOfThought(GenerateSearchQuery) for _ in range(max_hops)]
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
self.max_hops = max_hops
self.passed_suggestions = 0
def forward(self, question):
context = []
prev_queries = [question]
for hop in range(self.max_hops):
query = self.generate_query[hop](context=context, question=question).query
dspy.Suggest(
len(query) <= 100,
"Query should be short and less than 100 characters",
)
dspy.Suggest(
validate_query_distinction_local(prev_queries, query),
"Query should be distinct from: "
+ "; ".join(f"{i+1}) {q}" for i, q in enumerate(prev_queries)),
)
prev_queries.append(query)
passages = self.retrieve(query).passages
context = | deduplicate(context + passages) | dsp.utils.deduplicate |
import dspy
from dspy.evaluate.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
colbertv2 = | dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts') | dspy.ColBERTv2 |
import dspy
from dspy.evaluate.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
| dspy.configure(rm=colbertv2) | dspy.configure |
import dspy
from dspy.evaluate.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.configure(rm=colbertv2)
from langchain_openai import OpenAI
from langchain.globals import set_llm_cache
from langchain.cache import SQLiteCache
set_llm_cache(SQLiteCache(database_path="cache.db"))
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
retrieve = lambda x: dspy.Retrieve(k=5)(x["question"]).passages
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
prompt = PromptTemplate.from_template("Given {context}, answer the question `{question}` as a tweet.")
vanilla_chain = RunnablePassthrough.assign(context=retrieve) | prompt | llm | StrOutputParser()
from dspy.predict.langchain import LangChainPredict, LangChainModule
zeroshot_chain = RunnablePassthrough.assign(context=retrieve) | LangChainPredict(prompt, llm) | StrOutputParser()
zeroshot_chain = | LangChainModule(zeroshot_chain) | dspy.predict.langchain.LangChainModule |
import dspy
from dspy.evaluate.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.configure(rm=colbertv2)
from langchain_openai import OpenAI
from langchain.globals import set_llm_cache
from langchain.cache import SQLiteCache
set_llm_cache(SQLiteCache(database_path="cache.db"))
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
retrieve = lambda x: dspy.Retrieve(k=5)(x["question"]).passages
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
prompt = PromptTemplate.from_template("Given {context}, answer the question `{question}` as a tweet.")
vanilla_chain = RunnablePassthrough.assign(context=retrieve) | prompt | llm | StrOutputParser()
from dspy.predict.langchain import LangChainPredict, LangChainModule
zeroshot_chain = RunnablePassthrough.assign(context=retrieve) | LangChainPredict(prompt, llm) | StrOutputParser()
zeroshot_chain = LangChainModule(zeroshot_chain) # then wrap the chain in a DSPy module.
question = "In what region was Eddy Mazzoleni born?"
zeroshot_chain.invoke({"question": question})
from tweet_metric import metric, trainset, valset, devset
len(trainset), len(valset), len(devset)
evaluate = | Evaluate(metric=metric, devset=devset, num_threads=8, display_progress=True, display_table=5) | dspy.evaluate.evaluate.Evaluate |
import dspy
from dspy.evaluate.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.configure(rm=colbertv2)
from langchain_openai import OpenAI
from langchain.globals import set_llm_cache
from langchain.cache import SQLiteCache
set_llm_cache(SQLiteCache(database_path="cache.db"))
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
retrieve = lambda x: dspy.Retrieve(k=5)(x["question"]).passages
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
prompt = PromptTemplate.from_template("Given {context}, answer the question `{question}` as a tweet.")
vanilla_chain = RunnablePassthrough.assign(context=retrieve) | prompt | llm | StrOutputParser()
from dspy.predict.langchain import LangChainPredict, LangChainModule
zeroshot_chain = RunnablePassthrough.assign(context=retrieve) | LangChainPredict(prompt, llm) | StrOutputParser()
zeroshot_chain = LangChainModule(zeroshot_chain) # then wrap the chain in a DSPy module.
question = "In what region was Eddy Mazzoleni born?"
zeroshot_chain.invoke({"question": question})
from tweet_metric import metric, trainset, valset, devset
len(trainset), len(valset), len(devset)
evaluate = Evaluate(metric=metric, devset=devset, num_threads=8, display_progress=True, display_table=5)
evaluate(zeroshot_chain)
optimizer = | BootstrapFewShotWithRandomSearch(metric=metric, max_bootstrapped_demos=3, num_candidate_programs=3) | dspy.teleprompt.BootstrapFewShotWithRandomSearch |
import dspy
from dspy.evaluate.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.configure(rm=colbertv2)
from langchain_openai import OpenAI
from langchain.globals import set_llm_cache
from langchain.cache import SQLiteCache
set_llm_cache(SQLiteCache(database_path="cache.db"))
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
retrieve = lambda x: dspy.Retrieve(k=5)(x["question"]).passages
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
prompt = PromptTemplate.from_template("Given {context}, answer the question `{question}` as a tweet.")
vanilla_chain = RunnablePassthrough.assign(context=retrieve) | prompt | llm | StrOutputParser()
from dspy.predict.langchain import LangChainPredict, LangChainModule
zeroshot_chain = RunnablePassthrough.assign(context=retrieve) | | LangChainPredict(prompt, llm) | dspy.predict.langchain.LangChainPredict |
import dspy
from dspy.evaluate.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.configure(rm=colbertv2)
from langchain_openai import OpenAI
from langchain.globals import set_llm_cache
from langchain.cache import SQLiteCache
set_llm_cache(SQLiteCache(database_path="cache.db"))
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
retrieve = lambda x: | dspy.Retrieve(k=5) | dspy.Retrieve |
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.gsm8k import GSM8K, gsm8k_metric
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
gms8k = | GSM8K() | dspy.datasets.gsm8k.GSM8K |
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.gsm8k import GSM8K, gsm8k_metric
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
gms8k = GSM8K()
turbo = | dspy.OpenAI(model='gpt-3.5-turbo-instruct', max_tokens=250) | dspy.OpenAI |
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.gsm8k import GSM8K, gsm8k_metric
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
gms8k = GSM8K()
turbo = dspy.OpenAI(model='gpt-3.5-turbo-instruct', max_tokens=250)
trainset, devset = gms8k.train, gms8k.dev
| dspy.settings.configure(lm=turbo) | dspy.settings.configure |
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.gsm8k import GSM8K, gsm8k_metric
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
gms8k = GSM8K()
turbo = dspy.OpenAI(model='gpt-3.5-turbo-instruct', max_tokens=250)
trainset, devset = gms8k.train, gms8k.dev
dspy.settings.configure(lm=turbo)
NUM_THREADS = 4
evaluate = | Evaluate(devset=devset[:], metric=gsm8k_metric, num_threads=NUM_THREADS, display_progress=True, display_table=0) | dspy.evaluate.Evaluate |
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.gsm8k import GSM8K, gsm8k_metric
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
gms8k = GSM8K()
turbo = dspy.OpenAI(model='gpt-3.5-turbo-instruct', max_tokens=250)
trainset, devset = gms8k.train, gms8k.dev
dspy.settings.configure(lm=turbo)
NUM_THREADS = 4
evaluate = Evaluate(devset=devset[:], metric=gsm8k_metric, num_threads=NUM_THREADS, display_progress=True, display_table=0)
class CoT(dspy.Module):
def __init__(self):
super().__init__()
self.prog = dspy.ChainOfThought("question -> answer")
def forward(self, question):
return self.prog(question=question)
RUN_FROM_SCRATCH = False
if RUN_FROM_SCRATCH:
config = dict(max_bootstrapped_demos=8, max_labeled_demos=8, num_candidate_programs=10, num_threads=NUM_THREADS)
teleprompter = | BootstrapFewShotWithRandomSearch(metric=gsm8k_metric, **config) | dspy.teleprompt.BootstrapFewShotWithRandomSearch |
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.gsm8k import GSM8K, gsm8k_metric
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
gms8k = GSM8K()
turbo = dspy.OpenAI(model='gpt-3.5-turbo-instruct', max_tokens=250)
trainset, devset = gms8k.train, gms8k.dev
dspy.settings.configure(lm=turbo)
NUM_THREADS = 4
evaluate = Evaluate(devset=devset[:], metric=gsm8k_metric, num_threads=NUM_THREADS, display_progress=True, display_table=0)
class CoT(dspy.Module):
def __init__(self):
super().__init__()
self.prog = | dspy.ChainOfThought("question -> answer") | dspy.ChainOfThought |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('pip', 'install datasets')
import datasets
ds = datasets.load_dataset("openai_humaneval")
ds['test'][0]
import dspy, dotenv, os
dotenv.load_dotenv(os.path.expanduser("~/.env")) # load OpenAI API key from .env file
lm = | dspy.OpenAI(model="gpt-3.5-turbo", max_tokens=4000) | dspy.OpenAI |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('pip', 'install datasets')
import datasets
ds = datasets.load_dataset("openai_humaneval")
ds['test'][0]
import dspy, dotenv, os
dotenv.load_dotenv(os.path.expanduser("~/.env")) # load OpenAI API key from .env file
lm = dspy.OpenAI(model="gpt-3.5-turbo", max_tokens=4000)
| dspy.settings.configure(lm=lm) | dspy.settings.configure |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('pip', 'install datasets')
import datasets
ds = datasets.load_dataset("openai_humaneval")
ds['test'][0]
import dspy, dotenv, os
dotenv.load_dotenv(os.path.expanduser("~/.env")) # load OpenAI API key from .env file
lm = dspy.OpenAI(model="gpt-3.5-turbo", max_tokens=4000)
dspy.settings.configure(lm=lm)
predictor = | dspy.Predict("question -> answer") | dspy.Predict |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('pip', 'install datasets')
import datasets
ds = datasets.load_dataset("openai_humaneval")
ds['test'][0]
import dspy, dotenv, os
dotenv.load_dotenv(os.path.expanduser("~/.env")) # load OpenAI API key from .env file
lm = dspy.OpenAI(model="gpt-3.5-turbo", max_tokens=4000)
dspy.settings.configure(lm=lm)
predictor = dspy.Predict("question -> answer")
print(predictor(question="What is the capital of France?"))
from dspy import InputField, OutputField, Signature
from dspy.functional import TypedPredictor
import pydantic
class PythonCode(pydantic.BaseModel):
code: str
@pydantic.field_validator('code')
def check_syntax(cls, v):
try:
compile(v, "<string>", "exec")
except SyntaxError as e:
raise ValueError(f"Code is not syntactically valid: {e}")
return v
class CodeSignature(Signature):
prompt: str = InputField()
test: PythonCode = InputField()
entry_point: str = InputField()
solution: PythonCode = OutputField()
predictor = | TypedPredictor(CodeSignature) | dspy.functional.TypedPredictor |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('pip', 'install datasets')
import datasets
ds = datasets.load_dataset("openai_humaneval")
ds['test'][0]
import dspy, dotenv, os
dotenv.load_dotenv(os.path.expanduser("~/.env")) # load OpenAI API key from .env file
lm = dspy.OpenAI(model="gpt-3.5-turbo", max_tokens=4000)
dspy.settings.configure(lm=lm)
predictor = dspy.Predict("question -> answer")
print(predictor(question="What is the capital of France?"))
from dspy import InputField, OutputField, Signature
from dspy.functional import TypedPredictor
import pydantic
class PythonCode(pydantic.BaseModel):
code: str
@pydantic.field_validator('code')
def check_syntax(cls, v):
try:
compile(v, "<string>", "exec")
except SyntaxError as e:
raise ValueError(f"Code is not syntactically valid: {e}")
return v
class CodeSignature(Signature):
prompt: str = | InputField() | dspy.InputField |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('pip', 'install datasets')
import datasets
ds = datasets.load_dataset("openai_humaneval")
ds['test'][0]
import dspy, dotenv, os
dotenv.load_dotenv(os.path.expanduser("~/.env")) # load OpenAI API key from .env file
lm = dspy.OpenAI(model="gpt-3.5-turbo", max_tokens=4000)
dspy.settings.configure(lm=lm)
predictor = dspy.Predict("question -> answer")
print(predictor(question="What is the capital of France?"))
from dspy import InputField, OutputField, Signature
from dspy.functional import TypedPredictor
import pydantic
class PythonCode(pydantic.BaseModel):
code: str
@pydantic.field_validator('code')
def check_syntax(cls, v):
try:
compile(v, "<string>", "exec")
except SyntaxError as e:
raise ValueError(f"Code is not syntactically valid: {e}")
return v
class CodeSignature(Signature):
prompt: str = InputField()
test: PythonCode = | InputField() | dspy.InputField |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('pip', 'install datasets')
import datasets
ds = datasets.load_dataset("openai_humaneval")
ds['test'][0]
import dspy, dotenv, os
dotenv.load_dotenv(os.path.expanduser("~/.env")) # load OpenAI API key from .env file
lm = dspy.OpenAI(model="gpt-3.5-turbo", max_tokens=4000)
dspy.settings.configure(lm=lm)
predictor = dspy.Predict("question -> answer")
print(predictor(question="What is the capital of France?"))
from dspy import InputField, OutputField, Signature
from dspy.functional import TypedPredictor
import pydantic
class PythonCode(pydantic.BaseModel):
code: str
@pydantic.field_validator('code')
def check_syntax(cls, v):
try:
compile(v, "<string>", "exec")
except SyntaxError as e:
raise ValueError(f"Code is not syntactically valid: {e}")
return v
class CodeSignature(Signature):
prompt: str = InputField()
test: PythonCode = InputField()
entry_point: str = | InputField() | dspy.InputField |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('pip', 'install datasets')
import datasets
ds = datasets.load_dataset("openai_humaneval")
ds['test'][0]
import dspy, dotenv, os
dotenv.load_dotenv(os.path.expanduser("~/.env")) # load OpenAI API key from .env file
lm = dspy.OpenAI(model="gpt-3.5-turbo", max_tokens=4000)
dspy.settings.configure(lm=lm)
predictor = dspy.Predict("question -> answer")
print(predictor(question="What is the capital of France?"))
from dspy import InputField, OutputField, Signature
from dspy.functional import TypedPredictor
import pydantic
class PythonCode(pydantic.BaseModel):
code: str
@pydantic.field_validator('code')
def check_syntax(cls, v):
try:
compile(v, "<string>", "exec")
except SyntaxError as e:
raise ValueError(f"Code is not syntactically valid: {e}")
return v
class CodeSignature(Signature):
prompt: str = InputField()
test: PythonCode = InputField()
entry_point: str = InputField()
solution: PythonCode = | OutputField() | dspy.OutputField |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = | dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150) | dspy.HFClientTGI |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = | dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts') | dspy.ColBERTv2 |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
| dspy.settings.configure(rm=colbertv2, lm=llama) | dspy.settings.configure |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = | dspy.Predict('question -> answer') | dspy.Predict |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = | BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2) | dspy.teleprompt.BootstrapFewShot |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2)
cot_compiled = teleprompter.compile(CoT(), trainset=train)
cot_compiled("What is the capital of Germany?")
llama.inspect_history(n=1)
NUM_THREADS = 32
evaluate_hotpot = | Evaluate(devset=dev, metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=15) | dspy.evaluate.Evaluate |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2)
cot_compiled = teleprompter.compile(CoT(), trainset=train)
cot_compiled("What is the capital of Germany?")
llama.inspect_history(n=1)
NUM_THREADS = 32
evaluate_hotpot = Evaluate(devset=dev, metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=15)
evaluate_hotpot(cot_compiled)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
search_query = self.generate_query(question=question).search_query
passages = self.retrieve(search_query).passages
return self.generate_answer(context=passages, question=question)
evaluate_hotpot(RAG(), display_table=0)
teleprompter2 = | BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS) | dspy.teleprompt.BootstrapFewShotWithRandomSearch |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = | dspy.ChainOfThought('question -> answer') | dspy.ChainOfThought |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2)
cot_compiled = teleprompter.compile(CoT(), trainset=train)
cot_compiled("What is the capital of Germany?")
llama.inspect_history(n=1)
NUM_THREADS = 32
evaluate_hotpot = Evaluate(devset=dev, metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=15)
evaluate_hotpot(cot_compiled)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = | dspy.Retrieve(k=num_passages) | dspy.Retrieve |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2)
cot_compiled = teleprompter.compile(CoT(), trainset=train)
cot_compiled("What is the capital of Germany?")
llama.inspect_history(n=1)
NUM_THREADS = 32
evaluate_hotpot = Evaluate(devset=dev, metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=15)
evaluate_hotpot(cot_compiled)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = | dspy.ChainOfThought("question -> search_query") | dspy.ChainOfThought |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2)
cot_compiled = teleprompter.compile(CoT(), trainset=train)
cot_compiled("What is the capital of Germany?")
llama.inspect_history(n=1)
NUM_THREADS = 32
evaluate_hotpot = Evaluate(devset=dev, metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=15)
evaluate_hotpot(cot_compiled)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_answer = | dspy.ChainOfThought("context, question -> answer") | dspy.ChainOfThought |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2)
cot_compiled = teleprompter.compile(CoT(), trainset=train)
cot_compiled("What is the capital of Germany?")
llama.inspect_history(n=1)
NUM_THREADS = 32
evaluate_hotpot = Evaluate(devset=dev, metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=15)
evaluate_hotpot(cot_compiled)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
search_query = self.generate_query(question=question).search_query
passages = self.retrieve(search_query).passages
return self.generate_answer(context=passages, question=question)
evaluate_hotpot(RAG(), display_table=0)
teleprompter2 = BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)
rag_compiled = teleprompter2.compile(RAG(), trainset=train, valset=dev)
evaluate_hotpot(rag_compiled)
rag_compiled("What year was the party of the winner of the 1971 San Francisco mayoral election founded?")
llama.inspect_history(n=1)
from dsp.utils.utils import deduplicate
class MultiHop(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = | dspy.Retrieve(k=num_passages) | dspy.Retrieve |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2)
cot_compiled = teleprompter.compile(CoT(), trainset=train)
cot_compiled("What is the capital of Germany?")
llama.inspect_history(n=1)
NUM_THREADS = 32
evaluate_hotpot = Evaluate(devset=dev, metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=15)
evaluate_hotpot(cot_compiled)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
search_query = self.generate_query(question=question).search_query
passages = self.retrieve(search_query).passages
return self.generate_answer(context=passages, question=question)
evaluate_hotpot(RAG(), display_table=0)
teleprompter2 = BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)
rag_compiled = teleprompter2.compile(RAG(), trainset=train, valset=dev)
evaluate_hotpot(rag_compiled)
rag_compiled("What year was the party of the winner of the 1971 San Francisco mayoral election founded?")
llama.inspect_history(n=1)
from dsp.utils.utils import deduplicate
class MultiHop(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = | dspy.ChainOfThought("question -> search_query") | dspy.ChainOfThought |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2)
cot_compiled = teleprompter.compile(CoT(), trainset=train)
cot_compiled("What is the capital of Germany?")
llama.inspect_history(n=1)
NUM_THREADS = 32
evaluate_hotpot = Evaluate(devset=dev, metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=15)
evaluate_hotpot(cot_compiled)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
search_query = self.generate_query(question=question).search_query
passages = self.retrieve(search_query).passages
return self.generate_answer(context=passages, question=question)
evaluate_hotpot(RAG(), display_table=0)
teleprompter2 = BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)
rag_compiled = teleprompter2.compile(RAG(), trainset=train, valset=dev)
evaluate_hotpot(rag_compiled)
rag_compiled("What year was the party of the winner of the 1971 San Francisco mayoral election founded?")
llama.inspect_history(n=1)
from dsp.utils.utils import deduplicate
class MultiHop(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_query_from_context = None
self.generate_answer = | dspy.ChainOfThought("context, question -> answer") | dspy.ChainOfThought |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [ | dspy.Example(question=question, answer=answer) | dspy.Example |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [ | dspy.Example(question=question, answer=answer) | dspy.Example |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import sys
import os
try: # When on google Colab, let's clone the notebook so we download the cache.
import google.colab
repo_path = 'dspy'
get_ipython().system('git -C $repo_path pull origin || git clone https://github.com/stanfordnlp/dspy $repo_path')
except:
repo_path = '.'
if repo_path not in sys.path:
sys.path.append(repo_path)
os.environ["DSP_NOTEBOOK_CACHEDIR"] = os.path.join(repo_path, 'cache')
import pkg_resources # Install the package if it's not installed
if not "dspy-ai" in {pkg.key for pkg in pkg_resources.working_set}:
get_ipython().system('pip install -U pip')
get_ipython().system('pip install -e $repo_path')
get_ipython().system('pip install transformers')
import dspy
from dspy.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShot, BootstrapFewShotWithRandomSearch, BootstrapFinetune
llama = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=[7140, 7141, 7142, 7143], max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llama)
train = [('Who was the director of the 2009 movie featuring Peter Outerbridge as William Easton?', 'Kevin Greutert'),
('The heir to the Du Pont family fortune sponsored what wrestling team?', 'Foxcatcher'),
('In what year was the star of To Hell and Back born?', '1925'),
('Which award did the first book of Gary Zukav receive?', 'U.S. National Book Award'),
('What documentary about the Gilgo Beach Killer debuted on A&E?', 'The Killing Season'),
('Which author is English: John Braine or Studs Terkel?', 'John Braine'),
('Who produced the album that included a re-recording of "Lithium"?', 'Butch Vig')]
train = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in train]
dev = [('Who has a broader scope of profession: E. L. Doctorow or Julia Peterkin?', 'E. L. Doctorow'),
('Right Back At It Again contains lyrics co-written by the singer born in what city?', 'Gainesville, Florida'),
('What year was the party of the winner of the 1971 San Francisco mayoral election founded?', '1828'),
('Anthony Dirrell is the brother of which super middleweight title holder?', 'Andre Dirrell'),
('The sports nutrition business established by Oliver Cookson is based in which county in the UK?', 'Cheshire'),
('Find the birth date of the actor who played roles in First Wives Club and Searching for the Elephant.', 'February 13, 1980'),
('Kyle Moran was born in the town on what river?', 'Castletown River'),
("The actress who played the niece in the Priest film was born in what city, country?", 'Surrey, England'),
('Name the movie in which the daughter of Noel Harrison plays Violet Trefusis.', 'Portrait of a Marriage'),
('What year was the father of the Princes in the Tower born?', '1442'),
('What river is near the Crichton Collegiate Church?', 'the River Tyne'),
('Who purchased the team Michael Schumacher raced for in the 1995 Monaco Grand Prix in 2000?', 'Renault'),
('André Zucca was a French photographer who worked with a German propaganda magazine published by what Nazi organization?', 'the Wehrmacht')]
dev = [dspy.Example(question=question, answer=answer).with_inputs('question') for question, answer in dev]
predict = dspy.Predict('question -> answer')
predict(question="What is the capital of Germany?")
class CoT(dspy.Module): # let's define a new module
def __init__(self):
super().__init__()
self.generate_answer = dspy.ChainOfThought('question -> answer')
def forward(self, question):
return self.generate_answer(question=question) # here we use the module
metric_EM = dspy.evaluate.answer_exact_match
teleprompter = BootstrapFewShot(metric=metric_EM, max_bootstrapped_demos=2)
cot_compiled = teleprompter.compile(CoT(), trainset=train)
cot_compiled("What is the capital of Germany?")
llama.inspect_history(n=1)
NUM_THREADS = 32
evaluate_hotpot = Evaluate(devset=dev, metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=15)
evaluate_hotpot(cot_compiled)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
search_query = self.generate_query(question=question).search_query
passages = self.retrieve(search_query).passages
return self.generate_answer(context=passages, question=question)
evaluate_hotpot(RAG(), display_table=0)
teleprompter2 = BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)
rag_compiled = teleprompter2.compile(RAG(), trainset=train, valset=dev)
evaluate_hotpot(rag_compiled)
rag_compiled("What year was the party of the winner of the 1971 San Francisco mayoral election founded?")
llama.inspect_history(n=1)
from dsp.utils.utils import deduplicate
class MultiHop(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_query_from_context = None
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
passages = []
search_query = self.generate_query(question=question).search_query
passages += self.retrieve(search_query).passages
search_query2 = None
passages += None
return self.generate_answer(context= | deduplicate(passages) | dsp.utils.utils.deduplicate |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = | dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150) | dspy.HFClientTGI |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = | dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts') | dspy.ColBERTv2 |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
| dspy.settings.configure(rm=colbertv2, lm=llamaChat) | dspy.settings.configure |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = | HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0) | dspy.datasets.hotpotqa.HotPotQA |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = [dspy.ChainOfThought("context, question -> search_query") for _ in range(2)]
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = []
for hop in range(2):
search_query = self.generate_query[hop](context=context, question=question).search_query
passages = self.retrieve(search_query).passages
context = deduplicate(context + passages)
return self.generate_answer(context=context, question=question).copy(context=context)
RECOMPILE_INTO_LLAMA_FROM_SCRATCH = False
NUM_THREADS = 24
metric_EM = dspy.evaluate.answer_exact_match
if RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
tp = BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_threads=NUM_THREADS)
basicmh_bs = tp.compile(BasicMH(), trainset=trainset[:50], valset=trainset[50:200])
ensemble = [prog for *_, prog in basicmh_bs.candidate_programs[:4]]
for idx, prog in enumerate(ensemble):
pass
if not RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
ensemble = []
for idx in range(4):
prog = BasicMH()
prog.load(f'multihop_llama213b_{idx}.json')
ensemble.append(prog)
llama_program = ensemble[0]
evaluate_hotpot = | Evaluate(devset=devset[:1000], metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=0) | dspy.evaluate.Evaluate |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = [dspy.ChainOfThought("context, question -> search_query") for _ in range(2)]
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = []
for hop in range(2):
search_query = self.generate_query[hop](context=context, question=question).search_query
passages = self.retrieve(search_query).passages
context = deduplicate(context + passages)
return self.generate_answer(context=context, question=question).copy(context=context)
RECOMPILE_INTO_LLAMA_FROM_SCRATCH = False
NUM_THREADS = 24
metric_EM = dspy.evaluate.answer_exact_match
if RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
tp = | BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_threads=NUM_THREADS) | dspy.teleprompt.BootstrapFewShotWithRandomSearch |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = [dspy.ChainOfThought("context, question -> search_query") for _ in range(2)]
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = []
for hop in range(2):
search_query = self.generate_query[hop](context=context, question=question).search_query
passages = self.retrieve(search_query).passages
context = deduplicate(context + passages)
return self.generate_answer(context=context, question=question).copy(context=context)
RECOMPILE_INTO_LLAMA_FROM_SCRATCH = False
NUM_THREADS = 24
metric_EM = dspy.evaluate.answer_exact_match
if RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
tp = BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_threads=NUM_THREADS)
basicmh_bs = tp.compile(BasicMH(), trainset=trainset[:50], valset=trainset[50:200])
ensemble = [prog for *_, prog in basicmh_bs.candidate_programs[:4]]
for idx, prog in enumerate(ensemble):
pass
if not RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
ensemble = []
for idx in range(4):
prog = BasicMH()
prog.load(f'multihop_llama213b_{idx}.json')
ensemble.append(prog)
llama_program = ensemble[0]
evaluate_hotpot = Evaluate(devset=devset[:1000], metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=0)
evaluate_hotpot(llama_program)
llama_program(question="How many storeys are in the castle that David Gregory inherited?")
llamaChat.inspect_history(n=3)
unlabeled_train = | HotPotQA(train_seed=1, train_size=3000, eval_seed=2023, dev_size=0, test_size=0) | dspy.datasets.hotpotqa.HotPotQA |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = [dspy.ChainOfThought("context, question -> search_query") for _ in range(2)]
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = []
for hop in range(2):
search_query = self.generate_query[hop](context=context, question=question).search_query
passages = self.retrieve(search_query).passages
context = deduplicate(context + passages)
return self.generate_answer(context=context, question=question).copy(context=context)
RECOMPILE_INTO_LLAMA_FROM_SCRATCH = False
NUM_THREADS = 24
metric_EM = dspy.evaluate.answer_exact_match
if RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
tp = BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_threads=NUM_THREADS)
basicmh_bs = tp.compile(BasicMH(), trainset=trainset[:50], valset=trainset[50:200])
ensemble = [prog for *_, prog in basicmh_bs.candidate_programs[:4]]
for idx, prog in enumerate(ensemble):
pass
if not RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
ensemble = []
for idx in range(4):
prog = BasicMH()
prog.load(f'multihop_llama213b_{idx}.json')
ensemble.append(prog)
llama_program = ensemble[0]
evaluate_hotpot = Evaluate(devset=devset[:1000], metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=0)
evaluate_hotpot(llama_program)
llama_program(question="How many storeys are in the castle that David Gregory inherited?")
llamaChat.inspect_history(n=3)
unlabeled_train = HotPotQA(train_seed=1, train_size=3000, eval_seed=2023, dev_size=0, test_size=0).train
unlabeled_train = [dspy.Example(question=x.question).with_inputs('question') for x in unlabeled_train]
len(unlabeled_train)
always_true = lambda g, p, trace=None: True
for prog_ in ensemble:
evaluate_hotpot(prog_, devset=unlabeled_train[:3000], metric=always_true)
RECOMPILE_INTO_T5_FROM_SCRATCH = False
if RECOMPILE_INTO_T5_FROM_SCRATCH:
config = dict(target='t5-large', epochs=2, bf16=True, bsize=6, accumsteps=2, lr=5e-5)
tp = | BootstrapFinetune(metric=None) | dspy.teleprompt.BootstrapFinetune |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = [dspy.ChainOfThought("context, question -> search_query") for _ in range(2)]
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = []
for hop in range(2):
search_query = self.generate_query[hop](context=context, question=question).search_query
passages = self.retrieve(search_query).passages
context = deduplicate(context + passages)
return self.generate_answer(context=context, question=question).copy(context=context)
RECOMPILE_INTO_LLAMA_FROM_SCRATCH = False
NUM_THREADS = 24
metric_EM = dspy.evaluate.answer_exact_match
if RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
tp = BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_threads=NUM_THREADS)
basicmh_bs = tp.compile(BasicMH(), trainset=trainset[:50], valset=trainset[50:200])
ensemble = [prog for *_, prog in basicmh_bs.candidate_programs[:4]]
for idx, prog in enumerate(ensemble):
pass
if not RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
ensemble = []
for idx in range(4):
prog = BasicMH()
prog.load(f'multihop_llama213b_{idx}.json')
ensemble.append(prog)
llama_program = ensemble[0]
evaluate_hotpot = Evaluate(devset=devset[:1000], metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=0)
evaluate_hotpot(llama_program)
llama_program(question="How many storeys are in the castle that David Gregory inherited?")
llamaChat.inspect_history(n=3)
unlabeled_train = HotPotQA(train_seed=1, train_size=3000, eval_seed=2023, dev_size=0, test_size=0).train
unlabeled_train = [dspy.Example(question=x.question).with_inputs('question') for x in unlabeled_train]
len(unlabeled_train)
always_true = lambda g, p, trace=None: True
for prog_ in ensemble:
evaluate_hotpot(prog_, devset=unlabeled_train[:3000], metric=always_true)
RECOMPILE_INTO_T5_FROM_SCRATCH = False
if RECOMPILE_INTO_T5_FROM_SCRATCH:
config = dict(target='t5-large', epochs=2, bf16=True, bsize=6, accumsteps=2, lr=5e-5)
tp = BootstrapFinetune(metric=None)
t5_program = tp.compile(BasicMH(), teacher=ensemble, trainset=unlabeled_train[:3000], **config)
for p in t5_program.predictors(): p.activated = False
if not RECOMPILE_INTO_T5_FROM_SCRATCH:
t5_program = BasicMH()
ckpt_path = "colbert-ir/dspy-Oct11-T5-Large-MH-3k-v1"
LM = | dspy.HFModel(checkpoint=ckpt_path, model='t5-large') | dspy.HFModel |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = | dspy.Retrieve(k=passages_per_hop) | dspy.Retrieve |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = [dspy.ChainOfThought("context, question -> search_query") for _ in range(2)]
self.generate_answer = | dspy.ChainOfThought("context, question -> answer") | dspy.ChainOfThought |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = [ | dspy.ChainOfThought("context, question -> search_query") | dspy.ChainOfThought |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = [dspy.ChainOfThought("context, question -> search_query") for _ in range(2)]
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = []
for hop in range(2):
search_query = self.generate_query[hop](context=context, question=question).search_query
passages = self.retrieve(search_query).passages
context = | deduplicate(context + passages) | dsp.utils.utils.deduplicate |
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
ports = [7140, 7141, 7142, 7143, 7144, 7145]
llamaChat = dspy.HFClientTGI(model="meta-llama/Llama-2-13b-chat-hf", port=ports, max_tokens=150)
colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2, lm=llamaChat)
dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=1000, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train]
devset = [x.with_inputs('question') for x in dataset.dev]
testset = [x.with_inputs('question') for x in dataset.test]
len(trainset), len(devset), len(testset)
trainset[0]
from dsp.utils.utils import deduplicate
class BasicMH(dspy.Module):
def __init__(self, passages_per_hop=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = [dspy.ChainOfThought("context, question -> search_query") for _ in range(2)]
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = []
for hop in range(2):
search_query = self.generate_query[hop](context=context, question=question).search_query
passages = self.retrieve(search_query).passages
context = deduplicate(context + passages)
return self.generate_answer(context=context, question=question).copy(context=context)
RECOMPILE_INTO_LLAMA_FROM_SCRATCH = False
NUM_THREADS = 24
metric_EM = dspy.evaluate.answer_exact_match
if RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
tp = BootstrapFewShotWithRandomSearch(metric=metric_EM, max_bootstrapped_demos=2, num_threads=NUM_THREADS)
basicmh_bs = tp.compile(BasicMH(), trainset=trainset[:50], valset=trainset[50:200])
ensemble = [prog for *_, prog in basicmh_bs.candidate_programs[:4]]
for idx, prog in enumerate(ensemble):
pass
if not RECOMPILE_INTO_LLAMA_FROM_SCRATCH:
ensemble = []
for idx in range(4):
prog = BasicMH()
prog.load(f'multihop_llama213b_{idx}.json')
ensemble.append(prog)
llama_program = ensemble[0]
evaluate_hotpot = Evaluate(devset=devset[:1000], metric=metric_EM, num_threads=NUM_THREADS, display_progress=True, display_table=0)
evaluate_hotpot(llama_program)
llama_program(question="How many storeys are in the castle that David Gregory inherited?")
llamaChat.inspect_history(n=3)
unlabeled_train = HotPotQA(train_seed=1, train_size=3000, eval_seed=2023, dev_size=0, test_size=0).train
unlabeled_train = [ | dspy.Example(question=x.question) | dspy.Example |
get_ipython().system('pip install clarifai')
get_ipython().system('pip install dspy-ai')
import dspy
from dspy.retrieve.clarifai_rm import ClarifaiRM
MODEL_URL = "https://clarifai.com/meta/Llama-2/models/llama2-70b-chat"
PAT = "CLARIFAI_PAT"
USER_ID = "YOUR_ID"
APP_ID = "YOUR_APP"
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.vectorstores import Clarifai as clarifaivectorstore
loader = TextLoader("YOUR_TEXT_FILE") #replace with your file path
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
docs = text_splitter.split_documents(documents)
clarifai_vector_db = clarifaivectorstore.from_documents(
user_id=USER_ID,
app_id=APP_ID,
documents=docs,
pat=PAT
)
llm= | dspy.Clarifai(model=MODEL_URL, api_key=PAT, n=2, inference_params={"max_tokens":100,'temperature':0.6}) | dspy.Clarifai |
get_ipython().system('pip install clarifai')
get_ipython().system('pip install dspy-ai')
import dspy
from dspy.retrieve.clarifai_rm import ClarifaiRM
MODEL_URL = "https://clarifai.com/meta/Llama-2/models/llama2-70b-chat"
PAT = "CLARIFAI_PAT"
USER_ID = "YOUR_ID"
APP_ID = "YOUR_APP"
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.vectorstores import Clarifai as clarifaivectorstore
loader = TextLoader("YOUR_TEXT_FILE") #replace with your file path
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
docs = text_splitter.split_documents(documents)
clarifai_vector_db = clarifaivectorstore.from_documents(
user_id=USER_ID,
app_id=APP_ID,
documents=docs,
pat=PAT
)
llm=dspy.Clarifai(model=MODEL_URL, api_key=PAT, n=2, inference_params={"max_tokens":100,'temperature':0.6})
retriever_model= | ClarifaiRM(clarifai_user_id=USER_ID, clarfiai_app_id=APP_ID, clarifai_pat=PAT, k=2) | dspy.retrieve.clarifai_rm.ClarifaiRM |
get_ipython().system('pip install clarifai')
get_ipython().system('pip install dspy-ai')
import dspy
from dspy.retrieve.clarifai_rm import ClarifaiRM
MODEL_URL = "https://clarifai.com/meta/Llama-2/models/llama2-70b-chat"
PAT = "CLARIFAI_PAT"
USER_ID = "YOUR_ID"
APP_ID = "YOUR_APP"
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.vectorstores import Clarifai as clarifaivectorstore
loader = TextLoader("YOUR_TEXT_FILE") #replace with your file path
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
docs = text_splitter.split_documents(documents)
clarifai_vector_db = clarifaivectorstore.from_documents(
user_id=USER_ID,
app_id=APP_ID,
documents=docs,
pat=PAT
)
llm=dspy.Clarifai(model=MODEL_URL, api_key=PAT, n=2, inference_params={"max_tokens":100,'temperature':0.6})
retriever_model=ClarifaiRM(clarifai_user_id=USER_ID, clarfiai_app_id=APP_ID, clarifai_pat=PAT, k=2)
| dspy.settings.configure(lm=llm, rm=retriever_model) | dspy.settings.configure |
get_ipython().system('pip install clarifai')
get_ipython().system('pip install dspy-ai')
import dspy
from dspy.retrieve.clarifai_rm import ClarifaiRM
MODEL_URL = "https://clarifai.com/meta/Llama-2/models/llama2-70b-chat"
PAT = "CLARIFAI_PAT"
USER_ID = "YOUR_ID"
APP_ID = "YOUR_APP"
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.vectorstores import Clarifai as clarifaivectorstore
loader = TextLoader("YOUR_TEXT_FILE") #replace with your file path
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
docs = text_splitter.split_documents(documents)
clarifai_vector_db = clarifaivectorstore.from_documents(
user_id=USER_ID,
app_id=APP_ID,
documents=docs,
pat=PAT
)
llm=dspy.Clarifai(model=MODEL_URL, api_key=PAT, n=2, inference_params={"max_tokens":100,'temperature':0.6})
retriever_model=ClarifaiRM(clarifai_user_id=USER_ID, clarfiai_app_id=APP_ID, clarifai_pat=PAT, k=2)
dspy.settings.configure(lm=llm, rm=retriever_model)
sentence = "disney again ransacks its archives for a quick-buck sequel ." # example from the SST-2 dataset.
classify = | dspy.Predict('sentence -> sentiment') | dspy.Predict |
get_ipython().system('pip install clarifai')
get_ipython().system('pip install dspy-ai')
import dspy
from dspy.retrieve.clarifai_rm import ClarifaiRM
MODEL_URL = "https://clarifai.com/meta/Llama-2/models/llama2-70b-chat"
PAT = "CLARIFAI_PAT"
USER_ID = "YOUR_ID"
APP_ID = "YOUR_APP"
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.vectorstores import Clarifai as clarifaivectorstore
loader = TextLoader("YOUR_TEXT_FILE") #replace with your file path
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
docs = text_splitter.split_documents(documents)
clarifai_vector_db = clarifaivectorstore.from_documents(
user_id=USER_ID,
app_id=APP_ID,
documents=docs,
pat=PAT
)
llm=dspy.Clarifai(model=MODEL_URL, api_key=PAT, n=2, inference_params={"max_tokens":100,'temperature':0.6})
retriever_model=ClarifaiRM(clarifai_user_id=USER_ID, clarfiai_app_id=APP_ID, clarifai_pat=PAT, k=2)
dspy.settings.configure(lm=llm, rm=retriever_model)
sentence = "disney again ransacks its archives for a quick-buck sequel ." # example from the SST-2 dataset.
classify = dspy.Predict('sentence -> sentiment')
print(classify(sentence=sentence).sentiment)
retrieve = | dspy.Retrieve() | dspy.Retrieve |
get_ipython().system('pip install clarifai')
get_ipython().system('pip install dspy-ai')
import dspy
from dspy.retrieve.clarifai_rm import ClarifaiRM
MODEL_URL = "https://clarifai.com/meta/Llama-2/models/llama2-70b-chat"
PAT = "CLARIFAI_PAT"
USER_ID = "YOUR_ID"
APP_ID = "YOUR_APP"
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.vectorstores import Clarifai as clarifaivectorstore
loader = TextLoader("YOUR_TEXT_FILE") #replace with your file path
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
docs = text_splitter.split_documents(documents)
clarifai_vector_db = clarifaivectorstore.from_documents(
user_id=USER_ID,
app_id=APP_ID,
documents=docs,
pat=PAT
)
llm=dspy.Clarifai(model=MODEL_URL, api_key=PAT, n=2, inference_params={"max_tokens":100,'temperature':0.6})
retriever_model=ClarifaiRM(clarifai_user_id=USER_ID, clarfiai_app_id=APP_ID, clarifai_pat=PAT, k=2)
dspy.settings.configure(lm=llm, rm=retriever_model)
sentence = "disney again ransacks its archives for a quick-buck sequel ." # example from the SST-2 dataset.
classify = dspy.Predict('sentence -> sentiment')
print(classify(sentence=sentence).sentiment)
retrieve = dspy.Retrieve()
topK_passages = retrieve("can I test my vehicle engine in pit?").passages
print(topK_passages)
class GenerateAnswer(dspy.Signature):
"""Think and Answer questions based on the context provided."""
context = dspy.InputField(desc="may contain relevant facts about user query")
question = dspy.InputField(desc="User query")
answer = dspy.OutputField(desc="Answer in one or two lines")
class RAG(dspy.Module):
def __init__(self):
super().__init__()
self.retrieve = dspy.Retrieve()
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
def forward(self, question):
context = self.retrieve(question).passages
prediction = self.generate_answer(context=context, question=question)
return dspy.Prediction(context=context, answer=prediction.answer)
my_question = "can I test my vehicle engine in pit before inspection?"
Rag_obj= RAG()
predict_response_llama70b=Rag_obj(my_question)
print(f"Question: {my_question}")
print(f"Predicted Answer: {predict_response_llama70b.answer}")
print(f"Retrieved Contexts (truncated): {[c[:200] + '...' for c in predict_response_llama70b.context]}")
mistral_lm = | dspy.Clarifai(model="https://clarifai.com/mistralai/completion/models/mistral-7B-Instruct", api_key=PAT, n=2, inference_params={'temperature':0.6}) | dspy.Clarifai |
get_ipython().system('pip install clarifai')
get_ipython().system('pip install dspy-ai')
import dspy
from dspy.retrieve.clarifai_rm import ClarifaiRM
MODEL_URL = "https://clarifai.com/meta/Llama-2/models/llama2-70b-chat"
PAT = "CLARIFAI_PAT"
USER_ID = "YOUR_ID"
APP_ID = "YOUR_APP"
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.vectorstores import Clarifai as clarifaivectorstore
loader = TextLoader("YOUR_TEXT_FILE") #replace with your file path
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
docs = text_splitter.split_documents(documents)
clarifai_vector_db = clarifaivectorstore.from_documents(
user_id=USER_ID,
app_id=APP_ID,
documents=docs,
pat=PAT
)
llm=dspy.Clarifai(model=MODEL_URL, api_key=PAT, n=2, inference_params={"max_tokens":100,'temperature':0.6})
retriever_model=ClarifaiRM(clarifai_user_id=USER_ID, clarfiai_app_id=APP_ID, clarifai_pat=PAT, k=2)
dspy.settings.configure(lm=llm, rm=retriever_model)
sentence = "disney again ransacks its archives for a quick-buck sequel ." # example from the SST-2 dataset.
classify = dspy.Predict('sentence -> sentiment')
print(classify(sentence=sentence).sentiment)
retrieve = dspy.Retrieve()
topK_passages = retrieve("can I test my vehicle engine in pit?").passages
print(topK_passages)
class GenerateAnswer(dspy.Signature):
"""Think and Answer questions based on the context provided."""
context = dspy.InputField(desc="may contain relevant facts about user query")
question = dspy.InputField(desc="User query")
answer = dspy.OutputField(desc="Answer in one or two lines")
class RAG(dspy.Module):
def __init__(self):
super().__init__()
self.retrieve = dspy.Retrieve()
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
def forward(self, question):
context = self.retrieve(question).passages
prediction = self.generate_answer(context=context, question=question)
return dspy.Prediction(context=context, answer=prediction.answer)
my_question = "can I test my vehicle engine in pit before inspection?"
Rag_obj= RAG()
predict_response_llama70b=Rag_obj(my_question)
print(f"Question: {my_question}")
print(f"Predicted Answer: {predict_response_llama70b.answer}")
print(f"Retrieved Contexts (truncated): {[c[:200] + '...' for c in predict_response_llama70b.context]}")
mistral_lm = dspy.Clarifai(model="https://clarifai.com/mistralai/completion/models/mistral-7B-Instruct", api_key=PAT, n=2, inference_params={'temperature':0.6})
| dspy.settings.configure(lm=mistral_lm, rm=retriever_model) | dspy.settings.configure |
get_ipython().system('pip install clarifai')
get_ipython().system('pip install dspy-ai')
import dspy
from dspy.retrieve.clarifai_rm import ClarifaiRM
MODEL_URL = "https://clarifai.com/meta/Llama-2/models/llama2-70b-chat"
PAT = "CLARIFAI_PAT"
USER_ID = "YOUR_ID"
APP_ID = "YOUR_APP"
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.vectorstores import Clarifai as clarifaivectorstore
loader = TextLoader("YOUR_TEXT_FILE") #replace with your file path
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
docs = text_splitter.split_documents(documents)
clarifai_vector_db = clarifaivectorstore.from_documents(
user_id=USER_ID,
app_id=APP_ID,
documents=docs,
pat=PAT
)
llm=dspy.Clarifai(model=MODEL_URL, api_key=PAT, n=2, inference_params={"max_tokens":100,'temperature':0.6})
retriever_model=ClarifaiRM(clarifai_user_id=USER_ID, clarfiai_app_id=APP_ID, clarifai_pat=PAT, k=2)
dspy.settings.configure(lm=llm, rm=retriever_model)
sentence = "disney again ransacks its archives for a quick-buck sequel ." # example from the SST-2 dataset.
classify = dspy.Predict('sentence -> sentiment')
print(classify(sentence=sentence).sentiment)
retrieve = dspy.Retrieve()
topK_passages = retrieve("can I test my vehicle engine in pit?").passages
print(topK_passages)
class GenerateAnswer(dspy.Signature):
"""Think and Answer questions based on the context provided."""
context = dspy.InputField(desc="may contain relevant facts about user query")
question = dspy.InputField(desc="User query")
answer = dspy.OutputField(desc="Answer in one or two lines")
class RAG(dspy.Module):
def __init__(self):
super().__init__()
self.retrieve = dspy.Retrieve()
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
def forward(self, question):
context = self.retrieve(question).passages
prediction = self.generate_answer(context=context, question=question)
return dspy.Prediction(context=context, answer=prediction.answer)
my_question = "can I test my vehicle engine in pit before inspection?"
Rag_obj= RAG()
predict_response_llama70b=Rag_obj(my_question)
print(f"Question: {my_question}")
print(f"Predicted Answer: {predict_response_llama70b.answer}")
print(f"Retrieved Contexts (truncated): {[c[:200] + '...' for c in predict_response_llama70b.context]}")
mistral_lm = dspy.Clarifai(model="https://clarifai.com/mistralai/completion/models/mistral-7B-Instruct", api_key=PAT, n=2, inference_params={'temperature':0.6})
dspy.settings.configure(lm=mistral_lm, rm=retriever_model)
my_question = "can I test my vehicle engine in pit before inspection?"
Rag_obj= RAG()
predict_response_mistral=Rag_obj(my_question)
print(f"Question: {my_question}")
print(f"Predicted Answer: {predict_response_mistral.answer}")
print(f"Retrieved Contexts (truncated): {[c[:200] + '...' for c in predict_response_mistral.context]}")
gemini_lm = | dspy.Clarifai(model="https://clarifai.com/gcp/generate/models/gemini-pro", api_key=PAT, n=2) | dspy.Clarifai |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 33