Search is not available for this dataset
age
int64 29
77
| sex
int64 0
1
| cp
int64 0
3
| trestbps
int64 94
200
| chol
int64 126
564
| fbs
int64 0
1
| restecg
int64 0
2
| thalach
int64 71
202
| exang
int64 0
1
| oldpeak
float64 0
6.2
| slope
int64 0
2
| ca
int64 0
4
| thal
int64 0
3
| target
int64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
52 | 1 | 0 | 125 | 212 | 0 | 1 | 168 | 0 | 1 | 2 | 2 | 3 | 0 |
53 | 1 | 0 | 140 | 203 | 1 | 0 | 155 | 1 | 3.1 | 0 | 0 | 3 | 0 |
70 | 1 | 0 | 145 | 174 | 0 | 1 | 125 | 1 | 2.6 | 0 | 0 | 3 | 0 |
61 | 1 | 0 | 148 | 203 | 0 | 1 | 161 | 0 | 0 | 2 | 1 | 3 | 0 |
62 | 0 | 0 | 138 | 294 | 1 | 1 | 106 | 0 | 1.9 | 1 | 3 | 2 | 0 |
58 | 0 | 0 | 100 | 248 | 0 | 0 | 122 | 0 | 1 | 1 | 0 | 2 | 1 |
58 | 1 | 0 | 114 | 318 | 0 | 2 | 140 | 0 | 4.4 | 0 | 3 | 1 | 0 |
55 | 1 | 0 | 160 | 289 | 0 | 0 | 145 | 1 | 0.8 | 1 | 1 | 3 | 0 |
46 | 1 | 0 | 120 | 249 | 0 | 0 | 144 | 0 | 0.8 | 2 | 0 | 3 | 0 |
54 | 1 | 0 | 122 | 286 | 0 | 0 | 116 | 1 | 3.2 | 1 | 2 | 2 | 0 |
71 | 0 | 0 | 112 | 149 | 0 | 1 | 125 | 0 | 1.6 | 1 | 0 | 2 | 1 |
43 | 0 | 0 | 132 | 341 | 1 | 0 | 136 | 1 | 3 | 1 | 0 | 3 | 0 |
34 | 0 | 1 | 118 | 210 | 0 | 1 | 192 | 0 | 0.7 | 2 | 0 | 2 | 1 |
51 | 1 | 0 | 140 | 298 | 0 | 1 | 122 | 1 | 4.2 | 1 | 3 | 3 | 0 |
52 | 1 | 0 | 128 | 204 | 1 | 1 | 156 | 1 | 1 | 1 | 0 | 0 | 0 |
51 | 0 | 2 | 140 | 308 | 0 | 0 | 142 | 0 | 1.5 | 2 | 1 | 2 | 1 |
54 | 1 | 0 | 124 | 266 | 0 | 0 | 109 | 1 | 2.2 | 1 | 1 | 3 | 0 |
50 | 0 | 1 | 120 | 244 | 0 | 1 | 162 | 0 | 1.1 | 2 | 0 | 2 | 1 |
58 | 1 | 2 | 140 | 211 | 1 | 0 | 165 | 0 | 0 | 2 | 0 | 2 | 1 |
60 | 1 | 2 | 140 | 185 | 0 | 0 | 155 | 0 | 3 | 1 | 0 | 2 | 0 |
67 | 0 | 0 | 106 | 223 | 0 | 1 | 142 | 0 | 0.3 | 2 | 2 | 2 | 1 |
45 | 1 | 0 | 104 | 208 | 0 | 0 | 148 | 1 | 3 | 1 | 0 | 2 | 1 |
63 | 0 | 2 | 135 | 252 | 0 | 0 | 172 | 0 | 0 | 2 | 0 | 2 | 1 |
42 | 0 | 2 | 120 | 209 | 0 | 1 | 173 | 0 | 0 | 1 | 0 | 2 | 1 |
61 | 0 | 0 | 145 | 307 | 0 | 0 | 146 | 1 | 1 | 1 | 0 | 3 | 0 |
44 | 1 | 2 | 130 | 233 | 0 | 1 | 179 | 1 | 0.4 | 2 | 0 | 2 | 1 |
58 | 0 | 1 | 136 | 319 | 1 | 0 | 152 | 0 | 0 | 2 | 2 | 2 | 0 |
56 | 1 | 2 | 130 | 256 | 1 | 0 | 142 | 1 | 0.6 | 1 | 1 | 1 | 0 |
55 | 0 | 0 | 180 | 327 | 0 | 2 | 117 | 1 | 3.4 | 1 | 0 | 2 | 0 |
44 | 1 | 0 | 120 | 169 | 0 | 1 | 144 | 1 | 2.8 | 0 | 0 | 1 | 0 |
57 | 1 | 0 | 130 | 131 | 0 | 1 | 115 | 1 | 1.2 | 1 | 1 | 3 | 0 |
70 | 1 | 2 | 160 | 269 | 0 | 1 | 112 | 1 | 2.9 | 1 | 1 | 3 | 0 |
50 | 1 | 2 | 129 | 196 | 0 | 1 | 163 | 0 | 0 | 2 | 0 | 2 | 1 |
46 | 1 | 2 | 150 | 231 | 0 | 1 | 147 | 0 | 3.6 | 1 | 0 | 2 | 0 |
51 | 1 | 3 | 125 | 213 | 0 | 0 | 125 | 1 | 1.4 | 2 | 1 | 2 | 1 |
59 | 1 | 0 | 138 | 271 | 0 | 0 | 182 | 0 | 0 | 2 | 0 | 2 | 1 |
64 | 1 | 0 | 128 | 263 | 0 | 1 | 105 | 1 | 0.2 | 1 | 1 | 3 | 1 |
57 | 1 | 2 | 128 | 229 | 0 | 0 | 150 | 0 | 0.4 | 1 | 1 | 3 | 0 |
65 | 0 | 2 | 160 | 360 | 0 | 0 | 151 | 0 | 0.8 | 2 | 0 | 2 | 1 |
54 | 1 | 2 | 120 | 258 | 0 | 0 | 147 | 0 | 0.4 | 1 | 0 | 3 | 1 |
61 | 0 | 0 | 130 | 330 | 0 | 0 | 169 | 0 | 0 | 2 | 0 | 2 | 0 |
55 | 0 | 1 | 132 | 342 | 0 | 1 | 166 | 0 | 1.2 | 2 | 0 | 2 | 1 |
42 | 1 | 0 | 140 | 226 | 0 | 1 | 178 | 0 | 0 | 2 | 0 | 2 | 1 |
41 | 1 | 1 | 135 | 203 | 0 | 1 | 132 | 0 | 0 | 1 | 0 | 1 | 1 |
66 | 0 | 0 | 178 | 228 | 1 | 1 | 165 | 1 | 1 | 1 | 2 | 3 | 0 |
66 | 0 | 2 | 146 | 278 | 0 | 0 | 152 | 0 | 0 | 1 | 1 | 2 | 1 |
60 | 1 | 0 | 117 | 230 | 1 | 1 | 160 | 1 | 1.4 | 2 | 2 | 3 | 0 |
58 | 0 | 3 | 150 | 283 | 1 | 0 | 162 | 0 | 1 | 2 | 0 | 2 | 1 |
57 | 0 | 0 | 140 | 241 | 0 | 1 | 123 | 1 | 0.2 | 1 | 0 | 3 | 0 |
38 | 1 | 2 | 138 | 175 | 0 | 1 | 173 | 0 | 0 | 2 | 4 | 2 | 1 |
49 | 1 | 2 | 120 | 188 | 0 | 1 | 139 | 0 | 2 | 1 | 3 | 3 | 0 |
55 | 1 | 0 | 140 | 217 | 0 | 1 | 111 | 1 | 5.6 | 0 | 0 | 3 | 0 |
56 | 1 | 3 | 120 | 193 | 0 | 0 | 162 | 0 | 1.9 | 1 | 0 | 3 | 1 |
48 | 1 | 1 | 130 | 245 | 0 | 0 | 180 | 0 | 0.2 | 1 | 0 | 2 | 1 |
67 | 1 | 2 | 152 | 212 | 0 | 0 | 150 | 0 | 0.8 | 1 | 0 | 3 | 0 |
57 | 1 | 1 | 154 | 232 | 0 | 0 | 164 | 0 | 0 | 2 | 1 | 2 | 0 |
29 | 1 | 1 | 130 | 204 | 0 | 0 | 202 | 0 | 0 | 2 | 0 | 2 | 1 |
67 | 1 | 0 | 100 | 299 | 0 | 0 | 125 | 1 | 0.9 | 1 | 2 | 2 | 0 |
59 | 1 | 2 | 150 | 212 | 1 | 1 | 157 | 0 | 1.6 | 2 | 0 | 2 | 1 |
59 | 1 | 3 | 170 | 288 | 0 | 0 | 159 | 0 | 0.2 | 1 | 0 | 3 | 0 |
53 | 1 | 2 | 130 | 197 | 1 | 0 | 152 | 0 | 1.2 | 0 | 0 | 2 | 1 |
42 | 1 | 0 | 136 | 315 | 0 | 1 | 125 | 1 | 1.8 | 1 | 0 | 1 | 0 |
37 | 0 | 2 | 120 | 215 | 0 | 1 | 170 | 0 | 0 | 2 | 0 | 2 | 1 |
62 | 0 | 0 | 160 | 164 | 0 | 0 | 145 | 0 | 6.2 | 0 | 3 | 3 | 0 |
59 | 1 | 0 | 170 | 326 | 0 | 0 | 140 | 1 | 3.4 | 0 | 0 | 3 | 0 |
61 | 1 | 0 | 140 | 207 | 0 | 0 | 138 | 1 | 1.9 | 2 | 1 | 3 | 0 |
56 | 1 | 0 | 125 | 249 | 1 | 0 | 144 | 1 | 1.2 | 1 | 1 | 2 | 0 |
59 | 1 | 0 | 140 | 177 | 0 | 1 | 162 | 1 | 0 | 2 | 1 | 3 | 0 |
48 | 1 | 0 | 130 | 256 | 1 | 0 | 150 | 1 | 0 | 2 | 2 | 3 | 0 |
47 | 1 | 2 | 138 | 257 | 0 | 0 | 156 | 0 | 0 | 2 | 0 | 2 | 1 |
48 | 1 | 2 | 124 | 255 | 1 | 1 | 175 | 0 | 0 | 2 | 2 | 2 | 1 |
63 | 1 | 0 | 140 | 187 | 0 | 0 | 144 | 1 | 4 | 2 | 2 | 3 | 0 |
52 | 1 | 1 | 134 | 201 | 0 | 1 | 158 | 0 | 0.8 | 2 | 1 | 2 | 1 |
50 | 1 | 2 | 140 | 233 | 0 | 1 | 163 | 0 | 0.6 | 1 | 1 | 3 | 0 |
49 | 1 | 2 | 118 | 149 | 0 | 0 | 126 | 0 | 0.8 | 2 | 3 | 2 | 0 |
44 | 1 | 1 | 120 | 220 | 0 | 1 | 170 | 0 | 0 | 2 | 0 | 2 | 1 |
59 | 0 | 0 | 174 | 249 | 0 | 1 | 143 | 1 | 0 | 1 | 0 | 2 | 0 |
62 | 0 | 0 | 140 | 268 | 0 | 0 | 160 | 0 | 3.6 | 0 | 2 | 2 | 0 |
68 | 1 | 0 | 144 | 193 | 1 | 1 | 141 | 0 | 3.4 | 1 | 2 | 3 | 0 |
54 | 0 | 2 | 108 | 267 | 0 | 0 | 167 | 0 | 0 | 2 | 0 | 2 | 1 |
62 | 0 | 0 | 124 | 209 | 0 | 1 | 163 | 0 | 0 | 2 | 0 | 2 | 1 |
62 | 1 | 1 | 128 | 208 | 1 | 0 | 140 | 0 | 0 | 2 | 0 | 2 | 1 |
45 | 0 | 0 | 138 | 236 | 0 | 0 | 152 | 1 | 0.2 | 1 | 0 | 2 | 1 |
57 | 0 | 0 | 128 | 303 | 0 | 0 | 159 | 0 | 0 | 2 | 1 | 2 | 1 |
53 | 1 | 0 | 123 | 282 | 0 | 1 | 95 | 1 | 2 | 1 | 2 | 3 | 0 |
65 | 1 | 0 | 110 | 248 | 0 | 0 | 158 | 0 | 0.6 | 2 | 2 | 1 | 0 |
76 | 0 | 2 | 140 | 197 | 0 | 2 | 116 | 0 | 1.1 | 1 | 0 | 2 | 1 |
43 | 0 | 2 | 122 | 213 | 0 | 1 | 165 | 0 | 0.2 | 1 | 0 | 2 | 1 |
57 | 1 | 2 | 150 | 126 | 1 | 1 | 173 | 0 | 0.2 | 2 | 1 | 3 | 1 |
54 | 1 | 1 | 108 | 309 | 0 | 1 | 156 | 0 | 0 | 2 | 0 | 3 | 1 |
52 | 1 | 3 | 118 | 186 | 0 | 0 | 190 | 0 | 0 | 1 | 0 | 1 | 1 |
47 | 1 | 0 | 110 | 275 | 0 | 0 | 118 | 1 | 1 | 1 | 1 | 2 | 0 |
51 | 1 | 0 | 140 | 299 | 0 | 1 | 173 | 1 | 1.6 | 2 | 0 | 3 | 0 |
62 | 1 | 1 | 120 | 281 | 0 | 0 | 103 | 0 | 1.4 | 1 | 1 | 3 | 0 |
40 | 1 | 0 | 152 | 223 | 0 | 1 | 181 | 0 | 0 | 2 | 0 | 3 | 0 |
54 | 1 | 0 | 110 | 206 | 0 | 0 | 108 | 1 | 0 | 1 | 1 | 2 | 0 |
44 | 1 | 0 | 110 | 197 | 0 | 0 | 177 | 0 | 0 | 2 | 1 | 2 | 0 |
53 | 1 | 0 | 142 | 226 | 0 | 0 | 111 | 1 | 0 | 2 | 0 | 3 | 1 |
57 | 1 | 0 | 110 | 335 | 0 | 1 | 143 | 1 | 3 | 1 | 1 | 3 | 0 |
59 | 1 | 2 | 126 | 218 | 1 | 1 | 134 | 0 | 2.2 | 1 | 1 | 1 | 0 |
End of preview. Expand
in Dataset Viewer.
This is the version of this dataset without duplicates, as we found 700+ of them.
For more information about the dataset, please visit the dataset here.
In summary, it contains some samples which can be used to train a MLP to predict if a patient has a heart disease given relevant parameters.
You can find a model trained on this dataset here, and the library used to train the model here.
- Downloads last month
- 51