license: cc-by-nc-4.0
task_categories:
- text-to-video
- text-to-image
language:
- en
pretty_name: VidProM
size_categories:
- 1M<n<10M
source_datasets:
- original
tags:
- prompts
- text-to-video
- text-to-image
- Pika
- VideoCraft2
- Text2Video-Zero
- ModelScope
- Video Generative Model Evaluation
- Text-to-Video Diffusion Model Development
- Text-to-Video Prompt Engineering
- Efficient Video Generation
- Fake Video Detection
- Video Copy Detection for Diffusion Models
configs:
- config_name: VidProM_unique
data_files: VidProM_unique.csv
Summary
This is the dataset proposed in our paper "VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models"
VidProM is the first dataset featuring 1.67 million unique text-to-video prompts and 6.69 million videos generated from 4 different state-of-the-art diffusion models. It inspires many exciting new research areas, such as Text-to-Video Prompt Engineering, Efficient Video Generation, Fake Video Detection, and Video Copy Detection for Diffusion Models.
Directory
*DATA_PATH
*VidProM_unique.csv
*VidProM_semantic_unique.csv
*VidProM_embed.hdf5
*original_files
*generate_1_ori.html
*generate_2_ori.html
...
*pika_videos
*pika_videos_1.tar
*pika_videos_2.tar
...
*vc2_videos
*vc2_videos_1.tar
*vc2_videos_2.tar
...
*t2vz_videos
*t2vz_videos_1.tar
*t2vz_videos_2.tar
...
*ms_videos
*ms_videos_1.tar
*ms_videos_2.tar
...
*example
Download
Automatical
Install the datasets library first, by:
pip install datasets
Then it can be downloaded automatically with
import numpy as np
from datasets import load_dataset
dataset = load_dataset('WenhaoWang/VidProM')
Manual
You can also download each file by wget
, for instance:
wget https://huggingface.co/datasets/WenhaoWang/VidProM/resolve/main/VidProM_unique.csv
Explanation
VidProM_unique.csv
contains the UUID, prompt, time, and 6 NSFW probabilities.
It can easily be read by
import pandas
df = pd.read_csv("VidProM_unique.csv")
Below are three rows from VidProM_unique.csv
:
uuid | prompt | time | toxicity | obscene | identity_attack | insult | threat | sexual_explicit |
---|---|---|---|---|---|---|---|---|
6a83eb92-faa0-572b-9e1f-67dec99b711d | Flying among clouds and stars, kitten Max discovered a world full of winged friends. Returning home, he shared his stories and everyone smiled as they imagined flying together in their dreams. | Sun Sep 3 12:27:44 2023 | 0.00129 | 0.00016 | 7e-05 | 0.00064 | 2e-05 | 2e-05 |
3ba1adf3-5254-59fb-a13e-57e6aa161626 | Use a clean and modern font for the text "Relate Reality 101." Add a small, stylized heart icon or a thought bubble above or beside the text to represent emotions and thoughts. Consider using a color scheme that includes warm, inviting colors like deep reds, soft blues, or soothing purples to evoke feelings of connection and intrigue. | Wed Sep 13 18:15:30 2023 | 0.00038 | 0.00013 | 8e-05 | 0.00018 | 3e-05 | 3e-05 |
62e5a2a0-4994-5c75-9976-2416420526f7 | zoomed out, sideview of an Grey Alien sitting at a computer desk | Tue Oct 24 20:24:21 2023 | 0.01777 | 0.00029 | 0.00336 | 0.00256 | 0.00017 | 5e-05 |
VidProM_semantic_unique.csv
is a semantically unique version of VidProM_unique.csv
.
VidProM_embed.hdf5
is the 3072-dim embeddings of our prompts. They are embedded by text-embedding-3-large, which is the latest text embedding model of OpenAI.
It can easily be read by
import numpy as np
import h5py
def read_descriptors(filename):
hh = h5py.File(filename, "r")
descs = np.array(hh["embeddings"])
names = np.array(hh["uuid"][:], dtype=object).astype(str).tolist()
return names, descs
uuid, features = read_descriptors('VidProM_embed.hdf5')
original_files
are the HTML files from official Pika Discord collected by DiscordChatExporter. You can do whatever you want with it under CC BY-NC 4.0 license.
pika_videos
, vc2_videos
, t2vz_videos
, and ms_videos
are the generated videos by 4 state-of-the-art text-to-video diffusion models. Each contains 30 tar files.
example
is a subfolder which contains 10,000 datapoints.
Datapoint
Visualization
Click the WizMap (and wait for 5 seconds) for an interactive visualization of our 1.67 million prompts. Above is a thumbnail.
Comparison with DiffusionDB
Please check our paper for a detailed comparison.
Curators
VidProM is created by Wenhao Wang and Professor Yi Yang from the ReLER Lab.
License
The prompts and videos generated by Pika in our VidProM are licensed under the CC BY-NC 4.0 license. Additionally, similar to their original repositories, the videos from VideoCraft2, Text2Video-Zero, and ModelScope are released under the Apache license, the CreativeML Open RAIL-M license, and the CC BY-NC 4.0 license, respectively. Our code is released under the CC BY-NC 4.0 license.
Citation
@article{wang2024vidprom,
title={VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models},
author={Wang, Wenhao and Yang, Yi},
journal={arXiv preprint arXiv:2403.06098},
year={2024}
}
Contact
If you have any questions, feel free to contact Wenhao Wang ([email protected]).